

DATE: 4 November 2020

I.T.L. (PRODUCT TESTING) LTD.
FCC Radio Test Report
for
WaterIO LTD

Equipment under test:

Smart VIP Data Logger

VIPDLOG

Tested by:

M. Zohar

Approved by:

D. Shidowsky

This report must not be reproduced, except in full, without the written permission of
I.T.L. (Product Testing) Ltd. This report relates only to items tested.

Measurement/Technical Report for WaterIO LTD

Smart VIP Data Logger

VIPDLOG

FCC ID: 2AWPF-SMLOG

This report concerns:

Original Grant:

Class I Change:

Class II Change:

Equipment type:

FCC: (DTS) Digital Transmission System

Limits used:

47CFR15 Section 15.247

Measurement procedure used is KDB 558074 D01 v05r01, ANSI C63.10:2013 and RSS-Gen, Issue 5, April 2018

Application for Certification

Prepared by:

Efrat Savir Badash

ITL (Product Testing) Ltd.

1 Bat Sheva St.

Lod 7116002,

Phone: +972-8-918-6100

E-mail EfratS@itlglobal.org

Applicant for this device:

(different from "prepared by")

Amir Salhuv, R&D Manager

Water.IO

2 Bergman St. (Entrance A), 2nd floor.

Rehovot, Park Hamada 7670503, Israel.

Phone: +972-52-833-3126.

E-mail: amir@water-io.com

TABLE OF CONTENTS

1. GENERAL INFORMATION -----	5
1.1 Administrative Information.....	5
1.2 List of Accreditations	6
1.3 Product Description	7
1.4 Test Methodology.....	7
1.5 Test Facility	7
1.6 Measurement Uncertainty	7
2. SYSTEM TEST CONFIGURATION-----	9
2.1 Justification.....	9
2.2 EUT Exercise Software	9
2.3 Special Accessories	9
2.4 Equipment Modifications	9
2.5 Configuration of Tested System.....	10
3. CONDUCTED & RADIATED MEASUREMENT TEST SET-UP PHOTOS -----	11
4. 6 DB MINIMUM BANDWIDTH -----	14
4.1 Test Specification	14
4.2 Test Procedure	14
4.3 Test Limit.....	14
4.4 Test Results.....	14
4.5 Test Equipment Used; 6dB Bandwidth	16
5. MAXIMUM CONDUCTED OUTPUT POWER-----	17
5.1 Test Specification	17
5.2 Test Procedure	17
5.3 Test Limit	17
5.4 Test Results.....	17
5.5 Test Equipment Used; Maximum Peak Power Output.....	19
6. BAND EDGE SPECTRUM-----	20
6.1 Test Specification	20
6.2 Test Procedure	20
6.3 Test Limit	20
6.4 Test Results.....	20
6.5 Test Equipment Used; Band Edge	22
7. TRANSMITTED POWER DENSITY -----	23
7.1 Test Specification	23
7.2 Test Procedure	23
7.3 Test Limit	23
7.4 Test Results.....	24
7.5 Test Equipment Used; Transmitted Power Density	26
8. OCCUPIED BANDWIDTH -----	27
8.1 Test Specification	27
8.2 Test Procedure	27
8.3 Test Limit	27
8.4 Test Results.....	27
8.5 Test Equipment Used; Bandwidth	29
9. EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS-----	30
9.1 Test Specification	30
9.2 Test Procedure	30
9.3 Test Limit.....	30
9.4 Test Results.....	30
9.1 Test Instrumentation Used, Emission in Non Restricted Frequency Bands ..	32

10. EMISSIONS IN RESTRICTED FREQUENCY BANDS -----	33
10.1 Test Specification	33
10.3 Test Limit	34
10.4 Test Results.....	34
10.5 Test Instrumentation Used; Emissions in Restricted Frequency Bands	36
11. ANTENNA GAIN/INFORMATION-----	37
12. R.F EXPOSURE/SAFETY-----	38
13. APPENDIX A - CORRECTION FACTORS -----	39
13.1 Correction factors for RF OATS Cable 35m.....	39
13.2 Correction Factors for RF Cable for Anechoic Chamber	40
13.3 Correction Factors for Active Loop Antenna	41
13.4 Correction Factors for Biconical Antenna.....	42
13.5 Correction Factors for Log Periodic Antenna.....	43
13.6 Correction Factors for Double – Ridged Waveguide Horn ANTENNA 3 meter range;	44
13.7 Correction Factors for Horn Antenna Model	45

1. General Information

1.1 Administrative Information

Manufacturer: WaterIO LTD

Manufacturer's Address: 2 Bergman St. (Entrance A), 2nd floor.
Rehovot, Park Hamada 7670503, Israel.
Tel: +972-52-8333126

Manufacturer's Representative: Amir Salhuv

Equipment Under Test (E.U.T): Smart VIP Data Logger

Equipment PMN: VIPDLOG

Equipment Serial No.: Not designated

Date of Receipt of E.U.T: June 22, 2020

Start of Test: June 22, 2020

End of Test: June 29, 2020

Test Laboratory Location: I.T.L (Product Testing) Ltd.
1 Batsheva St.,
Lod
ISRAEL 7120101

Test Specifications: FCC Part 15, Subpart C

1.2 *List of Accreditations*

The EMC laboratory of I.T.L. is accredited by the following bodies:

1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation No. IL1005.
3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
4. Department of Innovation, Science and Economic Development (ISED) Canada, CAB identifier: IL1002

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 **Product Description**

Smart Sensor logger is a smart, power consumption optimized logger for pressure, temperature and relative humidity.

It utilizes BLE technology for communicating the data to dedicated Application, which connect upon a user action.

The smart VIP data logger is a BLE powered logger encapsulating an accurate Temperature, relative humidity and pressure sensors.

The sensor measures every user-predefined time (defaults to one hour) these values, and save into a data log.

For log download, user can place a magnet to the sensor in a close proximity, which will start BLE advertise as a result. Once the user opens the dedicated Smartphone App, Log data will be downloaded to the Application, and the sensor will return to sleep.

