

FCC TEST REPORT

FCC ID: 2AWVE0IRISIANVERSAN

Product Name	:	VERSA N
Model Name	:	J80
Brand Name	:	IRISIAN
Report No.	:	PTC20051404901E-FC01

Prepared for

Shanghai Irisian Optronics Technology Co.,Ltd

Floor 8, No. 800, Second West Huanhu Road, Pudong New District, Shanghai

Prepared by

Precise Testing & Certification Corp., Ltd.

Building 1, No.6 Tongxin Road, Dongcheng Street, Dongguan, China

Report No.: PTC20051404901E-FC01

1 TEST RESULT CERTIFICATION

Applicant's name : Shanghai Irisian Optronics Technology Co.,Ltd
Address : Floor 8, No. 800, Second West Huanhu Road, Pudong New District, Shanghai
Manufacturer's name : Shanghai Irisian Optronics Technology Co.,Ltd
Address : Floor 8, No. 800, Second West Huanhu Road, Pudong New District, Shanghai
Product name : VERSA N
Model name : J80
Standards : FCC CFR47 Part 15 Section 15.247
Test procedure : ANSI C63.10:2013
Test Date : June 10, 2020 to June 28, 2020
Date of Issue : July 08, 2020
Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

A handwritten signature in black ink that appears to read "Leo Yang".

Leo Yang / Engineer

Technical Manager:

A handwritten signature in black ink that appears to read "Chris Du".

Chris Du / Manager

Contents

9 20 DB BANDWIDTH MEASUREMENT.....	43
9.1 TEST PROCEDURE.....	43
9.2 TEST RESULT.....	43
10 MAXIMUM PEAK OUTPUT POWER.....	49
10.1 TEST PROCEDURE.....	49
10.2 TEST RESULT.....	49
11 HOPPING CHANNEL SEPARATION.....	56
11.1 TEST PROCEDURE.....	56
11.2 TEST RESULT.....	57
12 NUMBER OF HOPPING FREQUENCY.....	63
12.1 TEST PROCEDURE.....	63
12.2 TEST RESULT.....	63
13 DWELL TIME.....	64
13.1 TEST PROCEDURE.....	64
13.2 TEST RESULT.....	64
14 ANTENNA REQUIREMENT.....	67
14.1 ANTENNA REQUIREMENT.....	67
14.2 RESULT.....	67
15 TEST PHOTOS.....	68
16 EUT PHOTOS.....	70

2 Test Summary

Test Items	Test Requirement	Result
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	PASS

Report No.: PTC20051404901E-FC01

3 TEST FACILITY

Dongguan Precise Testing & Certification Corp., Ltd.

Address: Building 1, No.6 Tongxin Road, Dongcheng Street, Dongguan, China

FCC Registration Number: 790290

A2LA Certificate No.: 4408.01

IC Registration Number: 12191A-1

4 General Information

4.1 General Description of E.U.T.

Product Name	:	VERSA N
Model Name	:	J80
Bluetooth Version	:	BT 4.2
Operating frequency	:	2402-2480MHz
Numbers of Channel	:	79 channels
Antenna Type	:	Internal PCB Antenna
Antenna Gain	:	2.0 dBi
Type of Modulation	:	GFSK, $\Pi/4$ -DQPSK, 8DPSK
Power supply	:	DC 12V via Adaptor AC 120V 60Hz (Model : HKA03612030-7K)
Hardware Version	:	V1.4
Software Version	:	N/A

4.2 Test Mode

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

The EUT has been tested under TX operating condition.

This EUT is a FHSS system, were conducted to determine the final configuration from all possible combinations. We use software control the EUT, Let EUT hopping on and transmit with highest power, all the modes GFSK, $\Pi/4$ -DQPSK, 8DPSK have been tested. 79 Channels are provided by EUT. The 3 channels of lower, medium and higher were chosen for test.

Channel List:

Channel	Frequency (MHz)						
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

EUT was tested with channel 0, 39, 78.

5 Equipment During Test

5.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
MXG Signal Analyzer	Agilent	N9020A	MY56070279	10Hz-30GHz	Sep. 19, 2019
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Sep. 19, 2019
Power Meter	Anritsu	ML2495A	0949003	300MHz-40GHz	Sep. 19, 2019
Power Sensor	Anritsu	MA2411B	0917017	300MHz-40GHz	Sep. 19, 2019

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radiated Emissions(Test Frequency from 9KHz-18GHz)

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 19, 2019
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Sep. 19, 2019
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Sep. 19, 2019
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Sep. 19, 2019
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Sep. 19, 2019
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Sep. 19, 2019
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Sep. 19, 2019
Power Amplifier	LUNAR EM	LNA1G18-40	J10100000081	1GHz-26.5GHz	Sep. 19, 2019
Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	Sep. 19, 2019

Radiated Emission (Test Frequency from 18GHz-25GHz)

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-26.5GHz	Aug. 25, 2019
Test Receiver	R&S	ESPI	101396	9KHz-7GHz	Aug. 25, 2019
Horn Antenna	SCHWARZBECK	BBHA 9170	9170-181	14GHz-40GHz	Aug. 25, 2019
Amplifier	SCHWARZBECK	BBV 9721	9721-205	18GHz-40GHz	Aug. 25, 2019
RF Cable	R&S	R204	R21X	1GHz-40GHz	Aug. 25, 2019

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Sep. 19, 2019
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	9KHz-300MHz	Sep. 19, 2019
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Sep. 19, 2019

5.2 Measurement Uncertainty

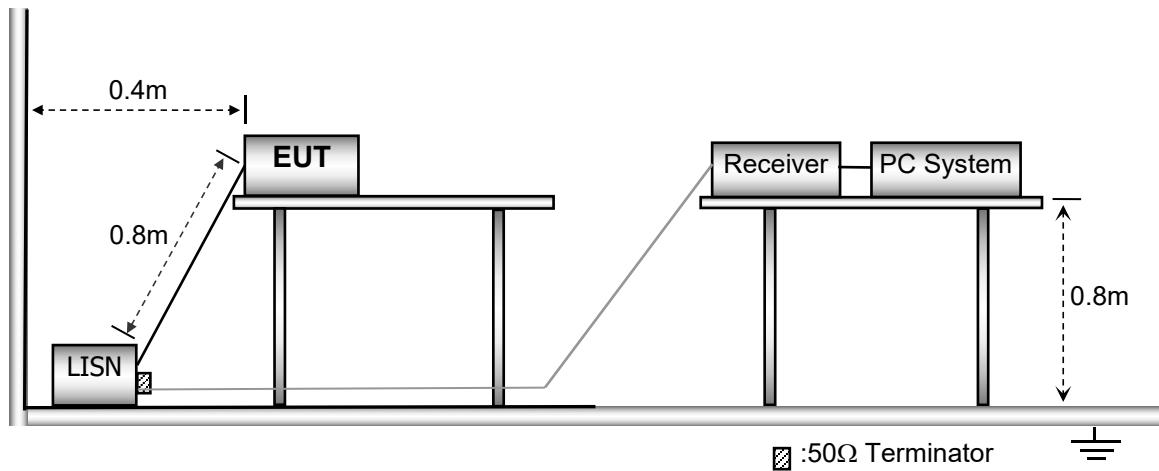
Parameter	Uncertainty
RF output power, conducted	$\pm 1.0\text{dB}$
Power Spectral Density, conducted	$\pm 2.2\text{dB}$
Radio Frequency	$\pm 1 \times 10^{-6}$
Bandwidth	$\pm 1.5 \times 10^{-6}$
Time	$\pm 2\%$
Duty Cycle	$\pm 2\%$
Temperature	$\pm 1^\circ\text{C}$
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 3\%$
Conducted Emissions (150kHz~30MHz)	$\pm 3.64\text{dB}$
Radiated Emission(30MHz~1GHz)	$\pm 5.03\text{dB}$
Radiated Emission(1GHz~25GHz)	$\pm 4.74\text{dB}$
Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%	

