

FCC SAR TEST REPORT

Report No.: STS2006248H01

Issued for

OneCare, Inc.

114 State Road 46 E Batesville, Indiana 47006

Product Name:	CareWatch Voice				
Brand Name:	Master Roam				
Model Name:	T01				
Series Model:	N/A				
FCC ID:	2AWPJ-T01				
	ANSI/IEEE Std. C95.1				
Test Standard:	FCC 47 CFR Part 2 (2.1093)				
	IEEE 1528: 2013				
Max. Report	Front of face: 0.567 W/kg				
SAR (1g):	Tront or lace. 0.307 W/kg				
Max. Report	Wrist: 0.621 W/kg				
SAR (10g):	Wrist: 0.621 W/kg				

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,
Fuyong Street, Bao'an District, Shenzhen, Guangdong, China
TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Test Report Certification

Applicant's name: OneCare, Inc.

Address: 114 State Road 46 E Batesville, Indiana 47006

Manufacture's Name.....: Shenzhen Yinuo Technologies., Ltd.

Address Rm A611, Building AD, Gao Xin Qi Science Industry Park2 Liu

Xian Yi Lu Bao An District, Shenzhen, China

Product description

Product name: CareWatch Voice

Brand name: Master Roam

Model name: T01

Series Model.....: N/A

ANSI/IEEE Std. C95.1-1992

Standards..... FCC 47 CFR Part 2 (2.1093)

IEEE 1528: 2013

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test

Date (s) of performance of tests...... 22 June 2020~24 June 2020

Date of Issue...... 26 June 2020

Test Result..... Pass

Testing Engineer : Jan 13 u

(Aaron Bu)

Technical Manager:

(Jason Lu

Alson or

(Vita Li)

Authorized Signatory:

Table of Contents

1.General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2.Test Standards And Limits	7
3. SAR Measurement System	8
3.1 Definition Of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	13
5.1 Validation System	13
5.2 Validation Result	13
6. SAR Evaluation Procedures	14
7. EUT Test Position	15
8. Uncertainty	16
8.1 Measurement Uncertainty	16
8.2 System validation Uncertainty	17
9. Conducted Power Measurement	18
9.1 Test Result	18
9.2 SAR Test Exclusions Applied	20
10. EUT And Test Setup Photo	21
10.1 EUT Photo	21
10.2 Setup Photo	24
11. SAR Result Summary	26
11.1 Front of face SAR	26
11.2 Wrist SAR	26
12. Equipment List	29
Appendix A. System Validation Plots	30
Appendix B. SAR Test Plots	42
Appendix C. Probe Calibration And Dipole Calibration Report	48

Report No.: STS2006248H01

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents	
00	26 June 2020	STS2006248H01	ALL	Initial Issue	

Note: Format version of the report -V01

1.General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

CareWa	CareWatch Voice									
Master	Master Roam									
T01	T01									
N/A	N/A									
N/A										
Charge	Limit: 4.35V									
Portable										
Product	ion unit									
Genera	Population	/ Uncont	rolled							
N/A										
N/A										
LTE Ba	nd 13:779.5 302.11b/g/n(~784.5M HT20):24	Hz							
Band	Mode		Front of face-1g (W/kg)	Wrist-10g (W/kg)						
PCB			0.567	0.621						
				0.496						
	2.4GHz V	VLAN		0.087						
סוט	BLE			0.042 0.708						
				4.0 W/kg						
			PCB)	no wing						
LTE		QPSK/	,							
WLAN 80		802.11 802.11	g(OFDM):BPSK,QPSK,	,16-QAM,64-QAM						
LTE: PIFA Antenna WLAN/BT: PIFA Antenna										
	Master T01 N/A N/A Rated V Charge Capacit Portable Product General N/A N/A LTE Bal LTE Bal WLAN 8 Bluetoo Band PCB PCB DTS DTS DTS PCS Lic Digital LTE WLAN BLE LTE: PI	Master Roam T01 N/A N/A N/A Rated Voltage: 3.7V Charge Limit: 4.35V Capacity: 390mAh Portable Production unit General Population N/A N/A LTE Band 4:1710.7- LTE Band 13:779.5- WLAN 802.11b/g/n(Bluetooth:2402~ 240 Band Mod PCB LTE Band DTS 2.4GHz V DTS BLE PCS Licensed Trandigital Transmission LTE WLAN BLE LTE: PIFA Antenna	Master Roam T01 N/A N/A N/A Rated Voltage: 3.7V; Charge Limit: 4.35V; Capacity: 390mAh Portable Production unit General Population / Uncont N/A N/A LTE Band 4:1710.7~1754.3N LTE Band 13:779.5~784.5M WLAN 802.11b/g/n(HT20):24 Bluetooth:2402~ 2480MHz Band Mode PCB LTE Band 4 PCB LTE Band 13 DTS 2.4GHz WLAN DTS BLE PCS Licensed Transmitter(Digital Transmission Syster LTE QPSK/ 802.11 WLAN 802.11 BLE GFSK LTE: PIFA Antenna	Master Roam T01 N/A N/A Rated Voltage: 3.7V; Charge Limit: 4.35V; Capacity: 390mAh Portable Production unit General Population / Uncontrolled N/A N/A LTE Band 4:1710.7~1754.3MHz LTE Band 4:1710.7~1754.3MHz LTE Band 13:779.5~784.5MHz WLAN 802.11b/g/n(HT20):2412~2462MHz Bluetooth:2402~ 2480MHz Band Mode Front of face-1g (W/kg) PCB LTE Band 4 0.567 PCB LTE Band 13 0.326 DTS 2.4GHz WLAN 0.117 DTS BLE QPSK/16QAM BO.553 CCK,DQPSK, 802.11g(OFDM):BPSK,QPSK, 802.11g(OFDM):BPSK,QPSK, 802.11g(OFDM):BPSK,QPSK, 802.11g(OFDM):BPSK,QPSK, 802.11g(OFDM):BPSK,QPSK, 802.11g(OFDM):BPSK,QPSK, 802.11g(OFDM):BPSK,QPSK, 802.11g(OFDM):BPSK,QPSK, 802.11g(OFDM):BPS						

Note:

- 1. BLE SAR was estimated
- 2. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

ShenZhen STS Test Services Co.,Ltd.

