Report No: JYTAB-R01-2100008

Applicant:

ShenZhen AFU Intelligent Internet Technology Co., Ltd.

Address of Applicant:

808A, No. 3101, Qianhai Road, Xinghai Mingcheng

Community, Nantou Street, Nanshan District, ShenZhen

Equipment Under Test (EUT)

Product Name:

Pet training system remote control unit

Model No.:

AFU-WOH-0002A

FCC ID:

2AWTJ-AFU-WOH-0002A

Applicable standards:

FCC CFR Title 47 Part 15 Subpart C Section 15.231(a)

Date of sample receipt:

04 Jan., 2021

Date of Test:

04 Jan., 2021- 15 Jan., 2021

Date of report issue:

28 Jan., 2021

Test Result:

PASS*

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Page 2 of 25

Version

Version No.	Date	Description
00	01 Dec., 2020	Original

Prepared By:	miles chen	Date:	28 Jan., 2021	
	Test Engineer			
	0 3 Po			

Project Engineer Reviewed by: ___ Date: 28 Jan., 2021

3 Contents

			Page
2	VER	SION	
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
5	5.1	CLIENT INFORMATION	5
5	5.2	GENERAL DESCRIPTION OF E.U.T	
5	5.3	TEST MODE	5
5	5.4	DESCRIPTION OF SUPPORT UNITS	
5	5.5	MEASUREMENT UNCERTAINTY	5
5	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
•	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
5	5.9	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	7
6	3.1	ANTENNA REQUIREMENT	7
6	6.2	RADIATED EMISSION	8
	6.2.1	Field Strength Of The Fundamental Signal	10
	6.2.2		
6	6.3	20DB BANDWIDTH	
•	6.4	DURATION TIME	
6	3.5	CONDUCTED EMISSION	22

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
Field strength of the fundamental signal	15.231 (a)	Pass
Spurious emissions	15.231 (b)/15.209	Pass
20dB Bandwidth	15.231(c)	Pass
Duration Time	15.231 (a)	Pass
Conducted Emission	15.207	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:	ANSI C63.4-2014		
	ANSI C63.10-2013		

5 General Information

5.1 Client Information

Applicant:	ShenZhen AFU Intelligent Internet Technology Co., Ltd.
Address:	808A, No. 3101, Qianhai Road, Xinghai Mingcheng Community, Nantou Street, Nanshan District, ShenZhen
Manufacturer:	The same as applicant
Address:	The same as applicant

5.2 General Description of E.U.T.

Product Name:	Pet training system remote control unit
Model No.:	AFU-WOH-0002A
Hardware version:	AFU-WOH_0002-F_VER1_2
Software version:	V1.0
Mode:	Transmitting
Operation Frequency:	433.59MHz
Channel numbers:	1
Modulation type:	FSK
Antenna Type:	External spring antenna
Antenna gain:	0dBi
Power supply:	DC 3.7V
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test mode

3.3 Test IIIOGE					
Test mode:	-	TM1: Keep the EUT in transmitting mode with modulation, TM2: Charging.			
Pre-Test Mode:					
JTY has verified the consi polar directions;i.e. X a		ction in typical operation			
Axis		Х	Y	Z	
Field Strength(dBuV	Field Strength(dBuV/m) 77.04 76.95 77.01				
Final Test Mode:					
According to ANSI C63.4 stathe test setup photo)	andards, the test	t results are both the "w	vorst case" and "worst s	setup": X axis (see	

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Yada	Adapter	A1443		

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Radiated Emission (150kHz ~ 30MHz)	±2.20 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.40 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.20 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±4.80 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

●FCC - Designation No.: CN1279

Jianyan Testing Group Co., Ltd., has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 892155.

● ISED - CAB identifier.: CN0102

Jianyan Testing Group Co., Ltd. has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with ISED#:26114.

● A2LA - Registration No.: 5568.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/5568-01.pdf

5.8 Laboratory Location

JianYan Testing Group Co., Ltd.

Address: No.760, Fengling Road, Tong'an District, Xiamen, Fujian, China

Tel: +86-592-2273071, Fax:+86-592-2273700

Email: quality@xmabr.com, Website: http://www.lets.com/

5.9 Test Instruments list

Conducted Emssion:					
Test Equipment	Manufacturer	Manufacturer Model No. Serial No.		Cal. Date	Cal. Due date
				mm-dd-yy)	(mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESR 3	102330	2020-08-05	2021-08-04
EMI Test Receiver	Rohde & Schwarz	ESR 3	102329	2020-08-06	2021-08-05
EMI Test Receiver	Rohde & Schwarz	ESR 7	102259	2020-04-12	2021-04-11
LISN	Rohde & Schwarz	ENV 216	102240	2020-08-05	2021-08-04
ISN	Schwarzbeck	CAT3 8158	95	2020-08-05	2021-08-04
EMI Test Software	Farad	EZ-EMC	Ve	ersion: V.EMCE-3	A1