5.3 Description of Support Units

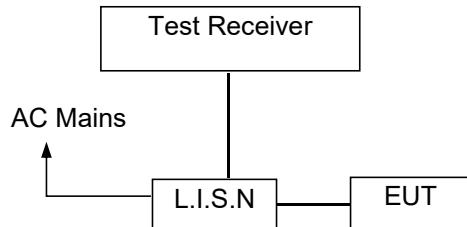
Equipment	Model No.	Series No.
Adapter	Model: HKA03612030-7K Input: AC120V, 60Hz, 1A Output: DC 12V, 3A	N/A

6 Conducted Emission

Test Requirement: : FCC CFR 47 Part 15 Section 15.207
 Test Method: : ANSI C63.10:2013
 Test Result: : PASS
 Frequency Range: : 150kHz to 30MHz
 Class/Severity: : Class B
 Detector: : Peak for pre-scan (9kHz Resolution Bandwidth)


6.1 E.U.T. Operation

Operating Environment :


Temperature: : 25.5 °C
 Humidity: : 51 % RH
 Atmospheric Pressure: : 101.2kPa
 Test Voltage : AC 120V/60Hz

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10: 2013

6.3 Test SET-UP (Block Diagram of Configuration)

6.4 Measurement Procedure:

1. The EUT was placed on a table, which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured was complete.

6.5 Conducted Emission Limit

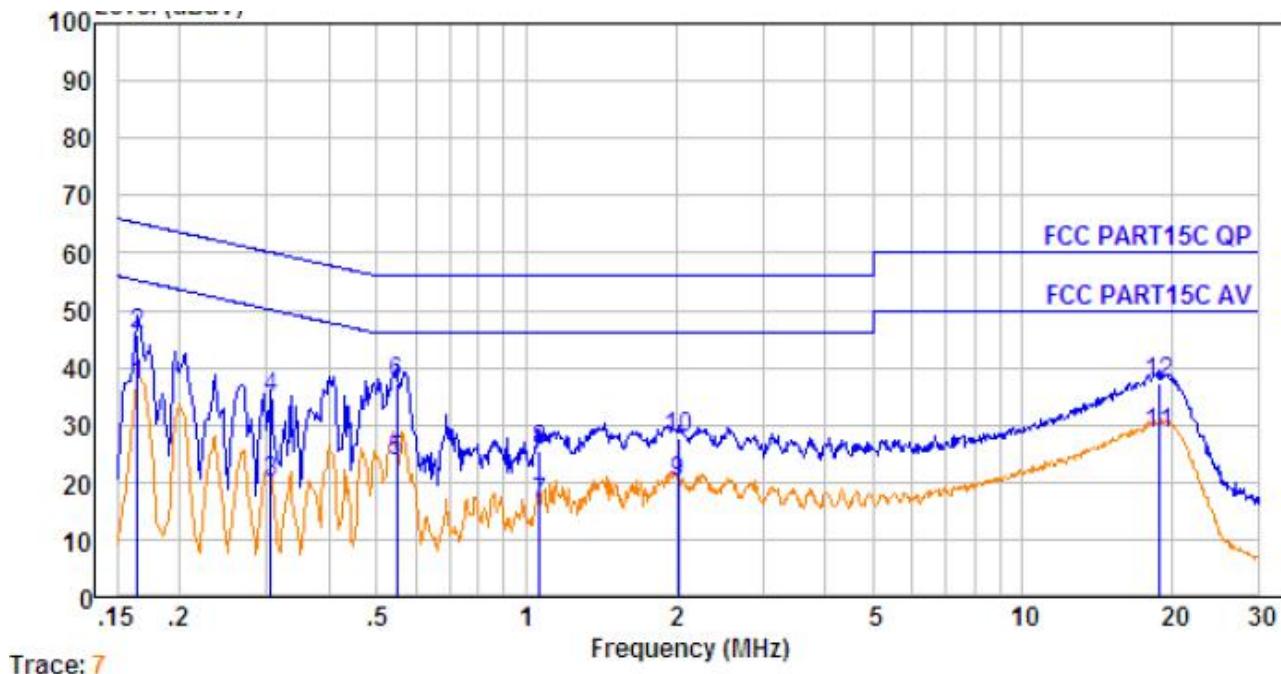
Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

1. The lower limit shall apply at the transition frequencies
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

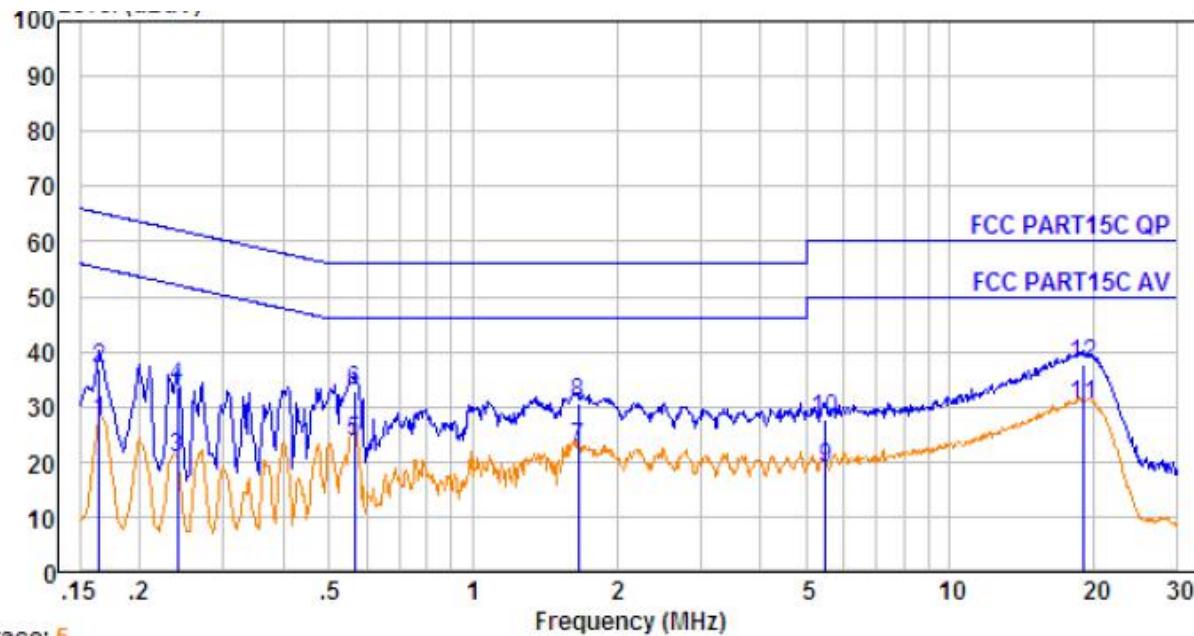
6.6 Measurement Description


The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.7 Conducted Emission Test Result

Pass.

All the modulation modes were tested the data of the worst mode (AC 120V/60Hz, GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.


Line -120V/60Hz:

Trace: 7

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBuV	Over Limit dB	Remark
1.	0.165	0.23	9.53	27.31	37.07	55.21	-18.14	Average
2.	0.165	0.23	9.53	36.14	45.90	65.21	-19.31	QP
3.	0.305	0.37	9.68	10.04	20.09	50.10	-30.01	Average
4.	0.305	0.37	9.68	24.68	34.73	60.10	-25.37	QP
5.	0.549	0.43	9.79	13.55	23.77	46.00	-22.23	Average
6.	0.549	0.43	9.79	27.12	37.34	56.00	-18.66	QP
7.	1.065	0.46	9.82	5.98	16.26	46.00	-29.74	Average
8.	1.065	0.46	9.82	15.32	25.60	56.00	-30.40	QP
9.	2.023	0.47	9.85	9.54	19.86	46.00	-26.14	Average
10.	2.023	0.47	9.85	17.35	27.67	56.00	-28.33	QP
11.	18.820	0.43	9.88	18.28	28.59	50.00	-21.41	Average
12.	18.820	0.43	9.88	26.94	37.25	60.00	-22.75	QP

Neutral -120V/60Hz:

Trace: 5

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBuV	Over Limit dB	Remark
1.	0.165	0.23	9.56	17.36	27.15	55.21	-28.06	Average
2.	0.165	0.23	9.56	27.14	36.93	65.21	-28.28	QP
3.	0.240	0.32	9.66	10.83	20.81	52.08	-31.27	Average
4.	0.240	0.32	9.66	23.65	33.63	62.08	-28.45	QP
5.	0.564	0.43	9.82	13.53	23.78	46.00	-22.22	Average
6.	0.564	0.43	9.82	22.65	32.90	56.00	-23.10	QP
7.	1.662	0.47	9.87	12.24	22.58	46.00	-23.42	Average
8.	1.662	0.47	9.87	20.35	30.69	56.00	-25.31	QP
9.	5.476	0.51	9.97	8.22	18.70	50.00	-31.30	Average
10.	5.476	0.51	9.97	17.35	27.83	60.00	-32.17	QP
11.	19.021	0.42	9.98	19.79	30.19	50.00	-19.81	Average
12.	19.021	0.42	9.98	27.37	37.77	60.00	-22.23	QP

7 Radiated Spurious Emissions

Test Requirement : FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method : ANSI C63.10:2013

Test Result : PASS

Measurement Distance : 3m

Limit : See the follow table

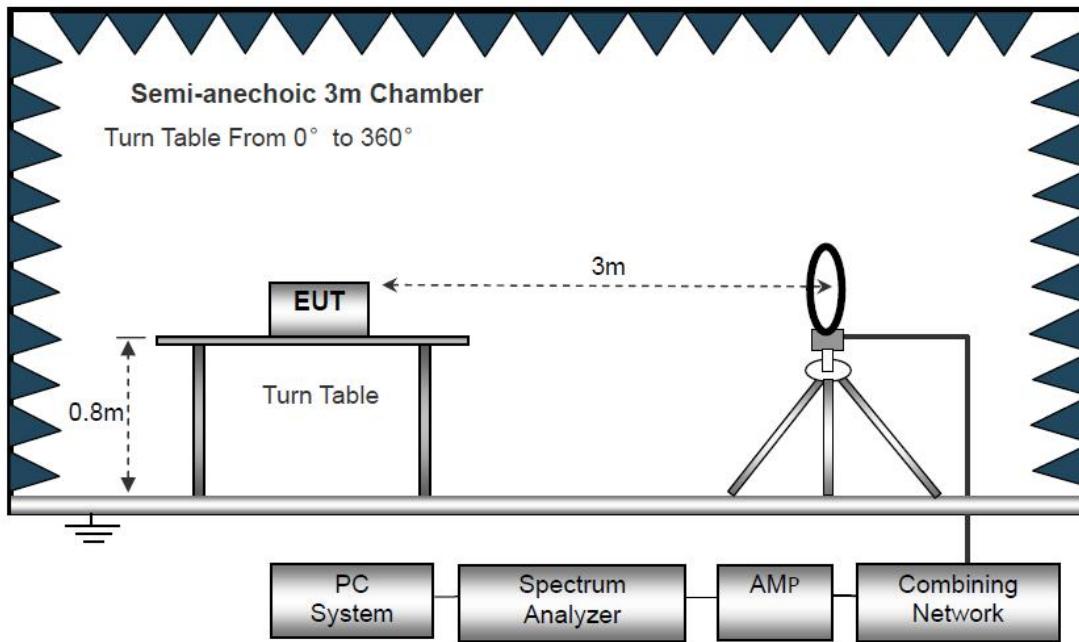
Frequency (MHz)	Field Strength		Field Strength Limit at 3m Measurement Dist	
	uV/m	Distance (m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	$20\log^{(2400/F(kHz))} + 80$
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	$20\log^{(24000/F(kHz))} + 40$
1.705 ~ 30	30	30	100 * 30	$20\log^{(30)} + 40$
30 ~ 88	100	3	100	$20\log^{(100)}$
88 ~ 216	150	3	150	$20\log^{(150)}$
216 ~ 960	200	3	200	$20\log^{(200)}$
Above 960	500	3	500	$20\log^{(500)}$

7.1 EUT Operation

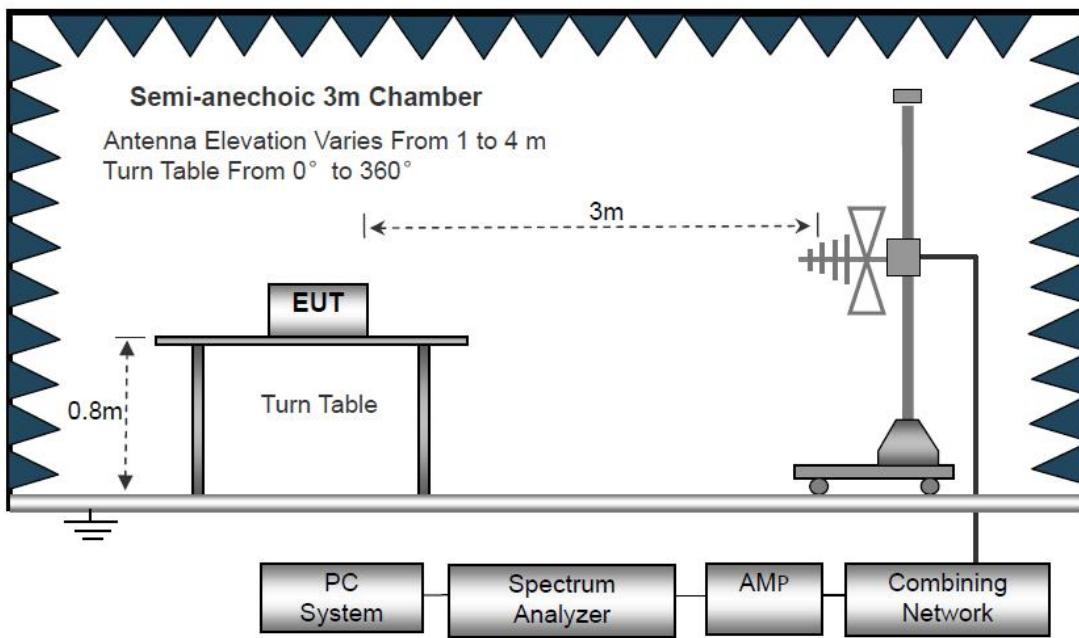
Operating Environment :

Temperature : 23.5 °C

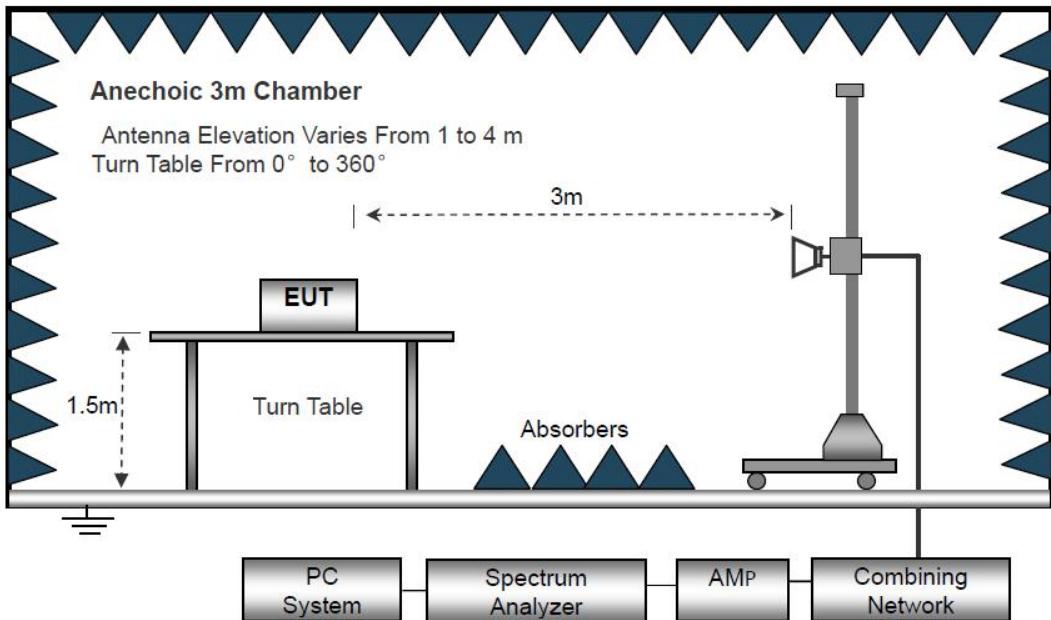
Humidity : 51.1 % RH


Atmospheric Pressure : 101.2kPa

Test Voltage : AC 120V 60Hz


7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site


The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

7.4 Test Procedure

1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
5. Set to the maximum power setting and enable the EUT transmit continuously.
6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
7. Test Procedure of measurement (For Above 1GHz):
 - 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/ Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