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong

Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC Registration No.: 625569 A2LA Certificate No.: 4338.01 IC Registration No.: 12108A

2.Test Standards And Limits

No.	Identity	Document Title								
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations								
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz								
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques								
4	FCC KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies								
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz								
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting								

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.4 8.0 20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.08 1.6 4.0

Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

3. SAR Measurement System

3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The Open SAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 14/16 EP309 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 5 mm
- Length of Individual Dipoles: 4.5 mm
- Maximum external diameter: 8 mm
- Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 2.7mm)
- Probe linearity: 0±2.27%(±0.10dB)
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 400 MHz to 3 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Head Tissue

Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	εr
750	0.2	/	/	1.4	0.2	57.0	/	41.1	0.89	41.9
835	0.2	/	/	1.4	0.2	57.9	/	40.3	0.90	41.5
900	0.2	/	/	1.4	0.2	57.9	/	40.3	0.97	41.5
1800	/	44.5	/	0.3	/	/	30.45	55.2	1.4	40.0
1900	/	44.5	/	0.3	1	/	30.45	55.2	1.4	40.0
2000	/	44.5	/	0.3	1	1	1	55.2	1.4	40.0
2450	/	44.9	1	0.1	/	1	/	55.0	1.80	39.2
2600	/	45.0	1	0.1	/	1	/	54.9	1.96	39.0

Body Tissue

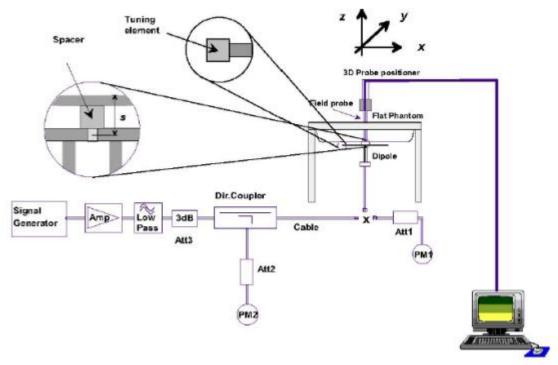
Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	εr
750	0.2	/	/	0.9	0.1	47.2	/	51.7	0.96	55.5
835	0.2	/	/	0.9	0.1	48.2	1	50.8	0.97	55.2
900	0.2	1	1	0.9	0.1	48.2	1	50.8	1.05	55.0
1800	/	29.4	1	0.4	1	1	30.45	70.2	1.52	53.3
1900	/	29.4	/	0.4	1	1	30.45	70.2	1.52	53.3
2000	/	29.4	1	0.4	1	1	/	70.2	1.52	53.3
2450	/	31.3	1	0.1	1	1	/	68.6	1.95	52.7
2600	/	31.7	/	0.1	/	/	/	68.2	2.16	52.3

	Tissue dielectric parameters for head and body phantoms											
Frequency	3	:r	σ S/m									
	Head	Body	Head	Body								
300	45.3	58.2	0.87	0.92								
450	43.5	56.7	0.87	0.94								
835	41.5	55.2	0.90	0.97								
900	41.5	55.0	0.97	1.05								
1450	40.5	54.0	1.20	1.30								
1800	40.0	53.3	1.40	1.52								
1900	40.0	53.3	1.40	1.52								
2450	39.2	52.7	1.80	1.95								
3000	38.5	52.0	2.40	2.73								
5800	35.3	48.2	5.27	6.00								

LIQUID MEASUREMENT RESULTS

Date	Ambient condition		Head Simulating Liquid		Parameters	Target	Measured	Deviation	Limited
Date	Temp. [°C]	Humidity [%]	Frequency	Temp. [°C]	raiailleteis	raiget	Measureu	[%]	[%]
2020-06-22	23.2	54	750 1411	22.9	Permittivity:	41.9	42.11	0.50	±5
2020-00-22	23.2	23.2 54 750 MHz	750 WITZ	22.9	Conductivity:	0.89	0.87	-2.25	±5
2020-06-23	23.0	51	1800 MHz	22.8	Permittivity:	40	39.33	-1.68	±5
2020-00-23	23.0	51	1000 IVITZ	22.0	Conductivity:	1.40	1.42	1.43	±5
2020 06 24	22.7	50	2450 MHz	450 MIL 00 4	Permittivity:	39.2	39.57	0.94	±5
2020-06-24 22.7	22.1	22.7 50		22.4	Conductivity:	1.8	1.78	-1.11	±5

Data	Ambient condition		Body Simulating Liquid		Parameters	Torqui	Measured	Deviation	Limited
Date	Temp. [°C]	Humidity [%]	Frequency	Temp		Target	Measured	[%]	[%]
2020 06 22	2020-06-22 23.2 54	EΛ	750 1411	00.0	Permittivity:	55.5	55.87	0.67	±5
2020-06-22		750 MHz	750 MHz 22.8		0.96	0.99	3.13	±5	
2020-06-23	23.0	51	1800 MHz	22.8	Permittivity:	53.3	53.12	-0.34	±5
2020-00-23	23.0	51	1000 IVITIZ	22.0	Conductivity:	1.52	1.50	-1.32	±5
2020 06 24	0000 00 04	2450 MHz	22.5	Permittivity:	52.7	53.24	1.02	±5	
2020-06-24	22.7	50	2450 IVIDZ	22.5	Conductivity:	1.95	2.00	2.56	±5



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg/W)	Target (W/Kg/W)	Tolerance(%)	Date
750 Head	100	0.852	8.52	8.49	0.31	2020-06-22
750 Body	100	0.840	8.40	8.49	-1.03	2020-06-22
1800 Head	100	3.791	37.91	38.4	-1.28	2020-06-23
1800 Body	100	3.941	39.41	38.4	2.63	2020-06-23
2450 Head	100	5.367	53.67	52.4	2.42	2020-06-24
2450 Body	100	5.068	50.68	52.4	-3.29	2020-06-24

Note:

- 1. The tolerance limit of System validation ±10%.
- 2. The dipole input power (forward power) was 100 mW.
- 3. The results are normalized to 1 W input power.

6. SAR Evaluation Procedures

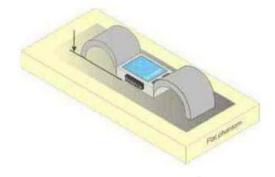
The procedure for assessing the average SAR value consists of the following steps:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan:

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.


7. EUT Test Position

This EUT was tested in Front Face and Rear Face.

