

Test Report Serial Number: Test Report Date: Project Number: 45461887 R2.0 22 August 2023

1635

SAR Test Report - Class IV Permissive Change

Applicant:

Clarius Mobile Health Corp 205-2980 Virtual Way Vancouver, BC, V5M 4X3 Canada

FCC ID:

2AWLS-CUSMOD1

Product Model Number / HVIN

CUSMOD1

Maximum	Reported 1g	SAR		
FCC	DTS BODY/HEAD:	<0.1		
FCC	NII BODY/HEAD:	<0.1	W/kg	
Ge	neral Pop. Limit:	1.60		
Maximum	Reported 10g	g SAR		
FCC	DTS Extremity:	0.41		
FCC	NII Extremity:	0.28	W/kg	
Ge	neral Pop. Limit:	4.00		

Product Name / PMN

Clarius Module

In Accordance With:

FCC 47 CFR §2.1093

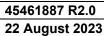
Radiofrequency Radiation Exposure Evaluation: Portable Devices

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8

Canada



IC Registration 3874A

FCC Registration: CA3874

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

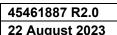
	tents

1.0 DOCUMENT CONTROL	4
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 SCOPE OF EVALUATION	6
4.0 NORMATIVE REFERENCES	8
5.0 STATEMENT OF COMPLIANCE	9
6.0 SAR MEASUREMENT SYSTEM	10
7.0 RF CONDUCTED POWER MEASUREMENT	11
Table 7.1 Conducted Power Measurements	11
8.0 NUMBER OF TEST CHANNELS (N _C)	12
9.0 ACCESSORIES EVALUATED	12
10.0 SAR MEASUREMENT SUMMARY	13
Table 10.1: Measured Results – Extremity, 2.4 and 5GHz Bands	13
TABLE 10.2: MEASURED RESULTS – BODY 2.4 AND 5GHz BANDS	
11.0 SCALING OF MAXIMUM MEASURED SAR	
Table 11.1 SAR Scaling, Extremity	15
12.0 SAR EXPOSURE LIMITS	17
Table 12.0 Exposure Limits	17
13.0 DETAILS OF SAR EVALUATION	18
13.1 Day Log	
13.2 DUT SETUP AND CONFIGURATION	
13.4 GENERAL PROCEDURES AND REPORT	19
13.5 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK	
13.6 SCAN RESOLUTION 100MHz to 2GHz	
13.8 SCAN RESOLUTION 2GHZ TO 6GHZ.	
14.0 MEASUREMENT UNCERTAINTIES	22
Table 14.0 Measurement Uncertainty	22
15.0 FLUID DIELECTRIC PARAMETERS	23
Table 15.1 Fluid Dielectric Parameters 2450MHz HEAD TSL	23
TABLE 15.2 FLUID DIELECTRIC PARAMETERS 5250MHz HEAD TSL	
TABLE 15.3 FLUID DIELECTRIC PARAMETERS 5750MHz HEAD TSL	
	_
TABLE 16.1 SYSTEM VERIFICATION RESULTS 2450MHz HEAD TSL	
Table 16.3 System Verification Results 5750MHz HEAD TSL	
17.0 SYSTEM VALIDATION SUMMARY	28
Table 17.1 System Validation Summary	28
18.0 MEASUREMENT SYSTEM SPECIFICATIONS	29
Table 18.1 Measurement System Specifications	20

Test Report S/N: Test Report Issue Date: 22 August 2023

45461887 R2.0

19.0 TEST EQUIPMENT LIST	31
TABLE 19.1 EQUIPMENT LIST AND CALIBRATION	31
20.0 FLUID COMPOSITION	32
TABLE 20.0 FLUID COMPOSITION 2450MHz HEAD TSL	
APPENDIX A – SYSTEM VERIFICATION PLOTS	33
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR	39
APPENDIX C - SETUP PHOTOS	43
FIGURE C.1 – EXTREMITY FRONT FIGURE C.2 – EXTREMITY BACK FIGURE C.3 – EXTREMITY LEFT FIGURE C.4 – EXTREMITY RIGHT FIGURE C.5 – EXTREMITY TOP FIGURE C.6 – BODY TIP	44 45 46
APPENDIX D – DUT AND ACCESSORY PHOTOS	49
FIGURE D.1 – PAL HD3 FRONT FIGURE D.2 – PAL HD3 BACK FIGURE D.3 – PAL HD3 LEFT FIGURE D.4 – PAL HD3 RIGHT FIGURE D.5 – PAL HD3 TOP FIGURE D.6 – PAL HD3 TIP FIGURE D.7 – FAN (P/N: FANHD3012109)	
FIGURE D.8 – PAL HD3 WITH FAN - TOP	52
APPENDIX E – PROBE CALIBRATION	
APPENDIX F – DIPOLE CALIBRATION	54
APPENDIX G - PHANTOM	55



Test Report S/N: Test Report Issue Date: 22 August 2023

45461887 R2.0

1.0 DOCUMENT CONTROL

	Revision History											
Sar	nples Tested By:	Ben Hewson, Trevor Whillock	Dat	e(s) of Evaluation:	26 Jun -28 Jun, 2023							
Report Prepared By:		Art Voss, P.Eng.	Re	port Reviewed By:	Ben Hewson							
Report	Door	winting of Povinion	Revised	Revised	Revision Date							
Revision	Desc	ription of Revision	Section	Ву	Revision Date							
0.1		Draft	n/a	Ben Hewson	13 July 2023							
1.0		Initial Release	n/a	Ben Hewson	17 July 2023							
2.0	Revis	sed DUT Information	C, 2	Art Voss	22 August 2023							
2.0	Include	ed Head Configuration	10	AIT V055	22 August 2023							

2.0 CLIENT AND DEVICE INFORMATION

Client Information									
Applicant Name	Clarius Mobile Health Corp								
	205-2980 Virtual Way								
Applicant Address	Vancouver, BC, V5M 4X3								
	Canada								
	DUT Information								
Device Identifier(s):	FCC ID: 2AWLS-CUSMOD1								
Module Product Marketing Name / PMN:	Clarius Module								
Module Model Number / HVIN:	CUSMOD1								
Host Marketing Name / HMN:	PAL HD3								
	Digital Transmission System (DTS) FCC Part 15								
FCC Equipment Class:	Spread Spectrum Transmitter (DSS) FCC Part 15								
FCC Equipment Class:	Unlicensed National Information Infrastructure (NII) FCC Part 15								
	Limited Modular Approval								
	DTS, Spread Spectrum/Digital Device: 2412-2462MHz								
Transmit Frequency Range:	DTS, Spread Spectrum/Digital Device: 2402-2480MHz								
Transmit Frequency Range.	DSS, Spread Spectrum/Digital Device: 2402-2480MHz								
	U-NII, WiFi Device: 5180-5320MHz, 5745-5825MHz								
Number of Channels:	Programmable								
	DTS, Spread Spectrum/Digital Device: 2412-2462MHz: 23.7dBm (0.2432W)								
	DTS, Spread Spectrum/Digital Device: 2402-2480MHz: 7.0dBm (0.0049W)								
Manuf. Max. Rated Output Power:	DSS, Spread Spectrum/Digital Device: 2402-2480MHz: 11.6dBm (0.0146W)								
	U-NII, WiFi Device: 5180-5320MHz: 17dBm (0.0525W)								
	U-NII, WiFi Device: 5745-5825MHz: 18.4dBm (0.0698W)								
DUT Power Source:	Rechargeable Li-lon,								
Deviation(s) from standard/procedure:	None								
Modification of DUT:	None								