Working voltage	3.0VDC battery operated
Mode of operation	BLE Transceiver
Modulations	GFSK
Assigned Frequency Range	2400.0-2483.5MHz
Operating Frequency Range	2402.0-2480.0MHz
Transmit power(conducted)	~3.0dBm
Antenna Gain	+4.5dBi trace antenna
Modulation BW	2MHz
Bit rate (Mbit/s)	1,2,3

1.4 **Test Methodology**

Both conducted and radiated testing was performed according to the procedures in KDB 558074 D01 v05r01, ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 **Test Facility**

Emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

1.6 **Measurement Uncertainty**

Conducted Emission

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4)

0.15 – 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):
± 3.44 dB

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4)
for open site:

30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):
 ± 4.96 dB

1 GHz to 6 GHz

Expanded Uncertainty (95% Confidence, K=2):
 ± 5.19 dB

>6 GHz

Expanded Uncertainty (95% Confidence, K=2):
 ± 5.51 dB

2. System Test Configuration

2.1 Justification

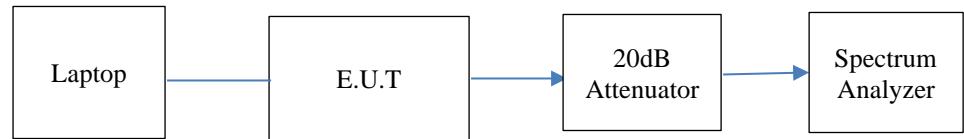
1. The E.U.T contains an IEEE 802.15.1 standard (BLE) transceiver.
2. The unit was evaluated while transmitting at the low channel (2402MHz), the mid channel (2440MHz) and the high channel (2480MHz).
3. Conducted emission tests were performed with the E.U.T. antenna terminal connected by a RF cable to the Spectrum Analyzer through a 20dB external attenuator.
4. Final radiated emission tests were performed after exploratory emission testing that was performed in 3 orthogonal polarities to determine the “worst case” radiation.
5. According to the below results, worst case was the Y-axis.

Orientation	Frequency	2 nd Harmonic	3 rd Harmonic	Band Edge
	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)
X axis	2402.0	52.1	60.2	65.3
	2440.0	52.4	56.5	-
	2480.0	52.0	58.0	65.1
Y axis	2402.0	52.9	60.8	66.1
	2440.0	52.8	57.3	-
	2480.0	53.1	58.7	70.0
Z axis	2402.0	51.9	58.8	63.3
	2440.0	51.1	55.6	-
	2480.0	49.6	56.2	68.1

Figure 1. Screening Results

2.2 EUT Exercise Software

No special exercise software was used.


2.3 Special Accessories

No special accessories were used.

2.4 Equipment Modifications

No modifications were necessary in order to achieve compliance.

2.5 ***Configuration of Tested System***

Figure 2. Configuration of Tested System Conducted

Figure 3. Configuration of Tested System Radiated

3. Conducted & Radiated Measurement Test Set-Up Photos

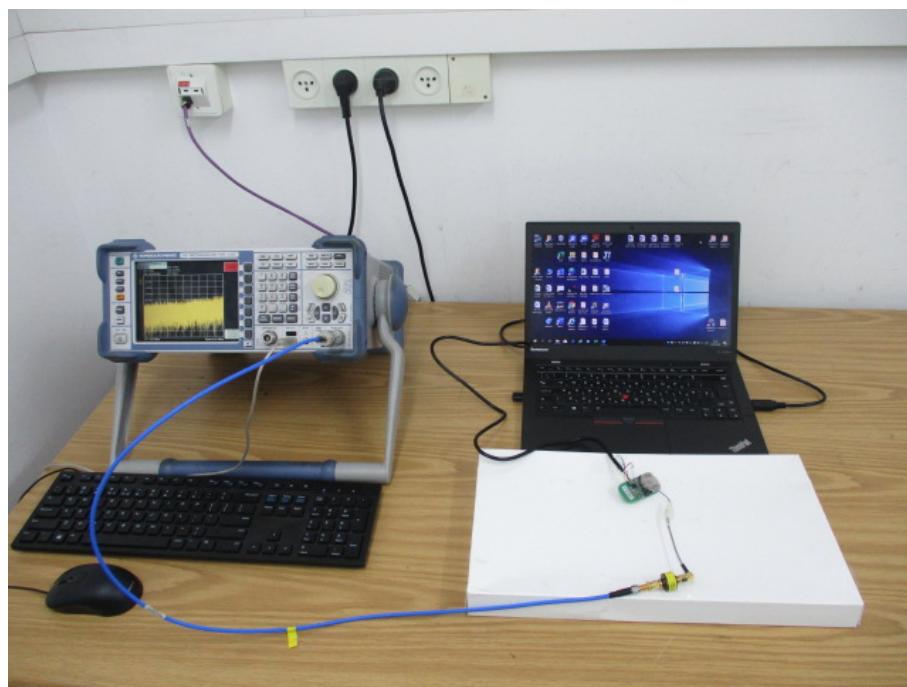


Figure 4. Conducted Test Set Up

Figure 5. Radiated Emission Test, 0.009-30MHz

Figure 6. Radiated Emission Test, 30-200MHz

Figure 7. Radiated Emission Test, 200-1000MHz

Figure 8. Radiated Emission Test, 1-18GHz

Figure 9. Radiated Emission Test, 18-25.0GHz

4. 6 dB Minimum Bandwidth

4.1 Test Specification

FCC Part 15, Subpart C, Section 247(a)(2)

4.2 Test Procedure

(Temperature (22°C)/ Humidity (61%RH))

