

## TEST REPORT

|                             |                                             |
|-----------------------------|---------------------------------------------|
| <b>Product</b>              | : Artificial Intelligence Terminal Computer |
| <b>Trade mark</b>           | : N/A                                       |
| <b>Model/Type reference</b> | : PP23TQA                                   |
| <b>Serial Number</b>        | : N/A                                       |
| <b>Report Number</b>        | : EED32M00211506                            |
| <b>FCC ID</b>               | : 2AWMI-PP23TQA                             |
| <b>Date of Issue</b>        | : Sep. 14, 2020                             |
| <b>Test Standards</b>       | : 47 CFR Part 15 Subpart E                  |
| <b>Test result</b>          | : PASS                                      |

Prepared for:

**Beijing Puppy Robotics Co., Ltd.**  
**Room 103, building 1, Yard 33, Yanqi Road,**  
**Huairou District, Beijing, China**

Prepared by:

**Centre Testing International Group Co., Ltd.**  
**Hongwei Industrial Zone, Bao'an 70 District,**  
**Shenzhen, Guangdong, China**

**TEL: +86-755-3368 3668**

**FAX: +86-755-3368 3385**

Compiled by:

*sunlight sun*

Reviewed by:

*Jok Yang*

Approved by:

*Sam Chuang*

Date:

Sep. 14, 2020



Check No.:3915617794

## 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | Sep. 14, 2020 | Original    |
|             |               |             |
|             |               |             |



### 3 Test Summary

| Test Item                         | Test Requirement                                    | Test method    | Result |
|-----------------------------------|-----------------------------------------------------|----------------|--------|
| DFS Detection Threshold           | 47 CFR Part 15 Subpart E Section 15.407 (h)(2)      | KDB 905462 D02 | PASS   |
| U-NII Detection Bandwidth         | 47 CFR Part 15 Subpart E Section 15.407 (h)(2)      | KDB 905462 D02 | N/A    |
| Channel Availability Check Time   | 47 CFR Part 15 Subpart E Section 15.407 (h)(2)(ii)  | KDB 905462 D02 | N/A    |
| Channel Move Time                 | 47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iii) | KDB 905462 D02 | PASS   |
| Channel Closing Transmission Time | 47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iii) | KDB 905462 D02 | PASS   |
| Non-Occupancy Period              | 47 CFR Part 15 Subpart E Section 15.407 (h)(2)(iv)  | KDB 905462 D02 | PASS   |
| Statistical Performance Check     | 47 CFR Part 15 Subpart E Section 15.407 (h)(2)      | KDB 905462 D02 | N/A    |

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application

## 4 Content

|                                                                                                             |    |
|-------------------------------------------------------------------------------------------------------------|----|
| <b>1 COVER PAGE</b>                                                                                         | 1  |
| <b>2 VERSION</b>                                                                                            | 2  |
| <b>3 TEST SUMMARY</b>                                                                                       | 3  |
| <b>4 CONTENT</b>                                                                                            | 4  |
| <b>5 GENERAL INFORMATION</b>                                                                                | 5  |
| 5.1 CLIENT INFORMATION                                                                                      | 5  |
| 5.2 GENERAL DESCRIPTION OF EUT                                                                              | 5  |
| 5.3 DESCRIPTION OF SUPPORT UNITS                                                                            | 7  |
| 5.4 TEST LOCATION                                                                                           | 7  |
| 5.5 APPLIED STANDARDS                                                                                       | 7  |
| <b>6 EQUIPMENT LIST</b>                                                                                     | 8  |
| <b>7 DFS TECHNICAL REQUIREMENTS AND RADAR TEST WAVEFORMS</b>                                                | 11 |
| 7.1 DFS OVERVIEW                                                                                            | 11 |
| 7.2 DFS DETECTION THRESHOLDS                                                                                | 12 |
| 7.3 RADAR TEST WAVEFORMS                                                                                    | 13 |
| 7.3.1 Short Pulse Radar Test Waveforms                                                                      | 13 |
| 7.3.2 Long Pulse Radar Test Waveforms                                                                       | 15 |
| <b>8 TEST REQUIREMENT TEST SETUP</b>                                                                        | 16 |
| <b>9 TEST CASE RESULTS</b>                                                                                  | 17 |
| 9.1 DFS DETECTION THRESHOLDS                                                                                | 17 |
| 9.2 IN-SERVICE MONITORING FOR CHANNEL MOVE TIME, CHANNEL CLOSING TRANSMISSION TIME AND NON-OCCUPANCY PERIOD | 20 |
| <b>DFS TEST SETUP</b>                                                                                       | 26 |
| <b>PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS</b>                                                            | 29 |

## 5 General Information

### 5.1 Client Information

|                          |                                                                             |
|--------------------------|-----------------------------------------------------------------------------|
| Applicant:               | Beijing Puppy Robotics Co., Ltd.                                            |
| Address of Applicant:    | Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing, China |
| Manufacturer:            | Beijing Puppy Robotics Co., Ltd.                                            |
| Address of Manufacturer: | Room 103, building 1, Yard 33, Yanqi Road, Huairou District, Beijing, China |
| Factory:                 | Zhangzhou Wanlida Technology Co., Ltd.                                      |
| Address of Factory:      | Wanlida Industrial Zone, Jingcheng Town, Nanjing, Zhangzhou, Fujian, China  |

### 5.2 General Description of EUT

|                       |                                                                                                                                                                                        |                                                                          |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Product Name:         | Artificial Intelligence Terminal Computer                                                                                                                                              |                                                                          |
| Model No. (EUT):      | PP23TQA                                                                                                                                                                                |                                                                          |
| Trade Mark:           | N/A                                                                                                                                                                                    |                                                                          |
| Type of Modulation:   | IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM)<br>IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM)<br>IEEE 802.11ac(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM) |                                                                          |
| Operating Frequency   | U-NII-1 & U-NII-2A: 5180-5320MHz<br>U-NII-2C:5500-5720MHz<br>U-NII-3:5745-5825MHz                                                                                                      |                                                                          |
| Test Power Grade:     | Default                                                                                                                                                                                |                                                                          |
| Test Software of EUT: | QRCT                                                                                                                                                                                   |                                                                          |
| Antenna Type:         | PIFA antenna                                                                                                                                                                           |                                                                          |
| Antenna Gain:         | BT/2.4GWIFI:4.1dBi<br>5G WIFI::4.1dBi                                                                                                                                                  |                                                                          |
| Function              | <input checked="" type="checkbox"/> SISO <input checked="" type="checkbox"/> 2x2 MIMO                                                                                                  |                                                                          |
| Sample Received Date: | Jul. 16, 2020                                                                                                                                                                          |                                                                          |
| Sample tested Date:   | Jul. 16, 2020 to Sep. 04, 2020                                                                                                                                                         |                                                                          |
| Power Supply:         | AC Adapter                                                                                                                                                                             | MODEL:AP065G-19300<br>INPUT:100-240V~50/60Hz 1.5A Max<br>OUTPUT:19V---3A |
| Test voltage:         | AC120V/60Hz                                                                                                                                                                            |                                                                          |
| Sample Received Date: | Jul. 16, 2020                                                                                                                                                                          |                                                                          |
| Sample tested Date:   | Jul. 16, 2020 to Sep. 04, 2020                                                                                                                                                         |                                                                          |

Operation Frequency each of channel

802.11a/802.11n/802.11ac(20MHz) Frequency/Channel Operations:

| U-NII-1 |                | U-NII-2A |                | U-NII-2C |                |
|---------|----------------|----------|----------------|----------|----------------|
| Channel | Frequency(MHz) | Channel  | Frequency(MHz) | Channel  | Frequency(MHz) |
| 36      | 5180           | 52       | 5260           | 100      | 5500           |
| 40      | 5200           | 56       | 5280           | 104      | 5520           |
| 44      | 5220           | 60       | 5300           | 108      | 5540           |
| 48      | 5240           | 64       | 5320           | 112      | 5560           |
| -       | -              | -        | -              | 116      | 5580           |
| -       | -              | -        | -              | 120      | 5600           |
| -       | -              | -        | -              | 124      | 5620           |
| -       | -              | -        | -              | 128      | 5640           |
| -       | -              | -        | -              | 132      | 5660           |
| -       | -              | -        | -              | 136      | 5680           |
| -       | -              | -        | -              | 140      | 5700           |