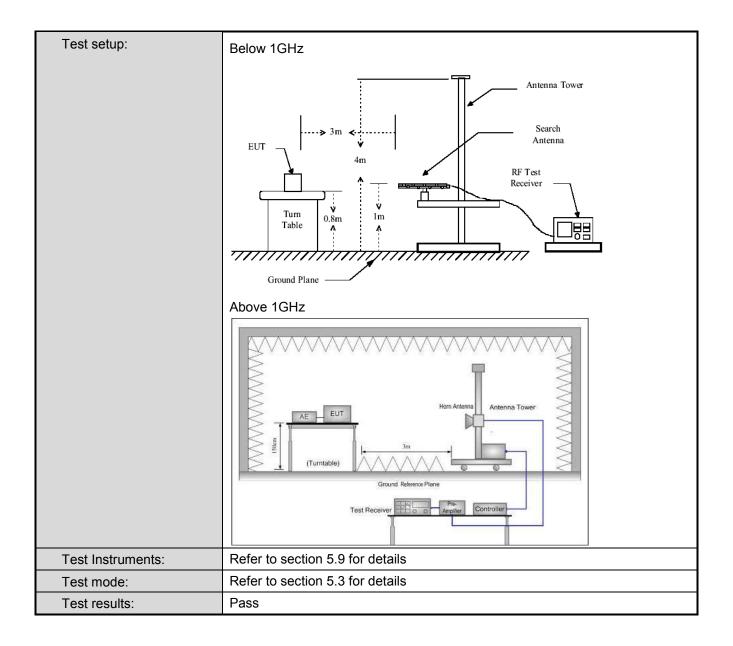
Radiated Disturbances:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	BOST	CHC-966	966-1#	2019-12-27	2022-12-26
3m SAC	BOST	CHC-966	966-2#	2019-12-27	2022-12-26
EMI Test Receiver	Rohde & Schwarz	ESR 3	102330	2020-08-05	2021-08-04
EMI Test Receiver	Rohde & Schwarz	ESR 3	102329	2020-08-06	2021-08-05
EMI Test Receiver	Rohde & Schwarz	ESR 7	102259	2020-04-12	2021-04-11
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102175	2020-04-15	2021-04-14
BiConiLog Antenna	SCHWARZBECK	VULB 9163	1105	2020-12-20	2021-12-19
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1066	2020-04-11	2021-04-10
Horn Antenna	SCHWARZBECK	BBHA 9120 D	911	2020-04-01	2021-03-31
Pre-amplifier	SCHWARZBECK	BBV9743	9	2020-08-06	2021-08-05
Pre-amplifier	SCHWARZBECK	BBV9718C	00014	2020-04-08	2021-04-07
EMI Test Software	Farad	EZ-EMC	Version: V.EMCE-3A1		

6 Test results and Measurement Data

6.1 Antenna requirement

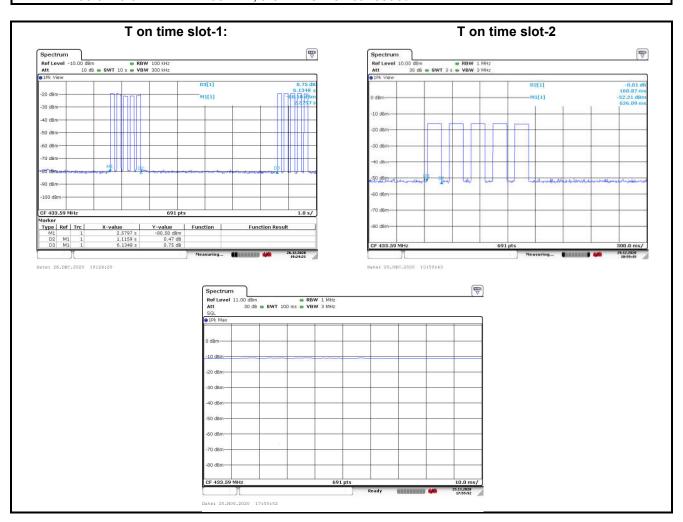
Standard requirement:	equirement: FCC Part15 C Section 15.203						
15.203 requirement:							
An intentional radiator shall	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the						
	responsible party shall be used with the device. The use of a permanently attached antenna or of an						
	coupling to the intentional radiator, the manufacturer may design the unit						
	so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or						
electrical connector is prohibited.							
E.U.T Antenna:							

E.U.T Antenna:


The EUT make use of an External spring antenna, The typical gain of the antenna is 0dBi.