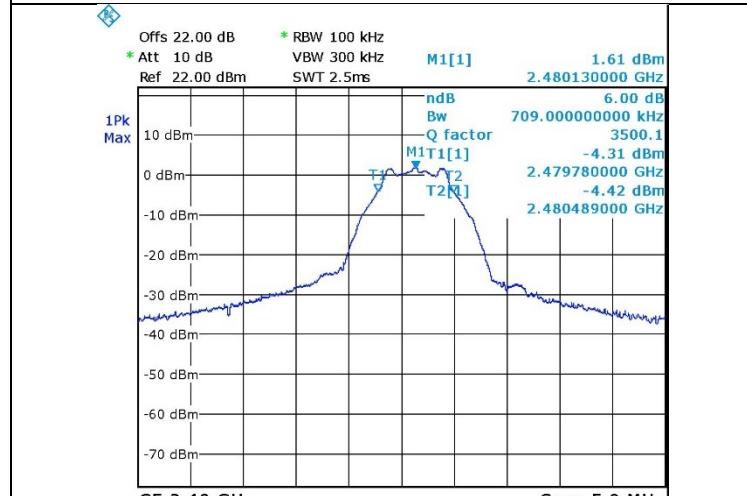
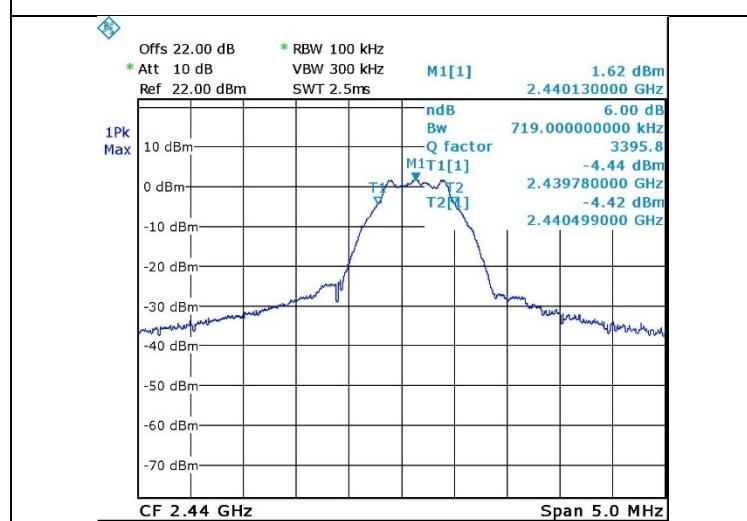
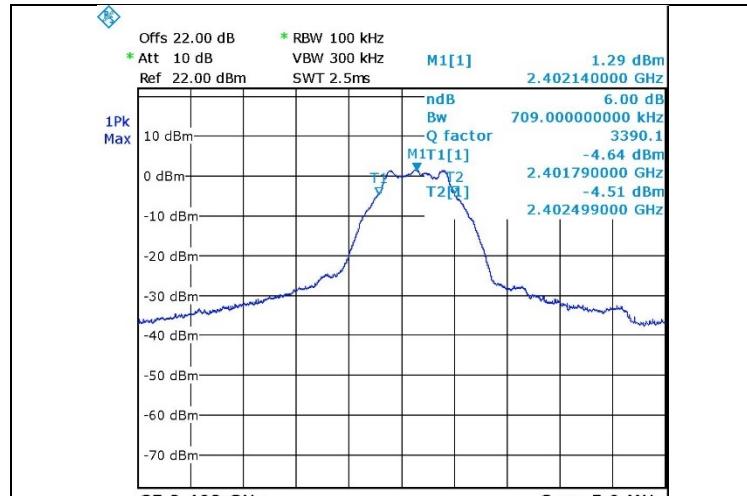
The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (total loss=22.0 dB). Special attention was taken to prevent Spectrum Analyzer RF input overload.

The spectrum bandwidth of the E.U.T. at the point of 6 dB below maximum peak power was measured and recorded. The RBW was set to 100 kHz.

4.3 Test Limit

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.




4.4 Test Results

Protocol Type	Operation Frequency	Reading	Limit
	(MHz)	(kHz)	(kHz)
BLE	2402.0	709.0	>500.0
	2440.0	719.0	>500.0
	2480.0	709.0	>500.0

Figure 10 6 dB Minimum Bandwidth

JUDGEMENT: Passed

For additional information, see *Figure 11* to *Figure 13*.

4.5 **Test Equipment Used; 6dB Bandwidth**

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	March 10, 2020	March 31, 2021
20dB Attenuator	MCL	VAT-20W2+	848	December 24, 2018	December 31, 2020
RF Cable	EIM	705A009301EIM	-	June 1, 2020	June 30, 2021

Figure 14 Test Equipment Used

5. Maximum Conducted Output Power

5.1 ***Test Specification***

FCC, Part 15, Subpart C, Section 247(b)(3)

5.2 ***Test Procedure***

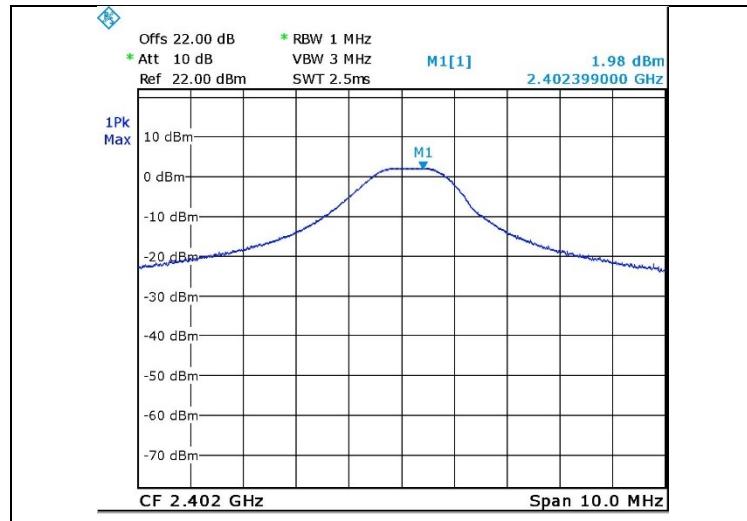
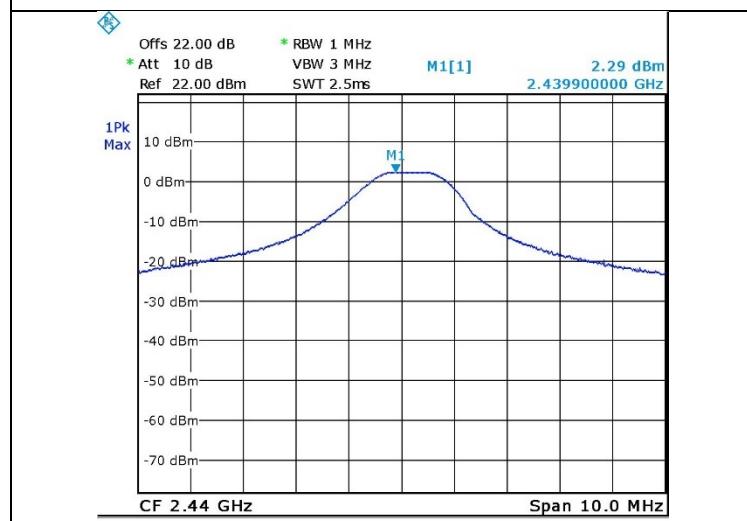
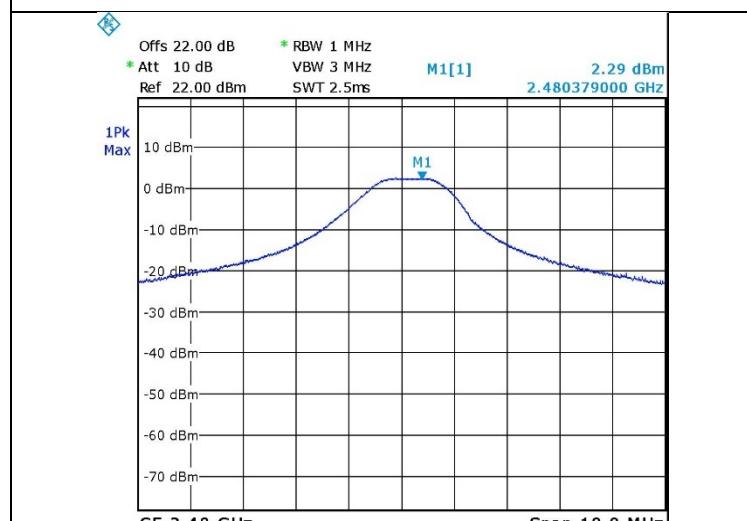
(Temperature (22°C)/ Humidity (61%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (total loss=22.0 dB). Special attention was taken to prevent Spectrum Analyzer RF input overload.