802.11n/802.11ac(40MHz) Frequency/Channel Operations:

| U-NII-1 |                | U-NII-2A |                | U-NII-2C |                |
|---------|----------------|----------|----------------|----------|----------------|
| Channel | Frequency(MHz) | Channel  | Frequency(MHz) | Channel  | Frequency(MHz) |
| 38      | 5190           | 54       | 5270           | 102      | 5510           |
| 46      | 5230           | 62       | 5310           | 110      | 5550           |
| -       | -              | -        | -              | 118      | 5590           |
| -       | -              | -        | -              | 126      | 5630           |
| -       | -              | -        | -              | 134      | 5670           |
| -       | -              | -        | -              | 142      | 5710           |

802.11ac(80MHz) Frequency/Channel Operations:

| U-NII-1 |                | U-NII-2A |                | U-NII-2C |                |
|---------|----------------|----------|----------------|----------|----------------|
| Channel | Frequency(MHz) | Channel  | Frequency(MHz) | Channel  | Frequency(MHz) |
| 42      | 5210           | 58       | 5290           | 106      | 5530           |
| -       | -              | -        | -              | 122      | 5610           |
| -       | -              | -        | -              | 138      | 5690           |

### 5.3 Description of Support Units

The EUT has been tested with associated equipment below.

| Associated equipment name | Manufacture | model     | S/N serial number | Supplied by | Certification |
|---------------------------|-------------|-----------|-------------------|-------------|---------------|
| AE1 Notebook              | DELL        | DELL 3490 | D245DX2           | DELL        | CE&FCC        |

### 5.4 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

### 5.5 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC CFR47 Part 15E (2018) Unlicensed National Information Infrastructure Devices

FCC KDB 905462 D02UNII DFS Compliance Procedures New Rules v02

FCC KDB 905462 D03 Client Without DFS New Rules v01r02.

## 6 Equipment List

| RF test system                   |               |                              |               |                          |                            |
|----------------------------------|---------------|------------------------------|---------------|--------------------------|----------------------------|
| Equipment                        | Manufacturer  | Mode No.                     | Serial Number | Cal. Date (mm-dd-yyyy)   | Cal. Due date (mm-dd-yyyy) |
| Spectrum Analyzer                | Keysight      | N9010A                       | MY54510339    | 02-17-2020               | 02-16-2021                 |
| Signal Generator                 | Keysight      | N5182B                       | MY53051549    | 02-17-2020               | 02-16-2021                 |
| Temperature/ Humidity Indicator  | biaozhi       | HM10                         | 1804186       | 07-26-2019<br>06-29-2020 | 07-25-2020<br>06-28-2021   |
| High-pass filter                 | Sinoscite     | FL3CX03WG18N<br>M12-0398-002 | ---           | ---                      | ---                        |
| High-pass filter                 | MICRO-TRONICS | SPA-F-63029-4                | ---           | ---                      | ---                        |
| DC Power                         | Keysight      | E3642A                       | MY56376072    | 02-17-2020               | 02-16-2021                 |
| PC-1                             | Lenovo        | R4960d                       | ---           | ---                      | ---                        |
| BT&WI-FI Automatic control       | R&S           | OSP120                       | 101374        | 02-17-2020               | 02-16-2021                 |
| RF control unit                  | JS Tonscend   | JS0806-2                     | 158060006     | 02-17-2020               | 02-16-2021                 |
| BT&WI-FI Automatic test software | JS Tonscend   | JS1120-3                     | ---           | ---                      | ---                        |

| Conducted disturbance Test      |              |           |               |                        |                            |
|---------------------------------|--------------|-----------|---------------|------------------------|----------------------------|
| Equipment                       | Manufacturer | Model No. | Serial Number | Cal. date (mm-dd-yyyy) | Cal. Due date (mm-dd-yyyy) |
| Receiver                        | R&S          | ESCI      | 100435        | 04-28-2020             | 04-27-2021                 |
| Temperature/ Humidity Indicator | Defu         | TH128     | /             | ---                    | ---                        |
| LISN                            | R&S          | ENV216    | 100098        | 03-05-2020             | 03-04-2021                 |
| Barometer                       | changchun    | DYM3      | 1188          | ---                    | ---                        |

| 3M Semi/full-anechoic Chamber    |                  |                   |               |                          |                            |
|----------------------------------|------------------|-------------------|---------------|--------------------------|----------------------------|
| Equipment                        | Manufacturer     | Model No.         | Serial Number | Cal. date (mm-dd-yyyy)   | Cal. Due date (mm-dd-yyyy) |
| 3M Chamber & Accessory Equipment | TDK              | SAC-3             | ---           | 05-24-2019               | 05-23-2022                 |
| TRILOG Broadband Antenna         | Schwarzbeck      | VULB9163          | 9163-618      | 07-26-2019<br>05-16-2020 | 07-25-2020<br>05-15-2021   |
| Loop Antenna                     | Schwarzbeck      | FMZB 1519B        | 1519B-076     | 04-25-2018               | 04-24-2021                 |
| Receiver                         | R&S              | ESCI7             | 100938-003    | 10-21-2019               | 10-20-2020                 |
| Multi device Controller          | maturo           | NCD/070/107 11112 | ---           | ---                      | ---                        |
| Temperature/Humidity Indicator   | Shanghai qixiang | HM10              | 1804298       | 07-26-2019<br>06-29-2020 | 07-25-2020<br>06-28-2021   |
| Cable line                       | Fulai(7M)        | SF106             | 5219/6A       | ---                      | ---                        |
| Cable line                       | Fulai(6M)        | SF106             | 5220/6A       | ---                      | ---                        |
| Cable line                       | Fulai(3M)        | SF106             | 5216/6A       | ---                      | ---                        |
| Cable line                       | Fulai(3M)        | SF106             | 5217/6A       | ---                      | ---                        |

| 3M full-anechoic Chamber        |              |                   |               |                        |                            |
|---------------------------------|--------------|-------------------|---------------|------------------------|----------------------------|
| Equipment                       | Manufacturer | Model No.         | Serial Number | Cal. date (mm-dd-yyyy) | Cal. Due date (mm-dd-yyyy) |
| RSE Automatic test software     | JS Tonscend  | JS36-RSE          | 10166         | ---                    | ---                        |
| Receiver                        | Keysight     | N9038A            | MY57290136    | 03-05-2020             | 03-04-2021                 |
| Spectrum Analyzer               | Keysight     | N9020B            | MY57111112    | 03-05-2020             | 03-04-2021                 |
| Spectrum Analyzer               | Keysight     | N9030B            | MY57140871    | 03-05-2020             | 03-04-2021                 |
| TRILOG Broadband Antenna        | Schwarzbeck  | VULB 9163         | 9163-1148     | 04-25-2018             | 04-24-2021                 |
| Horn Antenna                    | Schwarzbeck  | BBHA 9170         | 9170-832      | 04-25-2018             | 04-24-2021                 |
| Horn Antenna                    | ETS-LINDGREN | 3117              | 00057407      | 07-10-2018             | 07-09-2021                 |
| Preamplifier                    | EMCI         | EMC184055SE       | 980596        | 05-20-2020             | 05-19-2021                 |
| Preamplifier                    | EMCI         | EMC001330         | 980563        | 04-22-2020             | 04-21-2021                 |
| Preamplifier                    | JS Tonscend  | 980380            | EMC051845 SE  | 01-09-2020             | 01-08-2021                 |
| Temperature/ Humidity Indicator | biaozhi      | GM1360            | EE1186631     | 04-27-2020             | 04-26-2021                 |
| Fully Anechoic Chamber          | TDK          | FAC-3             | ---           | 01-17-2018             | 01-16-2021                 |
| Filter bank                     | JS Tonscend  | JS0806-F          | 188060094     | 04-10-2018             | 04-09-2021                 |
| Cable line                      | Times        | SFT205-NMSM-2.50M | 394812-0001   | ---                    | ---                        |
| Cable line                      | Times        | SFT205-NMSM-2.50M | 394812-0002   | ---                    | ---                        |
| Cable line                      | Times        | SFT205-NMSM-2.50M | 394812-0003   | ---                    | ---                        |
| Cable line                      | Times        | SFT205-NMSM-2.50M | 393495-0001   | ---                    | ---                        |
| Cable line                      | Times        | EMC104-NMNM-1000  | SN160710      | ---                    | ---                        |
| Cable line                      | Times        | SFT205-NMSM-3.00M | 394813-0001   | ---                    | ---                        |
| Cable line                      | Times        | SFT205-NMNM-1.50M | 381964-0001   | ---                    | ---                        |
| Cable line                      | Times        | SFT205-NMSM-7.00M | 394815-0001   | ---                    | ---                        |
| Cable line                      | Times        | HF160-KMKM-3.00M  | 393493-0001   | ---                    | ---                        |