Limb-worn Position Conditions

Transmitters that are built-in within a wrist watch or similar wrist-worn devices typically operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. Next to the mouth exposure requires 1-g SAR and the wrist-worn condition requires 10-g extremity SAR

- (1) Next to the mouth use is evaluated with the front of the device positioned at 10 mm from a flat phantom filled with head tissue-equivalent medium
- (2) SAR for wrist exposure is evaluated with the back of the device positioned in direct contact against a flat phantom filled with body tissue-equivalent medium.

Test position for limb-worn devices

8. Uncertainty

8.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System								
Probe calibration	5.831	N	1	1	1	5.83	5.83	∞
Axial Isotropy	0.695	R	$\sqrt{3}$	√0.5	√0.5	0.28	0.28	∞
Hemispherical Isotropy	1.045	R	√3	√0.5	√0.5	0.43	0.43	8
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	0.685	R	$\sqrt{3}$	1	1	0.40	0.40	∞
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Readout Electronics	0.021	N	1	1	1	0.021	0.021	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF ambient								
conditions-Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient	3.0	R	. [2	1	1	1.73	1.73	∞
conditions-reflections	3.0	K	$\sqrt{3}$		1	1.73	1.73	~
Probe positioner	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
mechanical tolerance			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	∞
Post-processing	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Test sample Related	2.3	IX.	1 //3			1.55	1.55	
Test sample positioning	2.6	N	1	1	1	2.6	2.6	∞
Device holder uncertainty	3	N	1	1	1	3	3	∞
SAR drift measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Phantom and tissue parame		- 11	1 43		'	2.00	2.00	
Phantom uncertainty(shape								
and thickness uncertainty)	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Uncertainty in SAR								
correction for deviations in	1.9	N	1	1	0.84	1.90	1.60	∞
permittivity and conductivity								
Liquid conductivity	2.5	R	√3	0.78	0.71	1.13	1.02	∞
(temperature uncertainty)	2.5	1	73	0.70	0.71	1.10	1.02	
Liquid conductivity	4	N	1	0.78	0.71	3.12	2.84	М
(measured)				00	0	0.12	2.0 .	
Liquid permittivity	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
(temperature uncertainty)			70					
Liquid permittivity	5	N	1	0.23	0.26	1.15	1.30	М
(measured) Combined Standard								
Uncertainty		RSS				9.79	9.59	
Expanded Uncertainty		14.5				10	10 : -	
(95% Confidence interval)		K=2				19.58	19.18	

8.2 System validation Uncertainty

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System								
Probe calibration	5.831	N	1	1	1	5.83	5.83	8
Axial Isotropy	0.695	R	$\sqrt{3}$	1	1	0.40	0.40	8
Hemispherical Isotropy	1.045	R	$\sqrt{3}$	0	0	0.00	0.00	8
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	0.685	R	$\sqrt{3}$	1	1	0.40	0.40	8
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Modulation response	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	8
Readout Electronics	0.021	N	1	1	1	0.021	0.021	8
Response Time	0.0	R	$\sqrt{3}$	0	0	0.00	0.00	8
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	∞
RF ambient conditions-Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
RF ambient conditions-reflections	3.0	R	√3	1	1	1.73	1.73	8
Probe positioner mechanical tolerance	1.4	R	√3	1	1	0.81	0.81	8
Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	8
Post-Processing	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
System validation source							•	
Deviation of experimental dipole from numerical dipole	5.0	N	1	1	1	5.00	5.00	8
Input power and SAR drift measurement	5.0	R	√3	1	1	2.89	2.89	∞
Other source contribution Uncertainty	2.0	R	√3	1	1	1.15	1.15	∞
Phantom and set-up						1	1	
Phantom uncertainty (shape and thickness uncertainty)	4.0	R	√3	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	1.9	N	1	1	0.84	1.90	1.60	8
Liquid conductivity (temperature uncertainty)	2.5	R	√3	0.78	0.71	1.13	1.02	∞
Liquid conductivity (measured)	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity (temperature uncertainty)	2.5	R	√3	0.23	0.26	0.33	0.38	8
Liquid permittivity (measured)	5	N	1	0.23	0.26	1.15	1.30	М
Combined Standard Uncertainty		RSS				9.718	9.517	
Expanded Uncertainty (95% Confidence interval)		K=2				19.44	19.04	

9. Conducted Power Measurement

9.1 Test Result

WLAN

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	1	2412	15.68
802.11b	6	2437	15.11
	11	2462	15.51
	1	2412	11.31
802.11g	6	2437	11.67
	11	2462	11.88
	1	2412	10.17
802.11n(HT 20)	6	2437	9.72
	11	2462	10.06

BLE

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	0	2402	3.88
GFSK(1Mbps)	19	2440	3.57
\	39	2480	3.47

LTE output list

Bandwidth	Ob an and (MILE)	Resu	It (dBm)
(MHz)	Channel (MHz)	LTE Band 4	LTE Band 13
	Low	22.45	N/A
1.4	Middle	22.49	N/A
	High	22.26	N/A
	Low	22.17	N/A
3	Middle	22.35	N/A
	High	22.27	N/A
	Low	21.78	22.51
5	Middle	22.09	22.44
	High	22.03	22.79
	Low	22.12	22.14
10	Middle	22.45	22.23
	High	22.37	22.45
	Low	22.49	N/A
15	Middle	22.04	N/A
	High	22.19	N/A
	Low	22.37	N/A
20	Middle	22.25	N/A
	High	22.41	N/A

Note: LTE only has full RB configuration.

9.2 SAR Test Exclusions Applied

Per FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHZ)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where:

- f(GHZ) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of **Bluetooth Front of face** (rounded to the nearest mW) and the antenna to user separation distance,

Bluetooth Front of face SAR was not required; $[(2.512/10)^* \sqrt{2.480}] = 0.40 < 3.0$.

Based on the maximum conducted power of **Bluetooth Wrist** (rounded to the nearest mW) and the antenna to user separation distance,

Bluetooth Wrist SAR was not required; $[(2.512/5)^* \sqrt{2.480}] = 0.79 < 7.5$.

