

User Manual

E28-2G4T27SX

Contents

Contents	1
1. Product Overview	2
1.1 Brief Introduction	2
1.3 Application	2
2. Technical Parameters	2
2.1 Limit parameter	2
2.2 Operating parameter	3
3. Mechanical Characteristics	4
3.1. Dimension Plan	4
3.2. Pin Definition	5
4. Recommended Connection Diagram	6
5. Functional Description	6
5.1. Fixed Transmission	6
5.2. Broadcast	6
5.3. Broadcast Address	6
5.4. Monitor Address	6
5.5. Module Reset	6
5.6. AUX Description	7
5.6.1 Indication of serial output	7
5.6.2 Indication of wireless transmission	7
5.6.3 Module in configuration process	7
6. Operation Modes	8
6.1. Mode Switch	8
6.2. Transmission Mode (Mode 0)	8
6.3. RSSI Mode (Mode 1)	8
6.4. Ranging Mode (Mode 2)	8
6.5. Configuration mode (Mode 3)	9
7. Command Format	10
7.1. Default parameter values	10
7.2. Reading Operating Parameters	10
7.3. Reading Version Number	10
7.4. Reset Command	11
7.5. Parameter Configuration Commands	11
8. Hardware design	13
9. FAQ	14
9.1 Communication range is too short	14
9.2 Module is easy to damage	14
9.3 BER(Bit Error Rate) is high	14
10. Production Guidance	15
10.1 Reflow soldering temperature	15
10.2 Reflow soldering curve	15
11. Package for batch order	16
Revision history	16

1. Product Overview

1.1 Brief Introduction

E28-2G4T27SX is an UART module based on SEMTECH SX1281, it adopts transparent transmission and works at 2.4GHz band. It adopts FSK modulations. It features SMD packing compatible with 3.3V and 5V IO port voltage.

1.2 Features

- Support FSK modulation;
- Supporting high-speed continuous transmission, data without subcontracting;
- Support RSSI for evaluating signal quality;
- Supports air wake-up, low power consumption, suitable for battery power supply solution;
- Support fixed transmission/broadcast/monitoring;
- Communication distance tested is up to 5km in ideal condition;
- Maximum transmitting power of 20.3dBm, Software adjustable;
- Support the global license-free ISM 2.4GHz;
- Low power consumption for battery supplied applications;
- Support 2.3V~5.5V power supply, power supply over 5.5V can guarantee the best performance;
- Industrial grade standard design, support -40 ~ 85 °C for working over a long time;

1.3 Application

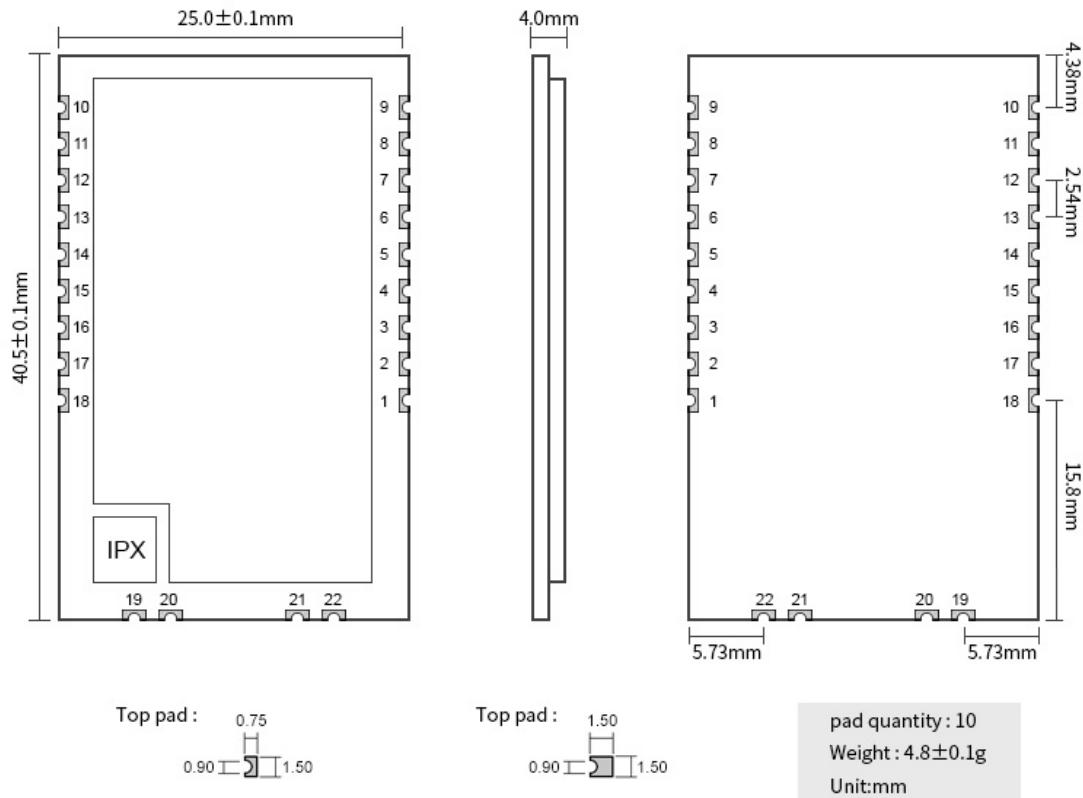
- Smart Home and Industrial Sensors;
- Security system, location System
- Wireless remote control; UAV;
- Wireless Game Remote Controller
- Health care products;
- Wireless voice, wireless headset;
- Automotive industry applications.

