

Intertek
731 Enterprise Drive
Lexington, KY 40510

Tel 859 226 1000
Fax 859 226 1040

www.intertek.com

ICU Medical Inc.

SAR TEST REPORT

SCOPE OF WORK

SPECIFIC ABSORPTION RATE – User Interface Module (UIM)

REPORT NUMBER

104835038LEX-004.2

ISSUE DATE

11/21/2022

REVISED DATE

2/27/2023

PAGES

30

DOCUMENT CONTROL NUMBER

Non-Specific EMC Report Shell Rev. December 2017

© 2017 INTERTEK

SPECIFIC ABSORPTION RATE TEST REPORT

Report Number: 104835038LEX-004.2
Project Number: G104835038

Report Issue Date: 11/21/2022
Report Revised Date: 2/27/2023

Product Name: User Interface Module (UIM)

Standards: FCC Part 2.1093
RSS-102 Issue 5
IEC 62209-1528:2020

Tested by:
Intertek Testing Services NA, Inc.
731 Enterprise Drive
Lexington, KY 40510
USA

Client:
ICU Medical Inc.
951 Calle Amanecer
San Clemente, CA 92673
USA

Report prepared by

Brian Lackey, Team Leader

Report reviewed by

James Sudduth, Senior Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	Introduction	4
2	Test Site Description	5
3	Description of Equipment under Test	10
4	System Verification	11
5	Evaluation Procedures	15
6	Criteria	20
7	Test Configuration	20
8	Test Results	20
9	SAR Data:	20
10	APPENDIX A – System Validation Summary	22
11	APPENDIX B – Worst Case SAR Plot	23
12	APPENDIX C – Dipole Validation Plots	25
13	APPENDIX D – SAR Setup Photos	27

1 Introduction

At the request of ICU Medical Inc. the User Interface Module (UIM) were evaluated for SAR in accordance with the requirements for FCC Part 2.1093, RSS-102 Issue 5, and IEC 62209-1528. Testing was performed in accordance with IEEE Std 1528:2013, IEC62209-2:2010, IEC 62209-1528, and the Office of Engineering and Technology KDB 447498. Testing was performed at the Intertek facility in Lexington, Kentucky. The FCC test site designation number was US1112. The SAR lab ISED company number was 2042M, CAB identifier US0127. The SAR lab A2LA certification number was 1926.01.

For the evaluation, the dosimetric assessment system DASY52 was used. The total uncertainty for the evaluation of the spatial peak SAR values averaged over a cube of 1g tissue mass had been assessed for this system to be $\pm 22.2\%$ from 300MHz – 3GHz and 24.6% from 3GHz – 6GHz.

The User Interface Module (UIM) were tested at the maximum output power measured by Intertek. Maximum output power measurements are tabulated under Section 8 Test Results. The maximum spatial peak SAR value for the sample device averaged over 10g (for hand-held mode) is shown below.

Based on the worst-case data presented below, the User Interface Module (UIM) were found to be **compliant** with the 4 W/kg requirements for general population / uncontrolled exposure.

Table 1: Worst Case Reported SAR per Exposure Condition

Device Position	Transmit Mode	Position / Separation Distance (mm)	Channel	Conducted Output Power (dBm)	Reported 10-g SAR (W/kg)	10-g SAR Limit (W/kg)
Antenna 1 (txchain 0)	802.11n	Front / 0mm	1	23.42	1.27	4
Antenna 2 (txchain 1)	802.11n	Right / 0mm	6	23.63	1.64	4

2 Test Site Description

The SAR test site located at 731 Enterprise Drive, Lexington KY 40510 is comprised of the SPEAG model DASY 5.2 automated near-field scanning system, which is a package, optimized for dosimetric evaluation of mobile radios [3]. This system is installed in an ambient-free shielded chamber. The ambient temperature is controlled to 22.0 $\pm 2^{\circ}\text{C}$. During the SAR evaluations, the RF ambient conditions are monitored continuously for signals that might interfere with the test results. The tissue simulating liquid is also stored in this area in order to keep it at the same constant ambient temperature as the room.