Based on the maximum conducted power of **2.4 GHz WLAN Head** (rounded to the nearest mW) and the antenna to user separation distance,

2.4 GHz WLAN Front of face SAR was required; $[(39.811/10)^* \sqrt{2.462}] = 6.25 > 3.0$.

Based on the maximum conducted power of **2.4 GHz WLAN Body** (rounded to the nearest mW) and the antenna to user separation distance,

2.4 GHz WLAN Wrist SAR was required; $[(39.811/5)^* \sqrt{2.462}] = 12.49 > 7.5$

10. EUT And Test Setup Photo

10.1 EUT Photo

Back side

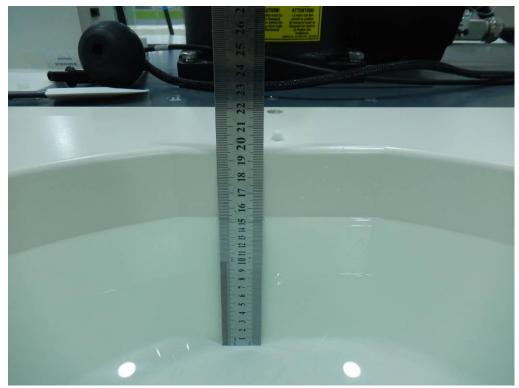
Top Edge

Bottom Edge

Left Edge

Right Edge

10.2 Setup Photo



Wrist (separation distance is 0mm)

Liquid depth (15 cm)

11. SAR Result Summary

11.1 Front of face SAR

Band	BW (MHz)	Mod.	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max. Turn-up Power(dBm)	Meas. Output Power(dBm)	Scaled SAR (W/Kg)	Meas. No.
LTE	20M	QPSK	Front of face	20300	0.495	2.35	23	22.41	0.567	1
Band 4	15M	QPSK	Front of face	20050	0.472	-1.68	23	22.49	0.531	/
LTE	10M	QPSK	Front of face	23230	0.287	0.71	23	22.45	0.326	3
Band 13	5M	QPSK	Front of face	23230	0.265	-2.36	23	22.79	0.278	/

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
WLAN	802.11b	Front of face	1	0.109	0.34	16	15.68	100	0.117	5

Note:

- 1. The test separation of all above table is 10mm.
- 2. Per KDB865664 D01, Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg

11.2 Wrist SAR

	112 111100 07110											
Band	BW (MHz)	Mod.	Test Position	Ch.	Result 10g (W/Kg)	Power Drift(%)	Max. Turn-up Power(dBm)	Meas. Output Power(dBm)	Scaled SAR (W/Kg)	Meas. No.		
LTE	20M	QPSK	Wrist	20300	0.542	0.60	23	22.41	0.621	2		
Band 4 15M	QPSK	Wrist	20050	0.511	-1.90	23	22.49	0.575	/			
LTE	10M	QPSK	Wrist	23230	0.437	-0.54	23	22.45	0.496	4		
Band 13	5M	QPSK	Wrist	23230	0.403	1.23	23	22.79	0.423	/		

Band	Mode	Test Position	Ch.	Result 10g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
WLAN	802.11b	Wrist	1	0.081	-0.75	16	15.68	100	0.087	6

Note:

- 3. The test separation of all above table is 0mm.
- 4. Per KDB865664 D01, Repeated measurement is not required when the original highest measured SAR is <2.00 W/kg

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

Position	Simultaneous state
Front of Face	1. LTE + WLAN
TIOIR OIT ACE	2. LTE + BLE
Wrist	1. LTE + WLAN
VVIIST	2. LTE + BLE

NOTE:

- 1. Bluetooth and WLAN can't simultaneous transmission at the same time.
- 2. For simultaneous transmission at head and body exposure position, 2 transmitters simultaneous transmission was the worst state.
- 3. Based upon KDB 447498 D01 v05, BT SAR is excluded as below table.
- 4. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 5. For minimum test separation distance \le 50mm,Bluetooth standalone SAR is excluded according to [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)·[\sqrt{f} (GHz) /x] \le 3.0 for 1-g SAR and \le 7.5 for 10-g extremity SAR
- 6. The reported SAR summation is calculated based on the same configuration and test position.
- 7. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:
 - a) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[\sqrt{f} (GHz) /x] W/kg for test separation distances \leq 50 mm; Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is >50mm.

Estimated SAR		Maximu dBm	ım Power	Antenna to user(mm)	Frequency(GHz)	Stand alone SAR [W/kg]	
		ubili	Sili lilivy to door(liliii)			O/ ii t [tt//tg]	
DIE	Front of face(1g)	4	2.512	10	2.480	0.053	
BLE -	Wrist (10g)	4	2.512	5	2.480	0.042	

Simultaneous Mode	Position	Mode	Max. SAR (W/kg)	Sum SAR (W/kg)	
LTE + 2.4GHz WLAN	Front of	LTE	0.567	0.684	
LIE + 2.4GHZ WEAN	face (1g)	2.4GHz WLAN	0.117	0.004	
LTE + BLE	Front of	LTE	0.567	0.620	
LIE + DLE	face (1g)	BLE	0.053	0.020	
LTE + 2.4GHz WLAN	Mriat (10a)	LTE	0.621	0.708	
LIE + 2.4GHZ WLAN	Wrist (10g)	2.4GHz WLAN	0.087	0.706	
LTE . DI E	1TE DIE		0.621	0.663	
LTE + BLE	Wrist (10g)	BLE	0.042	0.003	

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.

When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR-1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR-1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

12. Equipment List

Kind of Equipment	Manufacturer	Tuno No	Serial No.	Last Calibration	Calibrated Until
Kind of Equipment	Manufacturer	Type No.	SN 30/14	Last Calibration	Calibrated Until
750MHz Dipole	MVG	SID750	DIP0G750-331	2017.08.15	2020.08.14
1800MHz Dipole	MVG	SID1800	SN 30/14 DIP1G800-329	2017.08.15	2020.08.14
2450MHzDipole	MVG	SID2450	SN 30/14 DIP2G450-335	2017.08.15	2020.08.14
E-Field Probe	MVG	SSE5	SN 14/16 EP309	2019.12.02	2020.12.01
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2019.11.25	2020.11.24
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	N/A	N/A
Phantom2	MVG	SAM	SN 32/14 SAM116	N/A	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	N/A	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	N/A	N/A
Attenuator	Agilent	99899	DC-18GHz	N/A	N/A
Directional coupler	Narda	4226-20	3305	N/A	N/A
Network Analyzer	Agilent	8753ES	US38432810	2019.10.11	2020.10.10
Multi Meter	Keithley	Multi Meter 2000	4050073	2019.10.11	2020.10.10
Signal Generator	Agilent	N5182A	MY50140530	2019.10.09	2020.10.08
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2019.10.09	2020.10.08
Wireless Communication Test Set	R&S	CMW500	117239	2019.10.09	2020.10.08
Power Amplifier	DESAY	ZHL-42W	9638	2019.10.09	2020.10.08
Power Meter	R&S	NRP	100510	2019.10.16	2020.10.15
Power Meter	Agilent	E4419B	QB43312265	2019.10.12	2020.10.11
Power Sensor	Ř&S	NRP-Z11	101919	2019.10.12	2020.10.11
Power Sensor	HP	E9300A	US39210170	2019.10.09	2020.10.08
Temperature hygrometer	SuWei	SW-108	N/A	2019.10.13	2020.10.12
Thermograph	Elitech	RC-4	S/N EF7176501537	2019.10.11	2020.10.10