Test Report S/N: Test Report Issue Date:

45461887 R2.0 22 August 2023

3.0 SCOPE OF EVALUATION

This Certification Report was prepared on behalf of:

Clarius Mobile Health Corp

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

Equipment Description

The CUSMOD1 is a certified single module containing 2.4GHz and 5GHz WiFi and 2.4GHz BlueTooth transmitters. The module is currently integrated into the following host model numbers/HVINs:

L7 HD, L7VET HD

C3 HD, C3VET HD

C7 HD, C7VET HD

L5 HD, L20 HD

EC7 HD, PA HD

L7 HD3, L7VET HD3

C3 HD3, C3VET HD3

C7 HD3, C7VET HD3

L5 HD3, L20 HD3

EC7 HD3, PA HD3

3DC3

The module is being integrated into the following host model numbers/HVINs:

PAL HD3

The Clarius HD3 Series hosts (Equipment) are portable Medical and Veterinarian ultrasound devices which stream video data via WiFi to another WiFi connected device. The Equipment is handheld by the operator while in contact with a patient. The Equipment ceases to transmit when the ultrasound transducer element is no longer in contact with the patient. Since the Equipment is both handheld (the operator) and in contact with the body (the patient), two RF exposure conditions exist, Extremity and Body. The separation distance between the radiating element and the patient is no less than 100mm. The BlueTooth transmitter is used for a very brief credential and configuration exchange lasting no longer than 10 seconds after which it no longer transmits. The WiFi and Bluetooth transmitters do not simultaneous transmit. The 2.4GHz WiFi and 5GHz WiFi transmitters do not simultaneously transmit.

The Clarius HD3 Series hosts (*Equipment*) are all identical in all aspects of RF circuitry, transmit power, antenna configuration and physical size with the exception of the ultrasound transducer element. The Clarius HD3 Series hosts vary from the HD Series hosts as follows:

Form Factor: The HD3 Series is slightly different than the HD Series.

Battery: The HD3 Series battery is integrated into the device, the HD Series battery was removable.

Antenna: The HD3 Series antenna has modified from the HD Series to improve efficiency while maintaining the same gain.

Note: The CUSMOD1 module has not modified in any manner.

Test Report S/N: Test Report Issue Date: 45461887 R2.0 22 August 2023

Application:

This is an application for a Class II Permissive Change to add the above PAL HD3 to the existing module grant.

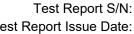
Regulatory Requirement:

As per FCC KDB 178919 D01v06r04 - Permissive Change Policy and FCC 47 CFR §2.1093, an RF Exposure (SAR) evaluation report is required for this *Equipment* and the results of the RF Exposure (SAR) evaluation appear in this report.

Scope:

The scope of this evaluation is to evaluate the SAR for intended use applications. It will include evaluation of the 2.4 GHz and 5GHz WiFi transmitter for all required RF exposure configurations. The SAR Test Plan includes the evaluation of the *Equipment* in an "Extremity" configuration including all surfaces of the *Equipment* as intended for use by the operator. The SAR Test Plan also includes evaluation of the *Equipment* in the "Body" configuration in its intended use while in contact with the patient.

The SAR Test Plan developed for this evaluation is based on the required test channels and configurations which produce the highest worst case SAR from previous evaluations and where applicable, SAR test reduction and/or SAR test exclusion may be utilized. The *Equipment* will be evaluated for SAR at the maximum output power level, preset by the manufacturer and in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 865646, 447498, 248227 and RSS 102.



45461887 R2.0

4.0 NORMATIVE REFERENCES

	Normative References*
ANSI / ISO 17025:2017	General Requirements for competence of testing and calibration laboratories
FCC CFR Title 47 Part 2	Code of Federal Regulations
Title 47:	Telecommunication
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices
Health Canada	
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3kHz to 300GHz
Industry Canada Spectrum	Management & Telecommunications Policy
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
IEC International Standard	/IEEE International Committee on Electromagnetic Safety
IEC/IEEE 62209-1528	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices -
	Part 1528; Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
FCC KDB	
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz
FCC KDB	
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
FCC KDB	
KDB 248227 D01v02r02	SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters
* When the issue number	or issue date is omitted, the latest version is assumed.

5.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

Applicant:	Date(s) Evaluated:
Clarius Mobile Health Corp	26 Jun - 28 Jun, 2023
Module Product Name / PMN:	Module Product Model Number / HVIN:
Clarius Module	CUSMOD1
Host Marketing Name / HMN:	Host Product Model Number / HVIN:
PAL HD3	
Standard(s) Applied:	•
FCC 47 CFR §2.1093	
Health Canada's Safety Code 6	
Measurement Procedures:	
FCC KDB 865664, FCC KDB 447498, FCC KDB 247228	
Industry Canada RSS-102 Issue 5	
IEC/IEEE Standard 62209-1528	
Use Group:	Limits Applied:
X General Population / User Unaware	X 1.6W/kg - 1g Volume - Body
Occupational / User Aware	X 4.0W/kg - 10g Volume - Extremity
Reason for Issue:	•
New Certification	X Class II Permissive Change
Reason for Change:	
Revise Grant to Add Host Model Variant PAL HD3	
-	

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements w ere performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner w hatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

July Your Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

> 13 July 2023 Date

6.0 SAR MEASUREMENT SYSTEM

SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY 6 SAR System with SAM Phantom

DASY 6 Measurement Controller

Test Report S/N: Test Report Issue Date:

45461887 R2.0 22 August 2023

7.0 RF CONDUCTED POWER MEASUREMENT

Table 7.1 Conducted Power Measurements

	Conducted Power Measurements												
Channel	Frequency	Measured Power	Rated Power	Rated Power	Delta	SAR Test Channel							
	(MHz)	(dBm)	(dBm)	(W)	(dBm)	(Y/N)							
1	2412	23.7	23.7	0.234	0	Υ							
6	2437	23.7	23.7	0.234	0	Υ							
11	2462	23.7	23.7	0.234	0	Υ							
13	2472	23.7	23.7	0.234	0	Υ							
36	5180	17.0	17.0	0.053	0	Υ							
44	5220	17.0	17.0	0.053	0	Υ							
48	5240	17.0	17.0	0.053	0	Υ							
149	5745	18.4	18.4	0.070	0	Υ							
157	5785	18.4	18.4	0.070	0	Υ							
165	5825	18.4	18.4	0.070	0	Y							

The rated power and tolerance are stated for typical transmission modes and data rates. Some modes and data rates may produce lower than rated conducted power levels. Power measurements taken across the various channels, modes and data rates did not produce levels in excess of the Rated Power plus Tolerance. SAR was evaluated using the power level setting and duty cycle specified by the manufacturer to be the max output power and produce the most conservative SAR. SAR was evaluated at the *maximum average* tune up tolerance. See section 2.0 Client and Device Information for details. The reported SAR was not scaled down.