## 7 DFS Technical Requirements and Radar Test Waveforms

### 7.1 DFS Overview

**Table 1 Applicability of DFS Requirements Prior to Use of a Channel**

| Requirement                     | Operational Mode |                                |                             |
|---------------------------------|------------------|--------------------------------|-----------------------------|
|                                 | Master           | Client without Radar Detection | Client with Radar Detection |
| Non-Occupancy Period            | Yes              | Not required                   | Yes                         |
| DFS Detection Threshold         | Yes              | Not required                   | Yes                         |
| Channel Availability Check Time | Yes              | Not required                   | Not required                |
| U-NII Detection Bandwidth       | Yes              | Not required                   | Yes                         |

**Table 2 Applicability of DFS requirements during normal operation**

| Requirement                       | Operational Mode                             |                                |
|-----------------------------------|----------------------------------------------|--------------------------------|
|                                   | Master Device or Client with Radar Detection | Client without Radar Detection |
| DFS Detection Threshold           | Yes                                          | Not required                   |
| Channel Closing Transmission Time | Yes                                          | Yes                            |
| Channel Move Time                 | Yes                                          | Yes                            |
| U-NII Detection Bandwidth         | Yes                                          | Not required                   |

|                                                                   |                                              |                                                      |
|-------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| Additional requirements for devices with multiple bandwidth modes | Master Device or Client with Radar Detection | Client without Radar Detection                       |
| U-NII Detection Bandwidth and Statistical Performance Check       | All BW modes must be tested                  | Not required                                         |
| Channel Move Time and Channel Closing Transmission Time           | Test using widest BW mode available          | Test using the widest BW mode available for the link |
| All other tests                                                   | Any single BW mode                           | Not required                                         |

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

## 7.2 DFS Detection Thresholds

**Table 3 DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection**

| Maximum Transmit Power                                                       | Value(See Notes 1, 2 and 3) |
|------------------------------------------------------------------------------|-----------------------------|
| ≥ 200 milliwatt                                                              | -64 dBm                     |
| < 200 milliwatt and power spectral density < 10 dBm/MHz                      | -62 dBm                     |
| EIRP < 200 milliwatt that do not meet the power spectral density requirement | -64 dBm                     |

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.  
 Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.  
 Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

**Table 4 DFS Response Requirement Values**

| Parameter                         | Value                                                                                                   |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|
| Non- occupancy period             | Minimum 30 minutes                                                                                      |
| Channel Availability Check Time   | 60 seconds                                                                                              |
| Channel Move Time                 | 10 seconds<br>See Note 1                                                                                |
| Channel Closing Transmission Time | 200 milliseconds + an aggregate of 60milliseconds over remaining 10 second period.<br>See Notes 1 and 2 |
| U-NII Detection Bandwidth         | Minimum 100% of the UNII99% transmission power bandwidth<br>See Note 3                                  |

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.  
 Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.  
 Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

## 7.3 Radar Test Waveforms

### 7.3.1 Short Pulse Radar Test Waveforms

Table 5 – Short Pulse Radar Test Waveforms

| Radar Type                  | Pulse Width (μsec) | PRI (μsec)                                                                                                                                                    | Number of Pulses                                                                                                                      | Minimum Percentage of Successful Detection | Minimum Number of Trials |
|-----------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|
| 0                           | 1                  | 1428                                                                                                                                                          | 18                                                                                                                                    | See Note 1                                 | See Note 1               |
| 1                           | 1                  | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a                                                                     | Roundup $\left\lceil \left( \frac{1}{360} \right) \cdot \left( \frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}} \right) \right\rceil$ | 60%                                        | 30                       |
|                             |                    | Test B: 15 unique PRI values randomly selected within the range of 518-3066 μsec, with a minimum increment of 1 μsec, excluding PRI values selected in Test A |                                                                                                                                       |                                            |                          |
| 2                           | 1-5                | 150-230                                                                                                                                                       | 23-29                                                                                                                                 | 60%                                        | 30                       |
| 3                           | 6-10               | 200-500                                                                                                                                                       | 16-18                                                                                                                                 | 60%                                        | 30                       |
| 4                           | 11-20              | 200-500                                                                                                                                                       | 12-16                                                                                                                                 | 60%                                        | 30                       |
| Aggregate (Radar Types 1-4) |                    |                                                                                                                                                               |                                                                                                                                       | 80%                                        | 120                      |

**Note 1:** Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 μsec is selected, the number of pulses

would be Roundup  $\left\lceil \left( \frac{1}{360} \right) \cdot \left( \frac{19 \cdot 10^6}{3066} \right) \right\rceil = \text{Round up } \{17.2\} = 18$ .

Table 5a - Pulse Repetition Intervals Values for Test A

| Pulse Repetition Frequency Number | Pulse Repetition Frequency (Pulses Per Second) | Pulse Repetition Interval (Microseconds) |
|-----------------------------------|------------------------------------------------|------------------------------------------|
| 1                                 | 1930.5                                         | 518                                      |
| 2                                 | 1858.7                                         | 538                                      |
| 3                                 | 1792.1                                         | 558                                      |
| 4                                 | 1730.1                                         | 578                                      |
| 5                                 | 1672.2                                         | 598                                      |
| 6                                 | 1618.1                                         | 618                                      |
| 7                                 | 1567.4                                         | 638                                      |
| 8                                 | 1519.8                                         | 658                                      |
| 9                                 | 1474.9                                         | 678                                      |
| 10                                | 1432.7                                         | 698                                      |
| 11                                | 1392.8                                         | 718                                      |
| 12                                | 1355                                           | 738                                      |
| 13                                | 1319.3                                         | 758                                      |
| 14                                | 1285.3                                         | 778                                      |
| 15                                | 1253.1                                         | 798                                      |
| 16                                | 1222.5                                         | 818                                      |
| 17                                | 1193.3                                         | 838                                      |
| 18                                | 1165.6                                         | 858                                      |
| 19                                | 1139                                           | 878                                      |
| 20                                | 1113.6                                         | 898                                      |
| 21                                | 1089.3                                         | 918                                      |
| 22                                | 1066.1                                         | 938                                      |
| 23                                | 326.2                                          | 3066                                     |