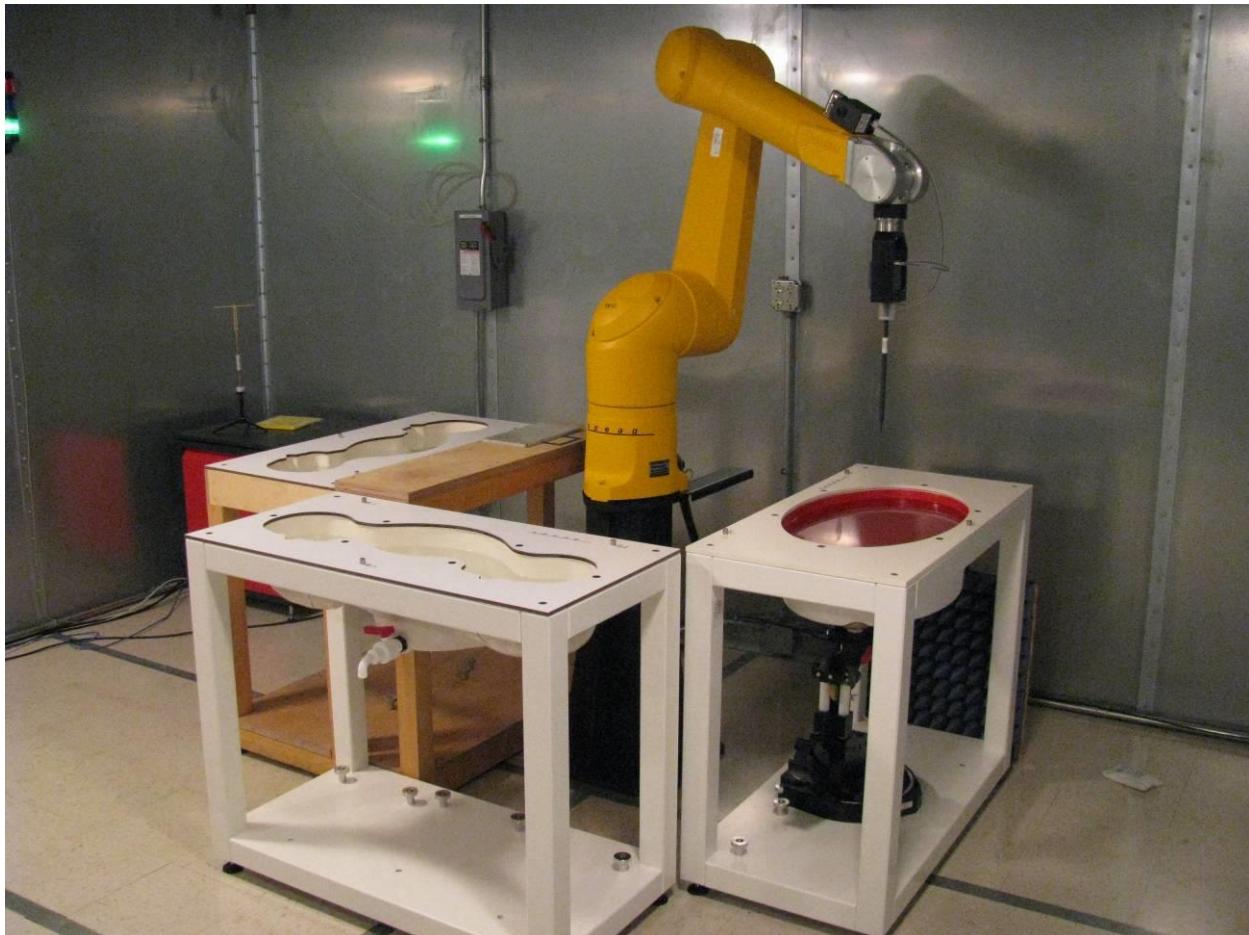


Figure 1: Intertek SAR Test Site

2.1 Measurement Equipment

The following major equipment/components were used for the SAR evaluation:

Table 2: Test Equipment Used for SAR Evaluation

Description	Asset	Manufacturer	Model	Cal. Date	Cal. Due
SAR Probe	3516	Speag	EX3DV3	11/17/2022	11/17/2023
2450MHz Dipole	3013	Speag	D2450V2	11/15/2022	11/15/2023
DAE	3269	Speag	DAE4	11/10/2022	11/10/2023
Vector Signal Generator	3884	Rohde & Schwarz	SMBV100A	9/15/2022	9/15/2023
Network Analyzer	2538	Agilent	8753ES	4/5/2022	4/5/2023
Wideband Power Sensor	4022	Rohde & Schwarz	NRP-Z81	9/22/2022	9/22/2023
Dielectric Probe Kit	3968	Speag	DAK-3.5	11/14/2022	11/14/2023
Spectrum Analyzer	3065	Rohde & Schwarz	FSP3	9/16/2022	9/16/2023
Oval Flat Phantom ELI 5.0	3620	Speag	QD OVA 002 A	Verify at Time of Use	Verify at Time of Use
6-Axis Robot	3608	Staubli	RX-909	Verify at Time of Use	Verify at Time of Use

2.2 Measurement Uncertainty

The Tables below includes the uncertainty budget suggested by IEEE Std 1528-2013, IEC62209-2:2010, and IEC 62209-1528:2020 as determined by SPEAG for the DASY5 measurement System.

Error Description	Uncertainty Value	Prob. Dist.	Div.	c_i (1g)	c_i (10g)	Std.Unc. (1g)	Std.Unc. (10g)	(v_i) v_{eff}
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Modulation Response	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	∞
Test sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	$\sqrt{3}$	1	1	±0%	±0%	∞
Phantom and Setup								
Phantom Uncertainty	±6.1%	R	$\sqrt{3}$	1	1	±3.5%	±3.5%	∞
SAR Correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	R	$\sqrt{3}$	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity (mea.)	±2.5%	R	$\sqrt{3}$	0.26	0.26	±0.3%	±0.4%	∞
Temp unc. - Conductivity	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%	∞
Temp unc. - Permittivity	±0.4%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty						±11.2%	±11.1%	361
Expanded STD Uncertainty						±22.3%	±22.2%	

Notes:

Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2013. The budget is valid for the frequency range 300 MHz – 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

Error Description	Uncertainty Value	Prob. Dist.	Div.	c_i (1g)	c_i (10g)	Std.Unc. (1g)	Std.Unc. (10g)	(v_i) v_{eff}
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Modulation Response	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	$\sqrt{3}$	1	1	±3.9%	±3.9%	∞
Max. SAR Eval.	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Test sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	$\sqrt{3}$	1	1	±0%	±0%	∞
Phantom and Setup								
Phantom Uncertainty	±6.6%	R	$\sqrt{3}$	1	1	±3.8%	±3.8%	∞
SAR Correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	R	$\sqrt{3}$	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity(mea.)	±2.5%	R	$\sqrt{3}$	0.26	0.26	±0.3%	±0.4%	∞
Temp unc. - Conductivity	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%	∞
Temp unc. - Permittivity	±0.4%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty						±12.3%	±12.2%	748
Expanded STD Uncertainty						±24.6%	±24.5%	

Notes:

Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2013. The budget is valid for the frequency range 3 GHz – 6 GHz and represents a worst-case analysis. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerably smaller.