2. Technical Parameters

2.1 Limit parameter

Main parameter	Performance	Note
----------------	-------------	------

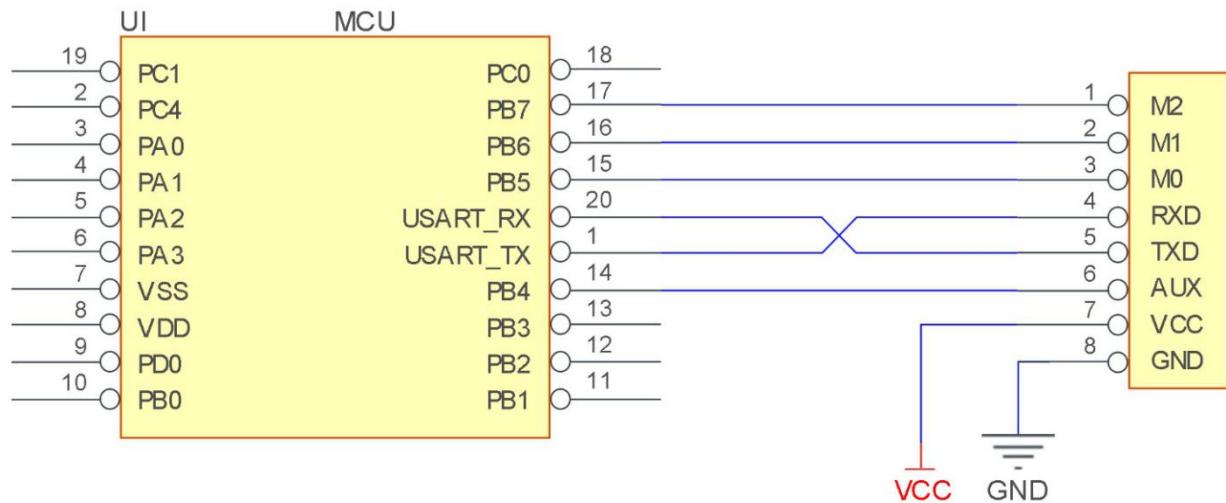
	Min	Max	
Voltage supply [V]	2. 3	5. 5	Voltage over 5.5V will cause permanent damage to module
Blocking power [dBm]	-	10	Chances of burn is slim when modules are used in short distance
Operating temperature [°C]	-40	+85	-


2.2 Operating parameter

Main parameter		Performance			Note
		Min	Typ	Max	
Voltage supply [V]	2. 3	5. 0	5. 5	≥5.0V ensures output power	
Communication level [V]	-	3. 3	-	For 5V TTL, it may be at risk of burning down	
Operating temperature [°C]	-40	-	+85	-	
Frequency [MHz]	2402	-	2480	ISM band	
Power consumption	Transmitting current [mA]	-	500	-	Instant power consumption
	Receiving current [mA]	-	27	-	-
	Turn-off current [μA]	-	10	-	Software is shut down
Transmitting power [dBm]	20	20. 3	21		
Receiving sensitivity [dBm]	-130	-132	-134	Air data rate: 100Kbps	
Air data rate (bps)	1k	100k	2M	Defined by user via programming	

Main parameter	Description	Note
Distance	5000m	Test condition: clear and open area, antenna height: 2.5m, air data rate: 100kbps
FIFO	121 Byte	Max. Transmitting length per packet
	221 Byte	Continuous transmission mode
Cache	2048 Byte	-
Modulation	FSK	-
Interface	UART	TTL
Package	SMD	-
Connector	1.27mm	-
Size	40.5*25mm	-
Antenna	Stamp hole	50Ω Impedance, External SMA header via 19 pins

