

OB6000

Wearable Bio-Sensor

User Manual

OYMotion Technologies Co.,Ltd.

www.oymotion.com

Table of contents

1. Preface	1
2. Product Introduction	1
3. Product Model	1
4. Scope of application	1
5. Product Appearance	1
6. Equipment Operation	10
7. Technical specifications	34
8. Precautions	35
9. Product After-Sales Service	36
10. Packing List	37
11. FCC Warning	38
12. Contact Details	39

1. Preface

Dear user, thank you for purchasing the OYMotion OB6000 EEG Wearable Bio-Sensor. In order to better understand the product, please read this manual carefully before use. I wish you a pleasant experience!

2. Product Introduction

The OB6000 Wearable Bio-Sensor is designed for the real-time acquisition of non-invasive electroencephalogram (EEG) and posture signals.

The device is available in three models:

OB6000A: supports acquisition of 16-channel EEG signals

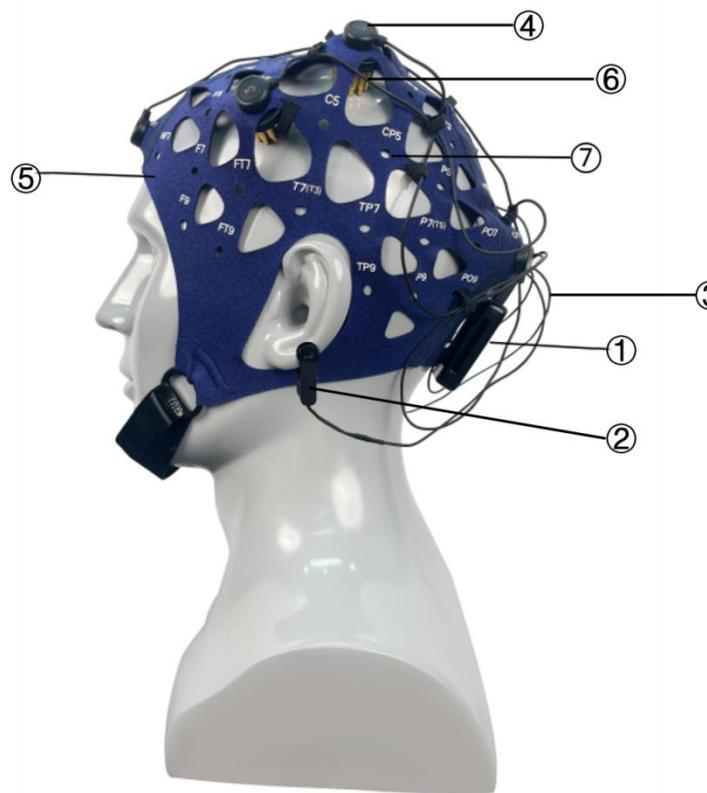
OB6000B: supports acquisition of 24-channel EEG signals

OB6000C: supports acquisition of 32-channel EEG signals

When used with OYMotion's wireless bioelectric acquisition software (SynchronyPro APP), the system enables real-time display and recording of EEG waveforms and posture data. In addition, the software provides electrode impedance monitoring for all channels to ensure signal quality.

3. Product Model

OB6000A, OB6000B, OB6000C


4. Scope of application

Intended for use by medical institutions to detect, process, display, store, and playback human electroencephalographic (EEG) signals.

5. Product Appearance

The product consists of an EEG Amplifier, an EEG cap, lead wires, EEG electrodes and software.

The names and functions of the components of the Wearable Bio-Sensor are as follows:

① EEG Amplifier	② Ear clips
③ Lead wire	④ EEG electrode buckle
⑤ EEG cap	⑥ EEG electrodes
⑦ EEG electrode fixation hole	

5.1. EEG Amplifier

Figure 5.1-1

1) Button

- Power button

Figure 5.1-2

Operate	Function
Press and hold for more than 2 seconds and then release	Power on/off
Double click	Enable/disable offline sampling

2) LED Light

Figure 5.1-3

From left to right: Charging indicator LED light, SD card LED light, Bluetooth LED light, Running status light

- Charging indicator LED light

State	Instructions

Lights up	Charging
Off	Not charging or charging is complete

- SD card LED light

State	Instructions
Lights up	Insert a valid SD card
Flash	Reading and Writing Data
Off	No SD card is inserted or the SD card is not recognized

- Bluetooth LED Light

State	Instructions
Lights up	Bluetooth connection
Flash	Data Transfer
Off	Bluetooth connection is disconnected or Bluetooth is not connected

- Status indicator

State	Instructions
Lights up	Power on
Flash	Standby
Always on	the Bluetooth LED or SD card LED flashes
Off	Shutdown

3) Charging port

The charging port is a Micro USB port, located on the side of the EEG Amplifier.

Figure 5.1-4

4) SD Card Interface

The SD card interface is located on the side of the EEG Amplifier, between the charging port and the power button. Just align the direction and press it to insert it. If you want to remove the inserted SD card, squeeze the SD card downwards and it will pop out.

Figure 5.1-5

5) Lead Wire Interface

The lead wire interface is a Micro HDMI interface, located on the side of the EEG Amplifier. It is divided into two, L and R. It needs to be connected to the corresponding lead wire when connecting.

Figure 5.1-6

5.2. EEG cap

As shown in Figure 3.1-8, the EEG cap is made of nylon retractable material, with 64 channel electrode positions marked, which complies with the international 10-10 standard lead positioning system. There is a Velcro on the back of the EEG cap. The EEG Amplifier is fixed to the back of the EEG cap through the Velcro on the back of the EEG Amplifier.

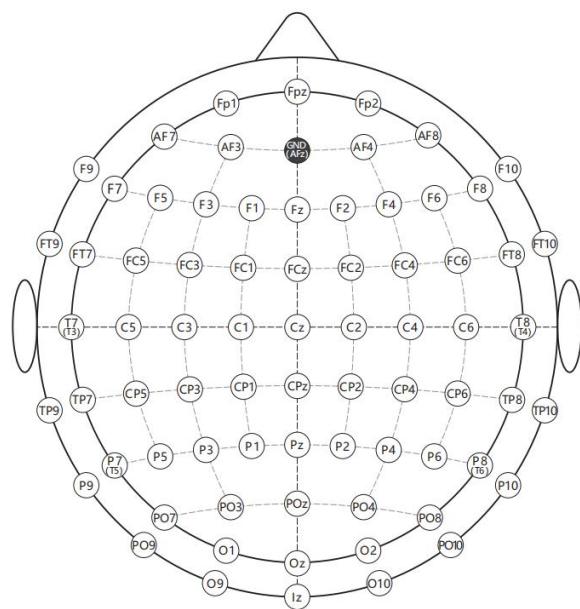


Figure 5.2-1 Schematic diagram of
electrode positions

Figure 5.2-2 EEG cap

5.3. Lead wire

The lead wire is used to connect the EEG electrodes and the EEG Amplifier. One side is connected to the EEG Amplifier through the Micro HDMI interface, and the other side is connected to

the electrode through the electrode buckle. The black electrode buckle is used to connect the EEG electrodes.