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

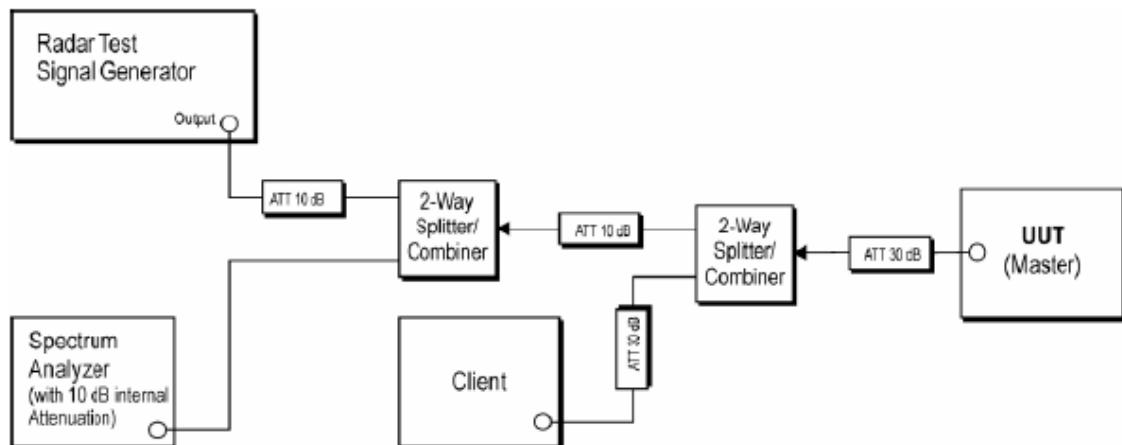
| Radar Type                                                     | Number of Trials | Number of Successful Detections | Minimum Percentage of Successful Detection |
|----------------------------------------------------------------|------------------|---------------------------------|--------------------------------------------|
| 1                                                              | 35               | 29                              | 82.9%                                      |
| 2                                                              | 30               | 18                              | 60%                                        |
| 3                                                              | 30               | 27                              | 90%                                        |
| 4                                                              | 50               | 44                              | 88%                                        |
| $\text{Aggregate } (82.9\% + 60\% + 90\% + 88\%) / 4 = 80.2\%$ |                  |                                 |                                            |

### 7.3.2 Long Pulse Radar Test Waveforms

Table 6 – Long Pulse Radar Test Waveform

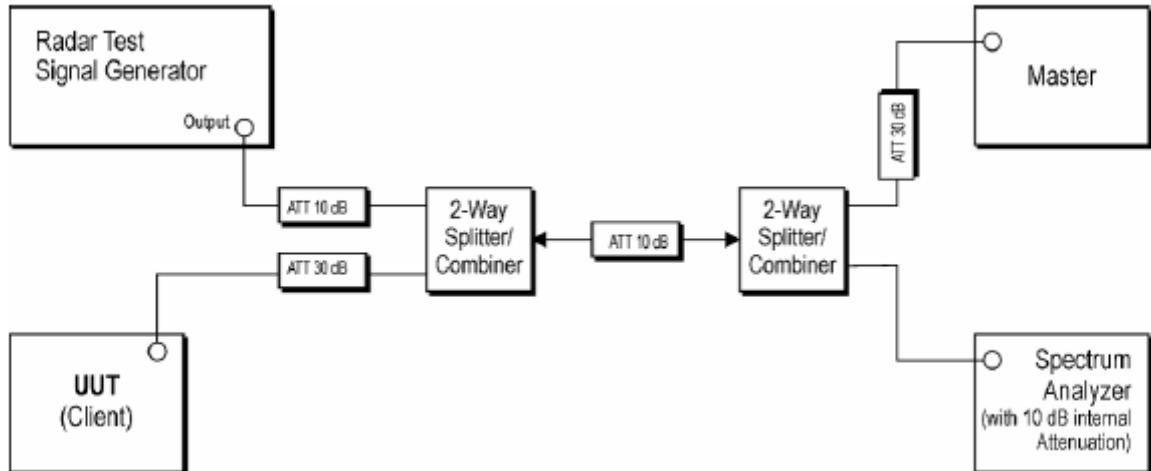
| Radar Type | Pulse Width (μsec) | Chirp Width (MHz) | PRI (μsec) | Number of Pulses per Burst | Number of Bursts | Minimum Percentage of Successful Detection | Minimum Number of Trials |
|------------|--------------------|-------------------|------------|----------------------------|------------------|--------------------------------------------|--------------------------|
| 5          | 50-100             | 5-20              | 1000-2000  | 1-3                        | 8-20             | 80%                                        | 30                       |

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.


Table 7 – Frequency Hopping Radar Test Waveform

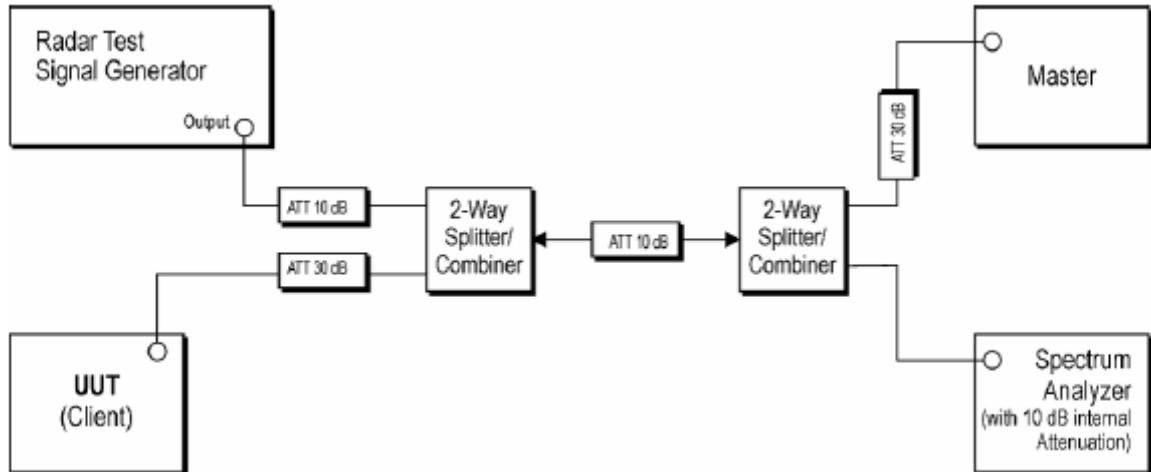
| Radar Type | Pulse Width (μsec) | PRI (μsec) | Pulses per Hop | Hopping Rate (kHz) | Hopping Sequence Length (msec) | Minimum Percentage of Successful Detection | Minimum Number of Trials |
|------------|--------------------|------------|----------------|--------------------|--------------------------------|--------------------------------------------|--------------------------|
| 6          | 1                  | 333        | 9              | 0.333              | 300                            | 70%                                        | 30                       |

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.


## 8 Test Requirement Test setup

### Setup for Master with injection at the Master




Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master.

### Setup for Client with injection at the Master



Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

### Setup for Client with injection at the Client



Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Client.