3. Mechanical Characteristics


3.1. Dimension Plan

3.2. Pin Definition

Pin No.	Pin Name	Pin Direction	Function
1	GND	Ground	Ground
2	NC	-	cannot be floated, can be grounded if not used
3	NC	-	cannot be floated, can be grounded if not used
4	NC	-	cannot be floated, can be grounded if not used
5	NC	-	cannot be floated, can be grounded if not used
6	NC	-	cannot be floated, can be grounded if not used
7	NC	-	cannot be floated, can be grounded if not used
8	GND	Ground	Ground
9	NC	-	cannot be floated, can be grounded if not used
10	GND	Ground	Ground
11	VCC	-	Module power source positive reference. Voltage range: 2.5V ~ 5.5V DC
12	AUX	Input	Used to indicate the module operation status, when user wakes up the external MCU, it outputs low level during initialization after power on and self-check, can be configured as open-drain output or push-pull output, please refer to Parameter Configuration. (can be floated)
13	TXD	Output	TTL serial input, connected to external TXD output pin. Can be configured as open-drain or pull-up input, please refer to Parameter Configuration.
14	RXD	Output	TTL serial input, connected to external RXD output pin; It can be configured as drain open circuit or pull-up input. See parameter setting for details
15	M1	Input	M2, M1 and M0 determine eight working modes
16	M0	Input	M2, M1 and M0 determine eight working modes
17	M2	Input	M2, M1 and M0 determine eight working modes
18	GND	Ground	Ground
19	ANT	-	Antenna interface (50 Ω characteristic impedance; External SMA header)
20	GND	Ground	Ground
21	GND	Ground	Ground
22	NC	-	cannot be floated, can be grounded if not used

4. Recommended Connection Diagram

No.	Brief description for module-MCU connection (STM8L MCU as example)
1	The wireless UART module adopts TTL level, please connect to MCU with TTL level.
2	For some 5V MCU, 4~10K pull-up resistor may need to be added at the TXD and AUX pins of the module.

5. Functional Description

5.1. Broadcast Address

- i.e.: set the address of module A as 0xFFFF or 0x0000 and channel as 0x04.
- When set A as transmitter (same mode, transparent transmission on), all modules with channel 0x04 will receive broadcast data.

5.2. Monitor Address

- i.e.: set the address of module A as 0xFFFF or 0x0000 and channel as 0x04.
- When set A as receiver, it will receive the data transmitted by modules with channel 0x04.

5.3. Module Reset

- When the module is powered on, the AUX output will go to a low level immediately, the module conducts hardware self-check and sets the operating mode on the basis of the user parameters (M0 M1). During the process, the AUX level remains low. After the process completed, the AUX outputs high a level and starts to work as per the operating mode indicated by the combined state of M1 and M0. The user needs to wait until the AUX rising edge is high, indicating the module is ready for normal work.

5.4. AUX Description

- AUX Pin can be used as indication for wireless send & receive buffer and self-check. It can indicate whether there is data that is yet to send via wireless or whether all wireless data has been sent through UART, or whether the module is still in the process of self-check initialization.

5.6.1 Indication of serial output

- Used to wake up the external MCU (note: AUX indicates no delay under continuous mode)

Timing sequence chart of AUX when RF receives data and send to MCU

5.6.2 Indication of wireless transmission

- Under sub-packet transmission mode, the internal buffer size is determined by the sub-packet size, if the packet length is 221 bytes, then the buffer size will be 2048 bytes, when AUX=1, user could continuously initiate transmitting of no more than 2048 bytes.
- Under continuous transmission mode, AUX=1 means the module is busy, but it is not applicable for waking up external MCU, because the data transmission is very quick under continuous transmission mode.
- AUX=1 means all serial data is transmitted through RF, and the module is at idle state.

Timing sequence chart of AUX when MCU receives serial data till MCU starts RF transmission

5.6.3 Module in configuration process

- Only occurs when resetting or when exiting sleep mode

Timing sequence chart of AUX when conducting self-check

Mode (0-3)	M2	M1	M0	Introduction	Remarks
0 - Transmission Mode	1	0	0	Serial port on, RF on, continuous transparent transmission	The air data rate can be manually configured and automatically adjusted along with baud rate values; the baud rates on both sides must be the same under continuous transmission mode

1 - RSSI Mode	1	0	1	Serial port on, RF on, RSSI on	The module outputs RSSI value through serial port every 100ms
2 – Ranging Mode	1	1	0	Reserved	-
3 - Configuration Mode	1	1	1	Serial port on , RF off, parameter configuration	Baud rate is fixed as 9600 8N1
4 – Power Level	0	x	x	Power Level setting: channel 17	-