Each EEG Amplifier needs to be connected to two lead wires. Each lead wire contains a black Ear clip, which is clamped on the earlobe in the form of an ear clip when in use, serving as the input for the reference signal and the bias signal.

OB6000A: Each lead wire contains 1 Ear clip and 8 EEG electrodes.

Figure 5.3-1 OBLW-1E8B01

Figure 5.3-2 OBLW-1E8B02

OB6000B: Each lead wire contains 1 Ear clip and 12 EEG electrodes.

Figure 5.3-3 OBLW - 1E12B01

Figure 5.3-4 OBLW - 1E12B02

OB6000C: Each lead wire contains 1 Ear clip and 16 EEG electrodes.

Figure 5.3-5 OBLW - 1E16B01

Figure 5.3-6 OBLW - 1E16B02

Taking the above OBLW-1E8B01 model as an example, the names of the various parts of the lead wire are described as follows:

①	Micro HDMI port	Connect to EEG Amplifier
②	Ear clip	Placed on the earlobe
③	EEG electrode buckle	Connecting to EEG electrode

5.4. EEG electrodes

The EEG electrodes use metal probes, and there are 2 models to choose from, as shown in Figure 3.1-15.

Classification	model	Specification	Remark
EEG electrodes	OEH-LMB	19pin middle needle black	①
	OEH-LLB	19pin long pin black	②

of the electrode buckle on the lead wire through a button-type male end , and is fixed on the EEG cap through the small hole of the EEG cap. It can be freely installed at any electrode position, and is flexible and convenient to wear.

Figure 3.1-15 EEG electrode

①	EEG electrode interface	Connect to the EEG electrode button on the lead wire
②	Electrode fixing slot	Position of the EEG electrode fixing holes fixed on the EEG cap
③	Metal probe	Contact with scalp

5.5. Software

The Wearable Bio-Sensor includes the SynchronyPro software on the mobile terminal and the OB6000 Firmware software running on the device.

APP software name: SynchronyPro software

APP software release version: V1

Embedded software name: OB6000 Firmware software

Embedded software release version: V1

SynchronyPro software searches for devices and connects to them. After receiving the EEG data from the device, it unpacks it and displays the waveform and various auxiliary views. The EEG data can be stored as bdf files and can be played back. When the mobile terminal connects to the device for the first time, you need to enter the activation code.

OB6000 Firmware is an embedded software that runs in the EEG Amplifier's MCU. It collects EEG signals by controlling the ADC circuit, performs filtering and encoding, and collects IMU data and calculates impedance. After integration, it is sent to the SynchronyPro software via Bluetooth.

6. Equipment Operation

6.1. Head circumference measurement

Before wearing the EEG cap, accurately measuring the user's head circumference is a key step to ensure that the EEG cap is comfortable to wear and correctly positioned. The following is the process of measuring the user's head circumference:

1. Preparing tools

Tape measure: Use a soft, non-stretchable tape measure, usually made of cloth or plastic.

Marking pen: Used to mark reference points.

2. Determine the measurement location

This is usually about 1 cm above the eyebrows and at the most prominent part of the occipital bone. Make sure the tape measure is level around the head, not tilted.

3. Measurement steps

Start at the center of the user's forehead and find the starting point 1 cm above the eyebrows. Move the tape horizontally along the scalp until it reaches the back of the head, wrapping around the most prominent part of the occipital bone. Keep the tape close to the scalp, but not too tight to avoid compressing the hair or skin, align the zero scale point of the tape with the coincident position, and record the head circumference reading.

4. Repeated measurements

To ensure accuracy, you can measure several times and take the average.

5. Recording Results

Record the measurement results and select the appropriate size EEG cap based on the measured

head circumference and the EEG cap size comparison table.

	Head circumference ≤ 56 cm	56<Head circumference≤60cm	Head circumference>60cm
EEG cap	CM-TZ01-1008AY(Small)	CM-TZ01-2008AY(Medium)	CM-TZ01-3008AY(Large)

6.2. Wearing steps

1. Users need to determine the collection points in advance according to their own data collection needs. At the determined points, first pass the electrode fixing groove on the EEG electrode through the EEG electrode fixing hole on the EEG cap to fix it, as shown in Figure 6-1; After it is firmly fixed, connect and fix the EEG electrode interface and the EEG electrode buckle, as shown in Figure 6-2.

Figure 6-1

Figure 6-2

2. After the EEG electrodes and EEG electrode heads of the two lead wires are all fixed, take out the EEG Amplifier and insert the Micro HDMI plug on the lead wire into the Micro HDMI interface of the EEG Amplifier. Note that the lead wire marked with L needs to correspond to the Micro HDMI interface marked with L on the EEG Amplifier, and the lead wire marked with R needs

to correspond to the Micro HDMI interface marked with R on the EEG Amplifier. Then glue the Velcro of the EEG Amplifier to the Velcro on the EEG cap, as shown in Figure 6-3.

Figure 6-3

3. Wear the EEG cap with the EEG Amplifier at the back of the head, pass the strap through the strap hole at the chin and tighten the strap, as shown in Figures 6-4 and 6-5.

Figure 6-4 Figure 6-5

4. Flatten the EEG cap and make sure that each metal spring pin of the EEG electrode is in vertical contact with the scalp, as shown in Figure 6-6.

Figure 6-6

5. Align the Ear clips left and right, and then wear them on the earlobes, as shown in Figure 6-7.

Figure 6-7

6.3. Software Operation

SynchronyPro software is a mobile desktop software platform for OYMotion EEG acquisition products, which can mainly realize the following functions:

- Collect and display EEG signals in real time
- Real-time display of IMU data
- FFT View/Histogram
- Waveform settings

- Impedance detection
- Bdf file storage and playback
- Data distribution
- Data playback
- View product information
- About

App download link: <https://SynchronyPro.oymotion.com/>

⚠️ Notice

Before downloading, please make sure that your phone or tablet is connected to the Internet, Bluetooth is turned on, and location services are turned on.

6.3.1 Connecting devices

- 1) Device power on: Press and hold the device power button for more than 2 seconds until the green indicator light turns on, then release it. The device will turn on and the status indicator light will flash green slowly.
- 2) Run the SynchronyPro APP, enter the startup page, and click OK to enter the device search page, as shown in Figure 6-8.