## 9 Test Case Results

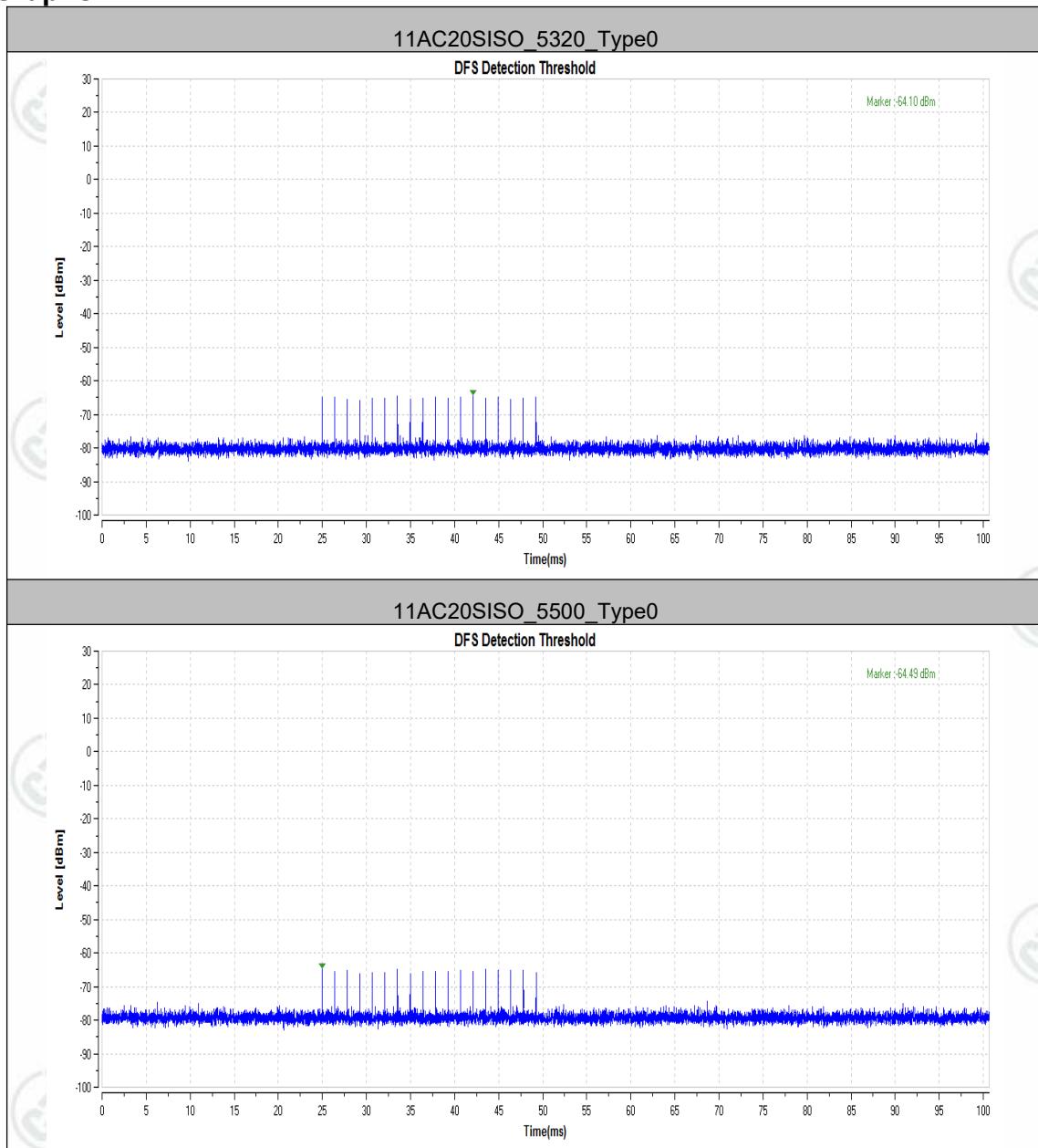
### 9.1 DFS Detection Thresholds

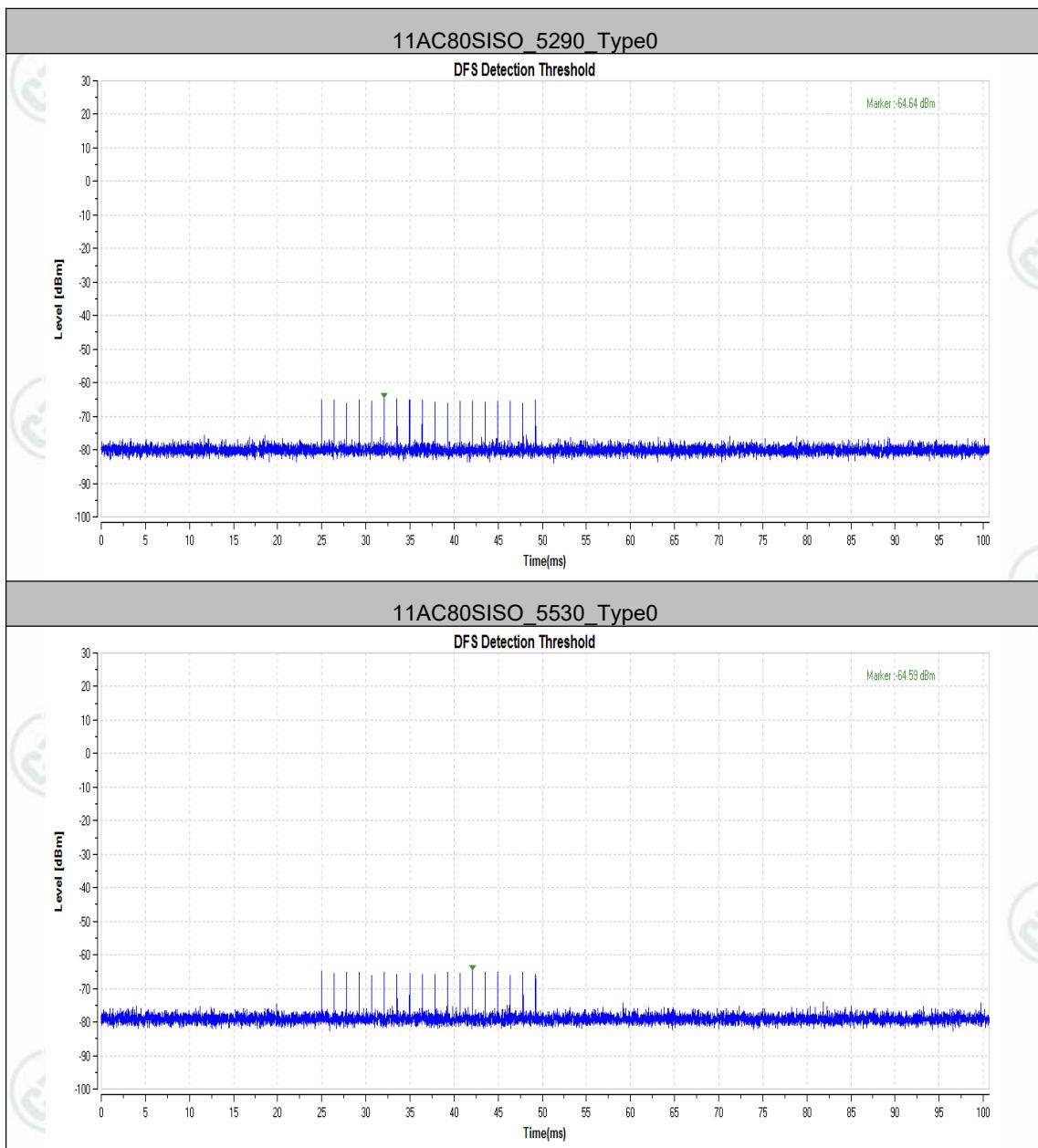
#### Ambient condition

| Temperature | Relative humidity | Pressure |
|-------------|-------------------|----------|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |

#### Methods of Measurement

Client with injection at the Master.


