

Report No.: EED32M00150001 Page 1 of 62

TEST REPORT

Product HUIYANXIAOBAO Trade mark HUIYANXINGDONG

Model/Type reference EYE2CH

Serial Number N/A

Report Number EED32M00150001

FCC ID : 2AWT6HY2003

Date of Issue Jul. 28, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen kangjian and Health Management Service Co., Ltd. 601, 3F, workshop 147, Tiegang Reservoir Road, Xixiang street, Bao'an District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

pproved by

Report Seal

Smile

Reviewed by:

Jok Yang

Jok (and

Jul. 28, 2020

Smile Zhong

Date:

Sam Chuang

Check No.:3336837445

2 Version

Version No.	Date	(€	Description	<u>S)</u>
00	Jul. 28, 2020		Original	
0				7.50

Page 3 of 62

3 Test Summary

o rest Gairmany	200			
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

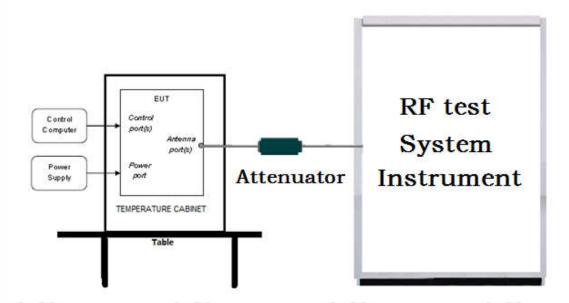
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No.: EED32M00150001 Page 4 of 62

4 Content

1 COVE	R PAGE		•••••	•••••	•••••	1
2 VERS	ON			•••••		
3 TEST	SUMMARY	•••••		•••••	•••••	
4 CONT	ENT		••••		•••••	4
5 TEST	REQUIREMENT				•••••	5
5.1 5.1 5.1 5.2 Te	EST SETUP	tup ns test setup ons test setup				
6 GENE	RAL INFORMATION			•••••	•••••	
6.2 G 6.3 PI 6.4 DI 6.5 TE 6.6 DI 6.7 AI 6.8 O	LIENT INFORMATION	EUT BJECTIVE TO THIS ST JNITS S DARD CONDITIONS ESTED BY THE CUSTO	ANDARD			
7 EQUIF	PMENT LIST			•••••	•••••	10
	TECHNICAL REQUIRE					
Ap Ap Ap Ap Ap Ap Ap	Properties of the pendix A): 6dB Occupied pendix B): Conducted Perpendix C): Band-edge for pendix D): RF Conducted pendix E): Power Spectra pendix F): Antenna Requipendix G): AC Power Line pendix H): Restricted ban pendix I) Radiated Spurio	Bandwidth ak Output Power RF Conducted Emi Spurious Emission Il Density irement e Conducted Emissi ds around fundame	ssionsson	iated)		
РНОТО	GRAPHS OF TEST SET	JP	•••••	•••••	•••••	50
РНОТО	GRAPHS OF EUT CONS	TRUCTIONAL DET	TAILS			53



Report No. : EED32M00150001 Page 5 of 62

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

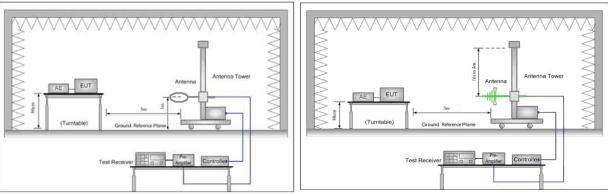
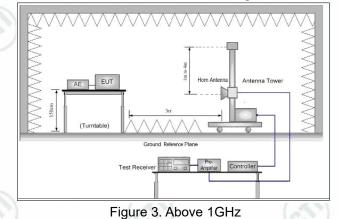
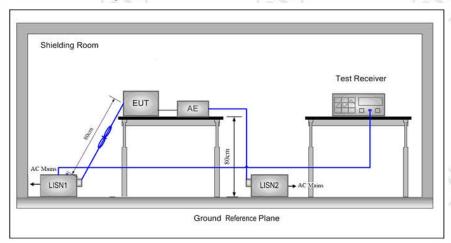
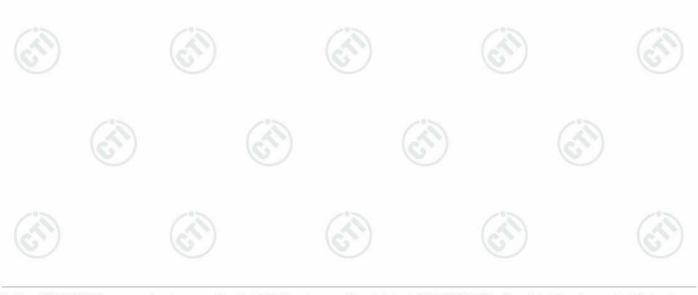



Figure 1. Below 30MHz


Figure 2. 30MHz to 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			(0)
Temperature:	23.0 °C		
Humidity:	54 % RH	160	
Atmospheric Pressure:	1010mbar		9

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel				
	TX/KX	Low(L)	Middle(M)	High(H)		
05014	0.4001411 0.400.1411	Channel 0	Channel 19	Channel 39		
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.					

Report No. : EED32M00150001 Page 7 of 62

6 General Information

6.1 Client Information

Applicant:	Shenzhen kangjian and Health Management Service Co., Ltd.
Address of Applicant:	601, 3F, workshop 147, Tiegang Reservoir Road, Xixiang street, Bao'an District, Shenzhen, China
Manufacturer:	Shenzhen kangjian and Health Management Service Co., Ltd.
Address of Manufacturer:	601, 3F, workshop 147, Tiegang Reservoir Road, Xixiang street, Bao'an District, Shenzhen, China
Factory:	MARUTAKATECHNO CO.,LTD
Address of Factory:	550-1 HIRODORI YAWATA FUJIEDA-SHI SHIZUOKA 426-0009 JAPAN

6.2 General Description of EUT

_ \657	I II IIX A NIX I A	ODAO	163				
Product Name:	HUIYANXIA	HUIYANXIAOBAO					
Model No.(EUT):	EYE2CH	EYE2CH					
Trade mark:	HUIYANXIN	HUIYANXINGDONG					
EUT Supports Radios application:	4.2 BT Single mode, 2402MHz to 2480MHz						
		MODEL:ICP12-120-1000D					
Power Supply:	Adapter	INPUT:100-240V~50/60Hz 0.3A					
Z'3	/3	/2					
Sample Received Date:	May 29, 2020						
Sample tested Date:	May 29, 2020 to Jul. 01, 2020						