6. Operation Modes

The module has 4 operation modes, which are determined accordingly by pins M0, M1. Please refer to below instructions:

6.1. Mode Switch

- User could determine the module operation mode through the combination of high-low level of M2, M1 and M0. Mode switch can be controlled through the GPIO of the MCU.
- When M2, M1 and M0 changed and the module is in idle state (AUX at high level), it can starts to work normally under new mode, if serial data not transmitted completely, it will enter new mode after all data is transmitted; if the module receives data and send out through serial port, the module will enter new mode after the data is transmitted completely; so mode switch will only be valid when AUX outputs 1, or switch will be delayed.
- i.e.: under mode 2 or mode 4, when user inputs large amount of data continuously and conducts mode switch, the mode switch is invalid; the module will conduct new mode check after all data is transmitted; so, users are recommended to check the AUX pin status and conduct mode switch 2ms later when AUX outputs high level.
- When the module enters configuration mode from other modes, it will enter sleep mode when all data is processed completely (both TX and RX). This feature can be used for quick sleep to save energy; i.e.: the transmitter works under mode 0 and the user send serial data“12345”, then the user does not need to wait till the AUX enters idle state (high level) and directly switches to sleep mode and put the user main MCU into sleep mode, the module will automatically enter sleep mode 1ms later when all data is processed so as to save the MCU working time and lower energy consumption.
- Similarly, this feature can be utilized for any mode switch, the module will enter new mode automatically within 1ms when current even is processed completely, which saves the user’s efforts in checking AUX status and enables quick mode switch; for example, when switching from transmitting mode to receiving mode, the user MCU could enter sleep mode before mode switch, mode switch can be made by acquiring AUX change with external interrupt function.
- This operation is very flexible and efficient, it is designed based on convenient MCU operation, and it could ease the operation load of the entire system and increase the operation efficiency and lower the energy consumption.

6.2. Transmission Mode (Mode 0)

- Under this mode, transparent transmission is available, that means the data transmitted from the transmitter will be received by the receiver in the original format. Under normal mode, the two sides could communicate with each other normally based on same air data rate, address and channel; under continuous transmission mode, the baud rates on both sides must be the same, it supports large file continuous transmission under baud rate from 1200bps ~ 115200bps.

6.3. RSSI Mode (Mode 1)

- Under this mode, the module will output current RSSI value of 2.4GHz signal every 100ms so as to check the channel quality, the value is in HEX compliment format.

6.4. Ranging Mode (Mode 2)

- (Reserved)

6.5. Configuration mode (Mode 3)

- Under this mode, Baud rate is fixed as 9600 8N1

7. Command Format

Under configuration mode (Mode 3:M0=1, M1=1, M2 =1), the supported parameters are as below

(Only support 9600 and 8N1 format when setting)

No.	Command Format	Description
1	C0 + working parameters	C0 + 5 bytes working parameters are sent in hexadecimal format. 6 bytes in total and must be sent in succession. (Save the parameters when power-down)
2	C1+C1+C1	Three C1 are sent in hexadecimal format. The module returns the saved parameters and must be sent in succession.
3	C2 + working parameters	C2 + 5 bytes working parameters are sent in hexadecimal format. 6 bytes in total and must be sent in succession. (Do not save the parameters when power-down)
4	C3+C3+C3	Three C3 are sent in hexadecimal format. The module returns the version information and they must be sent in succession.
5	C4+C4+C4	Three C4 are sent in hexadecimal format. The module will reset one time and they must be sent in succession.
6	E2+E2+E2	Under transparent transmission mode, send three E2 in HEX format, the module will enter a 10s parameter configuration window period, user could configure the module parameters in the 10s with C0 command, 10s later, the module will work with the new parameters.
7	E3+E3+E3	Under transparent transmission mode, send three E3 in HEX format, the module will enter a 10s parameter configuration window period, user could configure the module parameters in the 10s with 6-byte C0 command, 10s later, the module will work with the new parameters.

7.1. Default parameter values

Model	Default parameter values:						
Model	Frequency	Address	Channel	Air data rate	Baud rate	Parity	Transmitting power
E28-2G4T27SX	2.4GHz	0x0000	0x17	100kbps	9600	8N1	20.3dBm

7.2. Reading Operating Parameters

Command Format	Description
C1+C1+C1	Under configuration,(M0=1,M1=1), send command (HEX format) to the serial: C1 C1 C1, the module will return current parameter values, i.e.: C0 00 00 13 18 04.