Note:

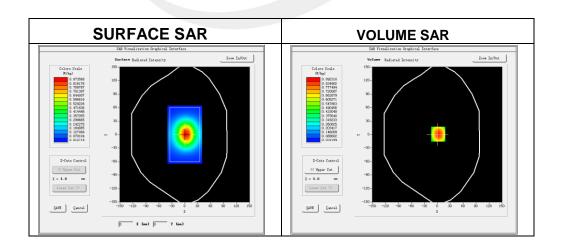
Per KDB 865664 D01, Dipole SAR Validation Verification, STS LAB has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value

Return-loss in within 20% of calibrated measurement

Appendix A. System Validation Plots

System Performance Check Data (750MHz Head)

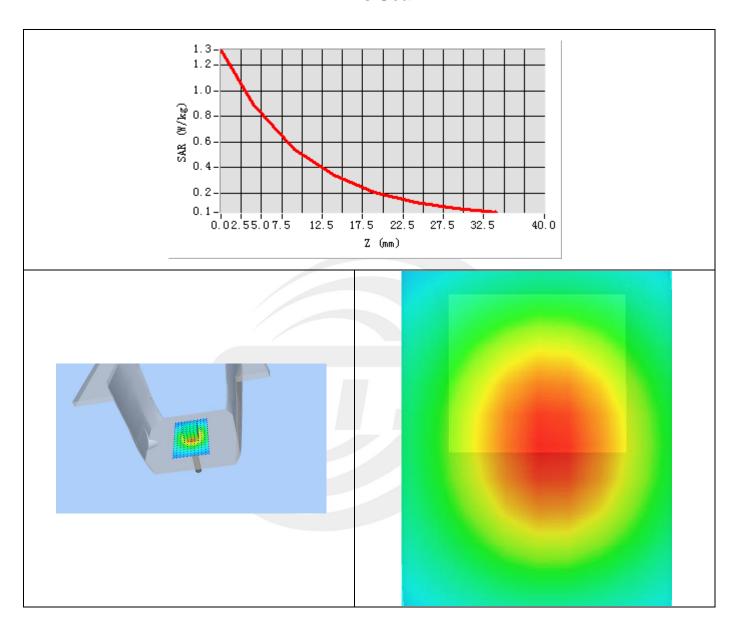

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2020-06-22

Experimental conditions

Phantom	Validation plane
Device Position	-
Band	750MHz
Channels	-
Signal	CW
Frequency (MHz)	750MHz
Relative permittivity	42.11
Conductivity (S/m)	0.87
Power drift (%)	0.34
Probe	SN 14/16 EP309
ConvF:	5.11
Crest factor:	1:1

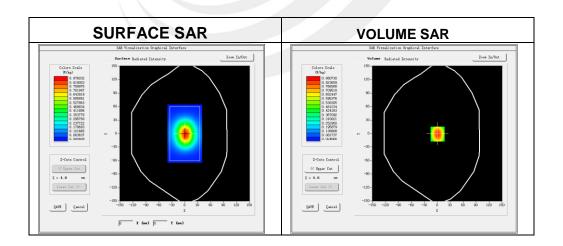


Maximum location: X=2.00, Y=1.00

SAR 10g (W/Kg)	0.510615
SAR 1g (W/Kg)	0.852147

Z Axis Scan

System Performance Check Data (750MHz Body)

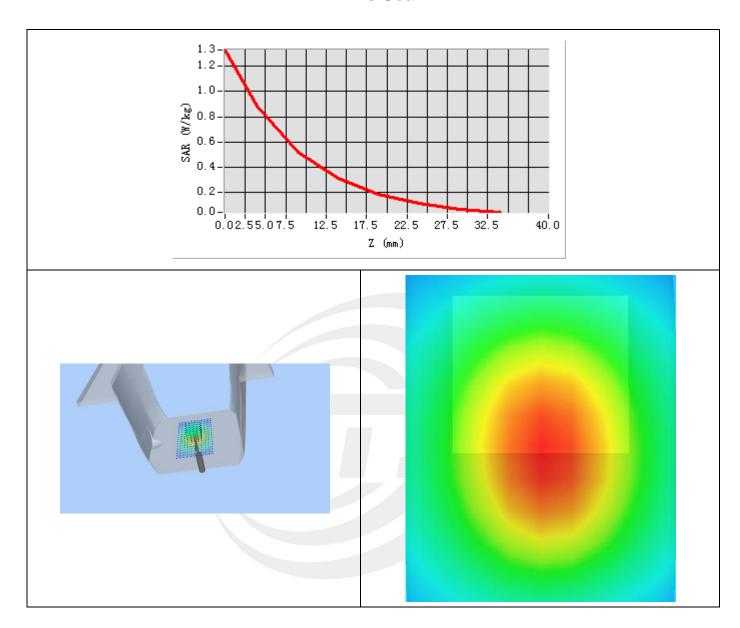

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2020-06-22

Experimental conditions.