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz				(30)
Bluetooth Version:	4.2		6		(0.)
Modulation Technique:	DSSS				
Modulation Type:	GFSK				
Number of Channel:	40	(2)		(2)	
Test Power Grade:	Default	(0,		(0,0)	
Test Software of EUT:	Beken BLE RF Test				
Antenna Type and Gain:	Type: PIFA antenna Gain:0dBi		(*)		~
Test Voltage:	DC 3.3V		(3)		(27)

Report No. : EED32M00150001 Page 8 of 62

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

1	sociated oment name	Manufacturer	Model	S/N serial number	Certification	Supplied by
AE1	Notebook	DELL	DELL 3490	D245DX2	CE & FCC	DELL

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No. : EED32M00150001 Page 9 of 62

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious erilission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32M00150001 Page 10 of 62

7 Equipment List

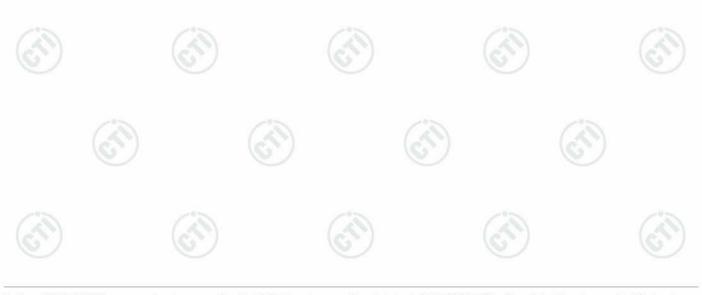
-qaipilieli	t Liot	O Poly	107		2 B 10
		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002		(<u>- (ii)</u>
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	<u> </u>		
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		(A)-	(2)
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		(<u>i</u>

Dage	11	of 62	
Page	- 1 1	01 02	

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021	
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020	
Multi device Controller	maturo	NCD/070/107 11112	(F)		(E1)	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A	/ -		
Cable line	Fulai(3M)	SF106	5217/6A	(20)		

Page 12 of 62

3M full-anechoic Chamber Fourinment Manufacturer Model No Serial Cal. date Cal. Due date							
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166				
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021		
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021		
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021		
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021		
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021		
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021		
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021		
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021		
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001				
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002				
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003				
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001				
Cable line	Times	EMC104-NMNM- 1000	SN160710				
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001				
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		<u> </u>		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(C.J.)		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001				

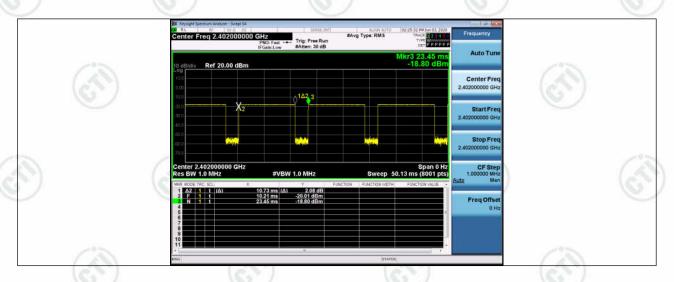

8 Radio Technical Requirements Specification

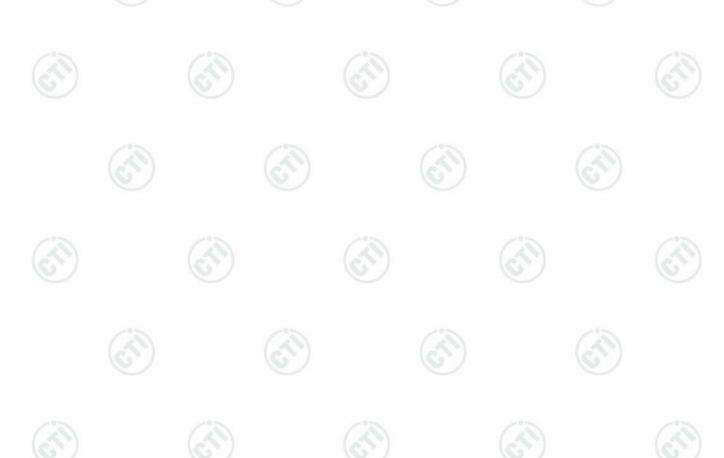
Reference documents for testing:

Г		(0)	
	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)





Report No. : EED32M00150001 Page 14 of 62

EUT DUTY CYCLE

Duty Cycle				
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)	
BLE	10.73	13.24	81.04%	

Report No. : EED32M00150001 Page 15 of 62

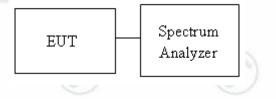
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

Limit Shall be at least 500kHz	Limit	Shall be at least 500kHz	
--------------------------------	-------	--------------------------	--


Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

6dB Bandwidth

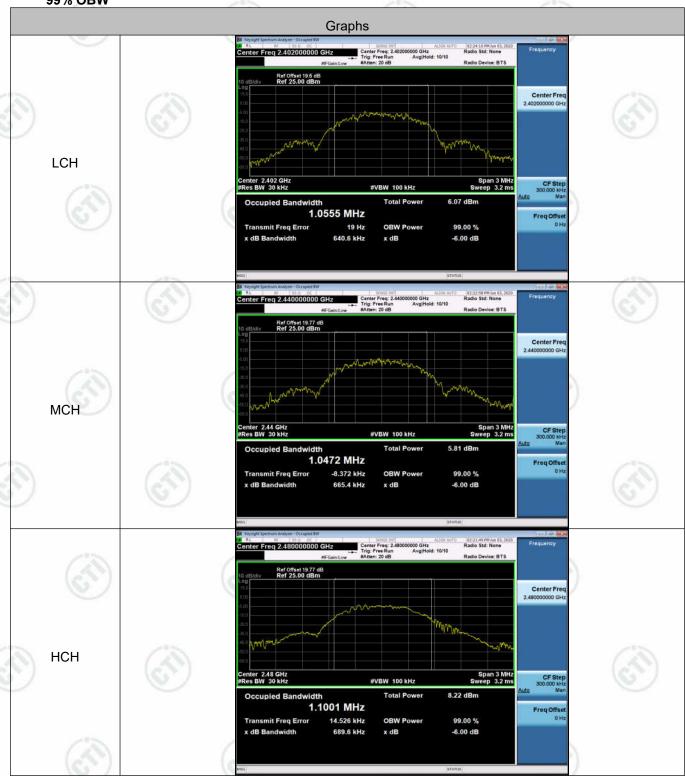
Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.7026	PASS
BLE	MCH	0.6960	PASS
BLE	НСН	0.7407	PASS