6.2 Radiated Emission

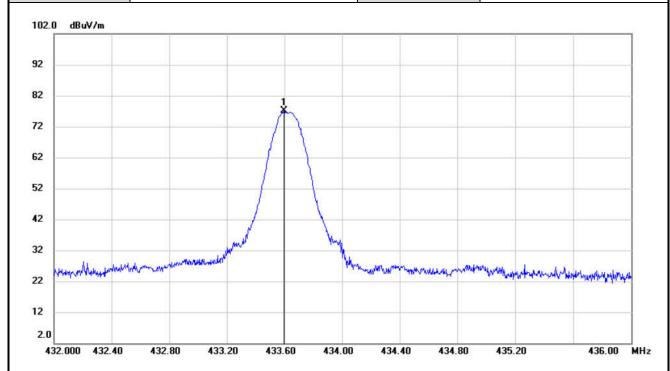
Test Requirement:	FCC Part15 C Sec	ction 15.231(a)	and 15.209			
Test Frequency Range:	30MHz to 5000MH	łz				
Test site:	Measurement Dis	tance: 3m(Sen	ni-Anechoic C	hamber	.)	
Receiver setup:	Frequency	Detector	RBW	VBV	V	Remark
	30MHz-1GHz Quasi-p		120kHz		300kHz Quasi-peak Va	
	Above 1GHz	Peak	1MHz	3MH	z	Peak Value
Limit:	Frequency	y Li	mit (dBuV/m	@3m)		Remark
(Field strength of the	433.59MH	z	100.81			Average Value
fundamental signal)			80.81			Peak Value
Limit:	Frequency		imit (dBuV/m (@3m)		Remark
(Spurious Emissions)	30MHz-88M	Hz	40.0			Quasi-peak Value
,	88MHz-216N	lHz	43.5			Quasi-peak Value
	216MHz-960N		46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0			Quasi-peak Value
	Above 1GH	7	54.0			Average Value
			74.0		Peak Value vel is 20 dB below the	
Test Procedure:	strength. a. The EUT was /1.5m(above was rotated radiation. b. The EUT was which was more concentration of the entertain of the rotatable of	s placed on the 1GHz) above 360 degrees set 3 meters abouted on the theight is varied termine the intermine the intermine was the sable was turneding. Ver system was the Maximum Herel of the the testing the reported. Other	te top of a receive ground a to determine away from the op of a variable of from one maximum varizations of the on, the EUT uned to heighed from 0 determined to peak to be stopper out to be stopper out to be stopper out to be stopper out to be stopper one by one us	otating to the answer to the anter to the an	rable eter of position rencent antipological frame and the fame and th	r meters above the field strength. Both are set to make the ed to its worst case eter to 4 meters and degrees to find the action and Specified OdB lower than the peak values of the t did not have 10dB asi-peak or average



6.2.1 Field Strength Of The Fundamental Signal

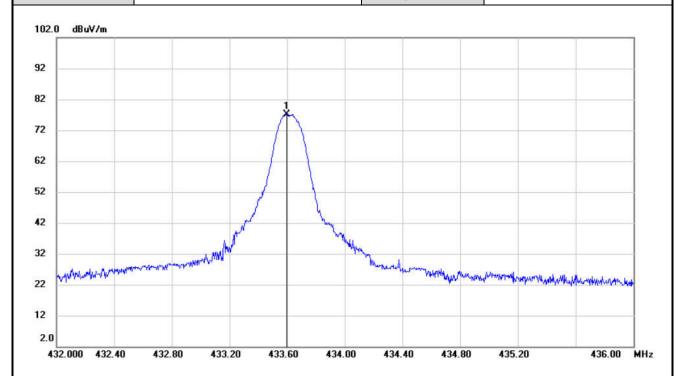
Product Name:	Pet t	raining sy	stem remote	contro	l unit Mode	el No.:	AFU-WOH-0002A			
Peak value										
Frequency	Read	d Level	Correct Fa	ctor	Level	L	_imit Line	Over Limit	Polarization	
(MHz)	(dBuV)		(dB)		(dBuV/m)	((dBuV/m)	(dB)	Folarization	
433.59	8	5.04	-8.02		77.02		100.81	-23.79	Vertical	
433.59	8	5.06	-8.02		77.04		100.81	-23.77	Horizontal	
Average value										
- 17		evel uV/m)	Duty Cycle factor	Average value (dBuV/m)			nit Line BuV/m)	Over Limit (dB)	Polarization	
433.59	7	77.02 0			77.02		30.81	-3.79	Vertical	
433.59	7	7.04	0	77.04		8	30.81	-3.77	Horizontal	
Calculate Form	ula:	Average value=Peak value + Duty Cycle Factor Duty cycle factor = 20log(Duty cycle) Duty cycle = on time/100 milliseconds or period, whichever is less								
Test data:			ne =160.87ms d =6134.8(ms)(ms)					
		Duty cycle = T on time / T period =100% Duty cycle factor = 20log(Duty cycle) =0								

The smallest pulse width(PW)= 160.87ms


2/PW=2/160.87=0.0124<RBW 100KHz, then PDCF is not needed.