5.3 ***Test Limit***

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.




5.4 ***Test Results***

Protocol Type	Operation Frequency	Power	Power	Limit	Margin
	(MHz)	(dBm)	(mW)	(mW)	(mW)
BLE	2402.0	2.0	1.6	1000.0	-998.4
	2440.0	2.3	1.7	1000.0	-998.3
	2480.0	2.3	1.7	1000.0	-998.3

Figure 15 Maximum Peak Power Output

JUDGEMENT: Passed by 998.3 mW

For additional information, see Figure 16 to Figure 18.

Figure 16. 2402.0 MHz, BLE**Figure 17. 2440.0 MHz, BLE****Figure 18. 2480.0 MHz, BLE**

5.5 **Test Equipment Used; Maximum Peak Power Output**

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	March 10, 2020	March 31, 2021
20dB Attenuator	MCL	VAT-20W2+	848	December 24, 2018	December 31, 2020
RF Cable	EIM	705A009301EI M	-	June 1, 2020	June 30, 2021

Figure 19 Test Equipment Used

6. Band Edge Spectrum

6.1 ***Test Specification***

FCC, Part 15, Subpart C, Section 247(d)

6.2 ***Test Procedure***

(Temperature (20°C)/ Humidity (59%RH))

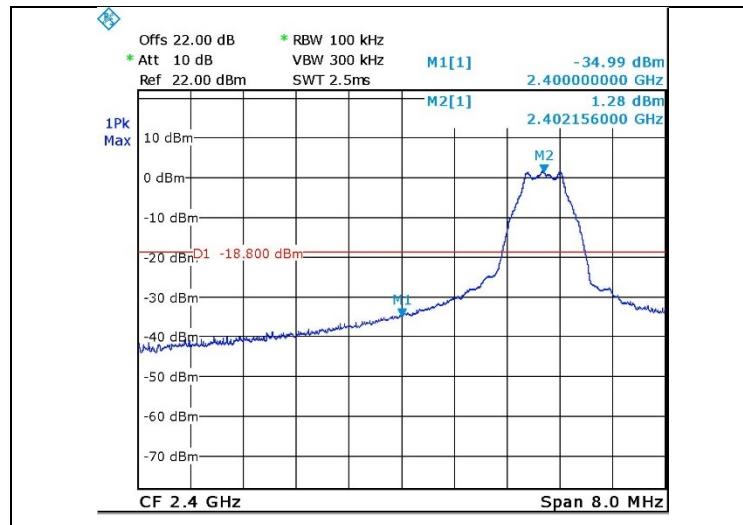
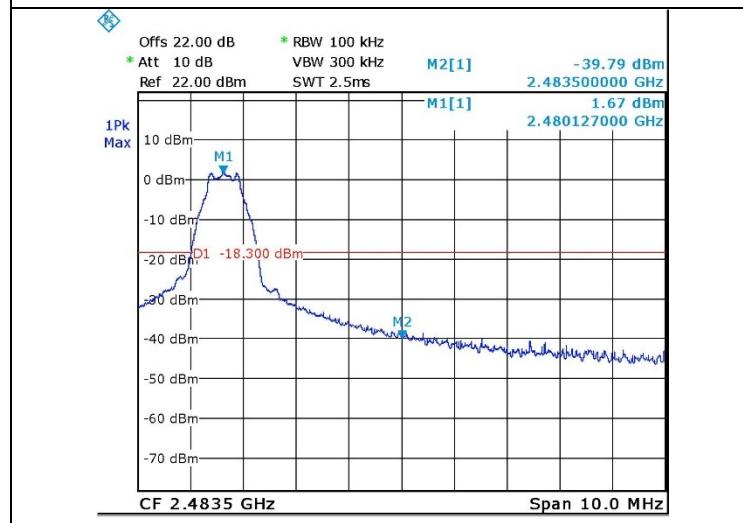
The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (loss=22.0 dB). Special attention was taken to prevent Spectrum Analyzer RF input overload.

The RBW was set to 100 kHz.

6.3 ***Test Limit***

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.



6.4 ***Test Results***

Protocol Type	Operation Frequency	Band Edge Frequency	Spectrum Level	Limit	Margin
	(MHz)	(MHz)	(dBm)	(dBm)	(dB)
BLE	2402.0	2400.0	-35.0	-18.8	-16.2
	2480.0	2483.5	-39.8	-18.3	-21.5

Figure 20 Band Edge Spectrum

JUDGEMENT: Passed by 16.2 dB

For additional information, see Figure 21 and Figure 22.

Figure 21. 2402.0 MHz, BLE**Figure 22. 2480.0 MHz, BLE**

6.5 **Test Equipment Used; Band Edge**

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	March 10, 2020	March 31, 2021
20dB Attenuator	MCL	VAT-20W2+	848	December 24, 2018	December 31, 2020
RF Cable	EIM	705A009301EIM	-	June 1, 2020	June 30, 2021

Figure 23 Test Equipment Used

7. Transmitted Power Density

7.1 ***Test Specification***

FCC, Part 15, Subpart C, Section 247(e)

7.2 ***Test Procedure***

(Temperature (22°C)/ Humidity (61%RH))

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (total loss= 22.0dB). Special attention was taken to prevent Spectrum Analyzer RF input overload.

The spectrum analyzer was set to 3 kHz RBW.

7.3 ***Test Limit***

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.4 **Test Results**

Protocol Type	Operation Frequency	PSD Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
BLE	2402.0	-13.7	8.0	-21.7
	2440.0	-13.6	8.0	-21.6
	2480.0	-13.5	8.0	-21.5

Figure 24 Test Results

JUDGEMENT: Passed by 21.5dB

For additional information, see Figure 25 to Figure 27.