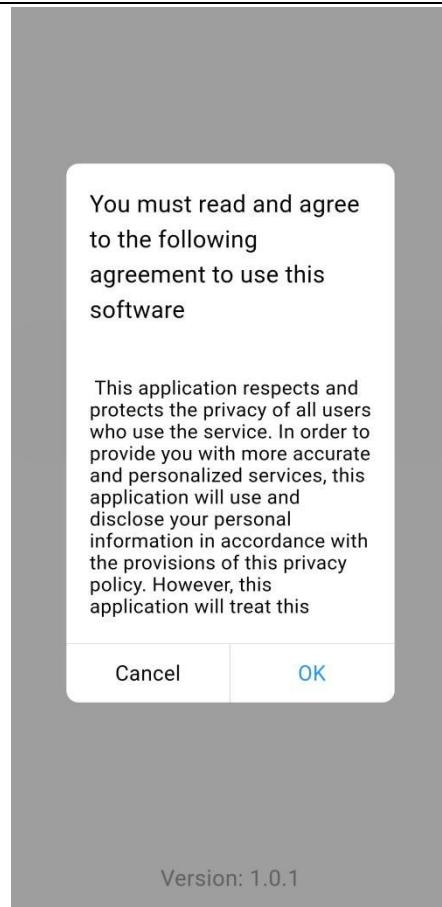


Figure 6- 8

3) On the " **Find Device** " page of the SynchronyPro APP , click the icon to find the device, as shown in Figure 6-9; find the " OB6000A/OB6000B/OB6000C " device in the device list and click " **Connect** ", as shown in Figure 6-10. After the connection is successful, the status indicator is solid green.

Figure 6- 9

Figure 6- 10

6.3.2 Device Activation

When your phone or tablet is connected to the device for the first time, a pop-up window will appear as shown in Figure 6-11. Enter the activation code and click "OK". When a successful pop-up window appears (as shown in Figure 6-12), click OK. The device will automatically connect to the main interface as shown in Figure 6-13.

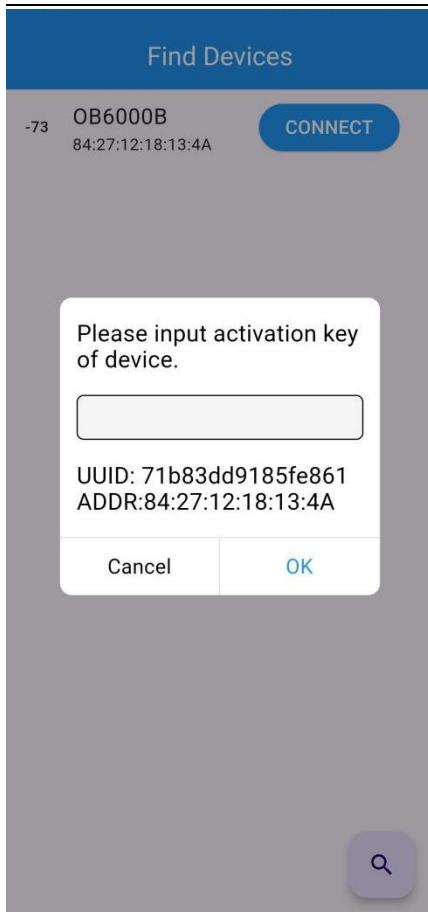


Figure 6-11



Figure 6-12

Figure 6-13

6.3.3 View the Waveform

After the user wears the device correctly, he can view the real-time waveform. Click the "Waveform" button on the main interface and choose whether to turn on impedance detection, as shown in Figure 6-14;

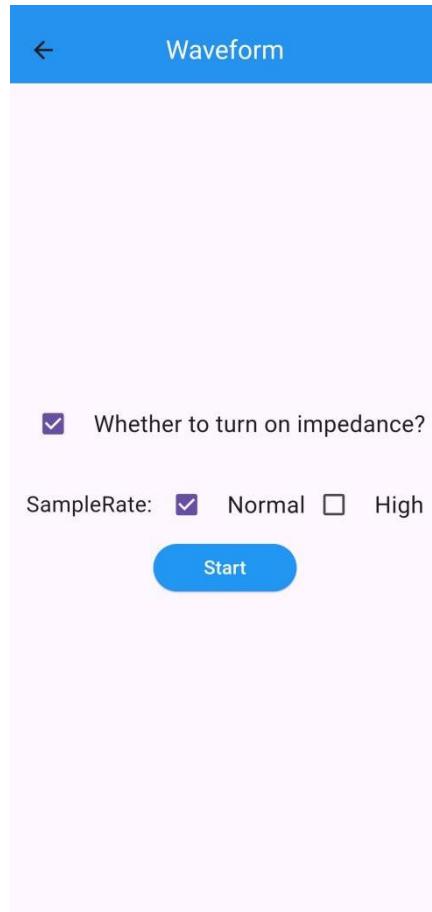


Figure 6-1 4

Then click "**Start**" to enter the waveform viewing interface. This interface is divided into four views:

- ◆ Waveform
- ◆ Accelerometer and gyroscope view (IMU)
- ◆ Fourier Transform View (FFT)
- ◆ Histogram (PowerBand)

You can switch by clicking the menu button in the upper right corner of the display window, as shown in Figure 6-15 and Figure 6-16.

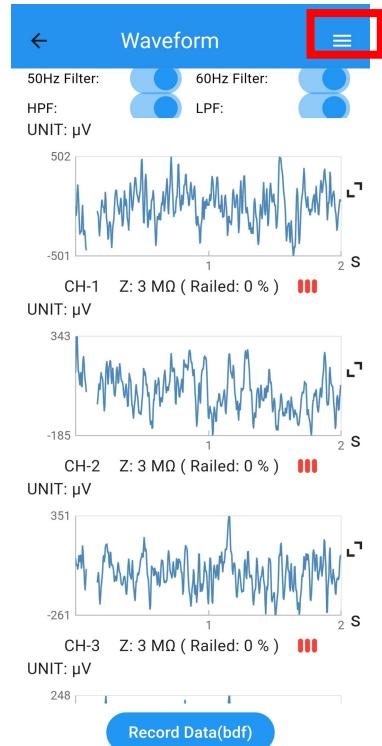


Figure 6- 15

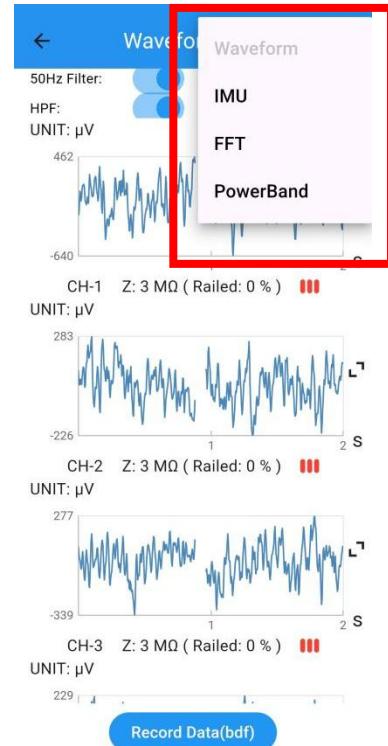


Figure 6 -16

6.3.3.1 Filter switch

At the top of the waveform viewing interface is the filter switch, which includes 50Hz notch filter, 60Hz notch filter, high-pass filter (HPF) and low-pass filter (LPF). You can switch the corresponding filter switch through the button. As shown in Figure 6-17. After turning it on, the device will perform the corresponding filtering and send the data to the APP. The high-pass cutoff frequency is 0.5Hz, and the low-pass cutoff frequency is 80Hz.