7.3. Reading Version Number

Command Format	Description
C3+C3+C3	Under configuration mode (M0=0, M1=1, M2 =0), send command (HEX format) to the serial: C3 C3 C3, the module will return current parameter values, i.e.: C3 00 28 10 0C 09 01 00; The 00 28 means the module model number (E28 series), 10 means the version number, 0C means the transmitting power, other values means other characteristics.

7.4. Reset Command

Command Format	Description
C4+C4+C4	Under configuration mode (M0=0, M1=1, M2 =0), send command (HEX format) to the serial: C4 C4 C4, the module will conduct a reset; During reset, the module will conduct self-check, AUX outputs low level, when reset is completed, AUX outputs high level, the module starts to work normally. Now, user could switch mode or send another command.

7.5. Parameter Configuration Commands

No.	Item	Description			Remarks
0	HEAD	Fix 0xC0 or 0xC2, it means this frame data is control command			Must be 0xC0 or 0xC2 C0: Save the parameters when power-down C2: Do not save the parameters when power-down
1	ADDH	High address byte of module (the default 00H)			00H-FFH
2	ADDL	Low address byte of module (the default 00H)			00H-FFH
3	SPED	7	6	UART parity bit	
		0	0	8N1 (default)	
		0	1	8O1	
		1	0	8E1	
		1	1	8N1 (equal to 00)	
		5	4	3	TTL UART baud rate (bps)
		0	0	0	1200
		0	0	1	4800
		0	1	0	9600 (default)
		0	1	1	19200
		1	0	0	57600
		1	0	1	115200
		1	1	0	460800
		1	1	1	921600
		2	1	0	Air data rate (bps)
		0	0	0	Self-adaptive(continuous transmission)
		0	0	1	1k
		0	1	0	5k
		0	1	1	10k (default)
		1	0	0	50k
		1	0	1	100k
		1	1	0	1M
		1	1	1	2M (FSK)

4	CHAN	Communication Channel		Default: 0x18
		Normal mode: when air data rate is 100k, the formula to calculate channel is: $2402 + \text{CHAN} * 2\text{MHz}$		
5	OPTION	Continuous transmission mode: When baud rate is 1200, 9600 or 9200, the formula to calculate channel is: $2402 + \text{CHAN} * 2\text{MHz}$; when baud rate is 4800, 57600, 115200, the formula to calculate channel is: $2402 + \text{CHAN} * 4\text{MHz}$; when baud rate is 460800, 921600, the formula to calculate channel is: $2402 + \text{CHAN} * 5\text{MHz}$.		
		7	Fixed transmission enabling bit (similar to Modbus)	Under fixed transmission mode, the first three bytes of each user's data frame can be used as high/low address and channel. The module changes its address and channel when transmit. And it will revert to original setting after complete the process. It is transparent transmission under continuous mode.
		0	Transparent transmission mode	
		1	Fixed transmission mode	
		6	Reserved	
		5	Reserved	
		4	Measuring mode device type (reserved)	Under range measuring mode, the slave module address is determined by the ADDH and ADDL.
		0	Slave (default)	
		1	Master	
		3	LBT switch	When LBT is turned on, channel quality will be checked before sending every data packet; if quality is good, data will be sent directly, if interference exists, data will be sent after interference disappears. It supports LBT only below air data rate 115200bps, LBT may affect the continuous transmission function.
		0	Turn off LBT (default)	
		1	Turn on LBT	
		2	IO driving mode	This bit is used to the module internal pull-up resistor. It also increases the level's adaptability in case of open drain. But in some cases, it may need external pull-up resistor.
		1	TXD, AUX push-pull output, RXD pull-up input	
		0	TXD, AUX open-circuit output, RXD open-circuit input	The external power source must provide 100mA or above current output and ensure the power ripple is lower than 100mV.
		1	Transmission power	
		1	20.3dBm	