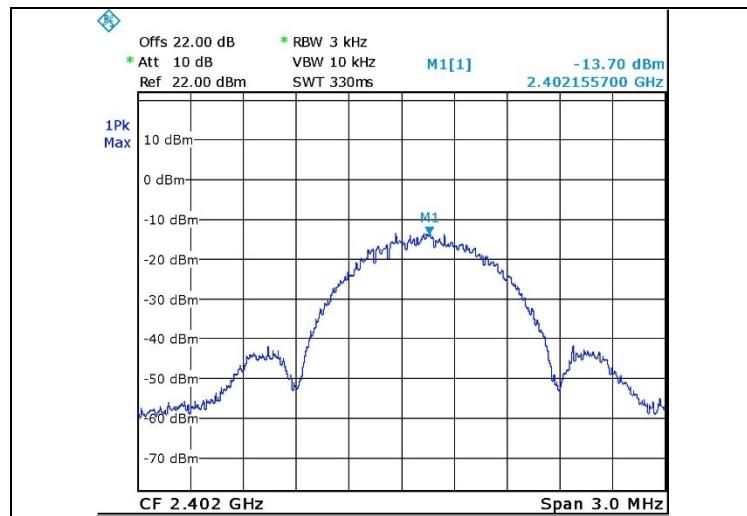


Figure 25. 2402.0 MHz, BLE

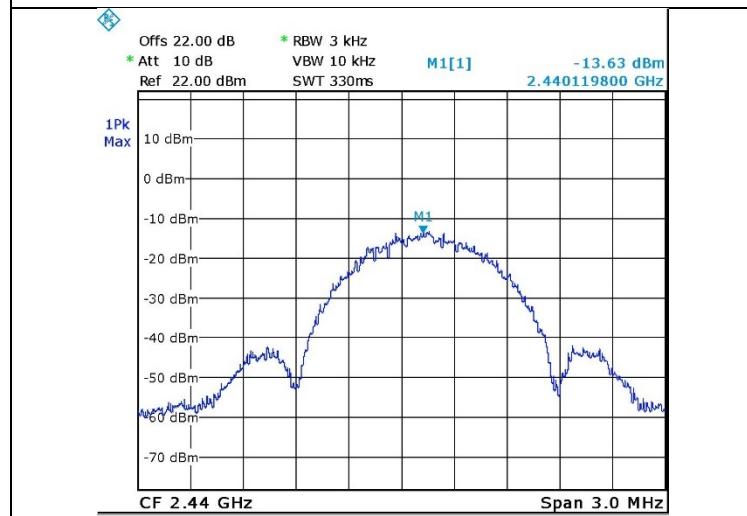


Figure 26. 2440.0 MHz, BLE

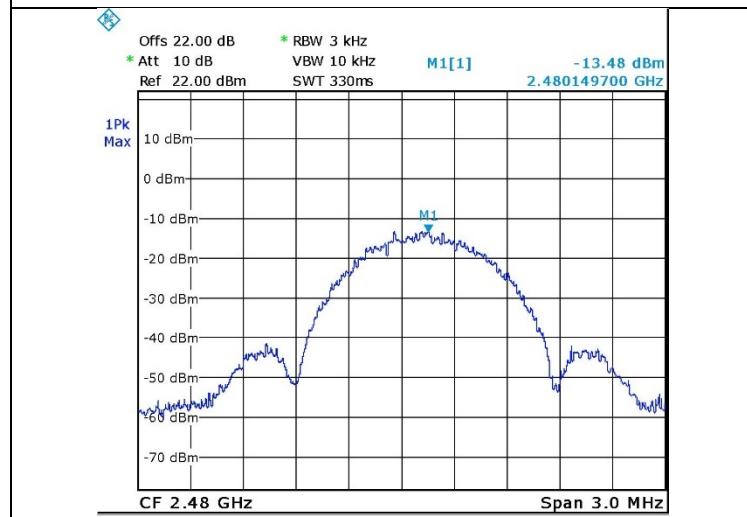


Figure 27. 2480.0 MHz, BLE

7.5 **Test Equipment Used; Transmitted Power Density**

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	March 10, 2020	March 31, 2021
20dB Attenuator	MCL	VAT-20W2+	848	December 24, 2018	December 31, 2020
RF Cable	EIM	705A009301EIM	-	June 1, 2020	June 30, 2021

Figure 28 Test Equipment Used

8. Occupied Bandwidth

8.1 Test Specification

FCC, Part 2, Sub part J, Section 2.1049

8.2 Test Procedure

(Temperature (22°C)/ Humidity (61%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (total loss= 22.0dB). Special attention was taken to prevent Spectrum Analyzer RF input overload.

The RBW set to the range of 1% to 5% of the OBW.

The span was set between 1.5 to 5 times of the OBW.

99% occupied bandwidth function was set on.

8.3 Test Limit

N/A

8.4 Test Results

Protocol Type	Operation Frequency	Reading
	(MHz)	(kHz)
BLE	2402.0	1.05
	2440.0	1.05
	2480.0	1.06

Figure 29. Bandwidth Test Results

JUDGEMENT: N/A

See additional information in Figure 30 to Figure 32.