99% OBW

		000/ 001/2011 1	.,
Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0555	PASS
BLE	MCH	1.0472	PASS
BLE	НСН	1.1001	PASS

Test Graphs

6dB Bandwidth



99% OBW

Report No. : EED32M00150001 Page 19 of 62

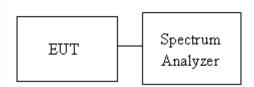
Appendix B): Conducted Peak Output Power

Test Limit

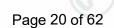
According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


7	(6,		0
Limit		☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]	
	0	☐ Point-to-point operation	

Test Procedure

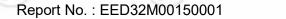

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup

Test Result

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	1.697	PASS
DI E	MOLL	4.004	D400
BLE	MCH	1.824	PASS
and the second s		797	-0-
BLE	HCH	1.478	PASS





Page 21 of 62

Test Graphs

Report No. : EED32M00150001 Page 22 of 62

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

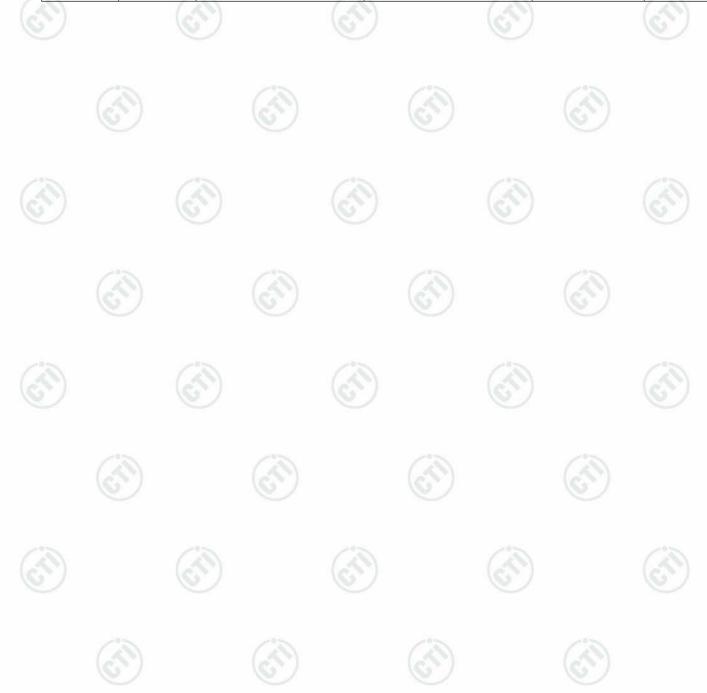
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

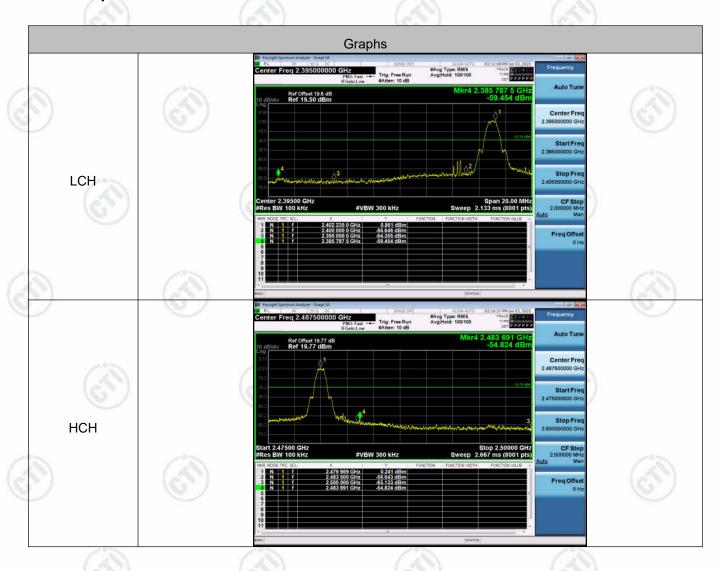
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Page 23 of 62

Result Table


	40.0				
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	0.861	-59.454	-19.14	PASS
BLE	НСН	0.241	-54.824	-19.76	PASS

Test Graphs

Report No. : EED32M00150001 Page 25 of 62

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

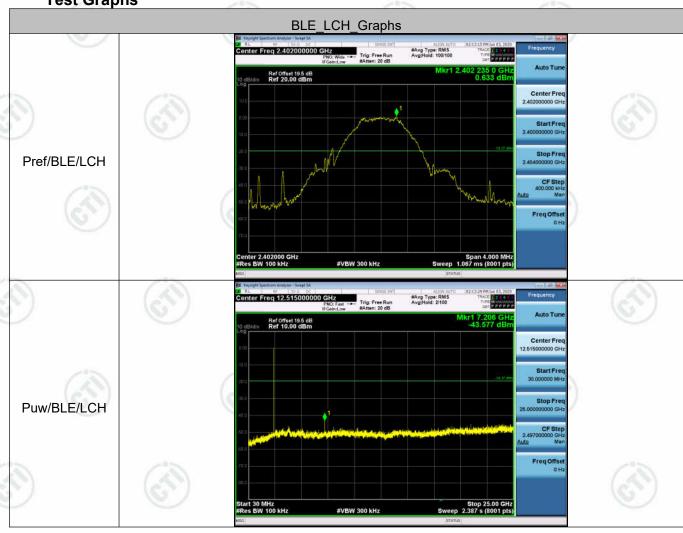
Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	0.633	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	0.832	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	0.388	<limit< td=""><td>PASS</td></limit<>	PASS



Page 27 of 62

Page 28 of 62

Page 29 of 62

Report No. : EED32M00150001 Page 30 of 62

Appendix E): Power Spectral Density

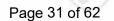
Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