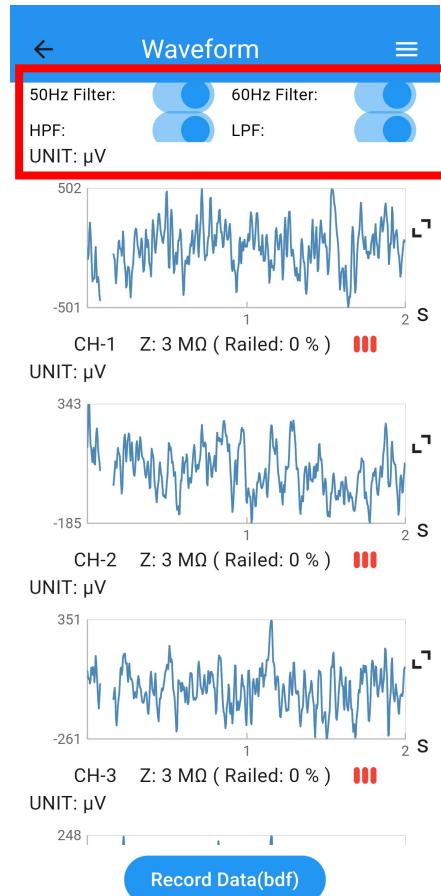


Figure 6 - 17

6.3.3.2 Waveform display

This function draws the EEG signal of each channel into a waveform and displays it in real time, as shown in Figure 6-18. The horizontal axis represents time in seconds, and the EEG data within 2 seconds is displayed by default. The vertical axis represents the voltage value in mm.

If impedance detection is turned on, the impedance value and signal saturation of each channel will be displayed below each channel. Signal saturation refers to the ratio of the signal value to the full range. The impedance value and signal saturation together can reflect the quality of the EEG electrode contact. It is indicated by the color of the icon on the right, green for very good, yellow for poor, and red for very poor. If the connection is poor, you can adjust the electrode to make it fully contact the scalp.

Click the “ ” button on the upper right corner of each channel to enter the horizontal

full-screen display of the single-channel waveform interface, as shown in Figure 6-19.

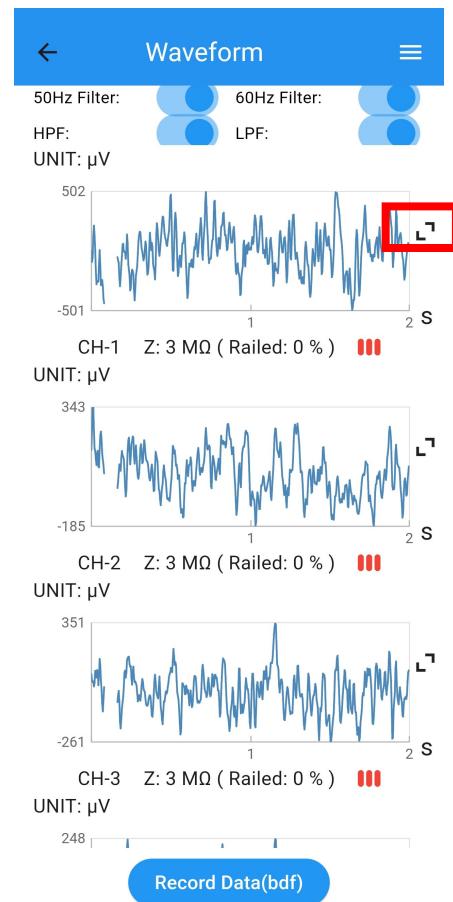


Figure 6-18

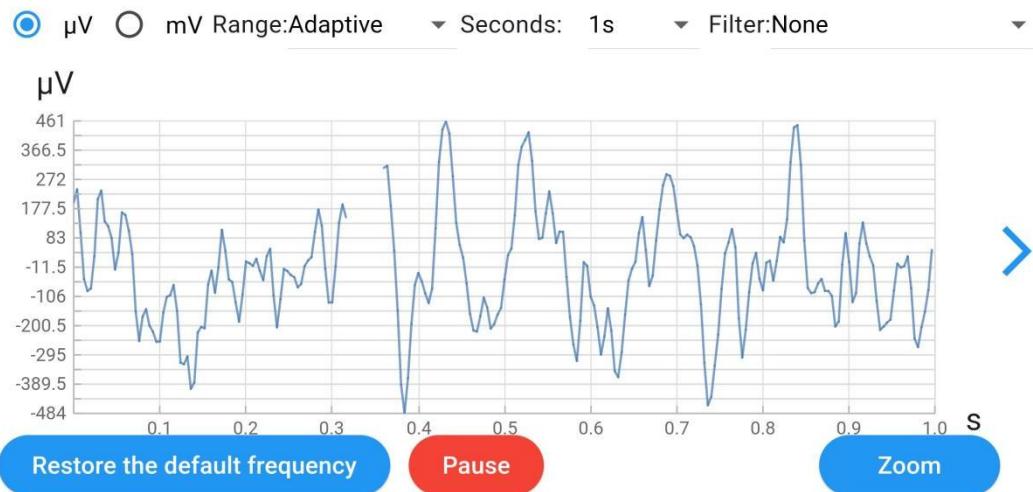


Figure 6-19

In the single-channel interface, you can set the voltage value data unit, range, duration and EEG filter of the EEG signal, restore the default settings, pause/start data transmission, shrink the

interface and switch channels.

- 1) Click the radio button in front of "**μV**" and "**mV**" to switch the data unit;
- 2) The voltage amplitude range, i.e. the range, is selected as adaptive by default, and the y-axis range is adapted according to the amplitude fluctuation of the EEG data. A fixed range can also be selected, as shown in Figure 6-20; when the range is specified, the voltage amplitude will be cut off within this range.