Probe	
Phantom	Validation plane
Device Position	-
Band	750MHz
Channels	-
Signal	CW
Frequency (MHz)	750MHz
Relative permittivity	55.87
Conductivity (S/m)	0.99
Power drift (%)	1.42
Probe	SN 14/16 EP309
ConvF:	5.28
Crest factor:	1:1

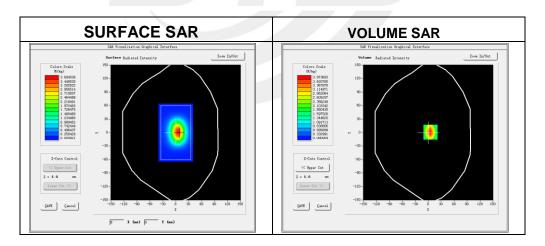


Maximum location: X=1.00, Y=-1.00

SAR 10g (W/Kg)	0.542114
SAR 1g (W/Kg)	0.839726

Z Axis Scan

System Performance Check Data(1800MHz Head)

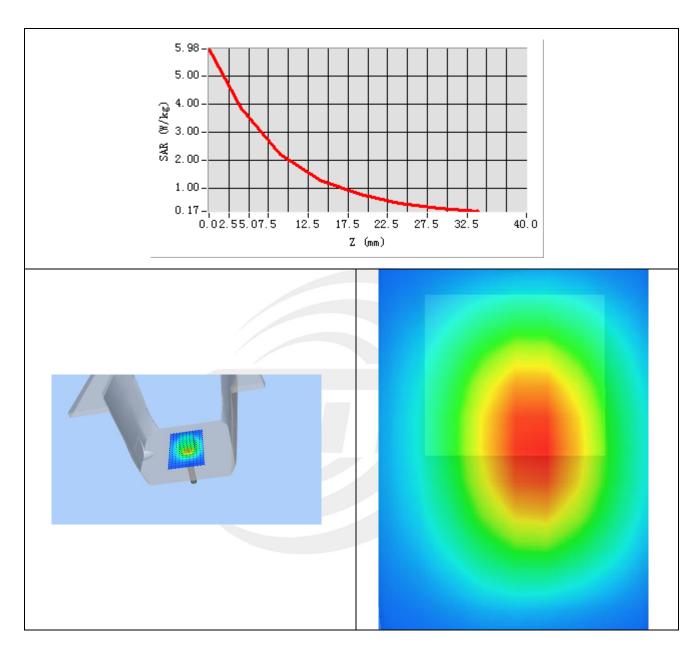

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2020-06-23

Experimental conditions.

Phantom	Validation plane
Device Position	-
Band	1800MHz
Channels	-
Signal	CW
Frequency (MHz)	1800MHz
Relative permittivity	39.33
Conductivity (S/m)	1.42
Power drift (%)	2.37
Probe	SN 14/16 EP309
ConvF	4.69
Crest factor:	1:1

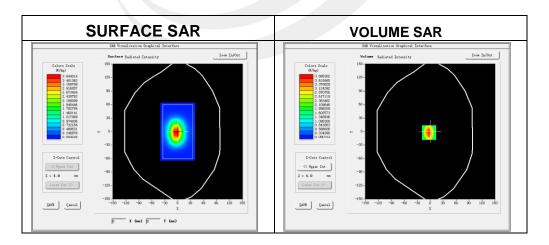


Maximum location: X=5.00, Y=1.00

SAR 10g (W/Kg)	1.988142
SAR 1g (W/Kg)	3.791438

Z Axis Scan

System Performance Check Data(1800MHz Body)

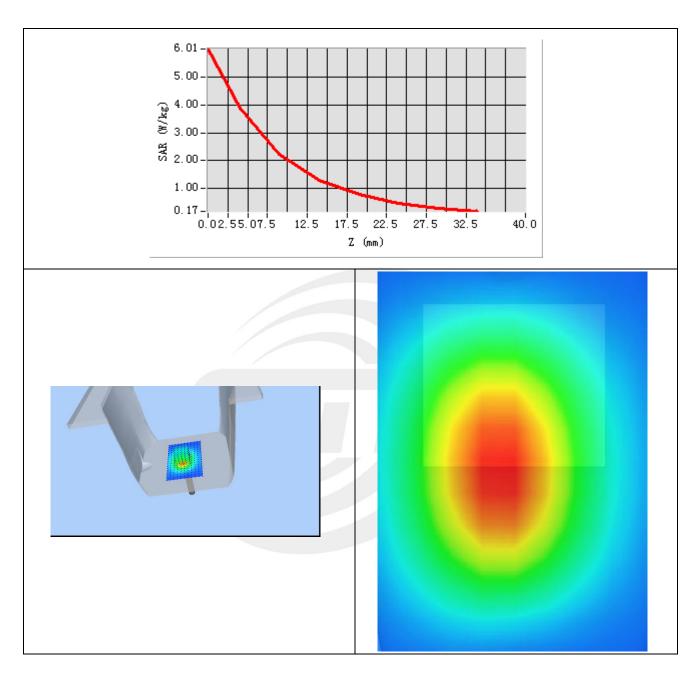

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2020-06-23

Experimental conditions.

Phantom	Validation plane	
Thantom	validation plane	
Device Position	-	
Band	1800MHz	
Channels	-	
Signal	CW	
Frequency (MHz)	1800MHz	
Relative permittivity	53.12	
Conductivity (S/m)	1.50	
Power drift (%)	-1.72	
Probe	SN 14/16 EP309	
ConvF	4.78	
Crest factor:	1:1	

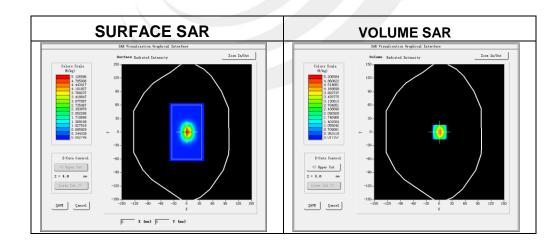


Maximum location: X=-3.00, Y=-2.00

SAR 10g (W/Kg)	2.037615
SAR 1g (W/Kg)	3.940876

Z Axis Scan

System Performance Check Data (2450MHz Head)