Test Report S/N: Test Report Issue Date:

45461887 R2.0 22 August 2023

8.0 NUMBER OF TEST CHANNELS (Nc)

SAR was evaluated on the worst case channels from previous evaluations or channels which exhibit high SAR.

BT/BLE SAR Test Evaluation: The BT/BLE transmitter meets the SAR test exclusion. See Section 11.0

NOTE: This device is not capable of simultaneous transmission between the BT/BLE and WiFi transmitters or the 2.4GHz and 5GHz WiFi transmitters.

9.0 ACCESSORIES EVALUATED

Manufacturer's Accessories Tested - See Addendums for Complete Manufacturer's List									
Test Report Manufacturer's Description									
ID Number	Part Number	Bescription	Evaluated						
Miscelaneous									
-	FANHD3012109	Clip-On Fan	Х						

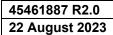
Test Report S/N: Test Report Issue Date: 22 August 2023

45461887 R2.0

10.0 SAR MEASUREMENT SUMMARY

Table 10.1: Measured Results - Extremity, 2.4 and 5GHz Bands

	Measured 10g SAR Results - EXTREMITY Configuration															
		Test			DUT			Sp	acing	Measured	SAR	Delta	Crest	Fluid	Duty	reported
Date	Plot	Frequency		Configuration				DUT	Antenna	SAR	Drift	Power	Factor	Sensitivity	Factor	SAR
	ID	(MHz)	Pos	Mode	BW	Mod	BR	(mm)	(mm)	(W/kg)	(dB)	(dB)	(n)	(n)	(%)	(W/kg)
6/27/2023	E100	2437	Front*	802.11b	20	DSSS	1 mbps	0	n/a	0.000	0.000	0.000	1.000	1.000	100.000	0.000
6/27/2023	E101	2437	Back	802.11b	20	DSSS	1 mbps	0	n/a	0.412	1.370	0.000	1.000	1.000	100.000	0.412
6/27/2023	E102	2437	Left	802.11b	20	DSSS	1 mbps	0	n/a	0.004	3.680	0.000	1.000	1.000	100.000	0.004
6/27/2023	E103	2437	Right	802.11b	20	DSSS	1 mbps	0	n/a	0.003	0.000	0.000	1.000	1.000	100.000	0.003
6/27/2023	E104	2437	Top*	802.11b	20	DSSS	1 mbps	0	n/a	0.000	0.590	0.000	1.000	1.000	100.000	0.000
6/28/2023	E105	5200	Back	U-NII 1	20	OFDM	MCS8	0	n/a	0.277	1.840	0.000	1.000	1.000	100.000	0.277
6/28/2023	E106	5825	Back	U-NII 3	20	OFDM	MCS8	0	n/a	0.114	6.820	0.000	1.000	1.000	100.000	0.114
	Applicable SAR Limit					·	Use	Group		·		Limit				


Test Report S/N: Test Report Issue Date: 22 August 2023

45461887 R2.0

Table 10.2: Measured Results - Body/Head 2.4 and 5GHz Bands

	Measured 1g SAR Results - BODY/HEAD Configuration															
		Test		DUT					acing	Measured	SAR	Delta	Crest	Fluid	Duty	<u>reported</u>
Date	Plot	Frequency		Configuration			DUT	Antenna	SAR	Drift	Power	Factor	Sensitivity	Factor	SAR	
	ID	(MHz)	Pos	Mode	BW	Mod	BR	(mm)	(mm)	(W/kg)	(dB)	(dB)	(n)	(n)	(%)	(W/kg)
6/27/2023	B100	2437	Tip*	802.11b	20	DSSS	1 mbps	0	n/a	0.000	0.000	0.000	1.000	1.000	100.000	0.000
6/28/2023	B101	5200	Tip*	U-NII 1	20	OFDM	MCS8	0	n/a	0.000	0.000	0.000	1.000	1.000	100.000	0.000
6/28/2023	B102	5825	Tip*	U-NII 3	20	OFDM	MCS8	0	n/a	0.000	0.000	0.000	1.000	1.000	100.000	0.000
	Applicable SAR Limit						Use Group Limit									
FCC	CFR 2.1	093		Health Can	ada Safety	y Code 6		Gene	eral Popula	ition/User Un	aware			1.6 W/kg		_

^{*} Due to extremely low SAR, these tests failed to complete

11.0 SCALING OF MAXIMUM MEASURED SAR

Table 11.1 SAR Scaling, Extremity

	Scaling of Ma	ximum Measu	red SAR (10g)	
N/A	easured Parameters		Configuration	
IVI	easured Parameters	Extremity	Extremity	
	Plot ID	E101	E105	
Max	imum Measured SAR _M	0.412	0.277	(1)
	Frequency	2437	5200	(1
Drift	Power Drift	1.370 (1)	1.840 (1)	(0
	Conducted Power	37.700	17.000	(0
DC	Transmit Duty Cycle	100.000	100.0	(9
	Fluid	Deviation from	Farget	
Δе	Permitivity	-8.05%	-8.86%	
Δσ	Conductivity	3.53%	6.45%	

Note(1): Power Drift is Positive, Drift Adjustment not Required.

Flui	d Sensitivity Calculation (IEC/IEEE 62:	209-1528 7.8.2					
	Delta SAR = 0	Ce * Δe + Cσ * Δ	σ	(8)				
$Ce = (0.003456*f^3) - (0.03531*f^2) + (0.07675*f) - 0.186$								
	(12)							
f	Frequency (GHz)	2.437	5.2					
	Ce	-0.159	-0.256					
	Сσ	0.262	-0.053					
•	Ce * ∆e	0.013	0.023					
	Cσ * Δσ	0.009	-0.003					
	ΔSAR	0.022 (3)	0.019 (3)					

Note(3): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529

Manufacturer's Tuneup Tolerance									
Measured Conducted Power	37.700	17.000	((dBm)					
Rated Conducted Power	37.700	17.000	((dBm)					
ΔΡ	0.000 (4)	0.000 (4)	((dB)					

Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required.

Crest Factor								
Transmit Duty Cycle (DC)	100.000		100.0			(%		
CF (1/DC)	1.000	(5)	1.00	###				

Note(5): Crest Factor = 1 (100% Duty Cycle), Crest Factor Adjustment not Required.