☐ Point-to-point operation :

Test Procedure

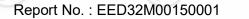

Test method Refer as KDB 558074 D01, Section 10.2

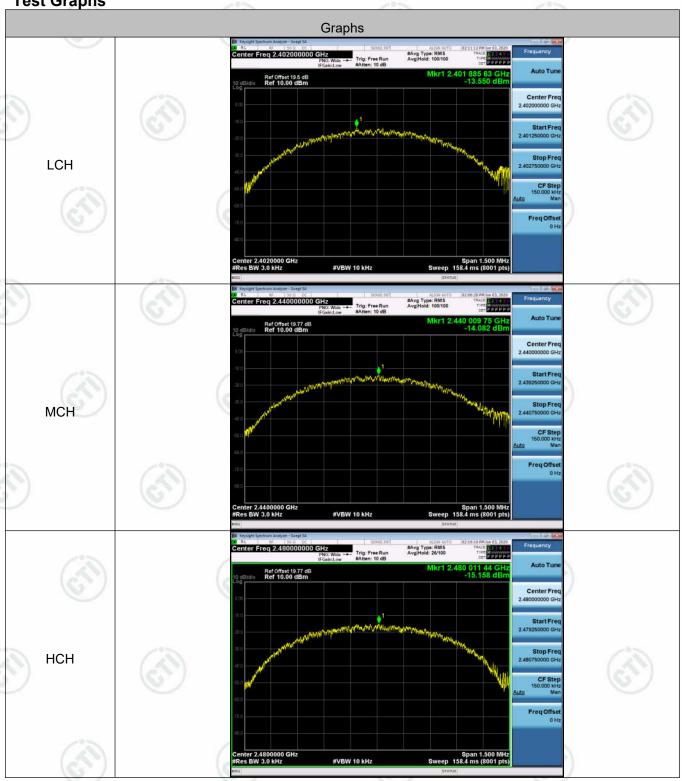
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-13.550	PASS
BLE	MCH	-14.082	PASS
BLE	НСН	-15.158	PASS





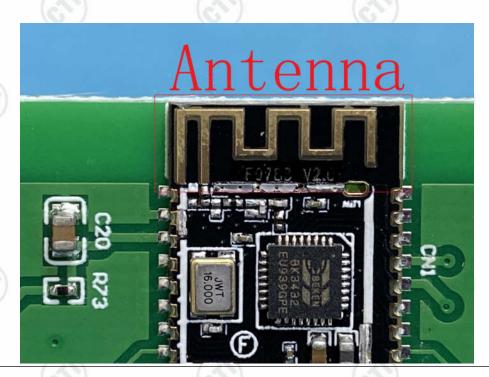
Page 32 of 62

Test Graphs

Page 33 of 62

Appendix F): Antenna Requirement

15.203 requirement:

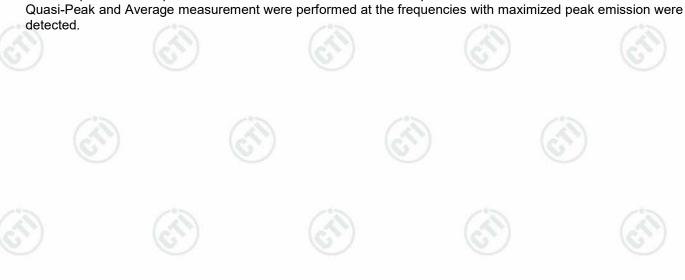

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

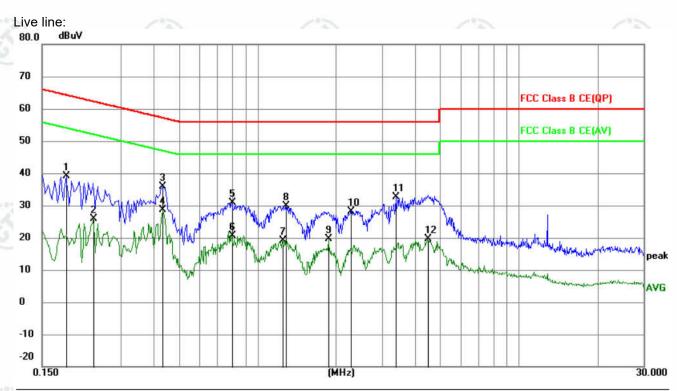
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.



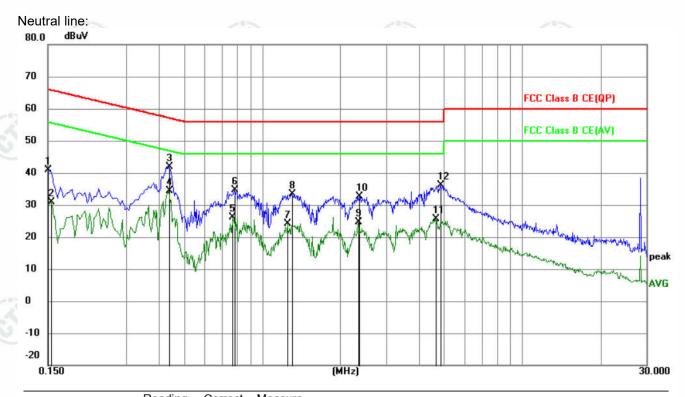
Report No.: EED32M00150001 Page 34 of 62


Test Procedure:	Test frequency range :150KHz	-30MHz										
	1)The mains terminal disturbance voltage test was conducted in a shielded room.											
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance											
	Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The											
	power cables of all other units of the EUT were connected to a second LISN 2,											
	which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect											
	multiple power cables to a sexceeded.											
		ad unon a non metall	ic table 0.8m abov	e the around								
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,											
	4) The test was performed with	· ·	•									
		EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground										
	reference plane was bonded to the horizontal ground reference plane. The LISN											
	1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference											
	plane. This distance was between the closest points of the LISN 1 and the EUT.											
	All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.											
	5) In order to find the maximum emission, the relative positions of equipment and all											
	of the interface cables must be changed according to ANSI C63.10 on conducted measurement.											
Limit:	lΒμV)											
	Frequency range (MHz)	Quasi-peak	Average	·								
	0.15-0.5	66 to 56*	56 to 46*									
	0.5-5	56	46									
	5-30 60 5											
			the frequency in th	—								
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applied		(3)	e range 0.15								