8. Hardware design

- It is recommended to use a DC stabilized power supply. The power supply ripple factor is as small as possible, and the module needs to be reliably grounded.;
- Please pay attention to the correct connection of the positive and negative poles of the power supply.
- Reverse connection may cause permanent damage to the module;
- Please check the power supply to ensure it is within the recommended voltage otherwise when it exceeds the maximum value the module will be permanently damaged;
- Please check the stability of the power supply, the voltage can not be fluctuated frequently;
- When designing the power supply circuit for the module, it is often recommended to reserve more than 30% of the margin, so the whole machine is beneficial for long-term stable operation;
- The module should be as far away as possible from the power supply, transformers, high-frequency wiring and other parts with large electromagnetic interference;
- High-frequency digital routing, high-frequency analog routing, and power routing must be avoided under the module. If it is necessary to pass through the module, assume that the module is soldered to the Top Layer, and the copper is spread on the Top Layer of the module contact part(well grounded), it must be close to the digital part of the module and routed in the Bottom Layer;
- Assuming the module is soldered or placed over the Top Layer, it is wrong to randomly route over the Bottom Layer or other layers, which will affect the module's spurs and receiving sensitivity to varying degrees;
- It is assumed that there are devices with large electromagnetic interference around the module that will greatly affect the performance. It is recommended to keep them away from the module according to the strength of the interference. If necessary, appropriate isolation and shielding can be done;
- Assume that there are traces with large electromagnetic interference (high-frequency digital, high-frequency analog, power traces) around the module that will greatly affect the performance of the module. It is recommended to stay away from the module according to the strength of the interference. If necessary, appropriate isolation and shielding can be done.
- If the communication line uses a 5V level, a 1k-5.1k resistor must be connected in series (not recommended, there is still a risk of damage);
- Try to stay away from some physical layers such as TTL protocol at 2.4GHz , for example: USB3.0;
- The mounting structure of antenna has a great influence on the performance of the module. It is necessary to ensure that the antenna is exposed, preferably vertically upward. When the module is mounted inside the case, use a good antenna extension cable to extend the antenna to the outside;
- The antenna must not be installed inside the metal case, which will cause the transmission distance to be greatly weakened.