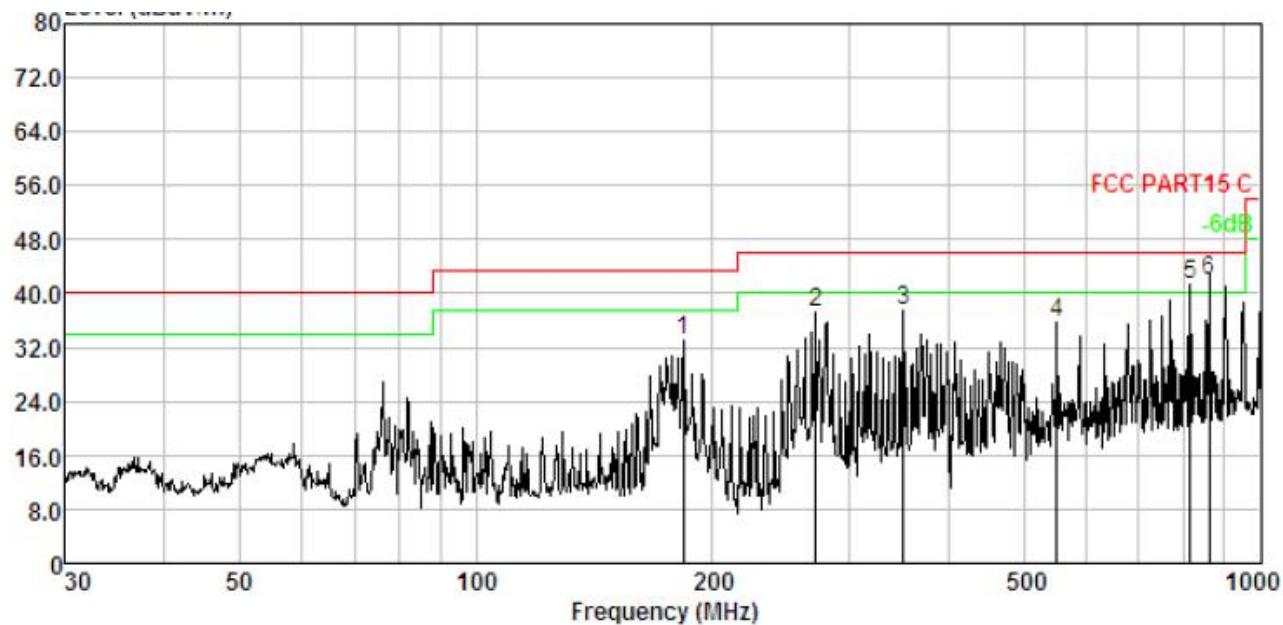
Test Frequency: 9KHz-30MHz

Freq. (MHz)	Ant.Pol. H/V	Emission Level (dBuV/m)	Limit 3m (dBuV/m)	Over (dB)
--	--	--	--	>20

Note:

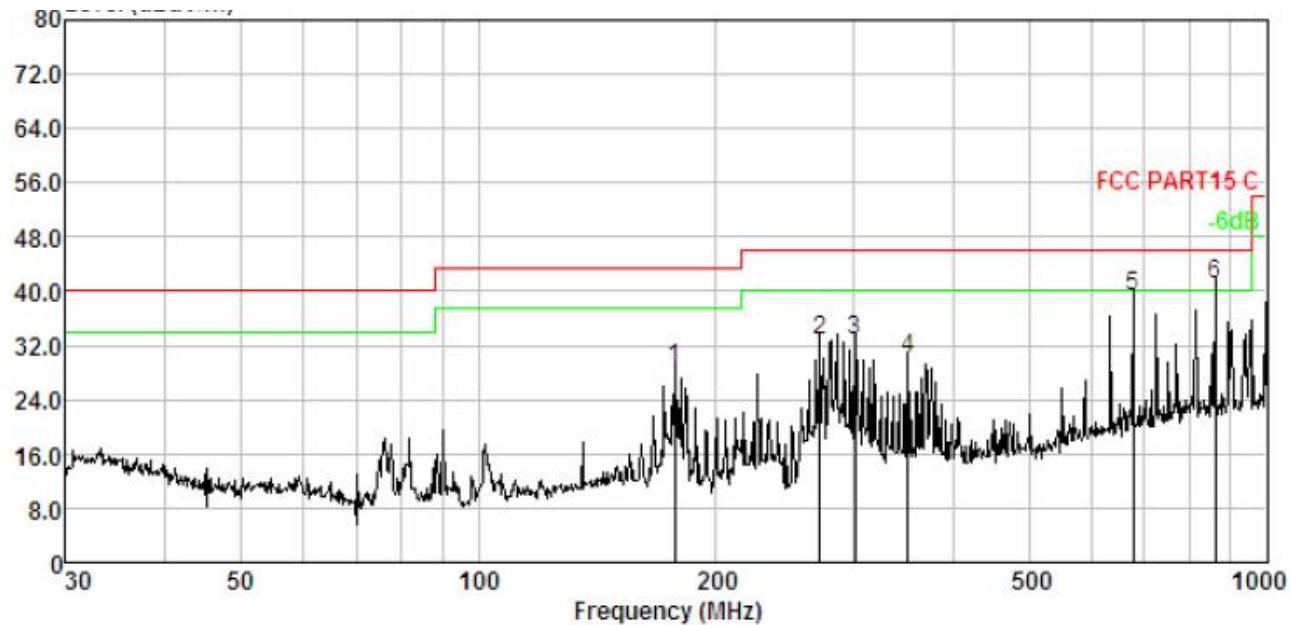
The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor = $40\log(\text{Specific distance/ test distance})(\text{ dB})$;
Limit line=Specific limits(dBuV) + distance extrapolation factor.


Test Frequency: 30MHz ~ 1GHz

Please refer to the following test plots:

All the modulation modes were tested the data of the worst mode (GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.



Test plot for Horizontal: GFSK(2402MHz)

No.	Freq MHz	Cable Loss dB	ANT Factor dB	Receiver Reading dBuV/m	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	183.844	2.70	11.92	49.14	30.60	33.16	43.50	-10.34	QP
2.	271.325	3.05	12.52	52.48	30.74	37.31	46.00	-8.69	QP
3.	350.477	3.28	14.25	50.94	30.83	37.64	46.00	-8.36	QP
4.	550.948	3.69	17.95	44.96	30.98	35.62	46.00	-10.38	QP
5.	813.112	4.04	21.85	46.41	31.12	41.18	46.00	-4.82	QP
6.	860.035	4.09	22.06	46.90	31.14	41.91	46.00	-4.09	QP

Test plot for Vertical: GFSK(2402MHz)

No.	Freq MHz	Cable Loss dB	ANT Factor dB	Receiver Reading dBuV/m	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	177.509	2.66	12.66	43.80	30.59	28.53	43.50	-14.97	QP
2.	271.325	3.05	12.52	47.96	30.74	32.79	46.00	-13.21	QP
3.	300.367	3.14	13.20	47.24	30.77	32.81	46.00	-13.19	QP
4.	350.477	3.28	14.25	43.37	30.83	30.07	46.00	-15.93	QP
5.	677.580	3.88	19.85	46.44	31.05	39.12	46.00	-6.88	QP
6.	860.035	4.09	22.06	46.00	31.14	41.01	46.00	-4.99	QP