Page 35 of 62

Temperature : 23° **Humidity** : 54%

No	o. N	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1860	29.37	9.87	39.24	64.21	-24.97	QP	
	2		0.2355	15.89	9.94	25.83	52.25	-26.42	AVG	
;	3		0.4335	25.82	9.94	35.76	57.19	-21.43	QP	
-	1 '	*	0.4335	18.66	9.94	28.60	47.19	-18.59	AVG	
- ;	5		0.7980	21.00	9.76	30.76	56.00	-25.24	QP	
(3		0.8025	10.95	9.76	20.71	46.00	-25.29	AVG	
	7		1.2480	9.40	9.75	19.15	46.00	-26.85	AVG	
- 8	3		1.2839	20.02	9.75	29.77	56.00	-26.23	QP	
- (9		1.8735	9.90	9.78	19.68	46.00	-26.32	AVG	
10)		2.2740	18.43	9.79	28.22	56.00	-27.78	QP	
1	1		3.3945	22.92	9.78	32.70	56.00	-23.30	QP	
12	2		4.4835	9.79	9.77	19.56	46.00	-26.44	AVG	



Page 36 of 62

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	31.08	9.88	40.96	66.00	-25.04	QP	
2	0.1544	20.88	9.88	30.76	55.76	-25.00	AVG	
3	0.4380	31.87	9.95	41.82	57.10	-15.28	QP	
4 *	0.4380	24.43	9.95	34.38	47.10	-12.72	AVG	
5	0.7709	16.24	9.77	26.01	46.00	-19.99	AVG	
6	0.7799	24.95	9.76	34.71	56.00	-21.29	QP	
7	1.2524	14.28	9.75	24.03	46.00	-21.97	AVG	
8	1.3018	23.51	9.75	33.26	56.00	-22.74	QP	
9	2.3413	14.77	9.79	24.56	46.00	-21.44	AVG	
10	2.3684	22.73	9.79	32.52	56.00	-23.48	QP	
11	4.6320	15.96	9.77	25.73	46.00	-20.27	AVG	
12	4.8615	26.28	9.77	36.05	56.00	-19.95	QP	

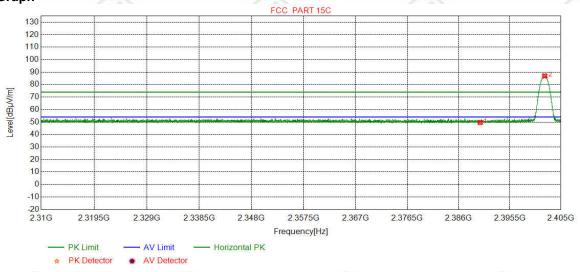
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

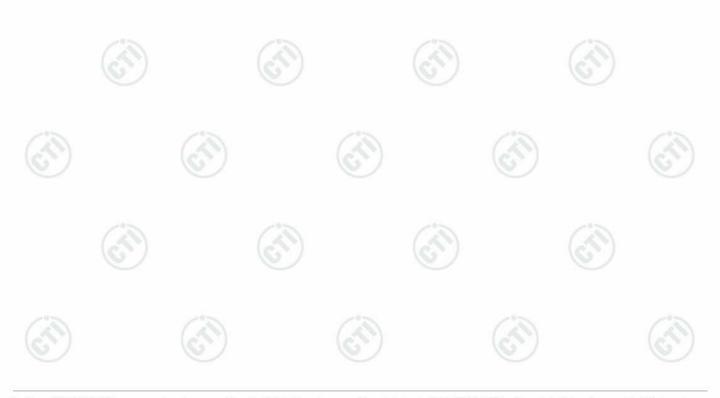
Report No. : EED32M00150001 Page 37 of 62

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Itaaiatea)	1,00,70	10.0		1/4		
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A1 4011-	Peak	1MHz	3MHz	Peak	- 0.5
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Test method Refer as KDB a. The EUT was placed or at a 3 meter semi-anec determine the position	558074 D01 v04 on the top of a rota hoic camber. The of the highest rad	ating table e table wa diation.	e 0.8 meter is rotated 3	360 degrees t	0
	b. The EUT was set 3 me was mounted on the top c. The antenna height is was determine the maximur polarizations of the antend d. For each suspected em the antenna was tuned was turned from 0 degre. The test-receiver system Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectro for lowest and highest of	o of a variable-heraried from one man value of the fiern are set to not be some are set to not be some are set to not be some are set to 960 degrees to 360 degreem was set to Peaum Hold Mode, and of the restrict pliance. Also meum analyzer plot	eight antermeter to food and strength nake the nake the nake arrand meter to be to find ak Detect ared band of the asure any	nna tower. our meters n. Both hor neasurement ged to its of the maxin Function a	above the gro rizontal and vo ent. worst case an and the rotata num reading. nd Specified ne transmit s in the restric	ound the ble
	g. Different between above to fully Anechoic Cham 18GHz the distance is	e is the test site, ber change form	table 0.8	meter to 1		
	i. The radiation measurer Transmitting mode, and	I found the X axi	ne Highest med in X, s positioni	t channel Y, Z axis p ing which i	t is worse cas	
imit	i. The radiation measurer Transmitting mode, and j. Repeat above procedu	ments are perfori I found the X axi res until all frequ	ne Highest med in X, s positioni encies me	t channel Y, Z axis p ing which i easured wa	t is worse cas as complete.	
imit:	i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency	ments are perform I found the X axing res until all frequential Limit (dBµV/r	ne Highest med in X, s positioni encies me m @3m)	t channel Y, Z axis p ing which i easured wa	t is worse cas as complete. mark	
imit:	i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz	ments are performents are performed found the X axions and the X axions are until all frequents that the Limit (dBµV/rule) 40.0	ne Highest med in X, s positioni encies me m @3m)	t channel Y, Z axis p ing which i easured wa Rer Quasi-pe	t is worse cas as complete. mark eak Value	
imit:	i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	nents are performents are performed found the X axions result all frequency Limit (dBµV/r 40.0 43.5	ne Highest med in X, s positioni encies me m @3m)	channel Y, Z axis p ing which it easured wa Rer Quasi-pe	t is worse cas as complete. mark eak Value eak Value	
imit:	i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	ments are performents are performents are performed the X axis resuntil all frequencies Limit (dBµV/r 40.0 43.5 46.0	ne Highest med in X, s positioni encies me m @3m)	channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	t is worse cas as complete. mark eak Value eak Value eak Value	
imit:	i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	Limit (dBµV/r 40.0 43.5 46.0	ne Highest med in X, s positioni encies me m @3m)	channel Y, Z axis p ing which in easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	t is worse cas as complete. mark eak Value eak Value eak Value	
imit:	i. The radiation measurer Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	ments are performents are performents are performed the X axis resuntil all frequencies Limit (dBµV/r 40.0 43.5 46.0	ne Highest med in X, s positioni encies me m @3m)	channel Y, Z axis p Ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	t is worse cas as complete. mark eak Value eak Value eak Value eak Value	
Limit:	i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	Limit (dBµV/r 40.0 43.5 46.0	ne Highest med in X, s positioni encies me m @3m)	channel Y, Z axis p Ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	t is worse cas as complete. mark eak Value eak Value eak Value	