SAR Adjustment for Fluid Sensitivity									
$SAR_1 = SAR_M X [\Delta SAR]$	0.412	0.277	(W/kg)						
SAR Adjus	tment for Tune	up Tolerance							
$SAR_2 = SAR_1 + [\Delta P]$	0.412	0.277	(W/kg)						
SAF	Adjustment fo	or Drift							
SAR ₃ = SAR ₂ + [Drift]	0.412	0.277	(W/kg)						
SAR Ad	justment for Cr	est Factor							
SAR ₄ = SAR ₃ x [CF]	0.412	0.277	(W/kg)						
	reported 10g S.	AR							
SAR₄	0.41	0.28	(W/kg)						

Test Report S/N: Test Report Issue Date: 45461887 R2.0 22 August 2023

SAR Body measurements as per table 10.2, were extremely low and the tests failed to complete. and SAR scaling is not possible or meaningful. In such cases SAR is reported as < 0.1 W/kg.

The SAR test exclusion threshold for the BLE/ANT transmitter as per FCC KDB 447498 4.3.1 is as follows:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] X [$\sqrt{f}(GHz)$] ≤ 7.5 for 10-g SAR

 $[(14.6)/(25)] \times [\sqrt{2.480}] = 0.92 \le 7.5$

Where:

maximum power of channel, including tune-up tolerance, mW = 14.6 mW minimum separation distance, mm = 25 mm f(GHz) = 2.480 GHz

Therefore; the BT/BLE Transmitter meets the SAR test exclusion criteria.

NOTE: This device is not capable of simultaneous transmission between the BT/BLE and WiFi transmitters. Due to the nature of this device, WiFi and Bluetooth were evaluated for standalone SAR only.

NOTES to Table

Scaling of the Maximum Measured SAR is based on the highest Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face, Body and/or Head SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable steps above. The Plot ID is for indentification of the SAR Measurement Plo(s) in the Annexes of this report.

NOTE: Some of the scaling factors in Steps 1 through 4may not apply and are identified by grayed fields.

Step 1

Per IEC/IEEE 62209-1528, FCC KDB 865664, ISED RSS-102 and ISED Notice 2012-DRS0529. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%,

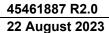
The above table will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative.

The absolute value of Delta is ADDED to the SAR.

Step 3

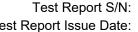

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported.

Step 4

Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102. When the transmit Duty Cyle (DC) is less than 100%, the <u>reported</u> SAR must be scaled to 100% by the Crest Factor (CF). CF = 1/DC where DC is in decimal.

Step 5

The Reported SAR is the Maximum Final Adjusted SAR from the applicable steps above and are reported on the cover page of this report.



12.0 SAR EXPOSURE LIMITS

Table 12.0 Exposure Limits

SAR RF EXPOSURE LIMITS										
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /							
100 47 01132:1000	Tioditi Gallada Gallety Godo G	Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾							
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg							
(averaged	over the whole body)	0.00 W/Ng	0.4 W/Ng							
Sp	oatial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg							
(Head and Trunk ave	eraged over any 1 g of tissue)	1.0 W/Kg	0.0 W/kg							
Sp	atial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg							
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg							

- (1) The Spatial Average value of the SAR averaged over the whole body.
- (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.
- (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.
- (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.

13.0 DETAILS OF SAR EVALUATION

13.1 Day Log

					ı o			
	ectri							
	Ambient	Fluid	Fluid Relative		Die			
Date	Temp	Temp	Humidity	Pressure	id	ပ	st	
	(° C)	(°C)	(%)	(kPa)	Fluid	SPC	Test	Task
26-Jun-2023	23.8	23.6	42%	101.6	Х	Х	Х	2450MHz
27-Jun-2023	23.3	23.8	39%	101.0			X	2450MHz
28-Jun-2023	24.3	23.6	39%	101.3	Х	Х	Х	5250MHz
28-Jun-2023	24.7	23.6	37%	101.1	Х	Х	Х	5750MHz

^{*}Per IEC/IEEE 62209-1528 Test Series was started within 24 hours and completed within 48 hours of Fluid Parameter Measurements

13.2 DUT Setup and Configuration

DUT Setup and Configuration

Overview

The Clarius HD3 series scanners are a portable handheld Medical and Veterinarian Ultrasound scanner which streams video data via WiFi to another WiFi connected device. The device is intended to be handheld by the operator while it is in contact with a patient. The WiFi transmitter ceases to transmit once the transducer is no longer in contact with the patient. Since both Extremity and Body RF exposures exist, both configurations were evaluated.

The Clarius HD3 series scanners are identical in all aspects of RF circuitry, RF Transmit Power, Transmit Antenna, physical size and form factor with the exception of the Ultrasound Transducer element. This variant, the PAL HD3 was evaluated in Extremity SAR evaluation and for Body SAR. Extremity SAR was evaluated on all surfaces of the device that may be in contact with the practioner while performing a scan procedure, e.g. Front, Back, Left Side, Right Side, Top . Body SAR was evaluated for the Tip that would be in contact with the patient during a scan procedure. The worst case channel configuration in the 2.4GHz, 5250MHz and 5750MHz were used for the Body SAR channel configuration. The device has a clip on plastic Fan, which is not intregal to the operation of the device. The Fan extends the device from the phantom and as the device could be used without the Fan, the PAL HD3 was tested without the Fan in the most conservative SAR evaluation - closest to the phantom.

The device was configured to transmit at its highest output power at 100% transmit duty cycle, as set in the test-mode firmware, on each of the test channels identified in the SAR test plan.

Since in all cases the 1g SAR was less 0.1W/kg, SAR Test reduction was applied to the SAR Test Plan and only the worst case configurations were investigated further.

Test Report S/N: Test Report Issue Date:

45461887 R2.0 22 August 2023

13.3 DUT Positioning

DUT Positioning

Positioning

The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.

FACE Configuration

This device is not intended to be held to the face and was not tested in the FACE configuration.

BODY Configuration

The DUT was securely clamped into the device holder with the surface of the DUT normally in contact with the body in direct contact with the bottom of the phantom, or 0mm separation from the DUT's accessory to the phantom surface.

HEAD Configuration

This device is not intended to be held to the ear and was not tested in the HEAD configuration.

Limb Worn Configuration

The DUT was positioned with the back side directly against the phantom surface with the strap opened to allow direct contact or 0mm of the DUT and watch band to the phantom surface.

Hand-Held Extremity Configuration

The DUT was positioned directly against the phantom surface to allow direct contact or 0mm of the DUT to the phantom surface.

13.4 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 2.0^{\circ}$ C throughout the test series. The liquid parameters shall be measured within 24 hours before the start of a test series and if it takes longer than 48 hours, the liquid parameters shall also be measured at the end of the test series.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the Maximum Distance to Phantom Surface to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at 100% transmit duty cycle. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY configuration, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are <u>ONLY</u> scaled up, not down. The final results of this scaling is the <u>reported SAR</u> which appears on the Cover Page of this report.

Test Report S/N: Test Report Issue Date: 45461887 R2.0 22 August 2023

13.5 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

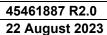
Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of ± 100MHz for frequencies > 300MHz and ± 50MHz for frequencies ≤ 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC KDB 865664 targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to ≤ 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 10% of the measured and normalize SAR of the validation source's Calibration Certificate.