Figure 6-20

- 3) The display length of EEG data can be adjusted according to the set duration, as shown in Figure 6-21;

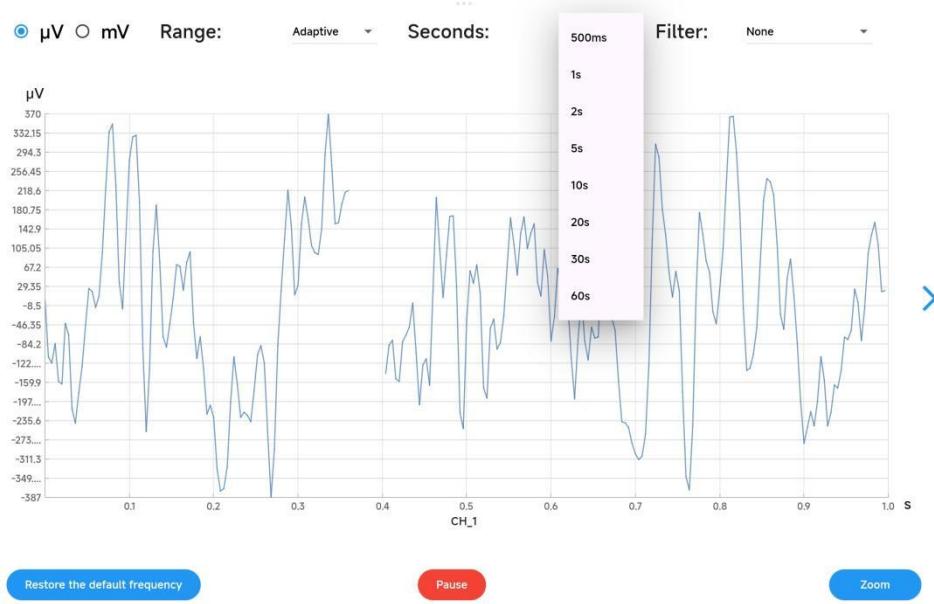


Figure 6-21

4) The APP provides 7 filter options for EEG signals, namely, None, δ (0.5~4Hz), θ (4~8Hz), α (8~13Hz), β (13~30Hz), γ (30~45Hz) and Standard (0.5~45Hz). The default is No Filter. If you want to switch to the original data, you can click the drop-down box after filtering and select " **None** " or click the " **Restore the default frequency** " button below . As shown in Figure 6-22;

Figure 6-22

5) You can click the arrow icons on the left and right sides of the waveform to switch channels. The units, ranges, durations, and filters of all channel data are independent of each other.

6) Click the "Pause" button below to statically view the EEG data within the current duration for

analysis.

7) Click the "Zoom" button to return to the waveform main interface.

6.3.3.3 Accelerometer and gyroscope view (IMU)

The acceleration and gyroscope views use different colors to distinguish the three directions of x, y, and z. The horizontal axis is time, and the vertical axis is the acceleration value and angular velocity value, as shown in Figure 6-23 .

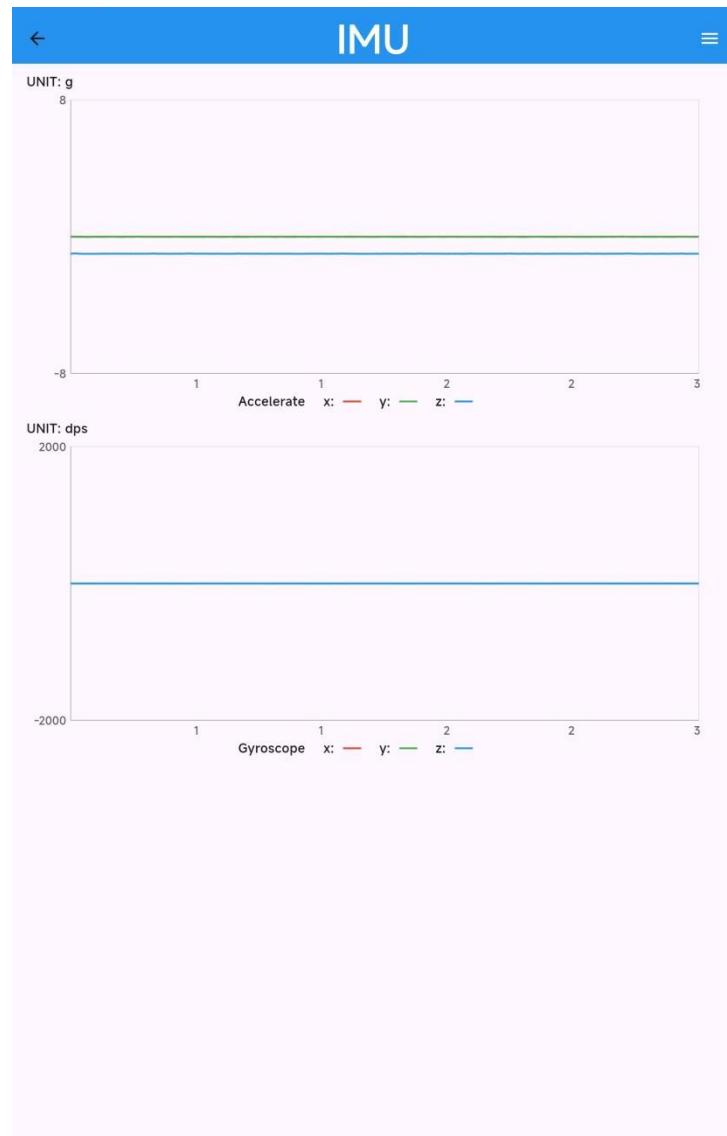


Figure 6-23

6.3.3.4 FFT

The FFT view displays the signal-to-noise ratio of the signal data within 0~100Hz, as shown in Figure 6-24. The APP uses different colors to distinguish each channel. You can click the multiple-selection box after each channel to select whether to display the FFT waveform of the channel.

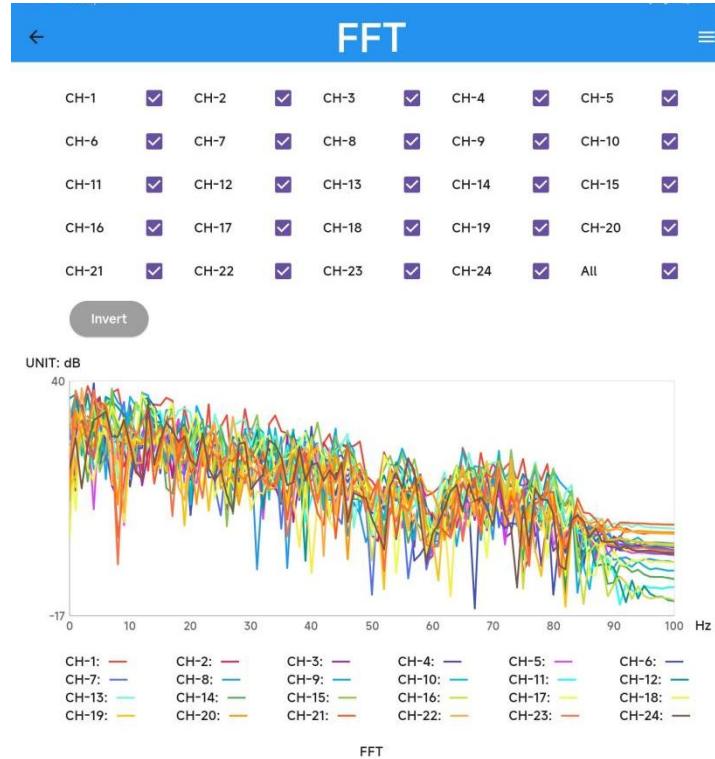


Figure 6-24

Note: Select at least one channel.