Occupied Bandwidth

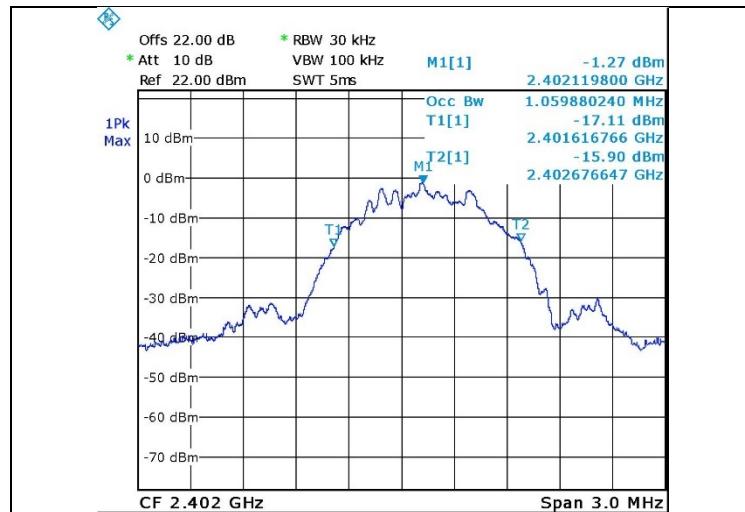


Figure 30. 2402.0 MHz, BLE

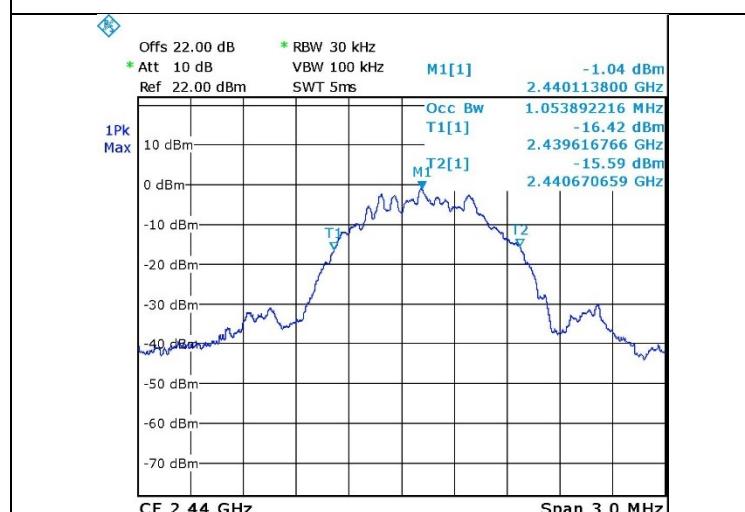


Figure 31. 2440.0 MHz, BLE

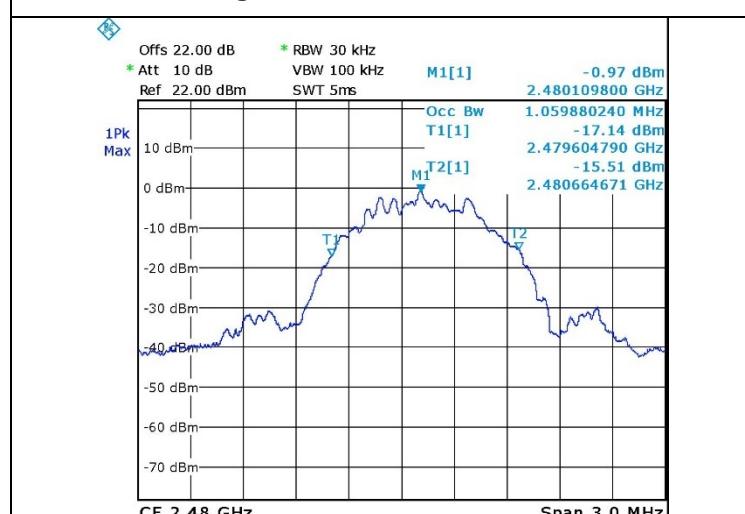


Figure 32. 2480.0 MHz, BLE

8.5 **Test Equipment Used; Bandwidth**

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	R&S	FSL6	100194	March 10, 2020	March 31, 2021
20dB Attenuator	MCL	VAT-20W2+	848	December 24, 2018	December 31, 2020
RF Cable	EIM	705A009301EIM	-	June 1, 2020	June 30, 2021

Figure 33 Test Equipment Used

9. Emissions in Non-Restricted Frequency Bands

9.1 *Test Specification*

FCC, Part 15, Subpart C, Section 247(d)

9.2 *Test Procedure*

(Temperature (21°C)/ Humidity (60% RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

The E.U.T. antenna terminal was connected to the Spectrum Analyzer through an external attenuator and an appropriate coaxial cable (max total loss=24.0 dB).

Special attention was taken to prevent Spectrum Analyzer RF input overload.

RBW was set to 100 kHz, detector set to max peak and trace to "max hold".

9.3 *Test Limit*

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

9.4 *Test Results*

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 247(d) specification.

For additional information, see *Figure 34* to *Figure 36*.