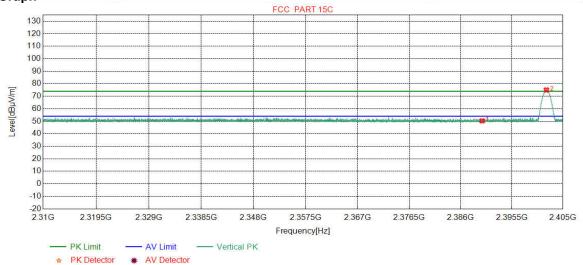
Report No. : EED32M00150001 Page 38 of 62

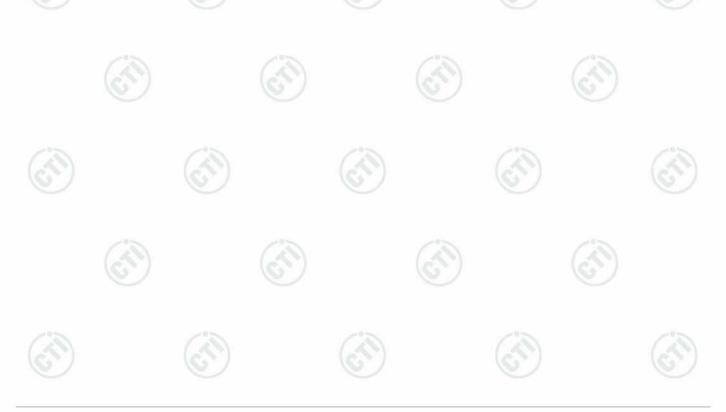

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.12	49.62	74.00	24.38	Pass	Horizontal
2	2401.9915	32.26	13.31	-43.12	84.47	86.92	74.00	-12.92	Pass	Horizontal

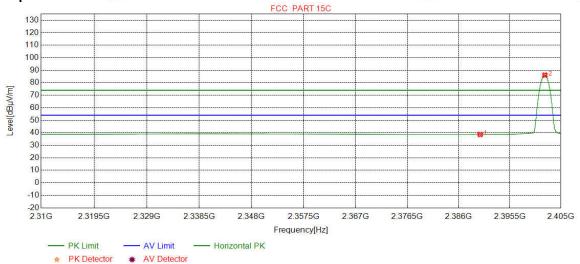


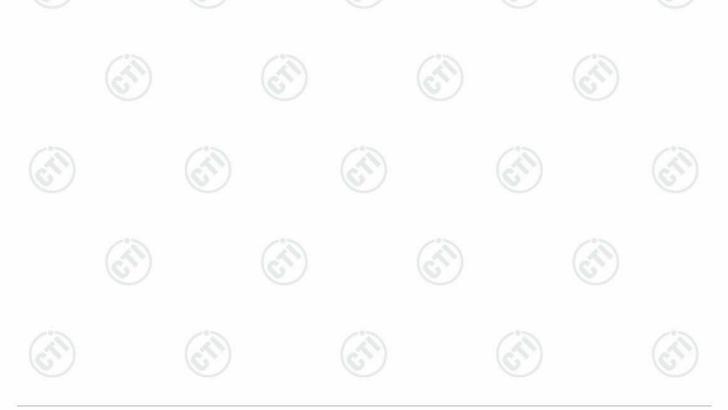

Page	39	of 62	
------	----	-------	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.80	50.30	74.00	23.70	Pass	Vertical
2	2401.9345	32.26	13.31	-43.12	72.53	74.98	74.00	-0.98	Pass	Vertical

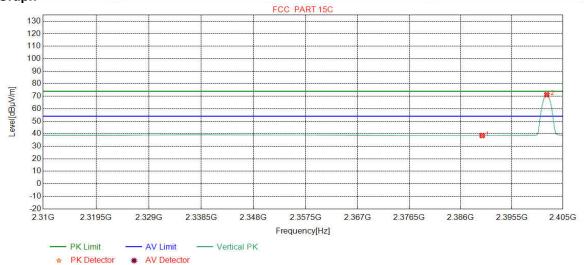


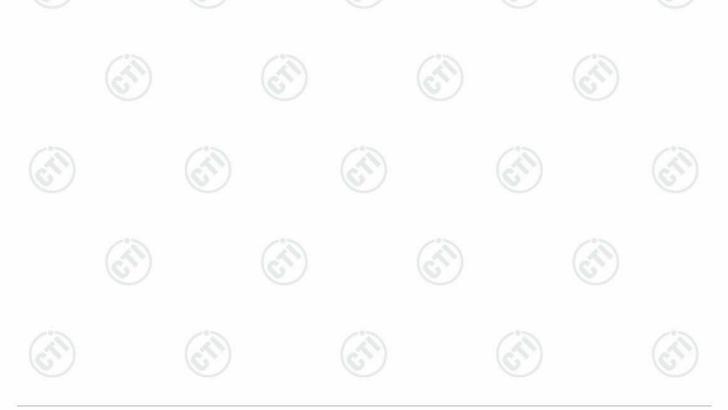

Page -	40 d	of 62
--------	------	-------

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.11	38.61	54.00	15.39	Pass	Horizontal
2	2402.0168	32.26	13.31	-43.12	83.68	86.13	54.00	-32.13	Pass	Horizontal