Test Frequency 1GHz-18GHz**Low Channel (2402MHz) Worst case GFSK**

Frequency (MHz)	S.A Reading (dBuV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4824	29.75	AV	V	8.18	10.46	10.43	37.96	54	-16.04
4824	30.26	AV	H	8.18	10.46	10.43	38.47	54	-15.53
4824	32.14	PK	V	8.18	10.46	10.43	40.35	74	-33.65
4824	35.29	PK	H	8.18	10.46	10.43	43.5	74	-30.5
14859	30.26	AV	V	9.22	11.05	12.36	38.17	54	-15.83
14859	31.47	AV	H	9.22	11.05	12.36	39.38	54	-14.62
14859	34.29	PK	V	9.22	11.05	12.36	42.2	74	-31.8
14859	36.28	PK	H	9.22	11.05	12.36	44.19	74	-29.81

Middle Channel (2441MHz) Worst case π/4-DQPSK

Frequency (MHz)	S.A Reading (dBuV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4882	28.43	AV	V	7.86	9.73	10.75	35.27	54	-18.73
4882	30.12	AV	H	7.86	9.73	10.75	36.96	54	-17.04
4882	32.69	PK	V	7.86	9.73	10.75	39.53	74	-34.47
4882	35.06	PK	H	7.86	9.73	10.75	41.9	74	-32.1
15896	29.43	AV	V	8.25	10.29	11.23	36.74	54	-17.26
15896	30.27	AV	H	8.25	10.29	11.23	37.58	54	-16.42
15896	33.29	PK	V	8.25	10.29	11.23	40.6	74	-33.4
15896	35.74	PK	H	8.25	10.29	11.23	43.05	74	-30.95

High Channel (2480MHz) Worst case GFSK

Frequency (MHz)	S.A Reading (dBuV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4960	29.35	AV	V	8.23	9.86	11.46	35.98	54	-18.02
4960	30.22	AV	H	8.23	9.86	11.46	36.85	54	-17.15
4960	33.37	PK	V	8.23	9.86	11.46	40	74	-34
4960	36.29	PK	H	8.23	9.86	11.46	42.92	74	-31.08
15483	30.29	AV	V	9.32	10.24	12.09	37.76	54	-16.24
15483	32.48	AV	H	9.32	10.24	12.09	39.95	54	-14.05
15483	35.98	PK	V	9.32	10.24	12.09	43.45	74	-30.55
15483	37.29	PK	H	9.32	10.24	12.09	44.76	74	-29.24

Note: 1. The testing has been conformed to $10 \times 2480\text{MHz} = 24800\text{MHz}$.

2. All other emissions more than 30dB below the limit.
3. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor
Margin= Emission Level-Limit

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

Bluetooth (GFSK, Pi/4-DQPSK, 8DPSK, Hopping) mode have been tested, and the worst result(GFSK, Hopping) was report as below

Test Mode: GFSK Frequency: Channel 0 2402MHz							
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over (dB)
2386.960	H	47.42	74	-26.58	33.10	54	-20.90
2384.160	V	43.87	74	-30.13	29.30	54	-24.70

Test Mode: GFSK Frequency: Channel 0 2402MHz							
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over (dB)
2484.259	H	40.80	74	-33.20	27.10	54	-26.90
2485.282	V	40.90	74	-33.10	26.10	54	-27.90

Test Mode: GFSK Frequency: Hopping							
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over (dB)
2390.00	H	40.47	74	-33.53	26.80	54	-27.20
2483.50	H	51.49	74	-22.51	36.40	54	-17.60
2390.00	V	38.75	74	-35.25	24.10	54	-29.90
2483.50	V	41.37	74	-32.63	26.20	54	-27.80

Test Frequency: From 18GHz to 25GHz

The measurements were more than 20dB below the limit and not reported.

8 CONDUCTED BAND EDGE EMISSION

8.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

8.2 TEST PROCEDURE

For Conducted Test

1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

The EUT was placed on a styrofoam table which is 1.5m above ground plane.

The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

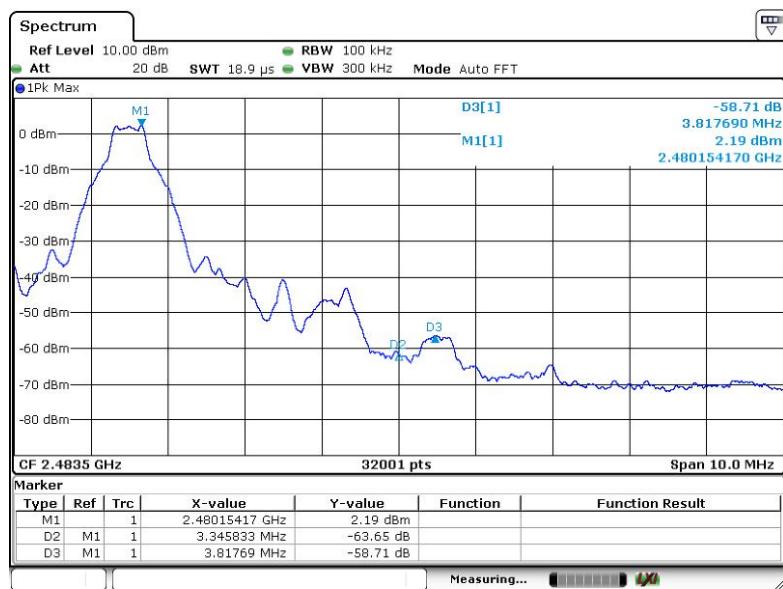
The measurements were performed at the lower end of the 2.4GHz band.

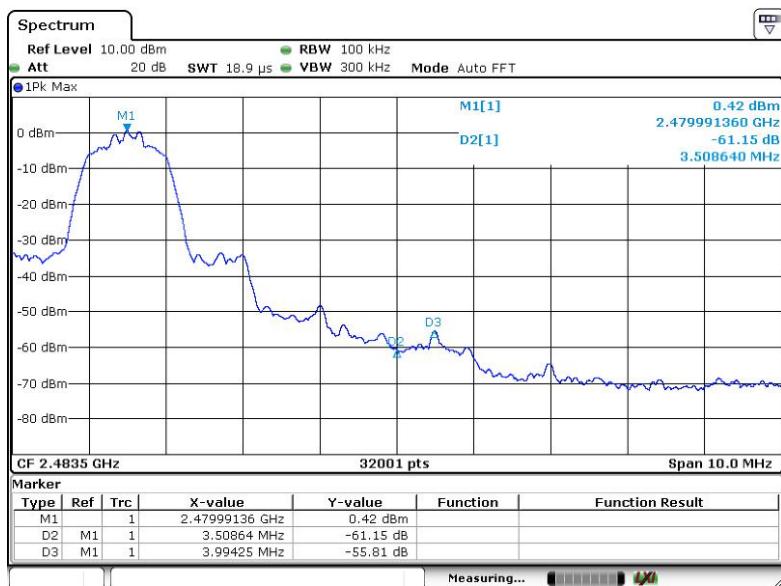
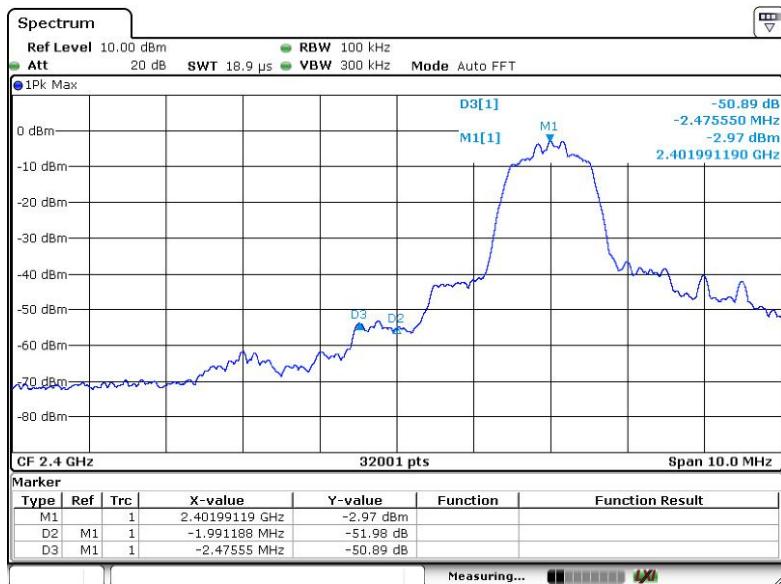
Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