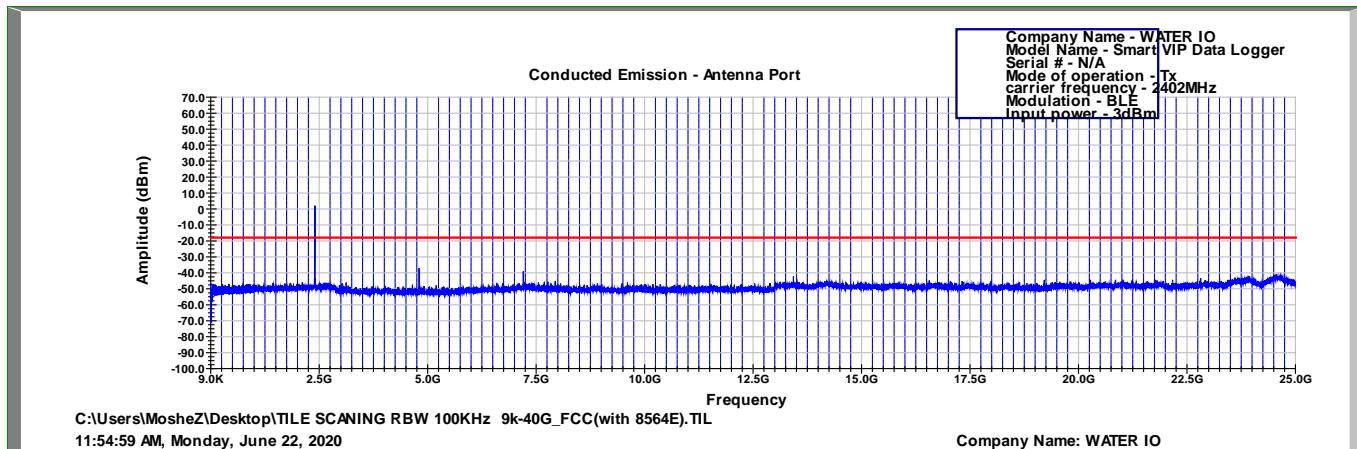


Figure 34 2402.0 MHz, BLE

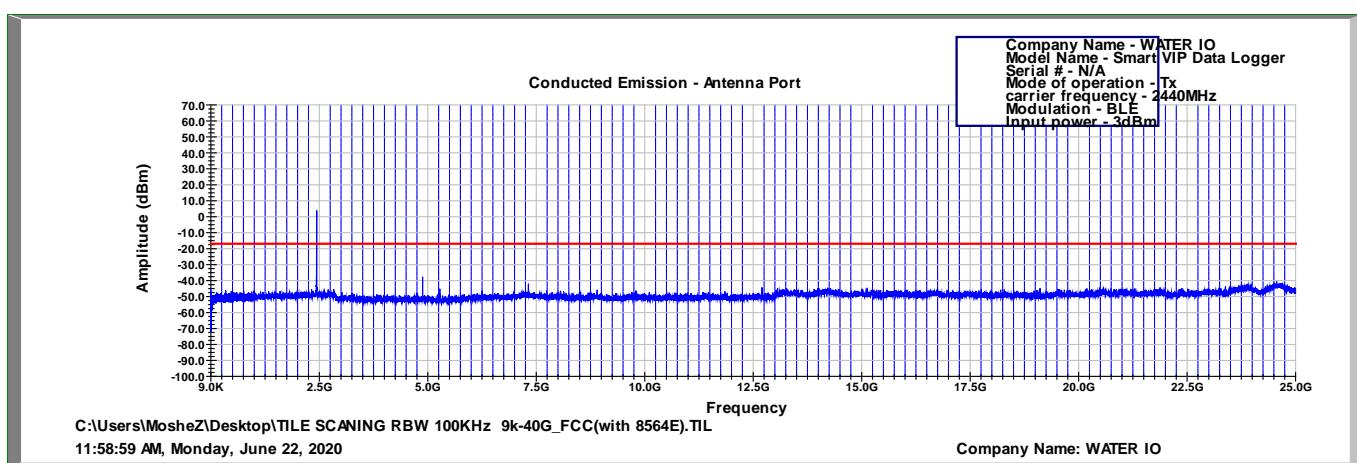


Figure 35 2440.0 MHz, BLE

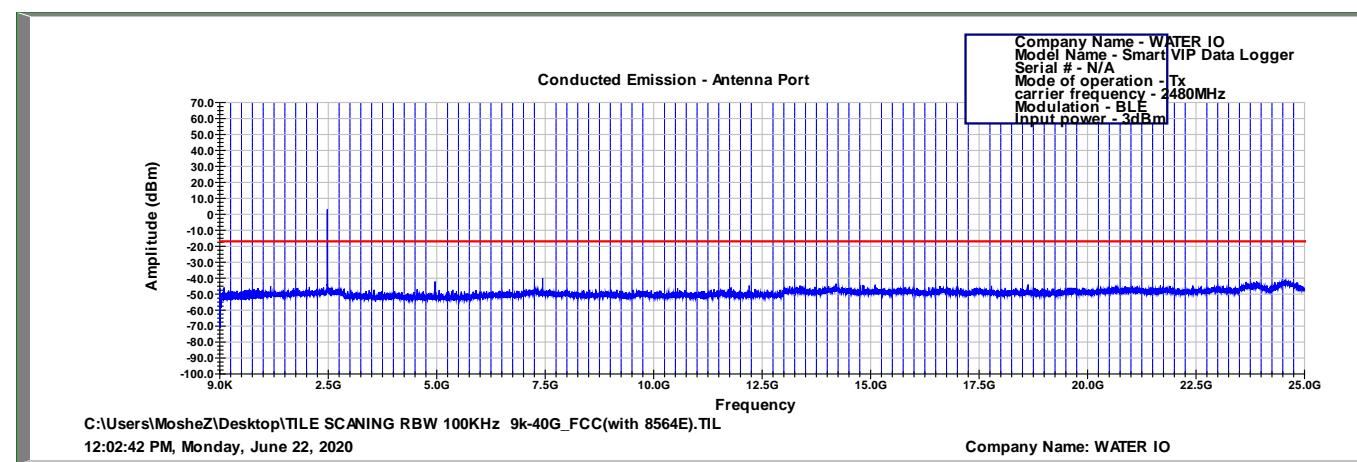


Figure 36 2480.0 MHz, BLE

Note: All peaks in plots are the fundamental transmission frequency.

9.5 ***Test Instrumentation Used, Emission in Non Restricted Frequency Bands***

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
Spectrum Analyzer	HP	8564E	3442A002 75	March 11, 2020	March 31, 2021
20dB Attenuator	MCL	VAT-20W2+	848	December 24, 2018	December 31, 2020
RF Cable	EIM	705A009301EIM	-	June 1, 2020	June 30, 2021

Figure 37 Test Equipment Used

10. Emissions in Restricted Frequency Bands

10.1 ***Test Specification***

FCC Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d)

10.2 ***Test Procedure***

(Temperature (23°C)/ Humidity (65%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report.

For measurements between 0.009-30MHz:

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 0.8 meters above the ground. The emissions were measured at a distance of 3 meters. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The frequency range 0.009MHz-30MHz was scanned.

For measurements between 30-1000MHz:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The emissions were measured at a distance of 3 meters. The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. The frequency range 30MHz -1000MHz was scanned and the list of the highest emissions was verified and updated accordingly.

For measurements between 1GHz-25GHz:

The E.U.T was tested inside the shielded room and placed on a non-metallic table, 1.5 meters above the ground. The emissions were measured at a distance of 3 meters. The readings were maximized by the turntable azimuth between 0-360°, and the antenna polarization.

The frequency range 1GHz -25GHz was scanned.

. The highest radiation describes in the tables below

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

10.3 Test Limit

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)	Field Strength* (dB μ V/m)	Field Strength* (dB μ V/m)@3m
0.009-0.490	2400/F(kHz)	300	48.5-13.8	128.5-73.8
0.490-1.705	24000/F(kHz)	30	33.8-23.0	73.8-63.0
1.705-30.0	30	30	29.5	69.5
30-88	100	3	40.0	40.0
88-216	150	3	43.5	43.5
216-960	200	3	46.0	46.0
Above 960	500	3	54.0	54.0

*The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

Figure 38 Table of Limits

10.4 Test Results

JUDGEMENT: Passed by 2.0 dB

For the operation frequency of 2402 MHz, the margin between the emission level and the specification limit is in the worst case 6.4 dB at the frequency of 7206.0 MHz, vertical polarization.

For the operation frequency of 2440 MHz, the margin between the emission level and the specification limit is in the worst case 8.0 dB at the frequency of 7320.0 MHz, vertical polarization.

For the operation frequency of 2480 MHz, the margin between the emission level and the specification limit is in the worst case 2.0 dB at the frequency of 2483.5 MHz, vertical polarization.

The EUT met the requirements of the F.C.C. Part 15, Subpart C Sections 15.209, 15.205, 15.247(d) specifications.

The details of the highest emissions are given in *Figure 39*.

Radiated Emission

E.U.T Description: Smart VIP Data Logger
Type: VIPDLOG
Serial Number: Not designated

Specifications: FCC, Part 15, Subpart C, Sections 15.209, 15.205, 15.247(d)

Antenna Polarization: Horizontal/Vertical Frequency Range: 9kHz to 25.0 GHz
Protocol Type: BLE Detector: Peak, Average

Operation Frequency	Freq.	Pol	Peak Reading	Peak Limit	Peak Margin	Average Reading	Average Limit	Average Margin
(MHz)	(MHz)	(H/V)	(dB μ V/m)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)
2402.0	2390.0	V	66.1	74.0	-7.9	44.2	54.0	-9.8
	2390.0	H	60.4	74.0	-13.6	41.4	54.0	-12.6
	7206.0	V	60.2	74.0	-13.8	47.6	54.0	-6.4
	7206.0	H	59.2	74.0	-14.8	46.8	54.0	-7.2
2440.0	4880.0	V	52.3	74.0	-21.7	-	54.0	-
	4880.0	H	50.2	74.0	-23.8	-	54.0	-
	7320.0	V	58.3	74.0	-15.7	46.0	54.0	-8.0
	7320.0	H	57.6	74.0	-16.4	45.1	54.0	-8.9
2480.0	7440.0	V	60.0	74.0	-14.0	46.6	54.0	-7.4
	7440.0	H	59.8	74.0	-14.2	46.2	54.0	-7.8
	2483.5	V	70.0	74.0	-4.0	52.0	54.0	-2.0
	2483.5	H	66.1	74.0	-7.9	45.3	54.0	-8.7

Figure 39. Radiated Emission Results

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

“Peak Amp” includes correction factor.