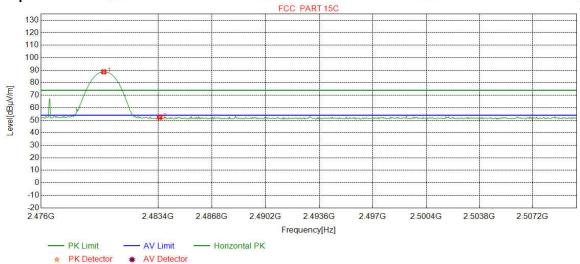


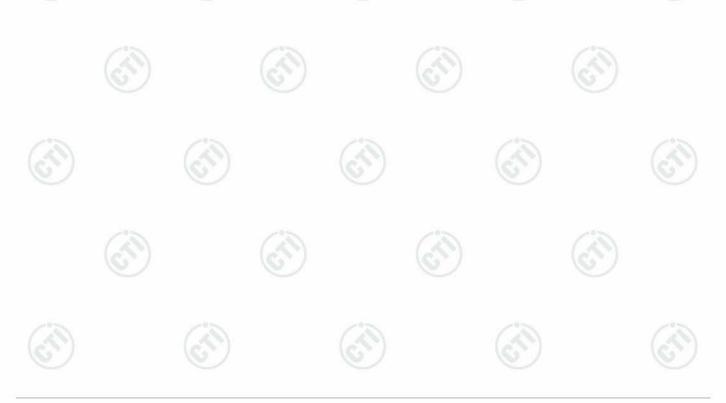

Page 41	of 62
---------	-------

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

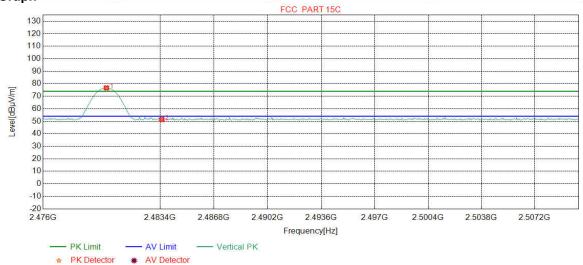
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.06	38.56	54.00	15.44	Pass	Vertical
2	2402.0041	32.26	13.31	-43.12	68.73	71.18	54.00	-17.18	Pass	Vertical

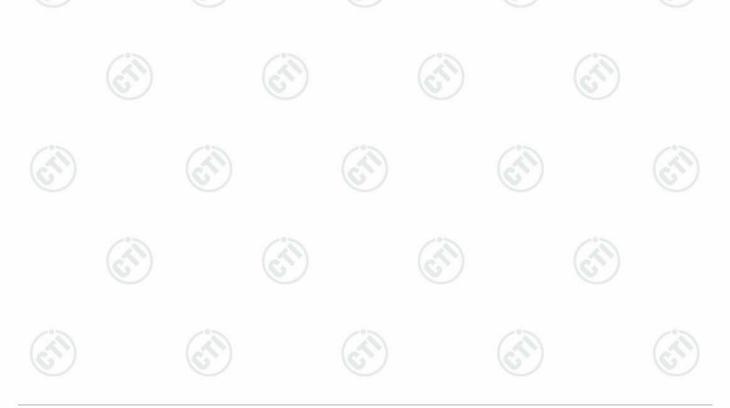



Page	42	of	62
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	PK			

Test Graph

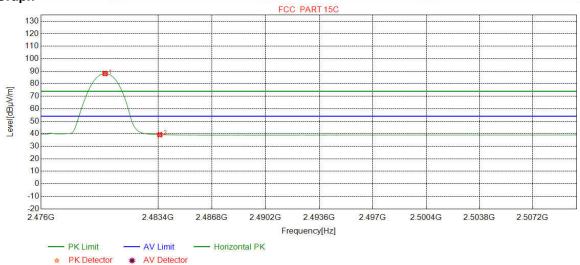

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	86.06	88.72	74.00	-14.72	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.77	52.42	74.00	21.58	Pass	Horizontal

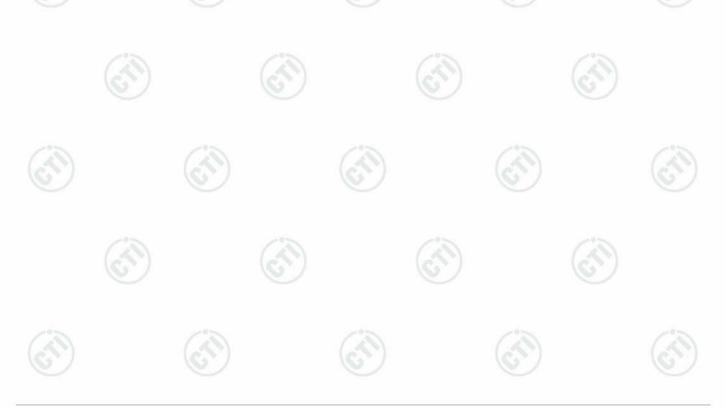


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	73.99	76.65	74.00	-2.65	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.78	51.43	74.00	22.57	Pass	Vertical

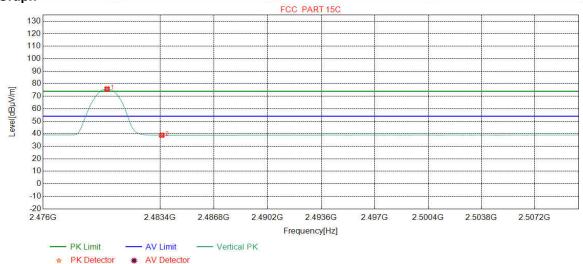



Page 44	of 62
---------	-------

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

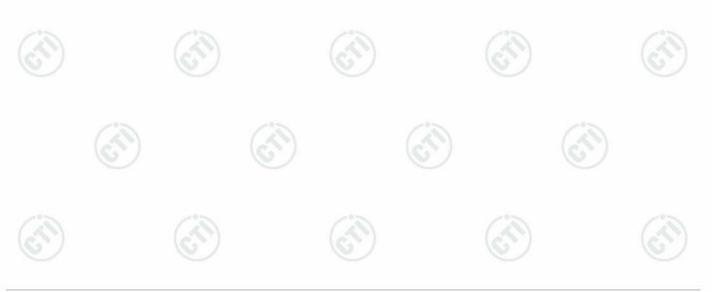
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	85.45	88.11	54.00	-34.11	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.62	39.27	54.00	14.73	Pass	Horizontal