Test Plots:

Product model:	AFU-WOH-0002A	Test result:	Pass
Test mode:	TM1	Test voltage:	DC 5V
Test frequency:	433.59MHz	Ant. polarity:	Horizontal
Environment:	Temp: 22.8°C Huni: 44%	Test by:	Miles Chen


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	433.5960	85.06	-8.02	77.04			peak

Notes:

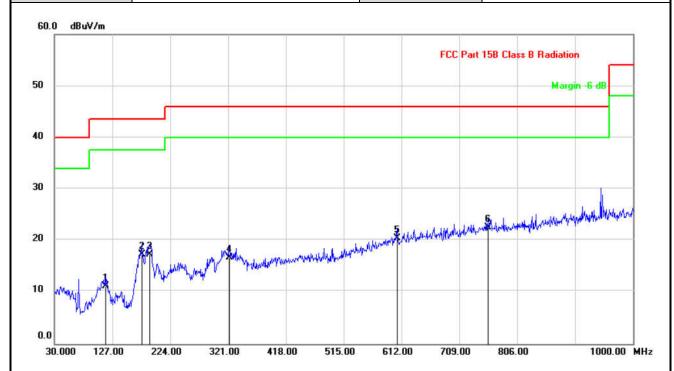
- 1. Over value = Emission level Limit value.
- 2. Emission Level = Correction Factor + Reading Value.
- 3. Correction Factor = Antenna Factor + Cable Factor Amplifier Gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product model:	AFU-WOH-0002A	Test result:	Pass
Test mode:	TM1	Test voltage:	DC 5V
Test frequency:	433.59MHz	Ant. polarity:	Vertical
Environment:	Temp: 22.8℃ Huni: 44%	Test by:	Miles Chen

No.	Mk	c. I	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	433.	5960	85.04	-8.02	77.02			peak

- 1. Over value = Emission level Limit value.
- 2. Emission Level = Correction Factor + Reading Value.
- 3. Correction Factor = Antenna Factor + Cable Factor Amplifier Gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

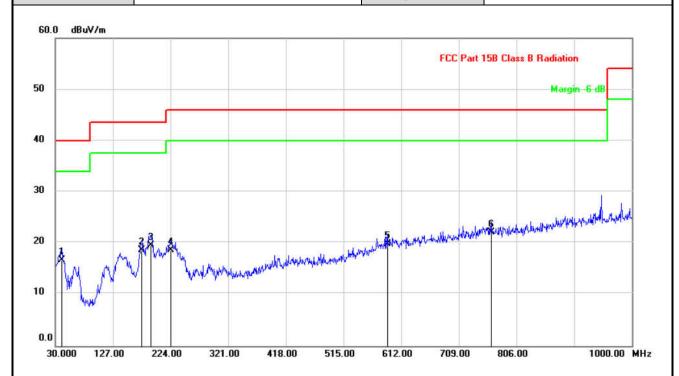
6.2.2 Spurious Emissions


Product Nam	ne: Pet training	ng system remote control unit N			o.:	AFU-WOH-0002A				A
	Below 1GHz (30MHz-1000MHz)									
Frequency (MHz)	Read Level (dBuV/m)	Correct Factor (dB)	Leve (dBuV/		imit Li dBuV/r	_	Over (dE	-	Detector	polarization
867.18	45.56	-0.27	45.29)	80.81	1	-35.	52	QP	Vertical
867.18	47.81	-0.30	47.51		80.81		-33.	30	QP	Horizontal
	Average value									
Frequency (MHz)	Level (dBuV/m)	Duty Cycle factor	_	je value iV/m)		_imit Li dBuV/		Ov	er Limit (dB)	Polarization
867.18	45.29	0	45	.29		60.8	1	-	15.52	Vertical
867.18	47.51	0	47	.51		60.8	1	-	13.30	Horizontal