9. FAQ

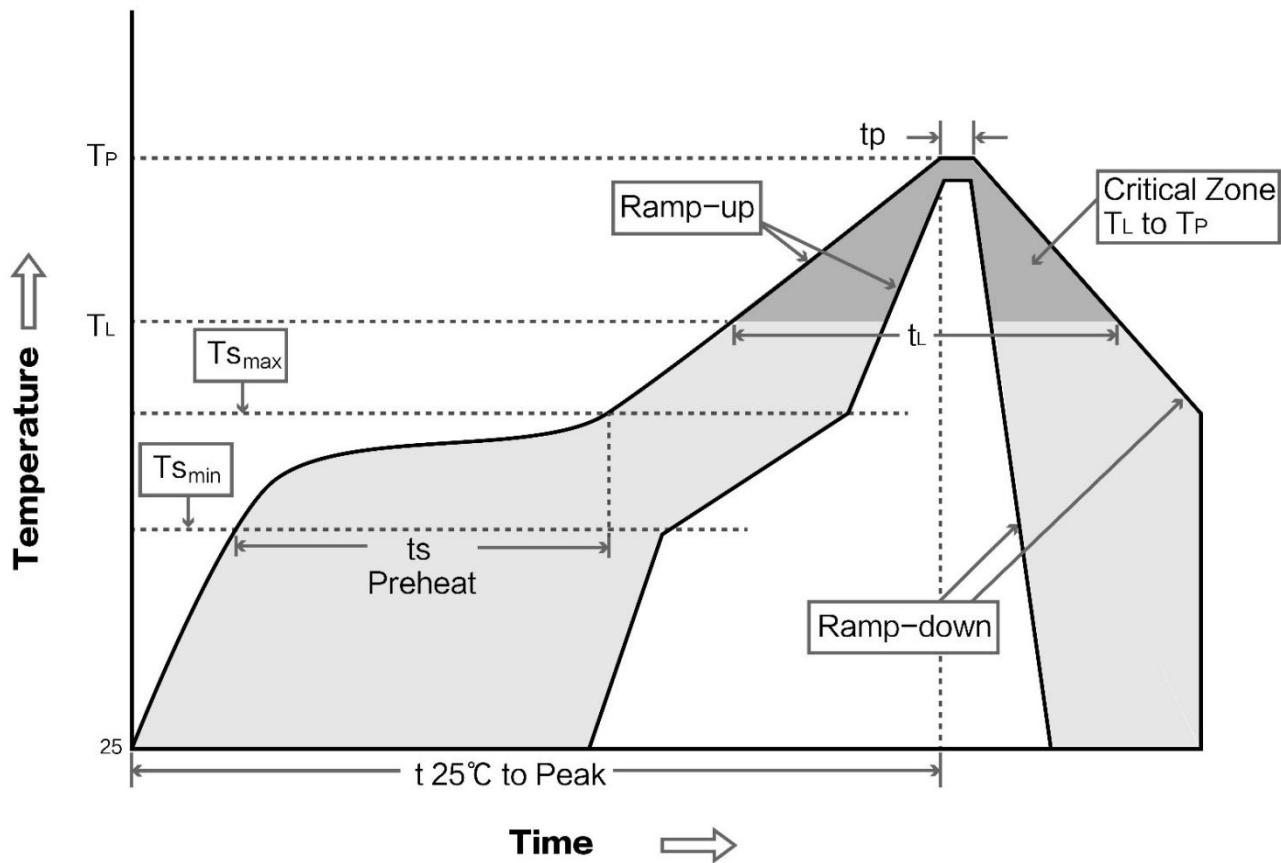
9.1 Communication range is too short

- The communication distance will be affected when obstacle exists.
- Data lose rate will be affected by temperature, humidity and co-channel interference.
- The ground will absorb and reflect wireless radio wave, so the performance will be poor when testing near ground.
- Sea water has great ability in absorbing wireless radio wave, so performance will be poor when testing near the sea.
- The signal will be affected when the antenna is near metal object or put in a metal case.
- Power register was set incorrectly, air data rate is set as too high (the higher the air data rate, the shorter the distance).
- The power supply low voltage under room temperature is lower than 2.5V, the lower the voltage, the lower the transmitting power.
- Due to antenna quality or poor matching between antenna and module.

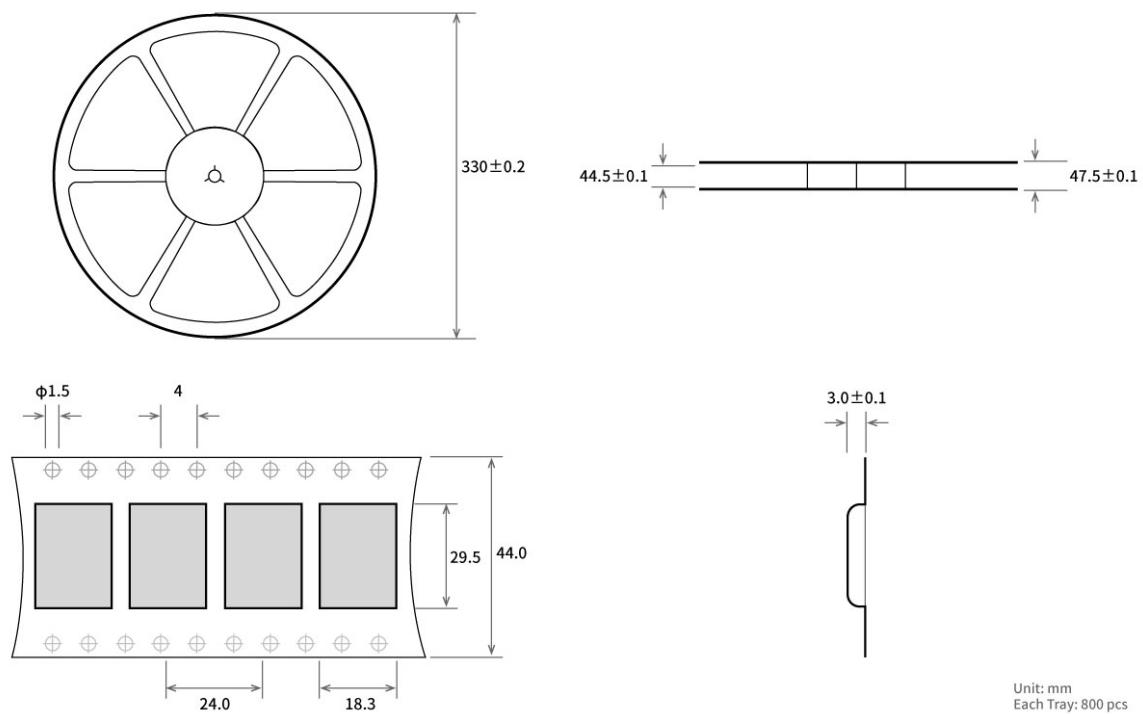
9.2 Module is easy to damage

- Please check the power supply source, ensure it is 2.0V~3.6V, voltage higher than 3.6V will damage the module.
- Please check the stability of power source, the voltage cannot fluctuate too much.
- Please make sure antistatic measure are taken when installing and using, high frequency devices have electrostatic susceptibility.
- Please ensure the humidity is within limited range, some parts are sensitive to humidity.