Page	45	of	62
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	73.18	75.84	54.00	-21.84	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.17	38.82	54.00	15.18	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32M00150001 Page 46 of 62

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
A	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	100
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(0)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(27)	Above 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

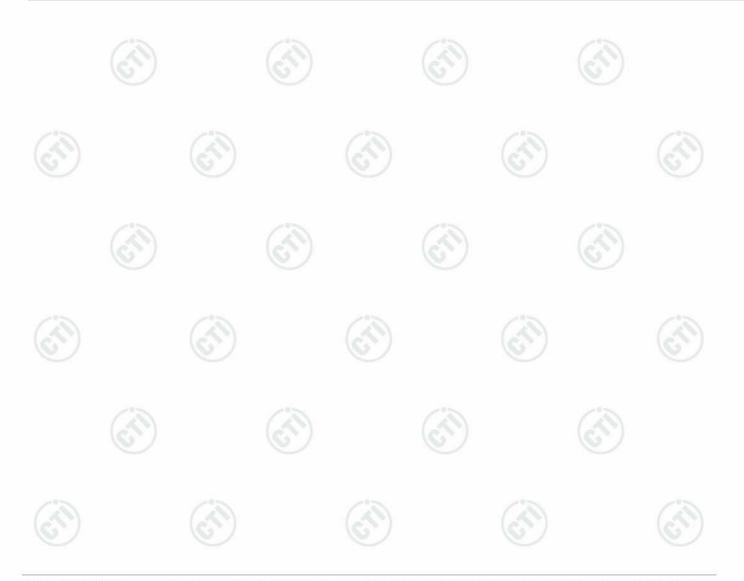
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode:			BLE GF	SK Transn	nitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	79.5720	7.18	1.04	-31.91	57.43	33.74	40.00	6.26	Pass	Н	PK
2	156.5977	7.78	1.46	-31.99	52.27	29.52	43.50	13.98	Pass	Н	PK
3	252.8313	12.26	1.89	-31.89	52.45	34.71	46.00	11.29	Pass	Н	PK
4	385.1525	15.07	2.34	-31.85	43.13	28.69	46.00	17.31	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	40.85	31.31	46.00	14.69	Pass	Н	PK
6	844.9785	21.44	3.50	-31.82	40.21	33.33	46.00	12.67	Pass	Н	PK
7	84.1314	8.05	1.06	-31.98	51.43	28.56	40.00	11.44	Pass	V	PK
8	144.4714	7.36	1.42	-32.01	49.31	26.08	43.50	17.42	Pass	V	PK
9	240.5111	11.95	1.84	-31.89	54.51	36.41	46.00	9.59	Pass	V	PK
10	360.0270	14.52	2.27	-31.84	42.85	27.80	46.00	18.20	Pass	V	PK
11	600.0290	19.00	2.96	-31.50	40.49	30.95	46.00	15.05	Pass	V	PK
12	844.9785	21.44	3.50	-31.82	41.38	34.50	46.00	11.50	Pass	V	PK

Transmitter Emission above 1GHz

Mode:			BLE GF	SK Transn	nitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1592.8593	29.01	3.06	-42.91	53.53	42.69	74.00	31.31	Pass	Н	PK
2	2131.5132	31.88	3.62	-43.17	56.48	48.81	74.00	25.19	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	48.68	44.93	74.00	29.07	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	49.73	49.69	74.00	24.31	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	47.64	49.81	74.00	24.19	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	47.24	52.25	74.00	21.75	Pass	Н	PK
7	2660.9661	32.66	4.10	-43.11	58.19	51.84	74.00	22.16	Pass	V	PK
8	4250.0833	34.15	4.51	-42.90	53.52	49.28	74.00	24.72	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	48.92	45.17	74.00	28.83	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	49.08	49.04	74.00	24.96	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	47.80	49.97	74.00	24.03	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.82	51.83	74.00	22.17	Pass	V	PK

Mode:			BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1665.2665	29.49	3.16	-42.74	53.17	43.08	74.00	30.92	Pass	Н	PK
2	2124.5125	31.87	3.61	-43.17	58.49	50.80	74.00	23.20	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	48.44	44.94	74.00	29.06	Pass	Н	PK
4	7320.2880	36.42	5.85	-42.14	52.81	52.94	74.00	21.06	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	48.63	50.96	74.00	23.04	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	46.05	51.24	74.00	22.76	Pass	Н	PK
7	2664.9665	32.66	4.10	-43.10	57.82	51.48	74.00	22.52	Pass	V	PK
8	4260.0840	34.16	4.49	-42.89	52.61	48.37	74.00	25.63	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	48.50	45.00	74.00	29.00	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	53.46	53.59	74.00	20.41	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	48.86	51.19	74.00	22.81	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	46.02	51.21	74.00	22.79	Pass	V	PK

Mode:			BLE GF	SK Transn	nitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1329.8330	28.23	2.79	-42.75	53.30	41.57	74.00	32.43	Pass	Н	PK
2	2127.9128	31.88	3.62	-43.18	60.65	52.97	74.00	21.03	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.96	45.48	74.00	28.52	Pass	Н	PK
4	7440.2960	36.54	5.85	-42.11	55.60	55.88	74.00	18.12	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	49.86	52.32	74.00	21.68	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	47.15	52.65	74.00	21.35	Pass	Н	PK
7	7440.2957	36.54	5.85	-42.11	52.13	52.41	54.00	1.59	Pass	Н	AV
8	2126.3126	31.88	3.62	-43.18	60.07	52.39	74.00	21.61	Pass	V	PK
9	3992.0661	33.79	4.33	-43.00	51.27	46.39	74.00	27.61	Pass	V	PK
10	4960.0000	34.50	4.82	-42.80	49.89	46.41	74.00	27.59	Pass	V	PK
11	7440.2960	36.54	5.85	-42.11	54.29	54.57	74.00	19.43	Pass	V	PK
12	9920.0000	37.77	6.79	-42.10	49.72	52.18	74.00	21.82	Pass	V	PK
13	12400.0000	39.54	7.86	-41.90	47.90	53.40	74.00	20.60	Pass	V	PK
14	7440.2951	36.54	5.85	-42.11	50.59	50.87	54.00	3.13	Pass	V	AV

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