Error Description	Uncertainty Value	Prob. Dist.	Div.	c_i (1g)	c_i (10g)	Std.Unc. (1g)	Std.Unc. (10g)	(v_i) v_{eff}
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Modulation Response	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	$\sqrt{3}$	1	1	±3.9%	±3.9%	∞
Post-Processing	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Test sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	$\sqrt{3}$	1	1	±0%	±0%	∞
Phantom and Setup								
Phantom Uncertainty	±7.9%	R	$\sqrt{3}$	1	1	±4.6%	±4.6%	∞
SAR Correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	R	$\sqrt{3}$	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity (mea.)	±2.5%	R	$\sqrt{3}$	0.26	0.26	±0.3%	±0.4%	∞
Temp unc. - Conductivity	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%	∞
Temp unc. - Permittivity	±0.4%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty						±12.5%	±12.5%	748
Expanded STD Uncertainty						±25.1%	±25.0%	

Notes:

Worst Case uncertainty budget for DASY5 assessed according to IEC62209-2: 2010 and IEC 62209-1528. The budget is valid for the frequency range 30MHz – 6 GHz and represents a worst-case analysis. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerably smaller.

3 Description of Equipment under Test

Equipment Under Test	
Product Name	User Interface Module (UIM)
Model Number	58403-200
Serial Number	EUIM0001 (conducted) EUIM0002 (radiated)
Supported Transmit Modes	802.11n
Receive Date	7/25/2022
Test Start Date	2/20/2023
Test End Date	2/21/2023
Device Received Condition	Good
Test Sample Type	Production
Rated Voltage	11.1VDC 3760mAh 41.7Wh (Battery); 20VDC 1.25A 25W (AC adapter)
Antenna Gains¹	TE Connectivity txchain 0: 2108857-8 (0.81dBi) txchain 1: 2108857-6 (1.55dBi)
Description of Equipment Under Test ¹	
User interface/display unit for use only on the Cogent Hemodynamic Monitoring System	

Operating Band	Technology	Modulation	Frequency Range (MHz)	Maximum Output Power (dBm)	Duty Cycle
2.4GHz ISM	802.11n	OFDM	2412MHz – 2462MHz	24.00	1:1

¹ This information was provided by the client and may affect compliance. Intertek makes no claims of compliance for any device(s) other than those identified herein. Intertek cannot attest to the accuracy of any client-provided data.

4 System Verification

4.1 System Validation

Prior to the assessment, the system was verified to be within $\pm 10\%$ of the specifications by using the system validation kit. The system validation procedure tests the system against reference SAR values and the performance of probe, readout electronics and software. The test setup utilizes a phantom and reference dipole.