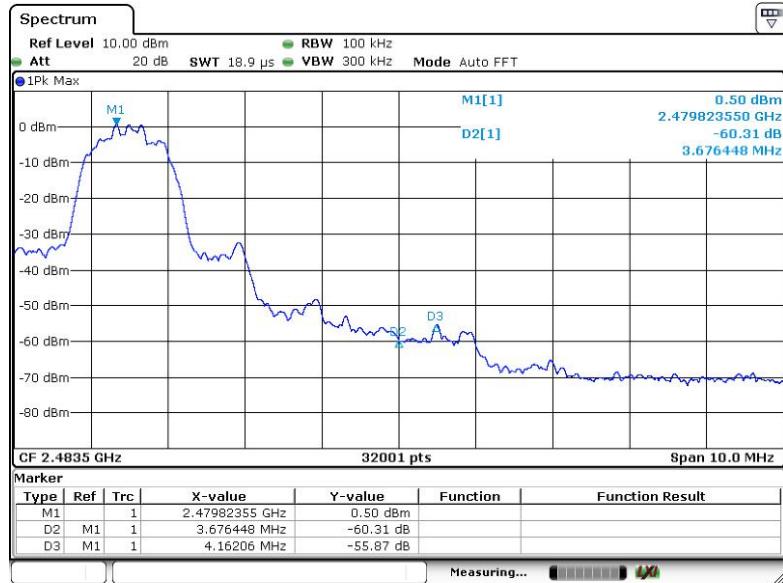
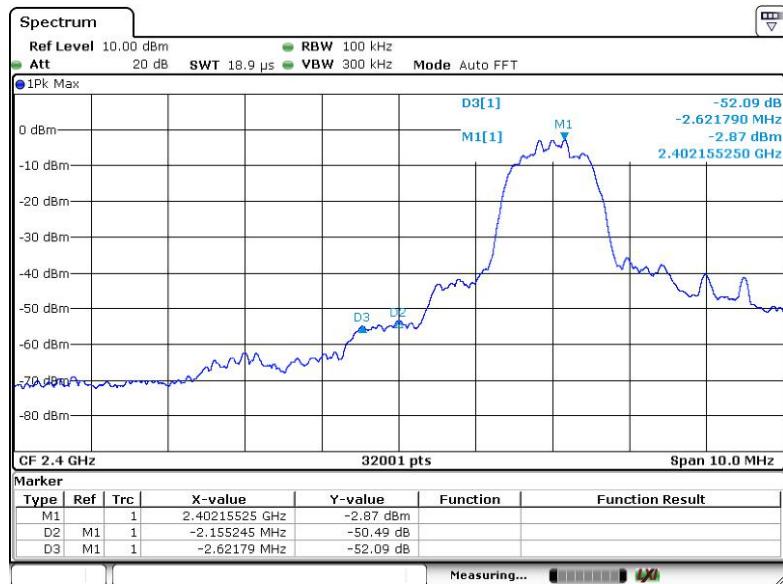
EMI Test Receiver	Setting
Attenuation	Auto
RBW	1MHz
VBW	3MHz
Detector	Peak
Trace	Max hold

For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:

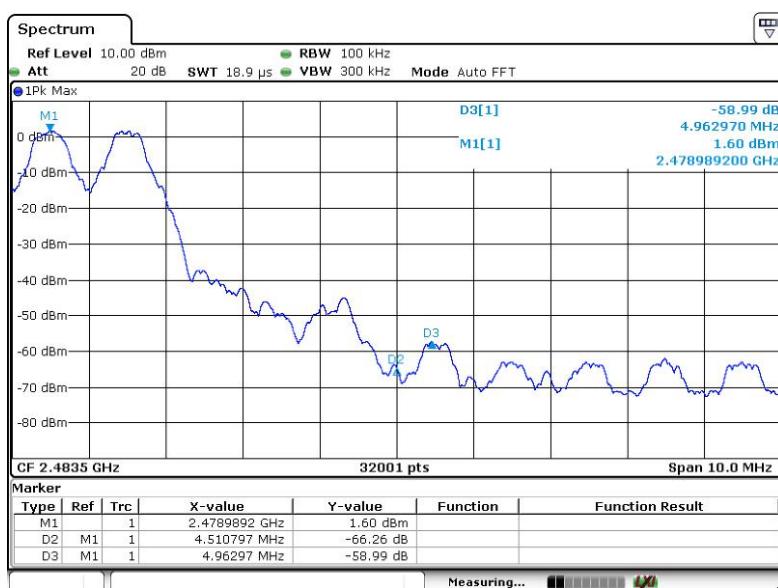

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

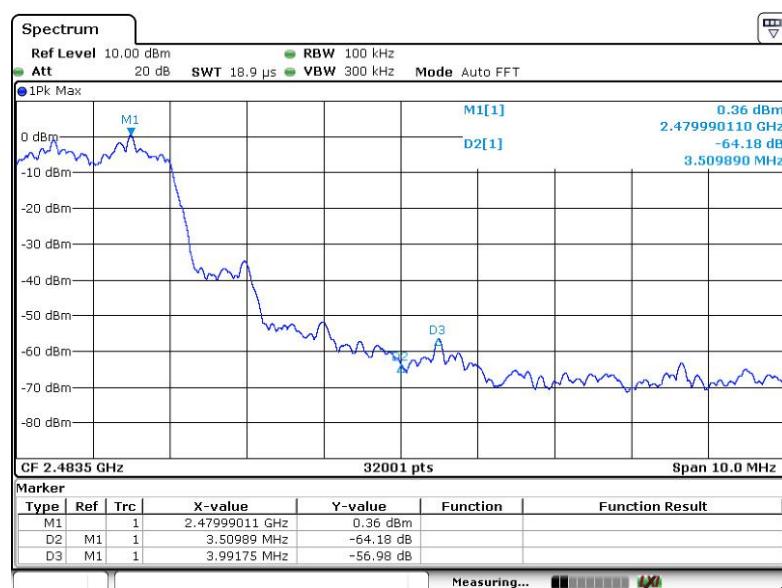
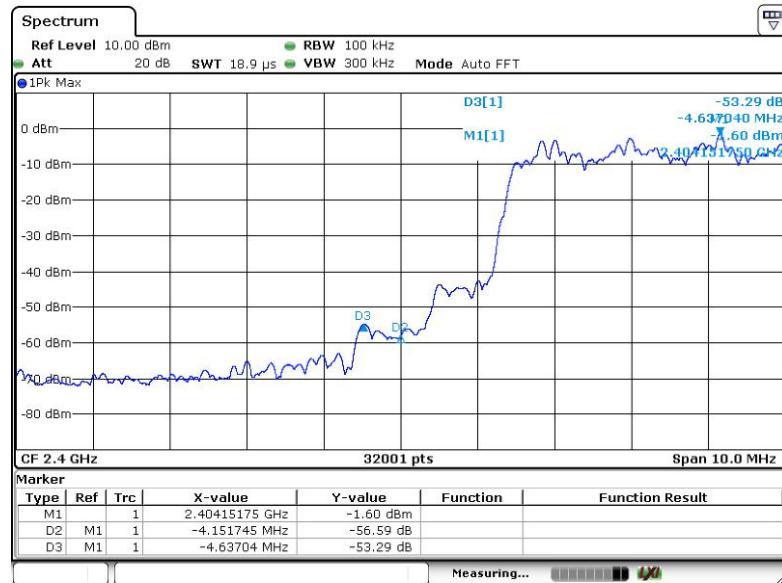