The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

13.6 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz								
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm							
(Geometric Center of Probe Center)								
Maximum probe angle normal to phantom surface.	5° ± 1°							
(Flat Section ELI Phantom)	5 11							
Area Scan Spatial Resolution ΔX , ΔY	15 mm							
Zoom Scan Spatial Resolution ΔX, ΔY	7.5 mm							
Zoom Scan Spatial Resolution ∆Z	5 mm							
(Uniform Grid)	3 111111							
Zoom Scan Volume X, Y, Z	30 mm							
Phantom	ELI							
Fluid Depth	150 ± 5 mm							

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.7 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz								
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm							
(Geometric Center of Probe Center)	4 1 1 111111							
Maximum probe angle normal to phantom surface.	5° ± 1°							
(Flat Section ELI Phantom)	5° ± 1°							
Area Scan Spatial Resolution ΔX, ΔY	12 mm							
Zoom Scan Spatial Resolution ΔX , ΔY	5 mm							
Zoom Scan Spatial Resolution ∆Z	E ma ma							
(Uniform Grid)	5 mm							
Zoom Scan Volume X, Y, Z	30 mm							
Phantom	ELI							
Fluid Depth	150 ± 5 mm							

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

13.8 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz									
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm								
(Geometric Center of Probe Center)	4 1 1 111111								
Maximum probe angle normal to phantom surface.	5° ± 1°								
(Flat Section ELI Phantom)	5° ± 1°								
Area Scan Spatial Resolution ΔX , ΔY	10 mm								
Zoom Scan Spatial Resolution ΔX, ΔY	4 mm								
Zoom Scan Spatial Resolution ∆Z	2 mm								
(Uniform Grid)	2 111111								
Zoom Scan Volume X, Y, Z	22 mm								
Phantom	ELI								
Fluid Depth	100 ± 5 mm								

An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.

A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR

Test Report S/N: Test Report Issue Date:

45461887 R2.0 22 August 2023

14.0 MEASUREMENT UNCERTAINTIES

Table 14.0 Measurement Uncertainty

Measurement uncertainty table is not required per KDB 865664 D01 v01r04 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported SAR value is less than 1.5W/kg. Therefore, he measurement uncertainty table is not required.

15.0 FLUID DIELECTRIC PARAMETERS

**** Note ****

For fluid parameters outside the +/- 5% tolerance, SAR was adjusted in accordance with the Fluid Sensitivity requirements of IEC 62209-1528. See Section 11.0.

Freq

Table 15.1 Fluid Dielectric Parameters 2450MHz HEAD TSL

Aprel Laboratory Test Result for UIM Dielectric Parameter Mon 26/Jun/2023 10:59:54

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma IEC/IEEE 62209-1528 Table 2

Frequency(GHz)

Test_e Epsilon of UIM Test_s Sigma of UIM

FCC_eHFCC_sHTest_e Test_s Freq 2.4300 39.24 1.78 36.13 1.85 2.4400 39.22 1.79 36.04 1.85 2.4500 39.20 1.80 36.31 1.90

	FLUID DIELECTRIC PARAMETERS									d Sensitivity C/IEEE 6220		
Date:	26-Jun-2	2023	Fluid Te	emp: 23.	Frequency:	2450MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Co	rrection
	Freq		Tooks	Test σ	Towns 5	Target σ	Deviation	Deviation	ΔSAR	ДЗАК	Facto	or (1)
(1	MHz)		Test &	(S/m)	Target &	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g
2430	.0000		36.1300	1.8500	39.2400	1.78	-7.93%	3.93%	0.037	0.023	1.000	1.000
2437	.0000	*	36.0670	1.8500	39.2260	1.79	-8.05%	3.53%	0.035	0.022	1.000	1.000
2440	.0000		36.0400	1.8500	39.2200	1.79	-8.11%	3.35%	0.034	0.022	1.000	1.000
2450	.0000		36.3100	1.9000	39.2000	1.80	-7.37%	5.56%	0.043	0.026	1.000	1.000

*Channel Frequency Tested

Table 15.2 Fluid Dielectric Parameters 5250MHz HEAD TSL

Aprel Laboratory Test Result for UIM Dielectric Parameter Wed 28/Jun/2023 11:21:47 Frea Frequency(GHz)

FCC eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma IEC/IEEE 62209-1528 Table 2

Test_e Epsilon of UIM Test_s Sigma of UIM

FCC_eHFCC_sHTest_e Test_s Freq 5.2000 35.99 4.65 32.80 4.95 35.93 4.71 32.64 5.03 5.2500

FLUID DIELECTRIC PARAMETERS									d Sensitivity /IEEE 6220	•	
Date: 28-Jun-	2023	Fluid Te	mp: 23.6	Frequency:	5250MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Co	rrection
Freq		Tools	Test σ	Toward 6	Target σ	Deviation	Deviation	ДОАК	долк	Facto	or (1)
(MHz)		Test &	(S/m)	Target &	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g
5200.0000	*	32.8000	4.9500	35.9900	4.65	-8.86%	6.45%	0.016	0.019	1.000	1.000
5250.0000		32.6400	5.0300	35.9300	4.71	-9.16%	6.79%	0.016	0.020	1.000	1.000

^{*}Channel Frequency Tested

Table 15.3 Fluid Dielectric Parameters 5750MHz HEAD TSL

**************** **Aprel Laboratory**

Test Result for UIM Dielectric Parameter Wed 28/Jun/2023 11:34:15 Freq Frequency(GHz)

FCC eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma IEC/IEEE 62209-1528 Table 2

Test_e Epsilon of UIM Test_s Sigma of UIM

Freq FCC_eHFCC_sHTest_e Test_s 5.7500 35.36 5.22 32.18 5.64 5.8200 35.28 5.29 32.31 5.76 5.8300 35.27 5.30 32.06 5.70

29	FLUID DIELECTRIC PARAMETERS									Fluid Sensitivity Calculation IEC/IEEE 62209-1528 7.8.2			
Date:	28-Jun-2	2023	Fluid To	emp:	23.7	Frequency:	5750MHz	Tissue:	Head	ΔSAR	ΔSAR	SAR Co	rrection
	Freq		Test £		Test σ	Target &	Target σ	Deviation	Deviation	DOAK	додіх	Facto	or (1)
((MHz)		1est &	(S/m)		raiget &	(S/m)	Permittivity	Conductivity	1g	10g	1g	10g
5750	0.0000		32.1800	5.0	6400	35.3600	5.22	-8.99%	8.05%	0.014	0.020	1.000	1.000
5820	0.0000		32.3100	5.	7600	35.2800	5.29	-8.42%	8.88%	0.013	0.019	1.000	1.000
5825	5.0000	*	32.1850	5.	7300	35.2750	5.30	-8.76%	8.22%	0.014	0.020	1.000	1.000
5830	0.0000		32.0600	5.	7000	35.2700	5.30	-9.10%	7.55%	0.015	0.021	1.000	1.000