For a detection threshold level of -64dBm, the required signal strength at EUT antenna location is -64dBm, the tested level is lower than required level hence it provides margin to the limit.


| Frequency of Calibration |                   |
|--------------------------|-------------------|
| Bandwidth                | Central Frequency |
| 20MHz                    | 5300MHz           |
|                          | 5500MHz           |
| 80MHz                    | 5290MHz           |
|                          | 5610MHz           |

### Test Result

| Test Mode  | Channel | Radar Type | Result | Limit[dbm] | Verdict |
|------------|---------|------------|--------|------------|---------|
| 11AC20SISO | 5320    | Type0      | -64.10 | -57.00     | PASS    |
|            | 5500    | Type0      | -64.49 | -57.00     | PASS    |
| 11AC80SISO | 5290    | Type0      | -64.64 | -57.00     | PASS    |
|            | 5530    | Type0      | -64.59 | -57.00     | PASS    |

### Test Graphs





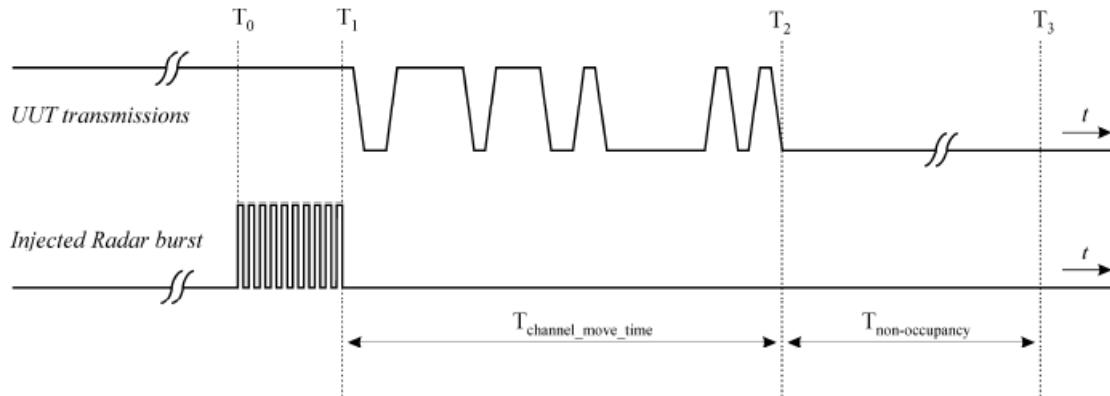
## 9.2 In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

### Ambient condition

| Temperature | Relative humidity | Pressure |
|-------------|-------------------|----------|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |

### Methods of Measurement

These tests define how the following DFS parameters are verified during In-Service Monitoring;


- Channel Closing Transmission Time
- Channel Move Time
- Non-Occupancy Period

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device (In- Service Monitoring).

1. One frequency will be chosen from the Operating Channels of the EUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.
2. In case the EUT is a U-NII device operating as a Client Device (with or without DFS), a U-NII device operating as a Master Device will be used to allow the EUT (Client device) to Associate with the Master Device. In case the EUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the EUT (Master). In both cases for conducted tests, the Radar Waveform generator will be connected to the Master Device. For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
3. Stream the channel loading test file from the Master Device to the Client Device on the test Channel for the entire period of the test.
4. At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
5. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time.
6. When operating as a Master Device, monitor the EUT for more than 30 minutes following instant T2 to verify that the EUT does not resume any transmissions on this Channel. Perform this test once and

record the measurement result.

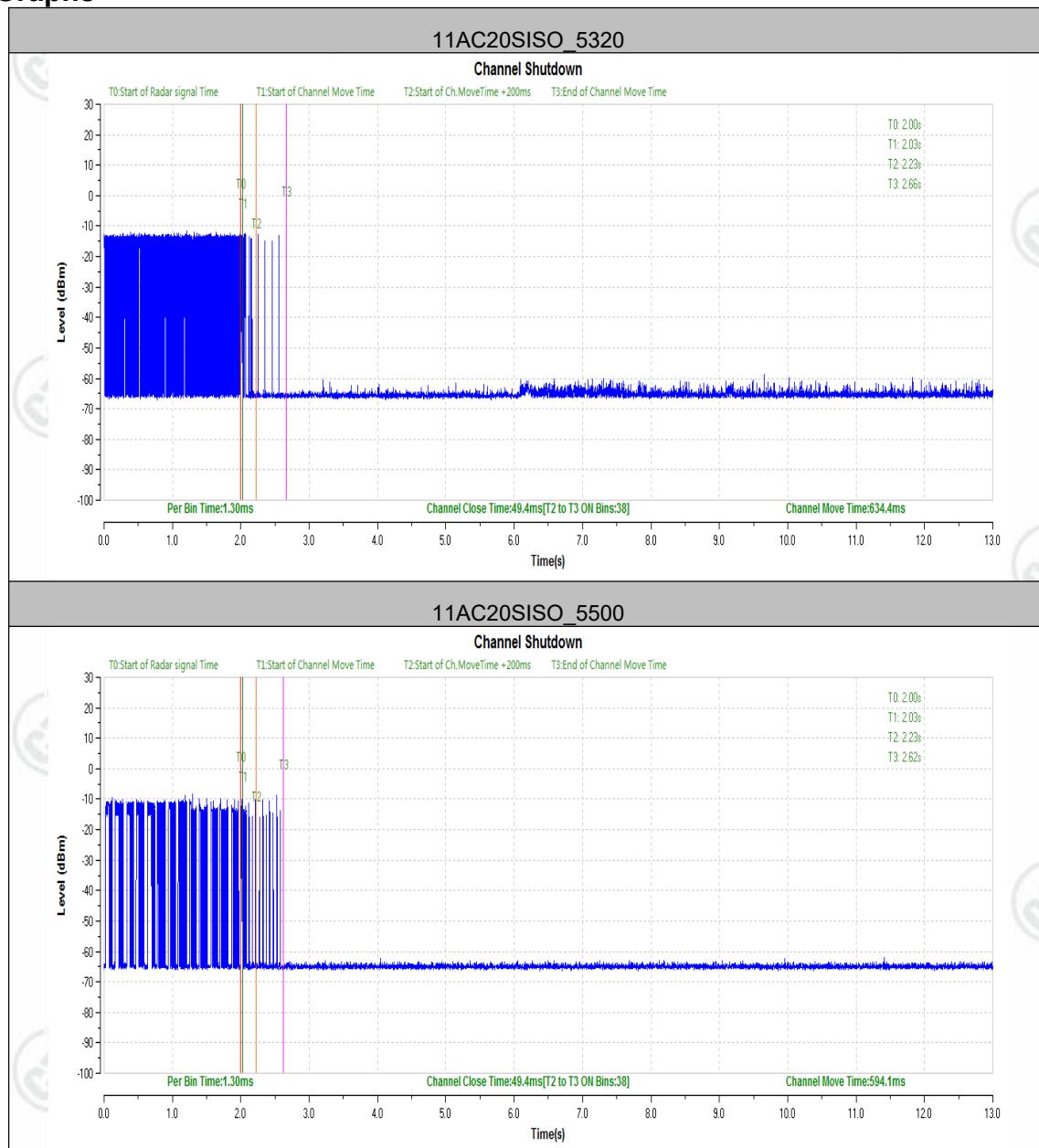
7. In case the EUT is a U-NII device operating as a Client Device with In-Service Monitoring, perform steps 1 to 6.