6.3.3.5 Histogram view (PowerBand)

The histogram is displayed below the real-time waveform. The histogram displays the power of five brain waves, namely, δ (0.5~4Hz), θ (4~8Hz), α (8~13Hz), β (13~30Hz), and γ (30~45Hz), for all or part of the channels. You can select any channel to display, as shown in Figure 6-25 .

Figure 6-25

Note: Select at least one channel.

6.3.3.6 Data collection

Click the " Record Data(bdf) " button to collect waveform data. During the collection process, click the " Stop Record Data(bdf) " button to save the data locally. You can view it in the directory prompted by the APP. As shown in Figure 6-26 and 6-27 .

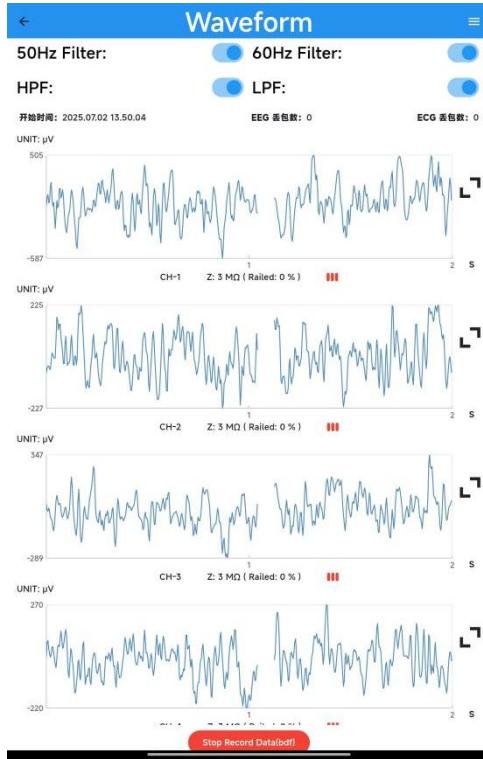


Figure 6-26

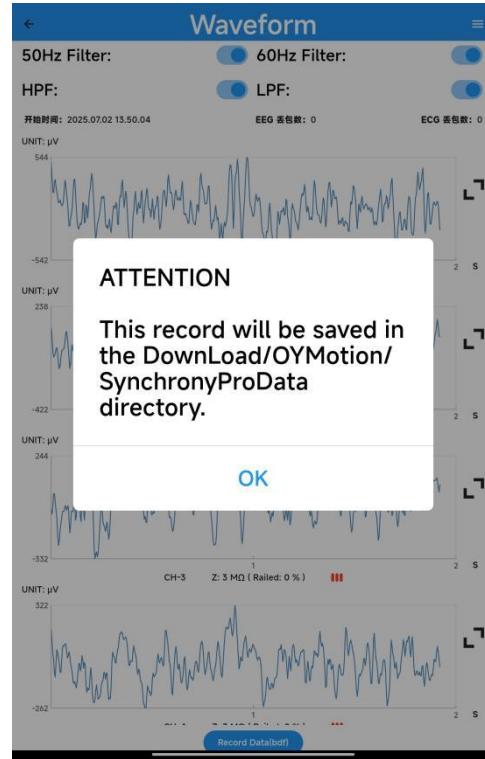


Figure 6-27

6.3.4 Data Distribution (LSL)

This function is a simple way for customers to directly analyze and secondary develop the collected data. Customers who need to use this function, please contact OYMotion Technologies Co.,Ltd. for technical support according to the contact information at the end of the manual.

6.3.5 Data playback

After collecting data on the " **Waveform** " page, click the " **Playback (bdf)** " button on the main interface to enter the data playback page. Before selecting the playback file, the number of channels and the number of packets are both displayed as 0, as shown in Figure 6-28 ;

Figure 6-28

Click the " **Pick File** " button to select the file in the specified directory. The page will display the number of channels and packages collected by the bdf file, as shown in Figure 6-29 . Click the " **Review** " button to draw the EEG signal waveform of each channel, as shown in Figure 6-30 .

Figure 6-29

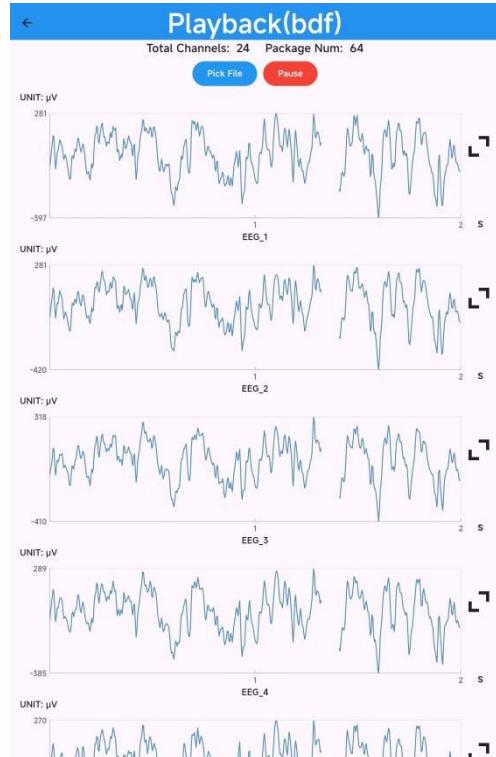


Figure 6-30

Click the button on the right side of the waveform " " to enter the single channel page. On this page, we can set the data unit, range and duration; switch channels and Review/Pause data playback; as shown in Figure 6-31 .

Figure 6-31

At any time during the playback process, you can click the pause button below to pause the data

playback. In the paused state, you can view the voltage value at a specific time point, as shown in Figure 6-32 ;Click the "Zoom" button to return to the main interface of data playback.

Figure 6-32

Pause “**Pause**” button below will change to a “**Review**” button. Click it to play it again, as shown in Figure 6-33.