	Above 1GHz								
	Peak value								
Frequency (MHz)	Read Level (dBuV/m)	Correct Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
1300.77	52.67	-6.39	46.28	74.00	-27.72	Vertical			
1734.36	45.46	-4.12	41.34	80.81	-39.47	Vertical			
2167.95	52.30	-2.68	49.62	80.81	-31.19	Vertical			
2601.54	55.44	-1.72	53.72	80.81	-27.09	Vertical			
3035.13	49.98	-0.31	49.67	80.81	-31.14	Vertical			
3468.72	48.57	0.21	48.78	80.81	-32.03	Vertical			
3902.31	49.72	1.66	51.38	74.00	-22.62	Vertical			
4335.90	47.62	2.98	50.60	74.00	-23.40	Vertical			
1300.77	49.37	-6.39	42.98	74.00	-31.02	Horizontal			
1734.36	45.51	-4.12	41.39	80.81	-39.42	Horizontal			
2167.95	44.01	-2.68	41.33	80.81	-39.48	Horizontal			
2601.54	46.42	-1.72	44.70	80.81	-36.11	Horizontal			
3035.13	45.75	-0.31	45.44	80.81	-35.37	Horizontal			
3468.72	41.51	0.21	41.72	80.81	-39.09	Horizontal			
3902.31	44.43	1.66	46.09	74.00	-27.91	Horizontal			
4335.90	46.69	2.98	49.67	74.00	-24.33	Horizontal			
Average value									
Frequency	Read Level	Correct Factor	Level	Limit Line	Over Limit				
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization			
1300.77	46.28	0	46.28	54.00	-7.72	Vertical			
1734.36	41.34	0	41.34	60.81	-19.47	Vertical			
2167.95	49.62	0	49.62	60.81	-11.19	Vertical			
2601.54	53.72	0	53.72	60.81	-7.09	Vertical			
3035.13	49.67	0	49.67	60.81	-11.14	Vertical			
3468.72	48.78	0	48.78	60.81	-12.03	Vertical			
3902.31	51.38	0	51.38	54.00	-2.62	Vertical			
4335.90	50.60	0	50.60	54.00	-3.40	Vertical			
1300.77	42.98	0	42.98	54.00	-11.02	Horizontal			
1734.36	41.39	0	41.39	60.81	-19.42	Horizontal			
2167.95	41.33	0	41.33	60.81	-19.48	Horizontal			
2601.54	44.70	0	44.70	60.81	-16.11	Horizontal			
3035.13	45.44	0	45.44	60.81	-15.37	Horizontal			
3468.72	41.72	0	41.72	60.81	-19.09	Horizontal			
3902.31	46.09	0	46.09	54.00	-7.91	Horizontal			
4335.90	49.67	0	49.67	54.00	-4.33	Horizontal			

Test Plots:

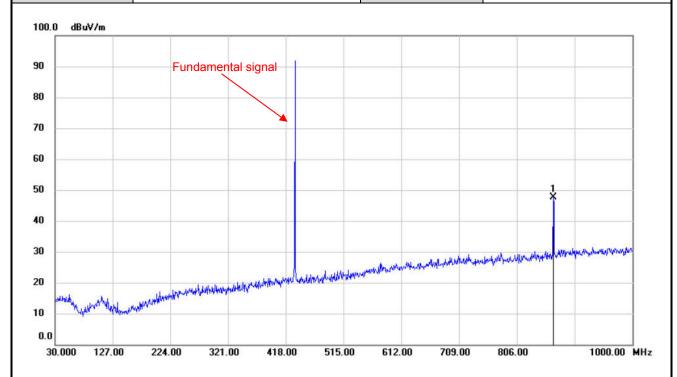
Product model:	AFU-WOH-0002A		Test result:	Pass
Test mode:	TM 2		Test voltage:	AC 120V, 60 Hz
Test frequency:	30MHz-1000MHz		Ant. polarity:	Horizontal
Environment:	Temp: 22.8℃	Huni: 42%	Test by:	Miles Chen


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		115.3600	26.24	-15.09	11.15	43.50	-32.35	QP
2		176.4700	33.51	-16.12	17.39	43.50	-26.11	QP
3		189.0800	32.21	-14.89	17.32	43.50	-26.18	QP
4		322.9400	27.39	-10.65	16.74	46.00	-29.26	QP
5		604.2400	24.53	-4.04	20.49	46.00	-25.51	QP
6	*	757.5000	24.11	-1.56	22.55	46.00	-23.45	QP

Notes:

- 1. Over value = Emission level Limit value.
- 2. Emission Level = Correction Factor + Reading Value.
- 3. Correction Factor = Antenna Factor + Cable Factor Amplifier Gain.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