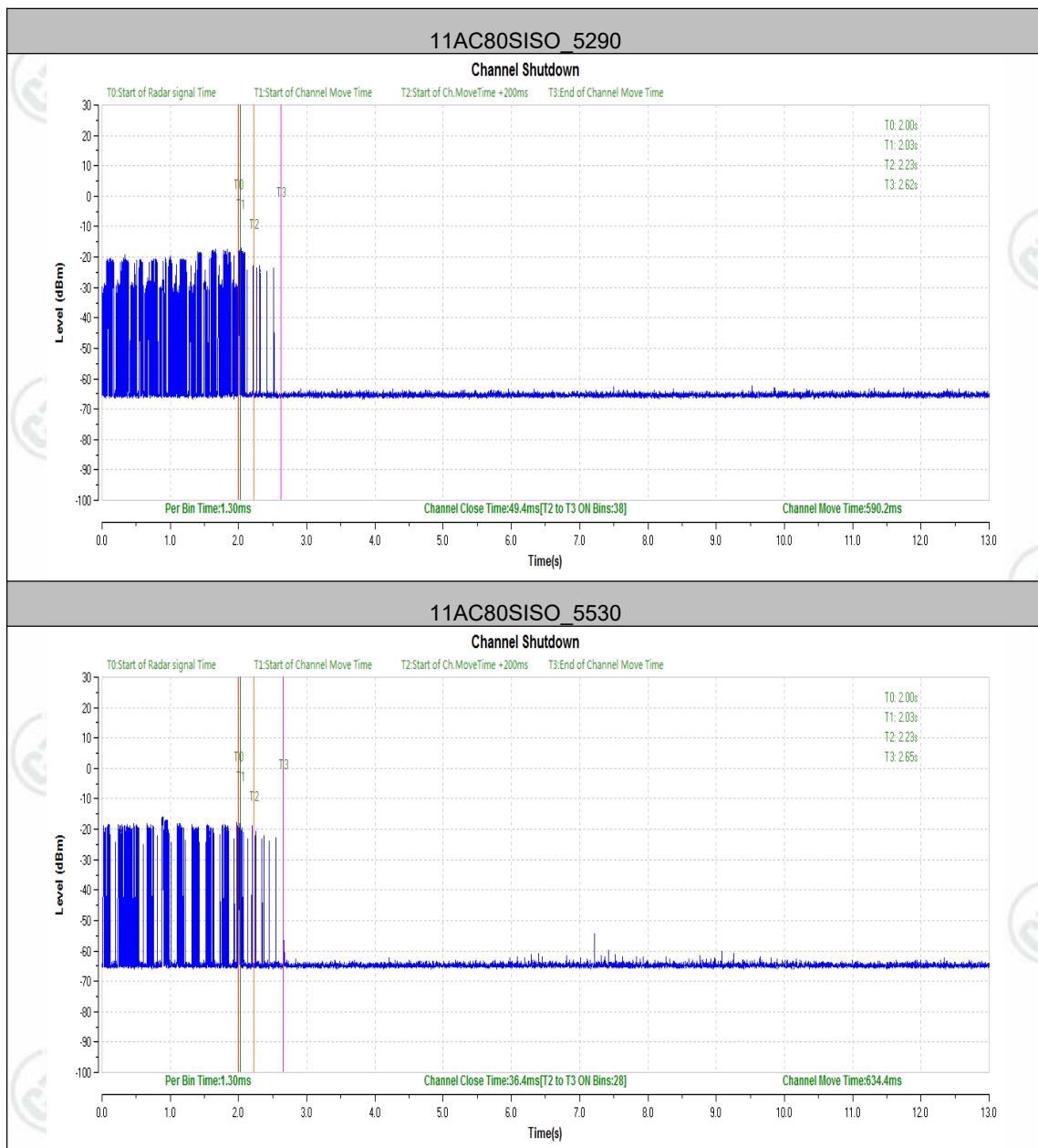


Example of Channel Closing Transmission Time & Channel Closing Time

**Limit**

|                                   |                                                 |
|-----------------------------------|-------------------------------------------------|
| Channel Move Time                 | $\leq 10s$                                      |
| Channel Closing Transmission Time | $\leq 200ms + 60ms$ (over remaining 10s period) |
| Non-Occupancy Period              | $\geq 30min$                                    |