9.3 BER(Bit Error Rate) is high


- There are co-channel signal interference nearby, please be away from interference sources or modify frequency and channel to avoid interference;
- Poor power supply may cause messy code. Make sure that the power supply is reliable.
- The extension line and feeder quality are poor or too long, so the bit error rate is high

10. Production Guidance


10.1 Reflow soldering temperature

Profile Feature	Curve characteristics	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	Solder Paste	Sn63/Pb37	Sn96.5/Ag3/Cu0.5
Preheat Temperature min (Tsmin)	Min preheating temp.	100°C	150°C
Preheat temperature max (Tsmax)	Max preheating temp.	150°C	200°C
Preheat Time (Tsmin to Tsmax)(ts)	Preheating time	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	Average ramp-up rate	3°C/second max	3°C/second max
Liquidous Temperature (TL)	Liquid phase temp.	183°C	217°C
Time (tL) Maintained Above (TL)	Time above liquid phase line	60-90 sec	30-90 sec
Peak temperature (Tp)	Peak temperature	220-235°C	230-250°C
Average ramp-down rate (Tp to Tsmax)	Average ramp-down rate	6°C/second max	6°C/second max

10.2 Reflow soldering curve

11. Package for batch order

Revision history

Version	Date	Description	Operator
1.0	2020-8-19	Initial Version	Li

FCC Statement

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user' s authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received, including interference that may cause undesired operation.

FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment .This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.

Note : This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates,uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

OEM Guidance

1. Applicable FCC rules

This device complies with part 15.247 of the FCC Rules.

2. The specific operational use conditions

This module can be used in IoT devices. The input voltage to the module is nominally 5V DC. The operational ambient temperature of the module is -40 °C ~ 85 °C. the external antenna is allowed, such as Monopole antenna.

3. Limited module procedures

N/A

4. Trace antenna design

N/A

5. RF exposure considerations

The equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body. If the equipment built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by 2.1093.

6. Antenna

Antenna type: Monopole antenna; Peak antenna gain : 3dBi

7. Label and compliance information

An exterior label on OEM' s end product can use wording such as the following: "Contains Transmitter Module FCC ID: 2AWQQ-E282G4T27SX" or "Contains FCC ID: 2AWQQ-E282G4T27SX"

8. Information on test modes and additional testing requirements

9. The modular transmitter has been fully tested by the module grantee on the required number of channels, modulation types, and modes, it should not be necessary for the host installer to re-test all the available transmitter modes or settings. It is recommended that the host product manufacturer, installing the modular transmitter, perform some investigative measurements to confirm that the resulting composite system does not exceed the spurious emissions limits or band edge limits (e.g., where a different antenna may be causing additional emissions).
10. The testing should check for emissions that may occur due to the intermixing of emissions with the other transmitters, digital circuitry, or due to physical properties of the host product (enclosure). This investigation is especially important when integrating multiple modular transmitters where the certification is based on testing each of them in a stand-alone configuration. It is important to note that host product manufacturers should not assume that because the modular transmitter is certified that they do not have any responsibility for final product compliance.
11. If the investigation indicates a compliance concern the host product manufacturer is obligated to mitigate the issue. Host products using a modular transmitter are subject to all the applicable individual technical rules as well as to the general conditions of operation in Sections 15.5, 15.15, and 15.29 to not cause interference. The operator of the host product will be obligated to stop operating the device until the interference have been corrected.
12. Additional testing, Part 15 Sub part B disclaimer The final host / module combination need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.

The host integrator installing this module into their product must ensure that the final composite product complies with the FCC requirements by a technical assessment or evaluation to the FCC rules, including the transmitter operation and should refer to guidance in KDB 996369. For host products with certified modular transmitter, the frequency range of investigation of the composite system is specified by rule in Sections 15.33(a)(1) through (a)(3), or the range applicable to the digital device, as shown in Section 15.33(b)(1), whichever is the higher frequency range of investigation. When testing the host product, all the transmitters must be operating. The transmitters can be enabled by using publicly-available drivers and turned on, so the transmitters are active. In certain conditions it might be appropriate to use a technology-specific call box (test set) where accessory 50 devices or drivers are not available. When testing for emissions from the unintentional radiator, the transmitter shall be placed in the receive mode or idle mode, if possible. If receive mode only is not possible then, the radio shall be passive (preferred) and/or active scanning. In these cases, this would need to enable activity on the communication BUS (i.e., PCIe, SDIO, USB) to ensure the unintentional radiator circuitry is enabled. Testing laboratories may need to add attenuation or filters depending on the signal strength of any active beacons (if applicable) from the enabled radio(s). See ANSI C63.4, ANSI C63.10 and ANSI C63.26 for further general testing details.

The product under test is set into a link/association with a partnering device, as per the normal intended use of the product. To ease testing, the product under test is set to transmit at a high duty cycle, such as by sending a file or streaming some media content.