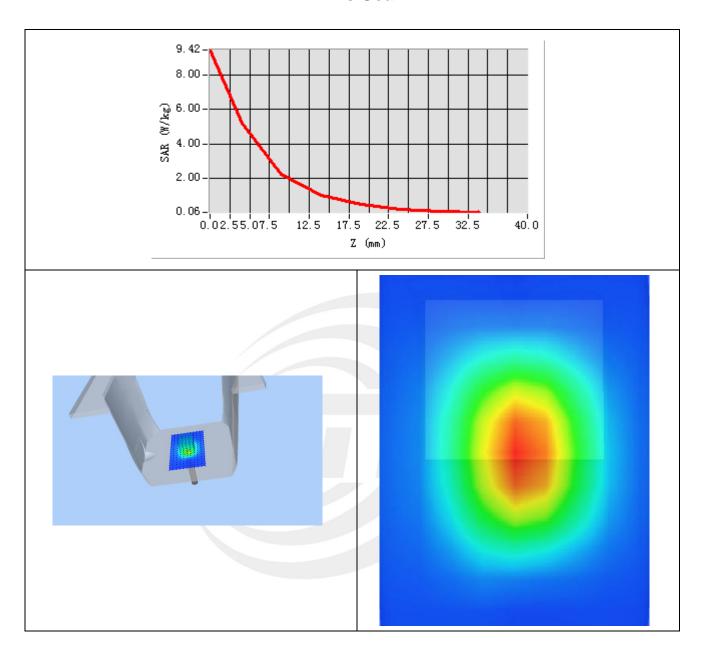

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2020-6-24

Experimental conditions.

Device Position	Validation plane
Band	2450 MHz
Channels	-
Signal	CW
Frequency (MHz)	2450
Relative permittivity	39.57
Conductivity (S/m)	1.78
Power drift (%)	-0.95
Probe	SN 14/16 EP309
ConvF	5.09
Crest factor:	1:1


Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	2.389891
SAR 1g (W/Kg)	5.367425

Z Axis Scan

System Performance Check Data (2450MHz Body)

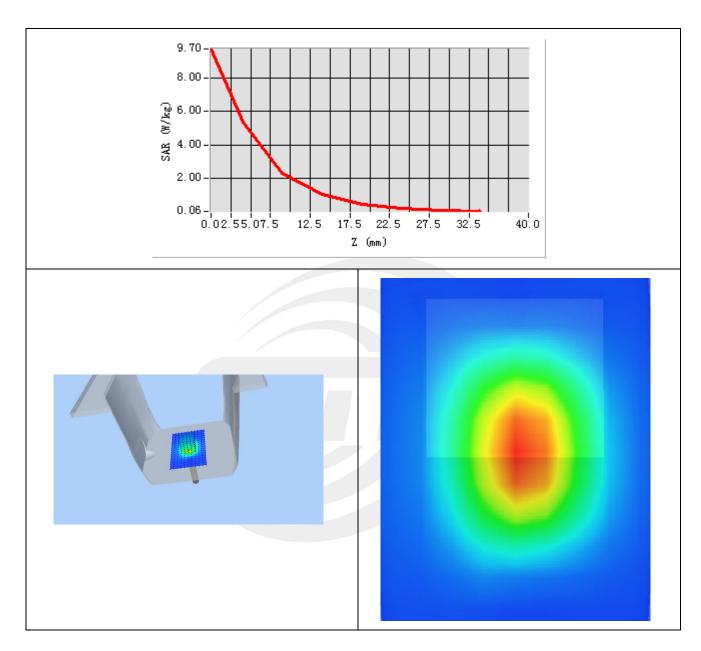
Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2020-06-24

Experimental conditions.

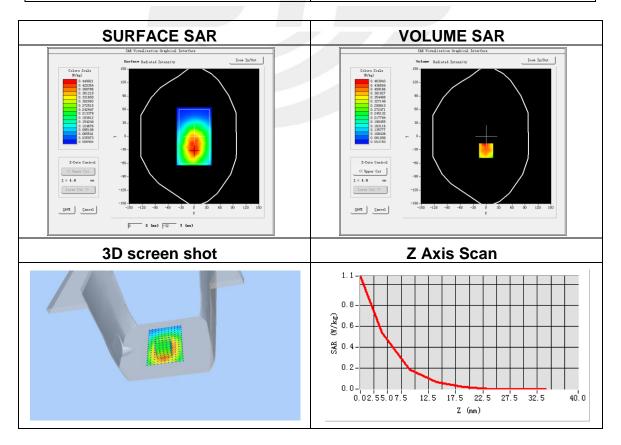
Device Position	Validation plane
Band	2450 MHz
Channels	-
Signal	CW
Frequency (MHz)	2450
Relative permittivity	53.24
Conductivity (S/m)	2.00
Power drift (%)	-1.83
Probe	SN 14/16 EP309
ConvF	5.24
Crest factor:	1:1



Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	2.411583
SAR 1g (W/Kg)	5.068147

Z Axis Scan

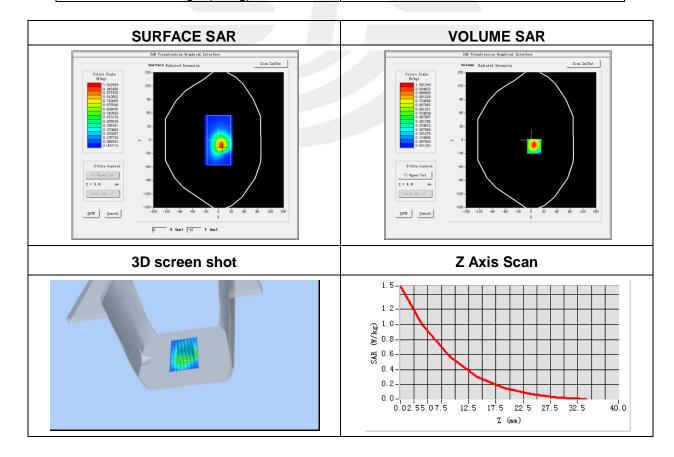

Appendix B. SAR Test Plots

Plot 1: DUT: CareWatch Voice; EUT Model: T01

Test Date	2020-06-23
Probe	SN 14/16 EP309
ConvF	4.69
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Front of face
Band	LTE Band 4 (RB 1)
Channels	High
Signal	LTE (Crest factor: 1.0)
Frequency (MHz)	1745.0
Relative permittivity (real part)	39.33
Conductivity (S/m)	1.42
Variation (%)	2.35