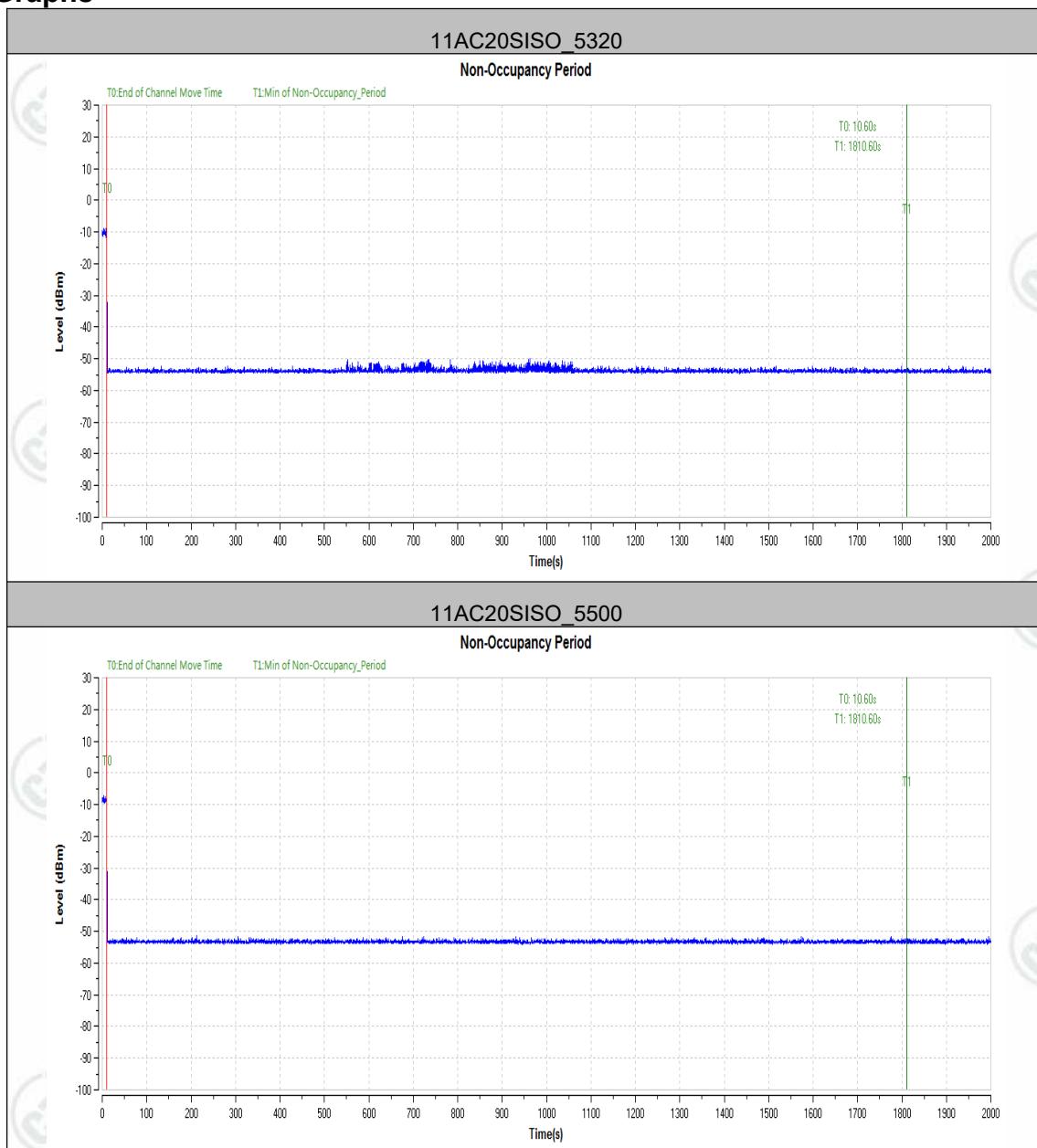

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

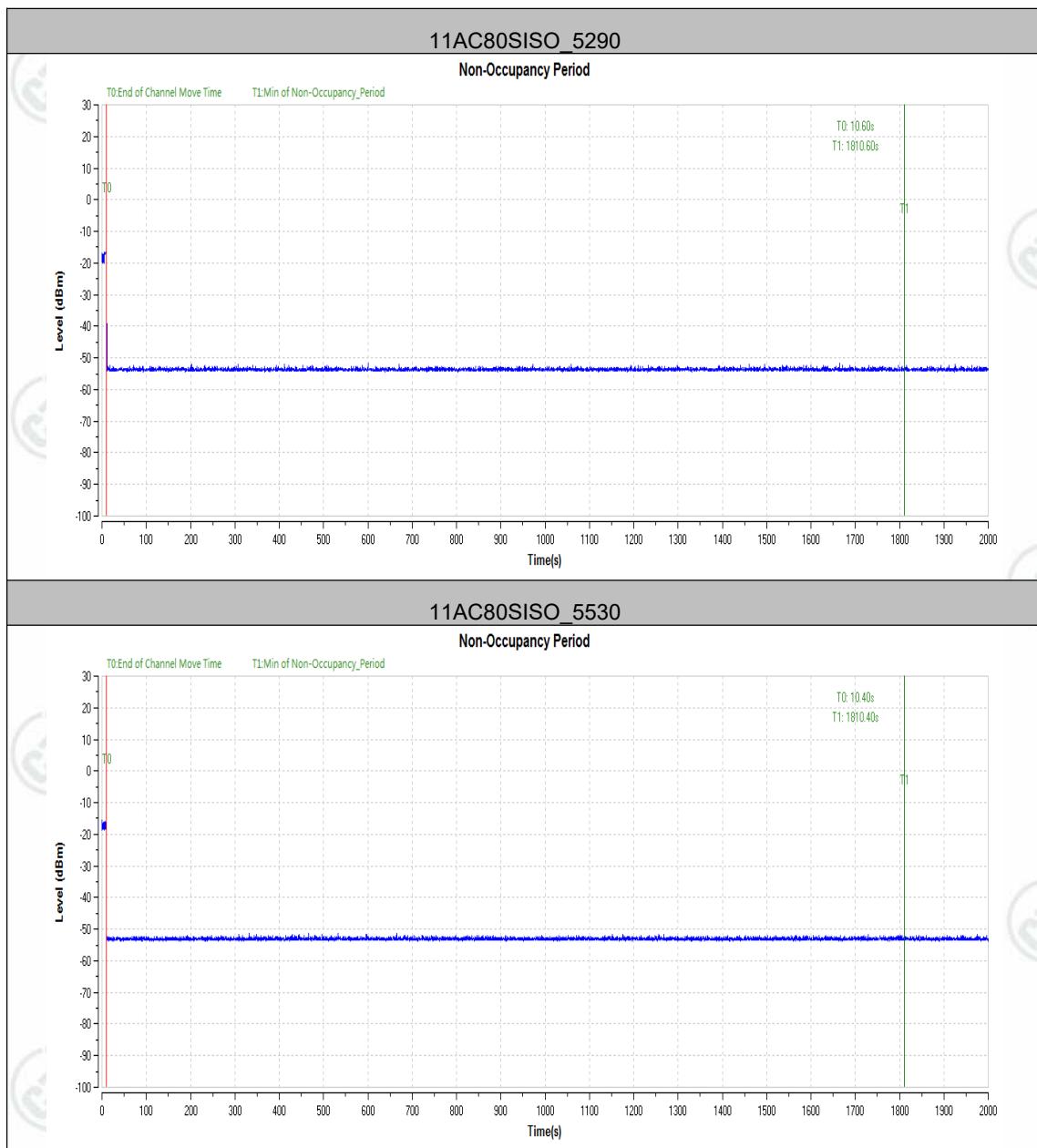

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

## Test Result

| Test Mode  | Channel | CCT[ms] | Limit[ms] | CMT[ms] | Limit[ms] | Verdict |
|------------|---------|---------|-----------|---------|-----------|---------|
| 11AC20SISO | 5320    | 49.4    | 60        | 634.4   | 10000     | PASS    |
|            | 5500    | 49.4    | 60        | 594.1   | 10000     | PASS    |
| 11AC80SISO | 5290    | 49.4    | 60        | 590.2   | 10000     | PASS    |
|            | 5530    | 36.4    | 60        | 634.4   | 10000     | PASS    |

## Test Graphs



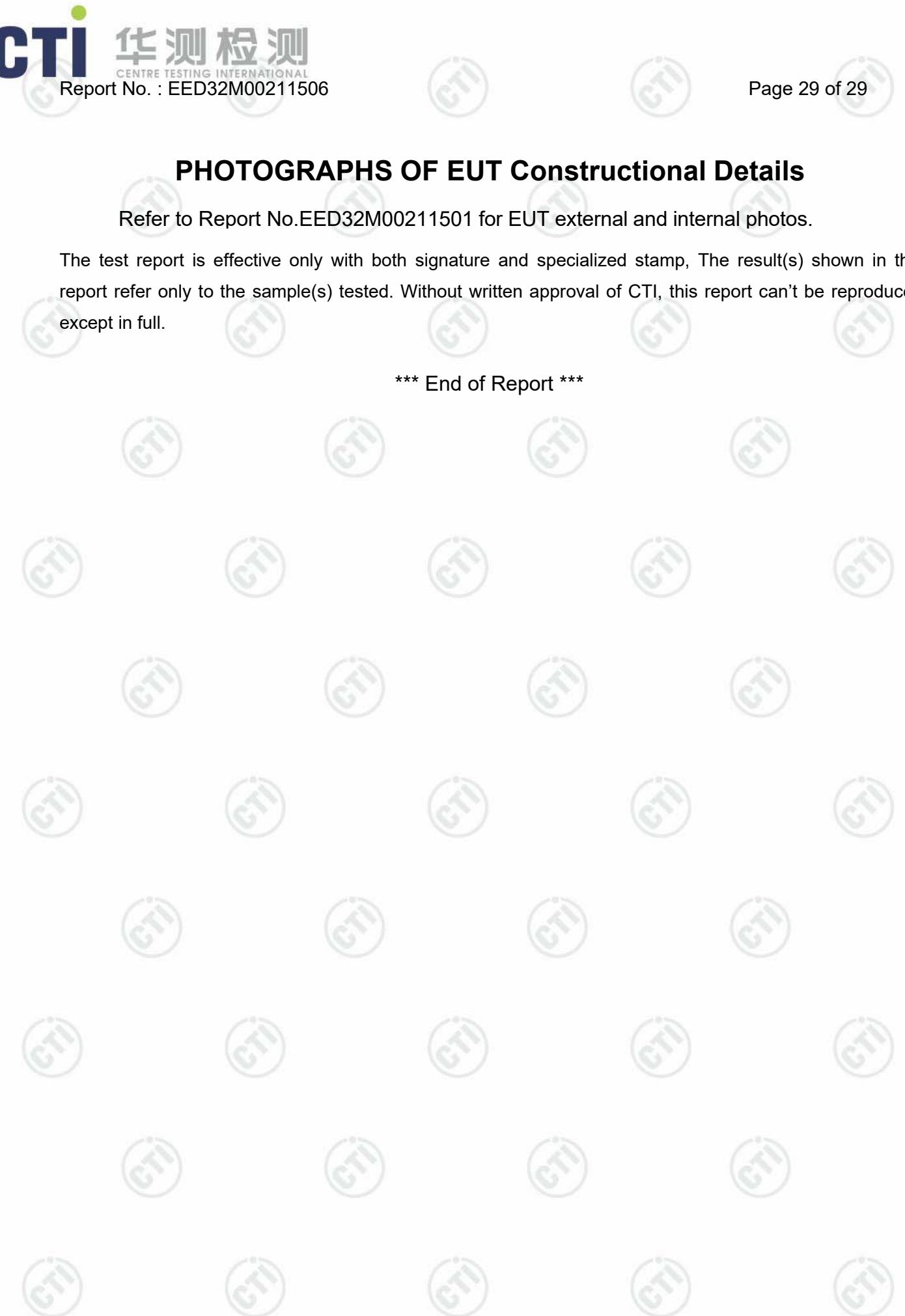




## Test Result

| Test Mode  | Channel | Result         | Limit[s]    | Verdict |
|------------|---------|----------------|-------------|---------|
| 11AC20SISO | 5320    | see test graph | $\geq 1800$ | PASS    |
|            | 5500    | see test graph | $\geq 1800$ | PASS    |
| 11AC80SISO | 5290    | see test graph | $\geq 1800$ | PASS    |
|            | 5530    | see test graph | $\geq 1800$ | PASS    |

## Test Graphs






## PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32M00211501 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

\*\*\* End of Report \*\*\*