^{*}Channel Frequency Tested

16.0 SYSTEM VERIFICATION TEST RESULTS

Table 16.1 System Verification Results 2450MHz HEAD TSL

System Verification Test Results								
D.	.4.	Frequency	V	alidation Sour	се			
Da	ate	(MHz)	P/N		S/N			
26-Jui	า-2023	2450	D24	50V2	825			
	Fluid	Ambient	Ambient	Forward	Source			
Fluid Type	Temp	Temp	Humidity	Power	Spacing			
	°C	°C	(%)	(mW)	(mm)			
Head	23.6	24	42%	250	10			
	Fluid Parameters							
	Permittivity			Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation			
36.31	39.20	-7.37%	1.90	1.80	5.56%			
		Measur	ed SAR					
	1 gram			10 gram				
Measured	Target	Deviation	Measured	Target	Deviation			
13.00	13.18	-1.37%	5.88	6.01	-2.08%			
	Measured SAR Normalized to 1.0W							
	1 gram		10 gram					
Normalized	Target	Deviation	Normalized	Target	Deviation			
52.00	52.72	-1.36%	23.52	24.02	-2.06%			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 846224,

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

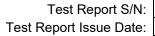


Table 16.2 System Verification Results 5250MHz HEAD TSL

System Verification Test Results							
D	ate	Frequency	Va	alidation Sour	ce		
	ate	(MHz)	P/N		S/N		
28-Jui	n-2023	5250	D5G	HzV2	1031		
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Humidity (%)	Forward Power (mW)	Source Spacing (mm)		
Head	23.6	24	39%	50	10		
neau 25.0			00,0	30	10		
Fluid Parameters							
	Permittivity			Conductivity			
Measured	Target	Deviation	Measured	Target	Deviation		
32.64	35.93	-9.16%	5.03	4.71	6.79%		
		Measur	ed SAR		· ·		
	1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation		
3.77	3.97	-5.12%	1.09	1.15	-4.85%		
	Me	asured SAR No	ormalized to 1	.0W			
	1 gram			10 gram			
Normalized	Target	Deviation	Normalized	Target	Deviation		
75.40	79.47	-5.12%	21.80	22.91	-4.85%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 846224,

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

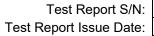


Table 16.3 System Verification Results 5750MHz HEAD TSL

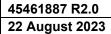
System Verification Test Results								
Dr	ate	Frequency	Va	Validation Source				
Da	ale	(MHz)	P	S/N				
28-Jui	1-2023	5750	D5GI	HzV2	1031			
	Fluid	Ambient	Ambient	Forward	Source			
Fluid Type	Temp	Temp	Humidity	Power	Spacing			
	°C	°C	(%)	(mW)	(mm)			
Head	23.6	25	37%	50	10			
	Fluid Parameters							
	Permittivity			Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation			
32.18	35.36	-8.99%	5.64	5.22	8.05%			
		Measur	ed SAR					
	1 gram			10 gram				
Measured	Target	Deviation	Measured	Target	Deviation			
3.86	3.78	2.20%	1.10	1.10	-0.05%			
	Measured SAR Normalized to 1.0W							
	1 gram			10 gram				
Normalized	Target	Deviation	Normalized	Target	Deviation			
77.20	75.54	2.20%	22.00	22.01	-0.05%			

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEC/IEEE 62209-1528 and FCC KDB 846224,

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.


Test Report S/N: Test Report Issue Date: 22 August 2023

45461887 R2.0

17.0 SYSTEM VALIDATION SUMMARY

Table 17.1 System Validation Summary

	System Validation Summary									
Frequency	Frequency Validation Probe Probe Validation Source Tissue Validation Results									
(MHz)	Date	Model	S/N	Source	S/N	lissue	Sensitivity	Linearity	Isotropy	
2450	21-Jun-23	EX3DV4	7826	D2450V2	825	Head	Pass	Pass	Pass	
5250	28-Jun-23	EX3DV4	7826	D5GHzV2	1031	Head	Pass	Pass	Pass	
5750	29-Jun-23	EX3DV4	7826	D5GHzV2	1031	Head	Pass	Pass	Pass	

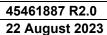

18.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 18.1 Measurement System Specifications

Measurement System Specification						
Specifications						
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL					
Repeatability	+/- 0.035 mm					
No. of axis	6.0					
Data Acquisition Electronic (DAE) System					
Cell Controller						
Processor	Intel(R) Core(TM) i7-7700					
Clock Speed	3.60 GHz					
Operating System	Windows 10 Professional					
Data Converter						
Features	Signal Amplifier, multiplexer, A/D converter, and control logic					
- "	Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V10.2(1504)					
Software	Postprocessing Software: SEMCAD X, V14.6.12(7470)					
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock					
DASY Measurement Server						
Function	Real-time data evaluation for field measurements and surface detection					
lintel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM						
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface					
E-Field Probe						
Model	EX3DV4					
Serial No.	7826					
Construction	Triangular core fiber optic detection system					
Frequency	10 MHz to 6 GHz					
Linearity	±0.2 dB (30 MHz to 3 GHz)					
Phantom						
Туре	ELI Elliptical Planar Phantom					
Shell Material	Fiberglass					
Thickness	2mm +/2mm (bottom plate)					
Volume	> 30 Liter					
Phantom						
Туре	SAM Phantom					
Shell Material	Fiberglass					
Thickness	2mm +/2mm (6 ± 0.2 mm at ear point)					
Volume	> 25 Liter					
Phantom						
Туре	MFP Planar Phantom					
Shell Material	Fiberglass					
Thickness	2mm +/2mm (bottom plate)					
Volume	> 8 Liter					

Table 18.1 Measurement System Specification (Continued) Probe Specification Symmetrical design with triangular core; Built-in shielding against static charges Construction: PEEK enclosure material (resistant to organic solvents (e.g. DGBE) ISO/IEC 17025 Calibration: Frequency: 4 MHz - 10 GHz; Linearity: ± 0.2 dB (30 MHz - 10 GHz) ± 0.1 dB in TSL (rotation around probe axis) Directivity: ± 0.3 dB in TSL (rotation normal to probe axis) 10 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB (noise: typically <1 mW/g) Dynamic Range: Overall length: 337 mm; (tip: 20 mm) Dimensions: Tip diameter: 2.5 mm; Tip (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient Application: fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of **EX3DV4 E-Field Probe** better than 30% **Phantom Specification** The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/-.2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEC\IEEE 62209-1528. **ELI Phantom Phantom Specification** The SAM V4.0 phantom is a flat planar fiberglass shell phantom with a shell thickness of 2.0mm .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEC\IEEE 62209-1528. **SAM Phantom Phantom Specification** The MFP V5.1C phantom is a flat planar fiberglass shell phantom with a shell thickness of 2.0mm .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEC\IEEE 62209-1528. **MFP Phantom Device Positioner Specification** The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65° . The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. **Device Positioner**