8.3 TEST RESULTS

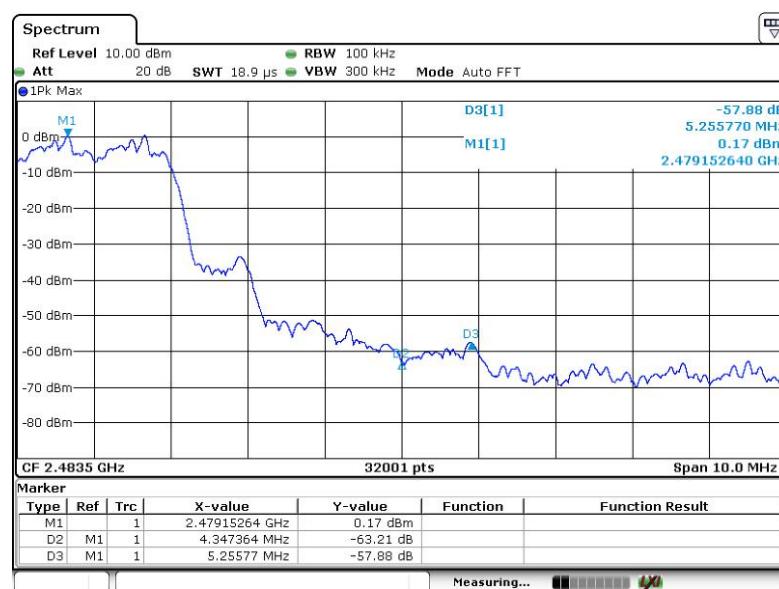
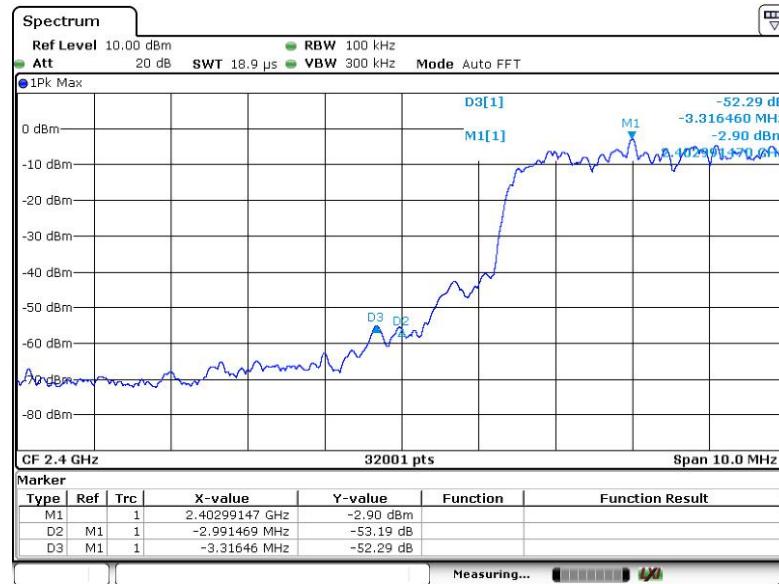
For Conducted Test



For Non-Hopping Mode

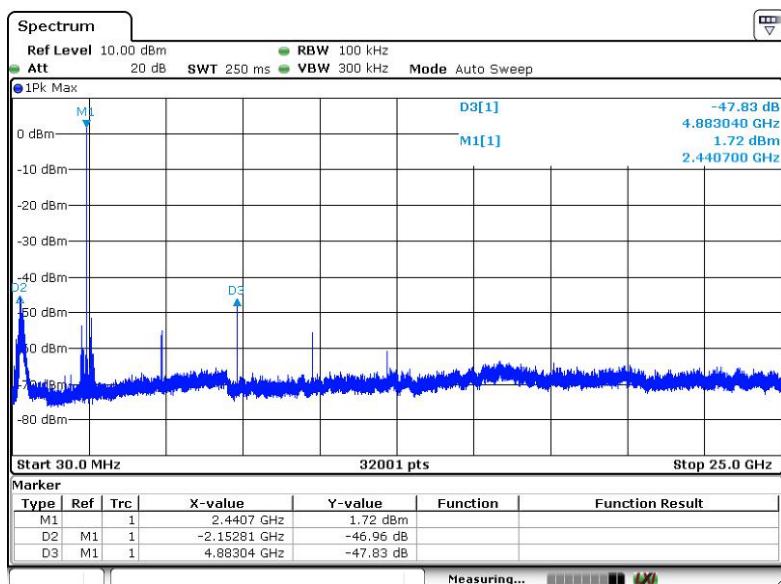
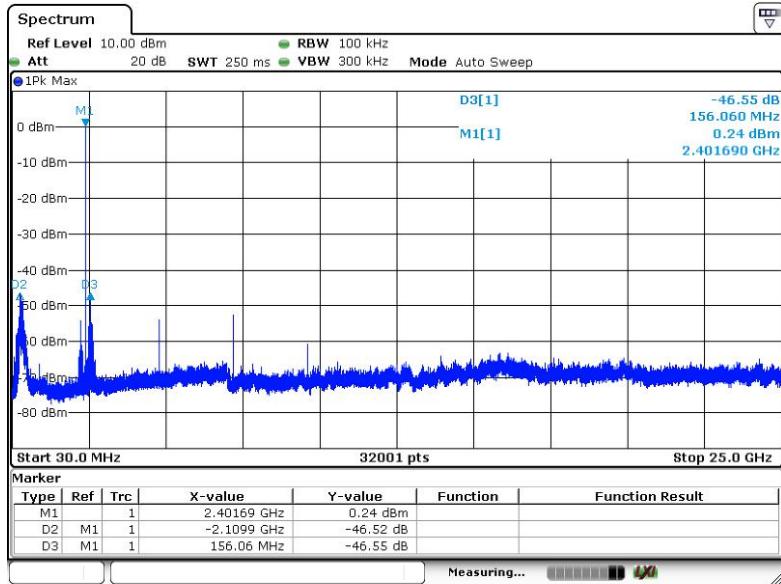
GFSK