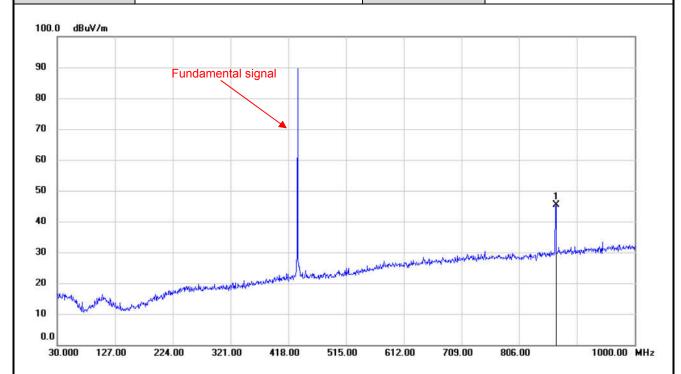
Product model:	AFU-WOH-0002A	Test result:	Pass
Test mode:	TM 2	Test voltage:	AC 120V, 60 Hz
Test frequency:	30MHz-1000MHz	Ant. polarity:	Vertical
Environment:	Temp: 22.8℃ Huni: 42%	Test by:	Miles Chen



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	40.6699	30.20	-13.46	16.74	40.00	-23.26	QP
2		175.5000	34.85	-16.17	18.68	43.50	-24.82	QP
3		191.0200	34.25	-14.73	19.52	43.50	-23.98	QP
4		224.9700	31.54	-12.93	18.61	46.00	-27.39	QP
5		588.7199	24.32	-4.50	19.82	46.00	-26.18	QP
6		763.3200	23.69	-1.53	22.16	46.00	-23.84	QP

- 1. Over value = Emission level Limit value.
- 2. Emission Level = Correction Factor + Reading Value.
- 3. Correction Factor = Antenna Factor + Cable Factor Amplifier Gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

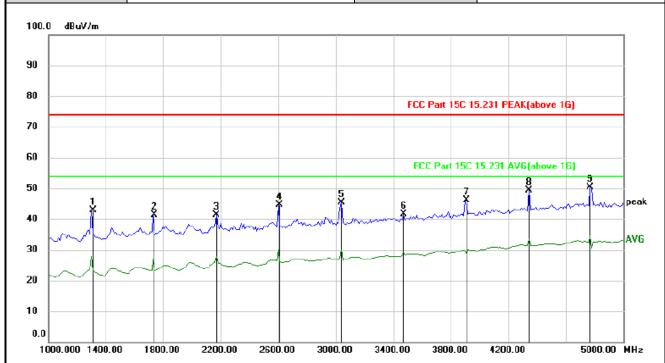
Product model:	AFU-WOH-0002A		Test result:	Pass
Test mode:	TM 1		Test voltage:	DC 5V
Test frequency:	30MHz-1000MHz		Ant. polarity:	Horizontal
Environment:	Temp: 22.8℃	Huni: 42%	Test by:	Miles Chen



No.	Mk		Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	867	1800	47.81	-0.30	47.51			peak

- Over value = Emission level Limit value.
- 2. Emission Level = Correction Factor + Reading Value.
- 3. Correction Factor = Antenna Factor + Cable Factor Amplifier Gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

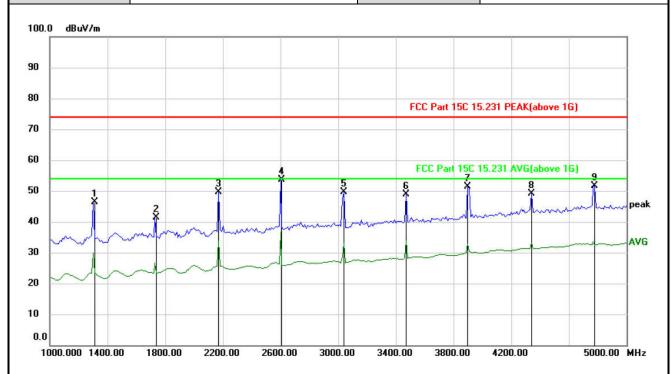
Product model:	AFU-WOH-0002A	Test result:	Pass
Test mode:	TM 1	Test voltage:	DC 5V
Test frequency:	30MHz-1000MHz	Ant. polarity:	Vertical
Environment:	Temp: 22.8℃ Huni: 42%	Test by:	Miles Chen



No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	867.1800	47.81	-0.30	47.51			peak

- 1. Over value = Emission level Limit value.
- 2. Emission Level = Correction Factor + Reading Value.
- 3. Correction Factor = Antenna Factor + Cable Factor Amplifier Gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product model:	AFU-WOH-0002A	Test result:	Pass
Test mode:	TM 1	Test voltage:	DC 5V
Test frequency:	1000MHz-5000MHz	Ant. polarity:	Horizontal
Environment:	Temp: 22.8°C Huni: 42%	Test by:	Miles Chen