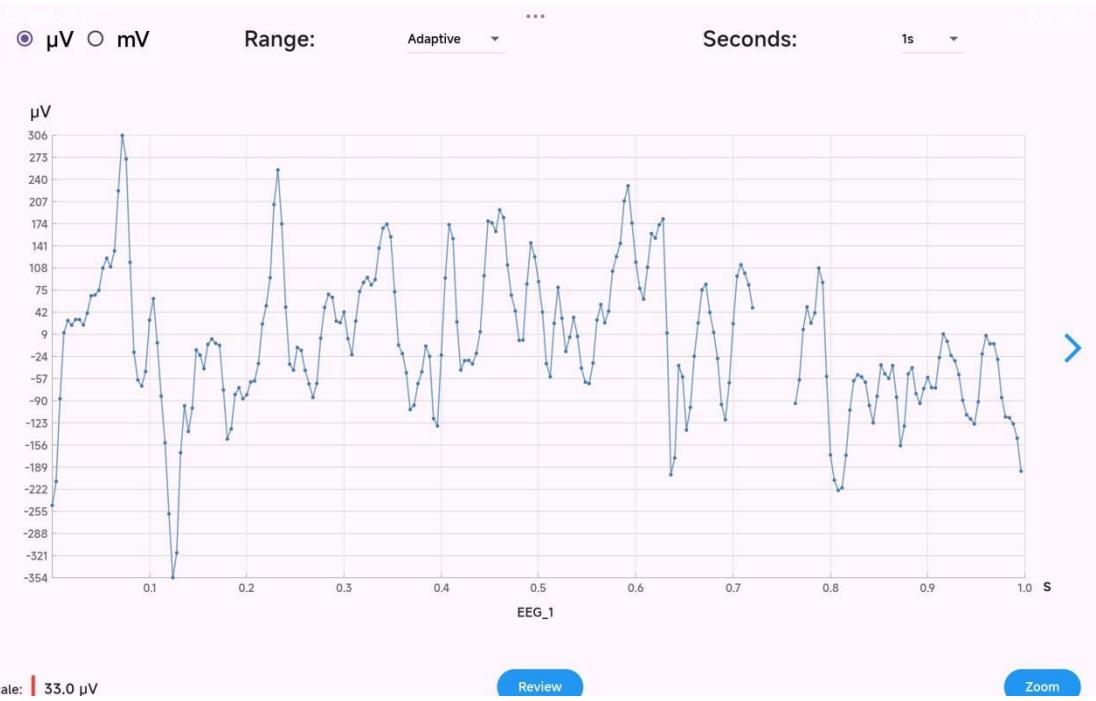


Figure 6-3 3

6.3.6 Product info

Click the “**Product info**” button on the main interface to enter the Product Information page. This page displays relevant details of the device, including the device address, battery level, control module type, hardware version, control module serial number, and firmware version of the control module, as shown in Figure 6-34.

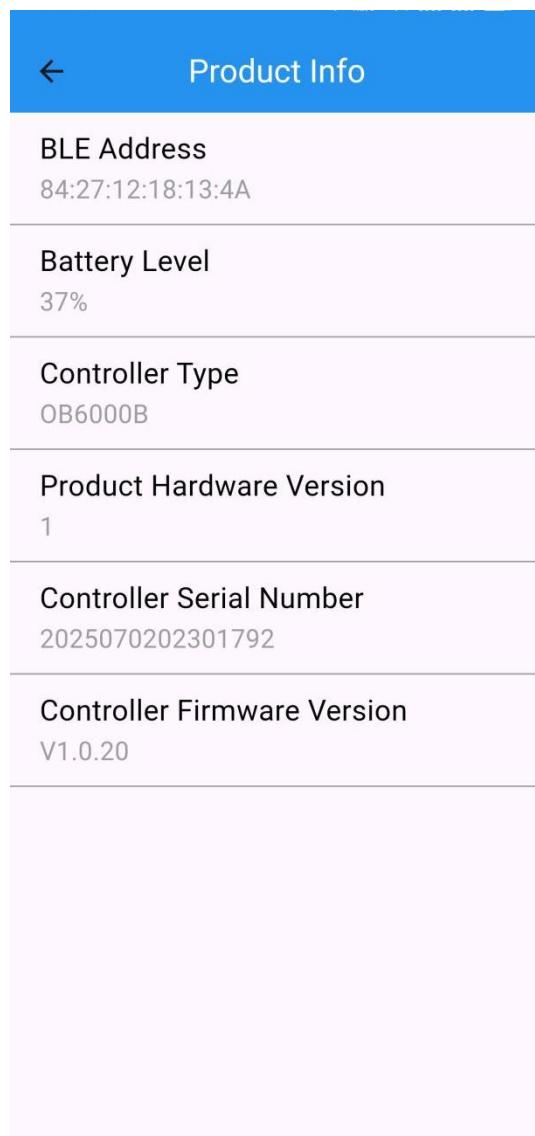


Figure 6-34

6.3.7 About

Click "About" on the main interface to enter the "About" page, which displays the software name, software release version and software complete version information, as shown in Figure 6-35 :

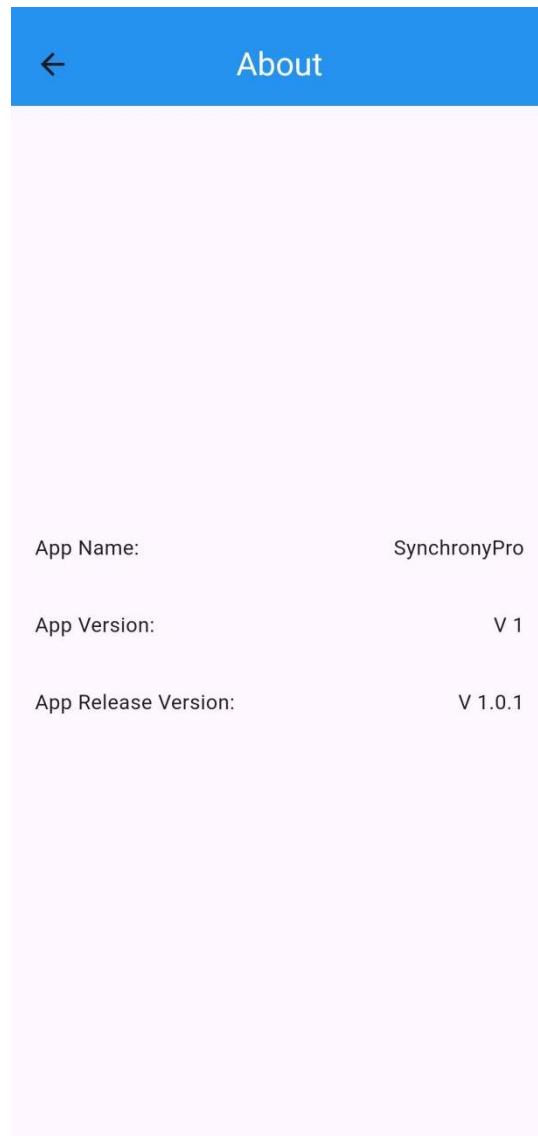


Figure 6-35

6.4. Offline Collection Function Description

This device supports offline EEG data collection function, and can independently complete EEG signal recording without external device connection. The specific operation steps are as follows:

①Insert SD card:

Correctly insert the SD card that meets the requirements into the SD card interface of the EEG Amplifier. The device buzzer will beep and the SD card indicator light will be on, indicating that the device has successfully identified and read the SD card information. At this time, the device will disconnect the Bluetooth connection and turn off Bluetooth communication.

② Start offline collection:

When the device is turned on, quickly double-click the power button, the buzzer will emit a "beep" sound, and the SD card indicator light will change from solid to flashing, indicating that the device has started to collect EEG signals offline.