19.0 TEST EQUIPMENT LIST

Table 19.1 Equipment List and Calibration

Test Equipment List							
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE			
Schmid & Partner DASY 6 System	-	-	-	-			
-DASY Measurement Server	00158	1078	CNR	CNR			
-Robot	00046	599396-01	CNR	CNR			
-DAE4	00019	353	18-Apr-23	18-Apr-24			
-EX3DV4 E-Field Probe	00213	3600	20-Apr-22	20-Apr-25			
-D2450V2 Validation Dipole	00219	825	27-Apr-21	27-Apr-24			
-D5GHzV2 Validation Dipole	00126	1031	27-Apr-21	27-Apr-24			
ELI Phantom	00247	1234	CNR	CNR			
SAM Phantom	00154	1033	CNR	CNR			
MFP Phantom	00355	1177/2	CNR	CNR			
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR			
Gigatronics 8652A Power Meter	00007	1835801	13-May-22	13-May-25			
Gigatronics 80701A Power Sensor	00186	1837002	COU	COU			
Gigatronics 80334A Power Sensor	00237	1837001	13-May-22	13-May-25			
HP 8753ET Network Analyzer	00134	US39170292	6-Jan-21	6-Jan-24			
Rohde & Schwarz SMR20 Signal Generator	00006	100104	11-Aug-20	11-Aug-23			
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR			
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR			
Narda Directional Coupler 3020A	00064	-	CNR	CNR			
Bipolar Power Supply 6299A	00086	1144A02155	CNR	CNR			
DC-18G 10W 30db Attenuator	00102		COU	COU			
R&S FSP40 Spectrum Analyzer	00241	100500	10-Aug-21	10-Aug-24			
RF Cable-SMA	00311	-	CNR	CNR			
HP Calibration Kit	00145	-	CNR	CNR			

CNR = Calibration Not Required

COU = Calibrate on Use

Note: Per KDB 865664, Dipoles are evaluated annually for return loss and impedance. The dipole's SAR target can only be assessed by the SAR equipment manufacturer and remains the target until the dipole is recalibrated by the manufacturer. The dipole's SAR is evaluated and compared to this target during each and every System Verification which is performed prior to and/or during each DUT SAR evaluation. The results of these verifications are shown in Section 16.0

20.0 FLUID COMPOSITION

Table 20.0 Fluid Composition 2450MHz HEAD TSL

Table 20.0		2450MHz Head							
Tissue Simulating Liquid (TSL) Composition									
Component by Percent Weight									
Water Glycol Salt ⁽¹⁾ HEC ⁽²⁾ Bacteriacide ⁽³⁾									
52.0	48.0	0.0	0.0	0.0					

(1) Non-lodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

(3) Dow Chemical Dowicil 75 Antimicrobial Perservative

Table 20.1 Fluid Composition 5Ghz HEAD TSL

The 5GHz Head TSL is a SPEAG proprietary broad band fluid:

Type: **HBBL3500-5500V2** Batch number: 131210-2 P/N: **SL AAH 502 AC**

Test Report S/N: Test Report Issue Date: 45461887 R2.0 22 August 2023

APPENDIX A - SYSTEM VERIFICATION PLOTS

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825 Procedure Name: SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 2 2

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.9$ S/m; $\epsilon_r = 36.31$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Date/Time: 6/26/2023 11:33:24 AM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(7.91, 7.42, 7.62) @ 2450 MHz; Calibrated: 5/16/2023

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn353; Calibrated: 4/18/2023

Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: xxxx

Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 2 2/Area Scan (9x4x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 12.8 W/kg

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 2 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

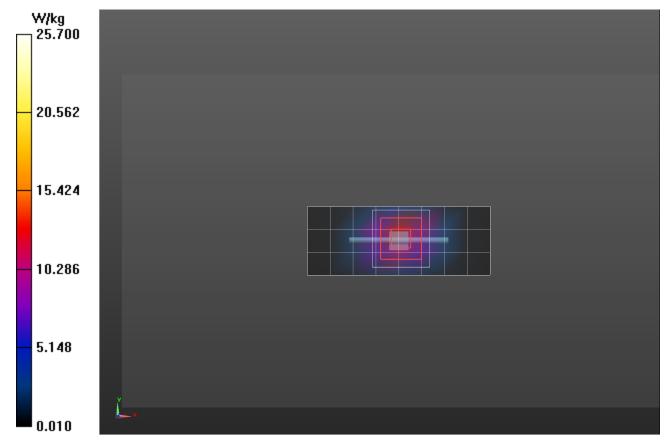
dy=5mm, dz=5mm

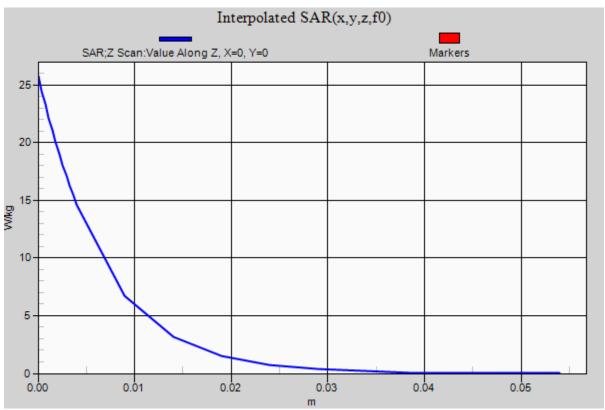
Reference Value = 88.04 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 28.7 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 5.88 W/kg

Smallest distance from peaks to all points 3 dB below = 10.4 mm


Ratio of SAR at M2 to SAR at M1 = 46%


Maximum value of SAR (measured) = 14.8 W/kg

SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg 2 2/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Penetration depth = 6.670 (6.477, 6.737) [mm] Maximum value of SAR (interpolated) = 25.7 W/kg

Test Report S/N: Test Report Issue Date:

45461887 R2.0 22 August 2023

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031

Procedure Name: SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 3 2 2

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 5.03$ S/m; $\epsilon_r = 32.64$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Date/Time: 6/28/2023 12:54:27 PM

DASY5 Configuration:

- Probe: EX3DV4 SN7826; ConvF(5.59, 5.24, 5.42) @ 5250 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 3 2 2/Area Scan (7x4x1): Measurement grid:

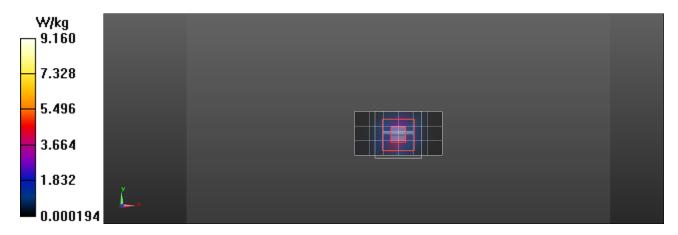
dx=10mm, dy=10mm

Maximum value of SAR (measured) = 3.82 W/kg

SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 3 2 2/Zoom Scan (9x9x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 28.52 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 15.9 W/kg


SAR(1 g) = 3.77 W/kg; SAR(10 g) = 1.09 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 53.3% Maximum value of SAR (measured) = 7.93 W/kg

SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 3 2 2/Z Scan (1x1x19): Measurement grid:

dx=20mm, dy=20mm, dz=20mm Penetration depth = n/a (n/a, 2.978) [mm] Maximum value of SAR (interpolated) = 9.16 W/kg