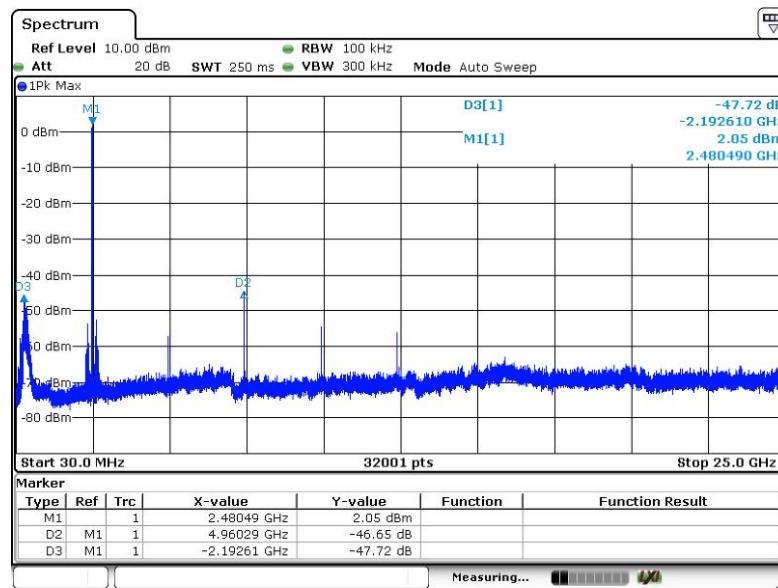

$\pi/4$ -DQPSK

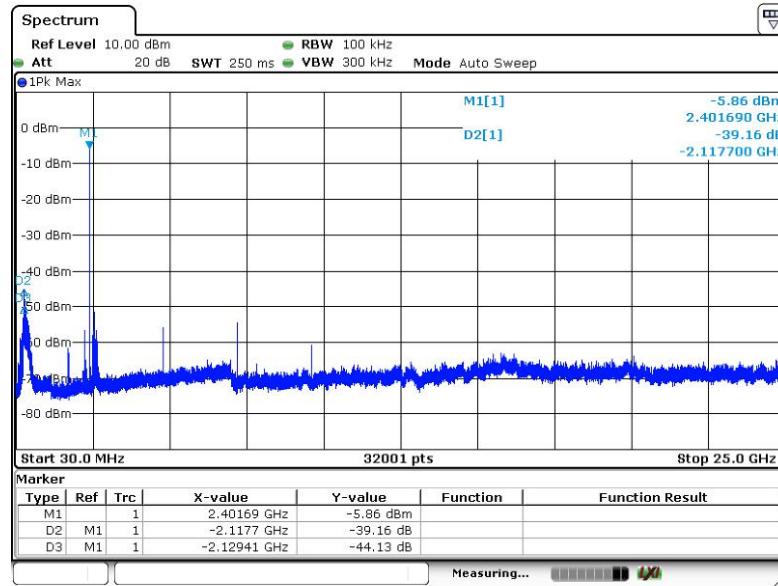


8DPSK

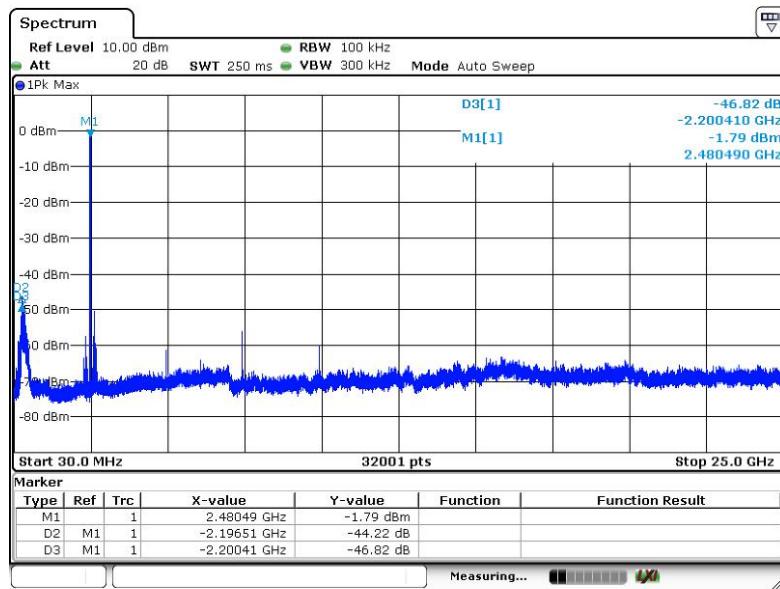
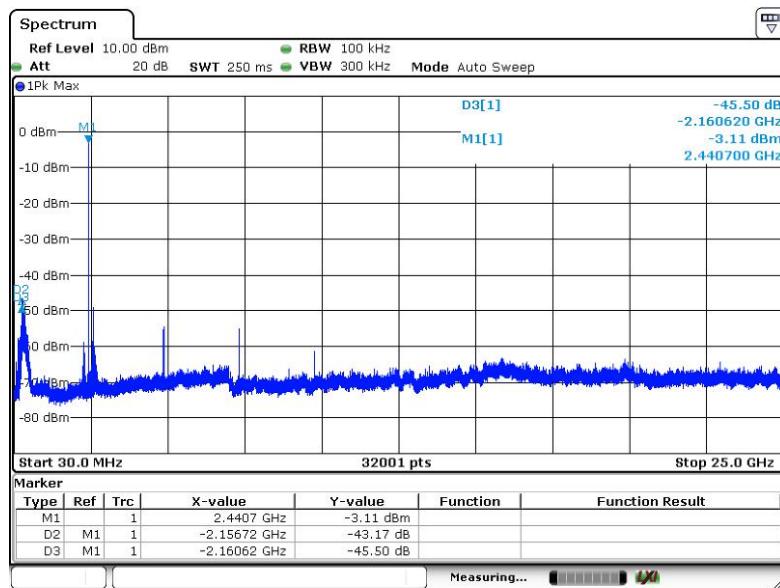


For Hopping Mode

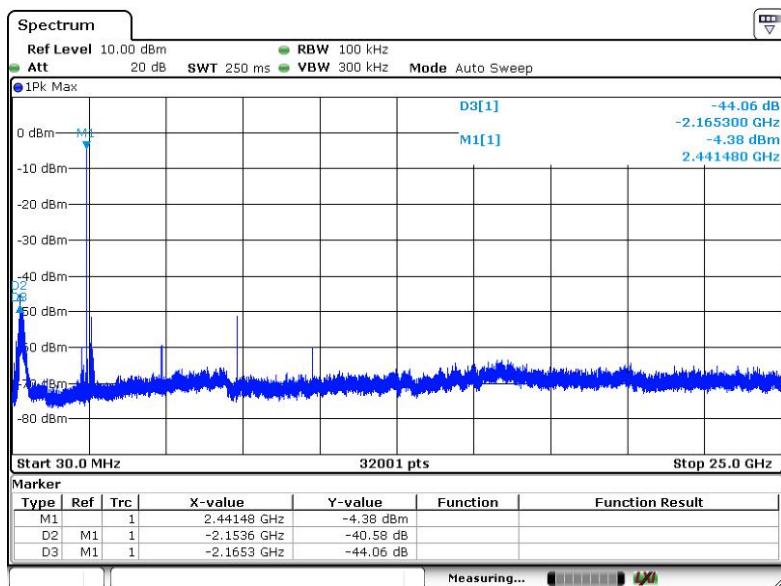
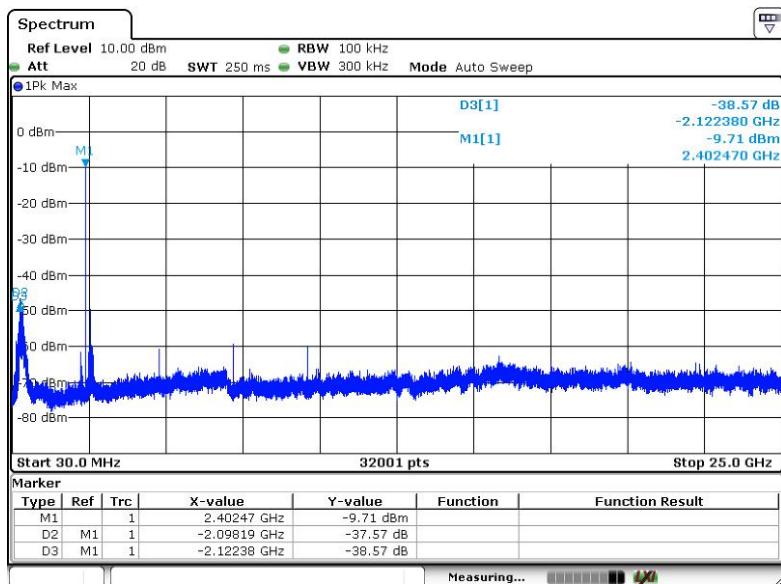
GFSK

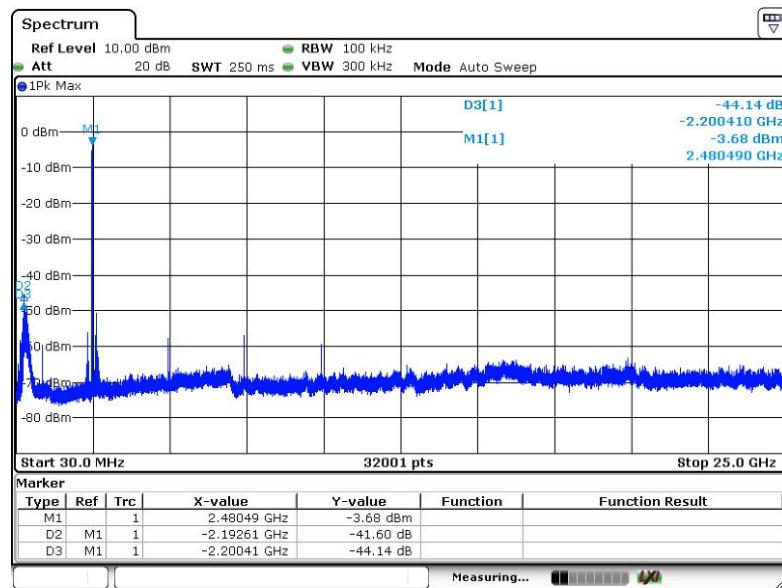


π/4-DQPSK


8DPSK


For Conduct spurious emissions



GFSK


$\pi/4$ -DQPSK

8DPSK