③ During the collection process:

During offline data collection, the device will automatically store the collected data in the SD card without any additional operations by the user.

④ Stop collecting:

Double-click the power button to stop offline data collection. The buzzer will emit a "beep" sound again, and the SD card indicator light will change from flashing to a steady light. The data will be completely saved in the SD card and will be exported and analyzed later. At this time, the device will resume Bluetooth communication.

Notice

- ① Please make sure the SD card you are using has sufficient capacity.
- ② During offline collection, please do not unplug the SD card or turn off the device to avoid data loss or damage.

6.5. Powering Off

- (1) Exit the APP software;
- (2) Press and hold the power switch for more than 2 seconds. Release it after the prompt tone sounds and the device indicator light goes out, indicating that the device is turned off.
- (3) Remove all EEG electrodes from the patient's head; clean reusable electrodes as required for next use.
- (4) Unplug the cables connecting the EEG Amplifier and the lead wires, and remove the EEG Amplifier.
- (5) Arrange the equipment parts in a storage box in an orderly manner and store them in a place without water or chemicals nearby. The temperature and humidity of the storage location should be moderate.

7. Technical specifications

Indicator Category	Indicator Name	Index		
Model	/	OB6000A	OB6000B	OB6000C
Number of EEG channels	/	16	24	32
ADC Specifications	Online sampling rate	250 Hz /500 Hz		250 Hz
	Offline sampling rate	500Hz		
	Resolution	24-bit		
	EEG band	0.5Hz ~ 80Hz		
	Notch filter	50Hz, 60Hz		
	Low pass filter	80Hz		
	High Pass Filter	0.5Hz		
	Input range	-666mV ~ +666mV		
	Noise Floor	< ±3u		
	Input Impedance	> 500MΩ		
	Common Mode Rejection Ratio	>105dB		
	Impedance detection	Support real-time detection		
Power adapter	/	Input: 100-240V~50/60Hz 0.4A Output: 5.0V == 2.0A 10W		
Internal power	Battery Type	Rechargeable lithium battery 3.7V, 1000mAh		

supply (EEG Amplifier)	Working hours	More than 12 hours
	Rated current	60mA
IMU	Raw data collection	Acceleration $\pm 8g$, angular velocity $\pm 2000dps$
	Sampling rate	50Hz
LED	LED Indicator	Status LED , Charging LED , Bluetooth LED , SD card LED
Button	Function buttons	Power button: device power on/off
EEG Amplifier	Material	ABS+PC
	Size	Length*width*height: 65mm*46mm*17.5mm Tolerance: $\pm 0.5mm$
	Weight	45g (including battery) Tolerance: $\pm 1g$
EEG cap	Size (Head circumference)	Large: 62cm, Medium: 58cm, Small: 54cm
	Material	nylon
Cables	Cable length	Ear clip lead wire: 220 (mm) Tolerance: $\pm 20mm$ Other lead wires: 345 (mm) Tolerance: $\pm 15mm$ Charging cable 1m
	Lead wire material	Black TPU shielded wire
EEG electrode	PIN number	19 PIN
	Material	ABS+PC/lead-free brass Hbi59
Communication	/	Bluetooth BLE5.0
SD Card	/	Support FAT32 format capacity not more than 32GB Class10

8. Precautions

1. Designed for use in indoor and outdoor ambient temperature environments. It is prohibited to use in damp, wet, or electromagnetically interfered settings, and it must not be used while charging .
2. Be sure to turn off all system power before cleaning; otherwise, electric shock hazard or system malfunction may result.

3. It needs to be operated by professional medical personnel and should be used with caution by people with allergies and special groups of people .

4. Before cleaning and maintenance, please make sure the device is disconnected from the power supply .

9. Product After-Sales Service

9.1. Free Services

The OB6000 Wearable Bio-Sensor provided by our company is 1 year. If any quality problems occur within 1 year from the date of sale, our company will be responsible for solving all aspects of the problems such as repair materials and equipment performance. The obligations under this commitment do not include other expenses such as freight. No free service will be provided for direct, indirect or final damages and delays caused by the following circumstances:

This commitment does not apply to the following situations:

- Damage caused by improper use due to human factors, such as damage caused by wrong connection, modification, unauthorized repair, etc.;
- Damage caused by accidents, such as damage caused by objects squeezing, liquid immersion, etc.;
- Damage caused by force majeure such as earthquake, flood, fire, lightning strike, chemical corrosion, etc.;
- Damage caused by unauthorized upgrades, additions, and deletions;
- Other damage caused by unintended use.

9.2. Accessories Replacement Instructions

If there are any problems with the accessories of the Wearable Bio-Sensor or consumables that need to be replaced regularly, please contact OYMotion Technologies Co.,Ltd. for paid replacement;

9.3. Waste Disposal

This product must not be disposed of with normal waste. It is the user's responsibility to hand over his or her waste equipment to a designated collection point for the collection of waste electrical and electronic equipment.

The separate collection and recycling of your waste equipment at the time of disposal will help

conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment.

Equipment that has exceeded its service life or scrapped accessories should be disposed of in accordance with local laws, regulations and other relevant provisions.

10. Packing List

Serial Number	Name	Model/Specification	Quantity	Unit	
1	EEG Amplifier	Color: Black Length × Width × Height: 65 mm * 46 mm * 17.5 mm	1	unit	
2	EEG cap	BM-S64P (Blue EEG Cap Small Size) BM-M64P (Blue EEG Cap Medium Size) BM-L64P (Blue EEG Cap Large Size)	1	piece	
3	EEG electrodes	OEH-LMB (19-pin middle needle black) OEH-LLB (19pin long needle black)	16/24/32	piece	
4	Lead wire	OB6000A	OBLW-1E8B01	1	piece
			OBLW-1E8B02	1	piece
	OB6000B		OBLW-1E12B01	1	piece
			OBLW-1E12B02	1	piece
	OB6000C		OBLW-1E16B01	1	piece
			OBLW-1E16B02	1	piece

5	Power Adapter Kit	OCSC-52-110	1	set
6	User Manual	210*148mm (A5)	1	book
7	Certificate	/	1	piece
8	Warranty card	210*148mm (A5)	1	piece
9	Packing List	/	1	piece

11. FCC Warning

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the Following measures:

—Reorient or relocate the receiving antenna.

- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Note: The Grantee is not responsible for any changes or modifications not expressly approved by the party responsible for compliance. such modifications could void the user's authority to operate the equipment.

The device has been evaluated to meet general RF exposure requirement. The device can be used in portable exposure condition without restriction.

12. Contact Details

Company Name: OYMotion Technologies Co.,Ltd.

Address: 788 Ziping Road, Shanghai, PRC

Zip code: 201318

Contact: 021-63210200

Email: info@oymotion.com

Website : www.oymotion.com