Test Report S/N: Test Report Issue Date: 45461887 R2.0 22 August 2023

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031 Procedure Name: SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 2 2

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 5.64 \text{ S/m}$; $\varepsilon_r = 32.18$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Date/Time: 6/28/2023 1:35:43 PM

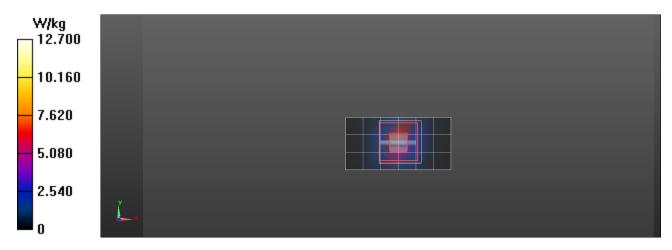
DASY5 Configuration:

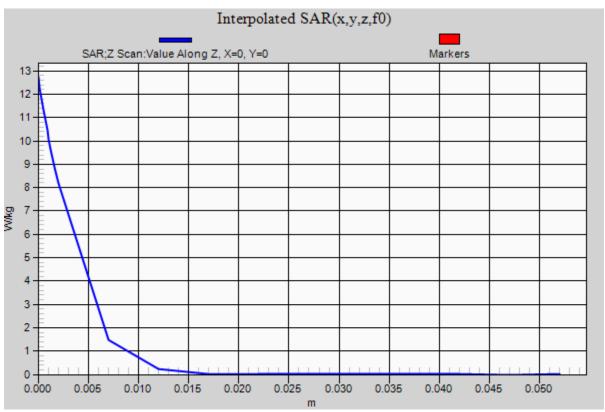
- Probe: EX3DV4 SN7826; ConvF(5.14, 4.73, 4.93) @ 5750 MHz; Calibrated: 5/16/2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: xxxx
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 2 2/Area Scan (7x4x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 6.53 W/kg

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 2 2/Zoom Scan (7x7x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 26.72 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 3.86 W/kg; SAR(10 g) = 1.1 W/kgSmallest distance from peaks to all points 3 dB below = 7.4 mm


Ratio of SAR at M2 to SAR at M1 = 49.9%


Maximum value of SAR (measured) = 8.34 W/kg

SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 2 2/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 2.825 (2.938, 2.798) [mm]

Maximum value of SAR (interpolated) = 12.7 W/kg

Test Report S/N: Test Report Issue Date:

45461887 R2.0 22 August 2023

APPENDIX B - MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR

E101

DUT: PAL HD3; Type: Transmitter;

Procedure Name: E101 [PAL HD3] 2.4G WiFi -Back, Ch 6 (2437MHz)

Communication System: UID 0, CW (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 36.067$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Date/Time: 6/27/2023 11:05:38 AM

DASY5 Configuration:

• Probe: EX3DV4 - SN7826; ConvF(7.91, 7.42, 7.62) @ 2437 MHz; Calibrated: 5/16/2023

- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

2450 H/E101 [PAL HD3] 2.4G WiFi -Back, Ch 6 (2437MHz)/Area Scan (17x11x1): Measurement grid: dx=12mm, dy=12mm

Info: Interpolated medium parameters used for SAR evaluation.

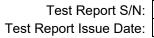
Maximum value of SAR (measured) = 1.88 W/kg

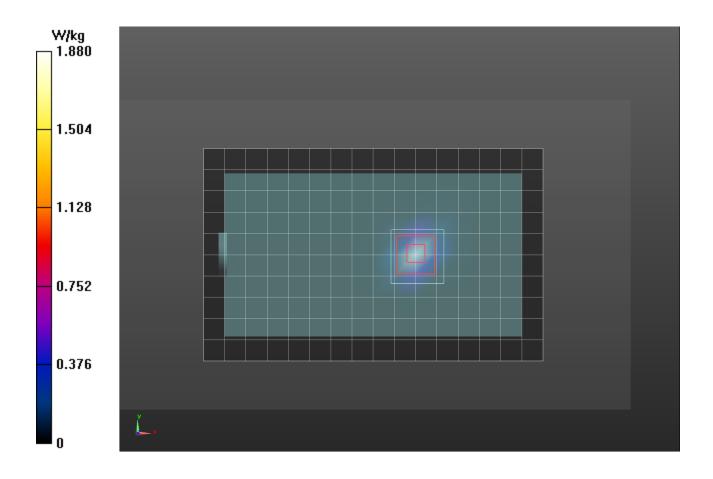
2450 H/E101 [PAL HD3] 2.4G WiFi -Back, Ch 6 (2437MHz)/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=4mm

Reference Value = 2.937 V/m; Power Drift = 1.37 dB

Peak SAR (extrapolated) = 4.40 W/kg


SAR(1 g) = 1.36 W/kg; SAR(10 g) = 0.412 W/kg


Smallest distance from peaks to all points 3 dB below = 5.8 mm

Ratio of SAR at M2 to SAR at M1 = 47.5%

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.60 W/kg

Test Report S/N: Test Report Issue Date:

45461887 R2.0 22 August 2023

E105

DUT: PAL HD3; Type: Transmitter;

Procedure Name: E105 [PAL HD3] 5G WiFi -Back, Ch40 (5200MHz)

Communication System: UID 0, CW (0); Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; $\sigma = 4.95$ S/m; $\varepsilon_r = 32.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Date/Time: 6/28/2023 2:56:54 PM

DASY5 Configuration:

Probe: EX3DV4 - SN7826; ConvF(5.59, 5.24, 5.42) @ 5200 MHz; Calibrated: 5/16/2023

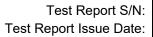
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 4/18/2023
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx;
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

5250 H/E105 [PAL HD3] 5G WiFi -Back, Ch40 (5200MHz)/Area Scan (19x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.76 W/kg

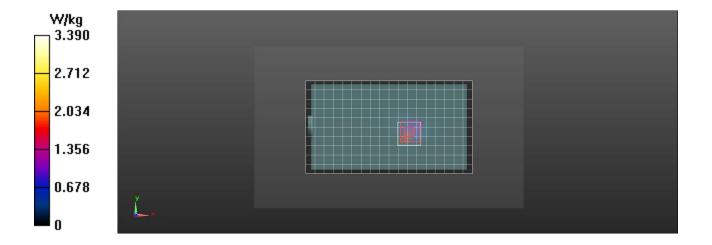
5250 H/E105 [PAL HD3] 5G WiFi -Back, Ch40 (5200MHz)/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm

Reference Value = 2.375 V/m; Power Drift = 1.85 dB

Peak SAR (extrapolated) = 4.38 W/kg


SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.277 W/kg

Smallest distance from peaks to all points 3 dB below = 4.2 mm


Ratio of SAR at M2 to SAR at M1 = 53.5%

Maximum value of SAR (measured) = 1.48 W/kg

5250 H/E105 [PAL HD3] 5G WiFi -Back, Ch40 (5200MHz)/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 2.533 (2.624, 2.019) [mm] Maximum value of SAR (interpolated) = 3.39 W/kg