* “Correction Factor” = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

10.5 Test Instrumentation Used; Emissions in Restricted Frequency Bands

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Next Calibration Due
EMI Receiver	R&S	ESCI7	100724	March 09 2020	March 31, 2021
EMI Receiver	HP	8542E	3906A00276	March 11 2020	March 31, 2021
RF Filter Section	HP	85420E	3705A00248	March 11 2020	March 31, 2021
Spectrum Analyzer	HP	8593EM	3826A00265	March 9, 2020	March 31, 2021
Active Loop Antenna	EMCO	6502	9506-2950	February 5, 2019	February 29, 2021
Biconical Antenna	EMCO	3110B	9912-3337	May 21, 2019	October 31, 2020
Log Periodic Antenna	EMCO	3146	9505-4081	May 31, 2018	May 31, 2021
Horn Antenna	ETS	3115	29845	May 31, 2018	May 31, 2021
Horn Antenna	ARA	SWH-28	1007	December 13, 2017	December 31, 2020
MicroWave System Amplifier	HP	83006A	3104A00589	December 24, 2018	December 31, 2020
Low Noise Amplifier 1GHz-18GHz	Miteq	AFSX4-02001800-50-8P	-	December 24, 2018	December 31, 2020
RF Cable Chamber	Commscope ORS	0623 WBC-400	G020132	December 24, 2018	December 31, 2020
RF Cable Oats	EIM	RG214-11N(X2)		May 26, 2019	May 31, 2021
Filter Band Pass 4-20 GHz	Meuro	MFL040120H50	902252	December 24, 2018	December 31, 2020
Semi Anechoic Civil Chamber	ETS	S81	SL 11643	NCR	NCR
Antenna Mast	ETS	2070-2	9608-1497	NCR	NCR
Turntable	ETS	2087	-	NCR	NCR
Mast & Table Controller	ETS/EMCO	2090	9608-1456	NCR	NCR

Figure 40 Test Equipment Used

11. Antenna Gain/Information

The antenna gain is +4.5dBi trace antenna, type: integral.

12. R.F Exposure/Safety

The typical placement of the E.U.T. is wall mounted.

The typical distance between the E.U.T. and the user is 1 cm=10 mm

SAR Testing Exclusion Based on Section 4.3.1 and Appendix A of KDB 447498 D01 V06
Requirements

For FCC

Section 4.3.1 and Appendix A of KDB447498 D01 V06 was used as the guidance as follows:

Conducted power output = 2.3dBm

Antenna gain= 4.5dBi

EIRP = 2.3+4.5= 6.8dBm = 5mW

Operation frequency= 2.4GHz

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] * [\sqrt{f(\text{GHz})}]$

$=[5/10] * 1.55=0.78$ this value is less than 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR.

The SAR measurement is not necessary.

13. APPENDIX A - CORRECTION FACTORS

13.1 *Correction factors for RF OATS Cable 35m ITL #1911*

Frequency (MHz)	loss (dB)
30.0	1.3
50.0	1.7
100.0	2.6
200.0	3.7
300.0	4.7
400.0	5.5
500.0	6.3
600.0	7.0
700.0	7.6
800.0	8.4
900.0	9.0
1000.0	9.6

13.2 Correction Factors for RF Cable for Anechoic Chamber
ITL #1840

FREQ (MHz)	LOSS (dB)
1000.0	1.5
2000.0	2.1
3000.0	2.7
4000.0	3.1
5000.0	3.5
6000.0	4.1
7000.0	4.6
8000.0	4.9
9000.0	5.7
10000.0	5.7
11000.0	6.1
12000.0	6.1
13000.0	6.2
14000.0	6.7
15000.0	7.4
16000.0	7.5
17000.0	7.9
18000.0	8.1
19000.0	8.8
20000.0	9.1

NOTES:

1. The cable is manufactured by Commscope
2. The cable type is 0623 WBC-400, serial # G020132 and 10m long

13.3 Correction Factors for Active Loop Antenna
ITL # 1075

F(MHz)	AF(dB/m)
0.01	18.4
0.02	14.3
0.03	13.3
0.05	11.7
0.1	11.4
0.2	11.2
0.3	11.2
0.5	11.2
0.7	11.2
1	11.4
2	11.5
3	11.5
4	11.4
5	11.3
6	11.1
7	11.1
8	11.1
9	11
10	11
20	10
30	8

13.4 Correction Factors for Biconical Antenna

ITL #1356, EMCO 3110B 9912-3337

Frequency [MHz]	AF [dB/m]
30	13.00
35	10.89
40	10.59
45	10.63
50	10.12
60	9.26
70	7.74
80	6.63
90	8.23
100	11.12
120	13.16
140	13.07
160	14.80
180	16.95
200	17.17

13.5 *Correction Factors for Log Periodic Antenna*
ITL # 1349, EMCO 3146 s/n 9505-4081

Frequency [MHz]	AF [dB/m]
200	11.58
250	12.04
300	14.76
400	15.55
500	17.85
600	18.66
700	20.87
800	21.15
900	22.32
1000	24.22

**13.6 Correction Factors for Double – Ridged Waveguide Horn
ANTENNA 3 meter range;
ITL # 1352, ETS 3115 s/n 29845**

FREQUENCY (GHz)	AFE (dB/m)	FREQUENCY (GHz)	AFE (dB/m)
0.75	25.0	9.5	38.0
1.0	23.5	10.0	38.5
1.5	26.0	10.5	38.5
2.0	29.0	11.0	38.5
2.5	27.5	11.5	38.5
3.0	30.0	12.0	38.0
3.5	31.5	12.5	38.5
4.0	32.5	13.0	40.0
4.5	32.5	13.5	41.0
5.0	33.0	14.0	40.0
5.5	35.0	14.5	39.0
6.0	36.5	15.0	38.0
6.5	36.5	15.5	37.5
7.0	37.5	16.0	37.5
7.5	37.5	16.5	39.0
8.0	37.5	17.0	40.0
8.5	38.0	17.5	42.0
9.0	37.5	18.0	42.5

13.7 Correction Factors for Horn Antenna Model SWH-28 ITL # 1353

CALIBRATION DATA

3 m distance

Frequency, MHz	Measured antenna factor, dB/m ¹⁾
18000	32.4
18500	32.0
19000	32.3
19500	32.4
20000	32.3
20500	32.8
21000	32.8
21500	32.7
22000	33.1
22500	33.0
23000	33.1
23500	33.8
24000	33.5
24500	33.5
25000	33.8
25500	33.9
26000	34.2
26500	34.7

¹⁾ The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ V/m.