No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1300.770	49.37	-6.39	42.98	74.00	-31.02	peak
2		1734.360	45.51	-4.12	41.39	74.00	-32.61	peak
3		2167.950	44.01	-2.68	41.33	74.00	-32.67	peak
4		2601.540	46.42	-1.72	44.70	74.00	-29.30	peak
5		3035.130	45.75	-0.31	45.44	74.00	-28.56	peak
6		3468.720	41.51	0.21	41.72	74.00	-32.28	peak
7		3902.310	44.43	1.66	46.09	74.00	-27.91	peak
8		4335.900	46.49	2.98	49.47	74.00	-24.53	peak
9	*	4769.490	46.61	3.89	50.50	74.00	-23.50	peak

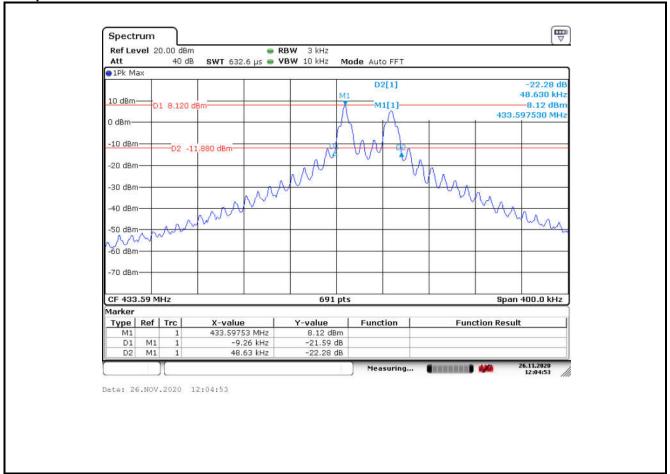
- 1. Over value = Emission level Limit value.
- 2. Emission Level = Correction Factor + Reading Value.
- 3. Correction Factor = Antenna Factor + Cable Factor Amplifier Gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product model:	AFU-WOH-0002A	Test result:	Pass
Test mode:	TM 1	Test voltage:	DC 5V
Test frequency:	1000MHz-5000MHz	Ant. polarity:	Vertical
Environment:	Temp: 22.8℃ Huni: 42%	Test by:	Miles Chen

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1:	300.770	52.67	-6.39	46.28	74.00	-27.72	peak
2	1	734.360	45.46	-4.12	41.34	74.00	-32.66	peak
3	2	167.950	52.30	-2.68	49.62	74.00	-24.38	peak
4	* 20	601.540	55.44	-1.72	53.72	74.00	-20.28	peak
5	30	035.130	49.98	-0.31	49.67	74.00	-24.33	peak
6	3.	468.720	48.57	0.21	48.78	74.00	-25.22	peak
7	3	902.310	49.12	1.66	50.78	74.00	-23.62	peak
8	4:	335.900	45.87	2.98	48.85	74.00	-25.15	peak
9	4	769.490	47.62	3.92	51.54	74.00	-22.46	peak

- 1. Over value = Emission level Limit value.
- 2. Emission Level = Correction Factor + Reading Value.
- 3. Correction Factor = Antenna Factor + Cable Factor Amplifier Gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

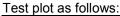
6.3 20dB Bandwidth

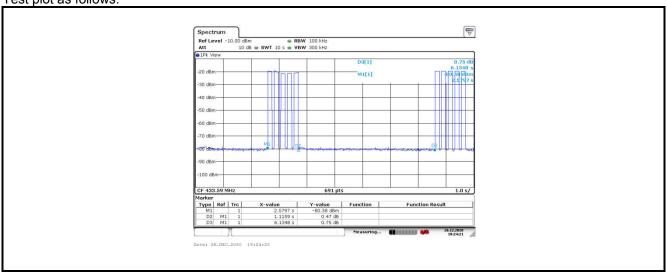

Test Requirement:	FCC Part15 C Section 15.231 (c)			
Receiver setup:	RBW=1kHz, VBW=3kHz, detector: Peak			
Limit:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.			
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product Name:	Pet training system	em remote control unit	Model No.:	AFU-WOH-0002A	
20dB bandwidth (MHz)		Limit (MHz)		Results	
0.058		1.0839		Pass	

Test plot as follows:

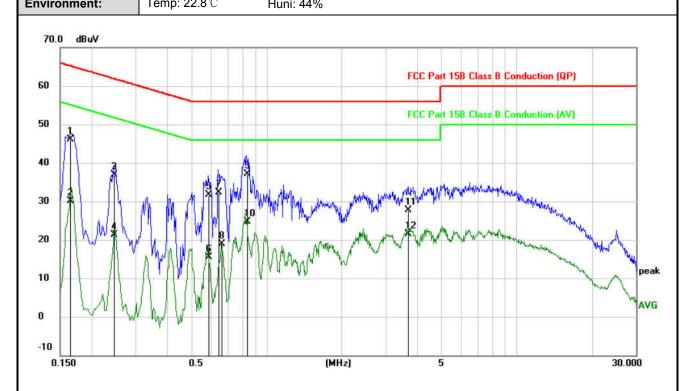



6.4 Duration Time

Test Requirement:	FCC Part15 C Section 15.231 (a)		
Receiver setup:	RBW=1MHz, VBW=3MHz, span=0Hz, detector: Peak		
Limit:	Not more than 5 seconds		
Test mode:	Transmitting mode		
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Single scan the transmission, and read the transmission time. 		
Test setup:	· ·		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