Maximum location: X=0.00, Y=-32.00 SAR Peak: 1.07 W/kg

SAR 10g (W/Kg)	0.186401
SAR 1g (W/Kg)	0.495467

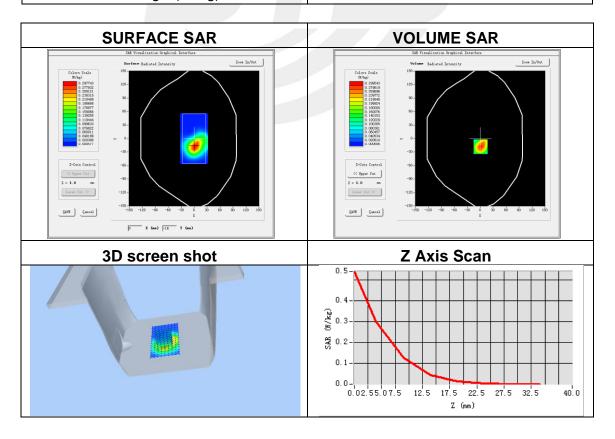


Plot 2: DUT: CareWatch Voice; EUT Model: T01

Test Date	2020-06-23
Probe	SN 14/16 EP309
ConvF	4.78
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Wrist
Band	LTE Band 4 (RB 1)
Channels	Middle
Signal	LTE (Crest factor: 1.0)
Frequency (MHz)	1745.0
Relative permittivity (real part)	53.12
Conductivity (S/m)	1.50
Variation (%)	0.60

Maximum location: X=7.00, Y=-14.00 SAR Peak: 1.57 W/kg

SAR 10g (W/Kg)	0.541514
SAR 1g (W/Kg)	0.963669

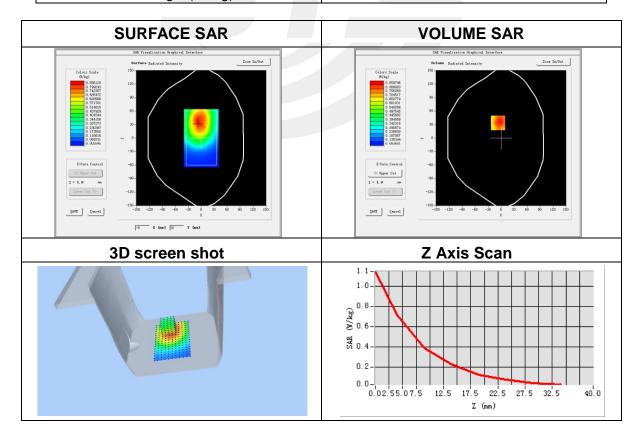


Plot 3: DUT: CareWatch Voice; EUT Model: T01

Test Date	2020-06-22
Probe	SN 14/16 EP309
ConvF	5.11
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Coon	5x5x7,dx=8mm dy=8mm dz=5mm,
Zoom Scan	Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Front of face
Band	LTE Band 13 (RB 1)
Channels	High
Signal	LTE (Crest factor: 1.0)
Frequency (MHz)	782.0
Relative permittivity (real part)	42.11
Conductivity (S/m)	0.87
Variation (%)	0.71

Maximum location: X=1.00, Y=-18.00 SAR Peak: 0.54 W/kg

SAR 10g (W/Kg)	0.128807
SAR 1g (W/Kg)	0.287180

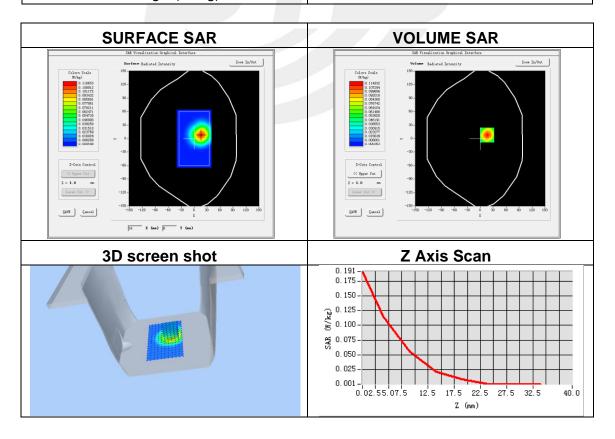


Plot 4: DUT: CareWatch Voice; EUT Model: T01

2020-06-22
SN 14/16 EP309
5.28
dx=8mm dy=8mm, h= 5.00 mm
5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Wrist
LTE Band 13 (RB 1)
High
LTE (Crest factor: 1.0)
782.0
55.87
0.99
-0.54

Maximum location: X=-7.00, Y=34.00 SAR Peak: 1.14 W/kg

SAR 10g (W/Kg)	0.437026
SAR 1g (W/Kg)	0.830131

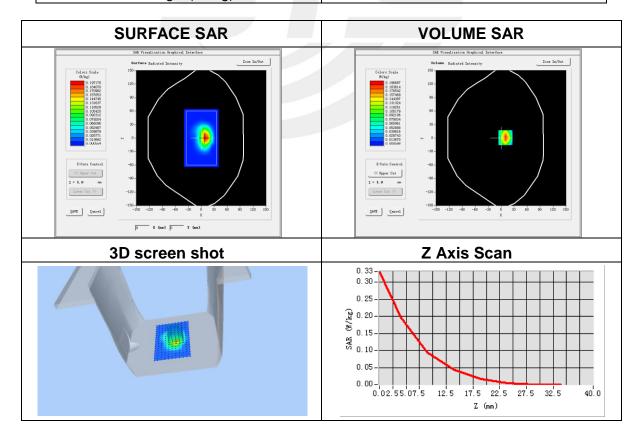


Plot 5: DUT: CareWatch Voice; EUT Model: T01

Test Date	2020-06-24
Probe	SN 14/16 EP309
ConvF	5.09
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,
	Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Front of face
Band	IEEE 802.11b ISM
Channels	Low
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2412
Relative permittivity (real part)	39.57
Conductivity (S/m)	1.78
Variation (%)	0.34

Maximum location: X=16.00, Y=8.00 SAR Peak: 0.19 W/kg

SAR 10g (W/Kg)	0.051649
SAR 1g (W/Kg)	0.108666



Plot 6: DUT: CareWatch Voice; EUT Model: T01

Test Date	2020-06-24
Probe	SN 14/16 EP309
ConvF	5.24
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Wrist
Band	IEEE 802.11b ISM
Channels	Low
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2412
Relative permittivity (real part)	53.24
Conductivity (S/m)	2.00
Variation (%)	-0.75

Maximum location: X=10.00, Y=1.00 SAR Peak: 0.33 W/kg

SAR 10g (W/Kg)	0.080553
SAR 1g (W/Kg)	0.182475

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China
Tel: +86-755 3688 6288 Fax: +86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com