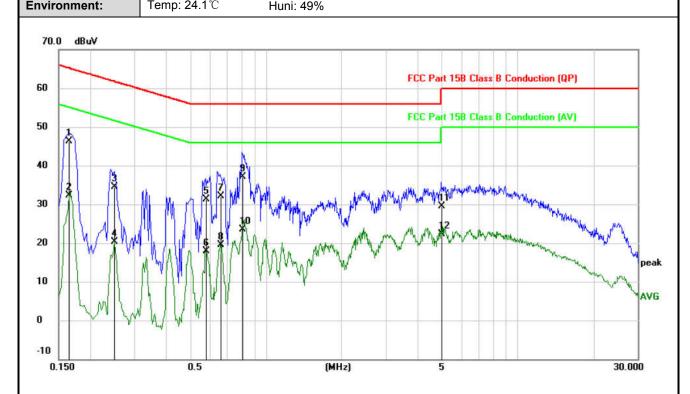
Product Name:	Pet training system	em remote control unit	Model No.:	AFU-WOH-0002A	
Duration time (second)		Limit (second)		Result	
1.087		<5.0		Pass	



6.5 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207					
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
	Frequency range (MHz)	Limit (dBuV)				
	1 requeries range (wirtz)	Quasi-peak	Average			
Limit:	0.15-0.5	66 to 56*	56 to 46*			
Littit	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm of the frequency.					
Test setup:	Reference	Plane				
	— AC power					
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). Which provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to EN55032 Class B on conducted measurement.					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Product model:	AFU-WOH-0002A	I-WOH-0002A Tes		Pass
Test mode:	TM 2		Test voltage:	AC 120V, 60 Hz
Phase:	Line (L)		Test by:	Miles Chen
Environment:	Temp: 22.8℃ Hu	uni: 44%		



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1645	36.39	9.64	46.03	65.23	-19.20	QP
2		0.1645	20.42	9.64	30.06	55.23	-25.17	AVG
3		0.2459	27.26	9.64	36.90	61.89	-24.99	QP
4		0.2459	11.58	9.64	21.22	51.89	-30.67	AVG
5		0.5856	22.10	9.66	31.76	56.00	-24.24	QP
6		0.5856	5.93	9.66	15.59	46.00	-30.41	AVG
7		0.6423	22.63	9.66	32.29	56.00	-23.71	QP
8		0.6580	9.25	9.67	18.92	46.00	-27.08	AVG
9	*	0.8310	27.34	9.68	37.02	56.00	-18.98	QP
10		0.8310	15.12	9.68	24.80	46.00	-21.20	AVG
11		3.6972	17.95	9.73	27.68	56.00	-28.32	QP
12		3.6972	11.75	9.73	21.48	46.00	-24.52	AVG

- 1. An initial pre-scan was performed on the line and neutral lines with peak and AV detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Over value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Product model:	AFU-WOH-0002A	Test result:	Pass
Test mode:	TM 2	Test voltage:	AC 120V, 60 Hz
Phase:	Line (N)	Test by:	Miles Chen
Environment	Tomp: 24.1°C Huni: 400/		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1645	36.76	9.64	46.40	65.23	-18.83	QP
2		0.1645	22.60	9.64	32.24	55.23	-22.99	AVG
3		0.2501	24.84	9.64	34.48	61.75	-27.27	QP
4		0.2501	10.68	9.64	20.32	51.75	-31.43	AVG
5		0.5780	21.62	9.66	31.28	56.00	-24.72	QP
6		0.5780	8.27	9.66	17.93	46.00	-28.07	AVG
7		0.6580	22.38	9.67	32.05	56.00	-23.95	QP
8		0.6580	9.84	9.67	19.51	46.00	-26.49	AVG
9		0.8065	27.45	9.68	37.13	56.00	-18.87	QP
10		0.8065	13.86	9.68	23.54	46.00	-22.46	AVG
11		4.9898	19.66	9.76	29.42	56.00	-26.58	QP
12		4.9898	12.52	9.76	22.28	46.00	-23.72	AVG

- 1. An initial pre-scan was performed on the line and neutral lines with peak and AV detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Over value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

----End of report-----