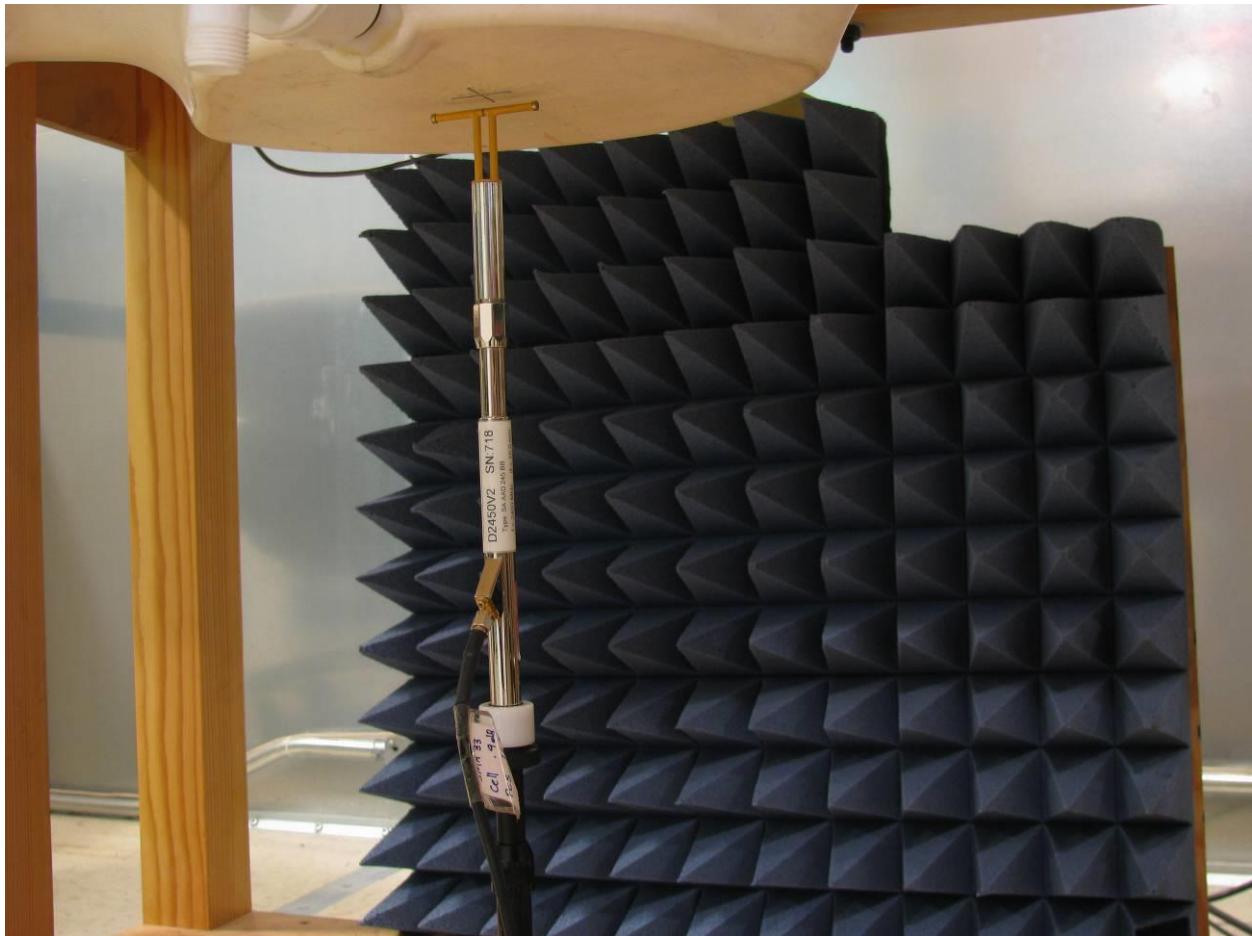


Figure 2: System Verification Setup

Table 3: Dipole Validations

Date	Ambient Temp (C)	Fluid Temp (C)	Frequency (MHz)	Dipole	Fluid Type	Phantom	Dipole Power Input (W)	Target Power (W)
2/20/2023	23.2	23.1	2450MHz	D2450V2	2450MSL	ELI v5.0	0.25	1

Measured 10-g SAR (W/kg)	Adjusted 10-g SAR (W/kg)	Cal. Lab 10-g SAR (W/kg)	10-g SAR % Error
6.06	24.24	23.6	2.71%

Measured 1-g SAR (W/kg)	Adjusted 1-g SAR (W/kg)	Cal. Lab 1-g SAR (W/kg)	1-g SAR % Error
13.00	52.00	49.80	4.42%

4.2 Measurement Uncertainty for System Validation

Source of Uncertainty	Value(dB)	Probability Distribution	Divisor	c _i	u _i (y)	(u _i (y))^2
Measurement System						
Probe Calibration	5.50	n1	1	1	5.50	30.250
Axial Isotropy	4.70	r	1.732	0.7	2.71	7.364
Hemispherical Isotropy	9.60	r	1.732	0.7	5.54	30.722
Boundary Effect	1.00	r	1.732	1	0.58	0.333
Linearity	4.70	r	1.732	1	2.71	7.364
System Detection Limits	1.00	r	1.732	1	0.58	0.333
Readout Electronics	0.30	n1	1	1	0.30	0.090
Response Time	0.80	r	1.732	1	0.46	0.213
Integration Time	2.60	r	1.732	1	1.50	2.253
RF Ambient Noise	3.00	r	1.732	1	1.73	3.000
RF Ambient Reflections	3.00	r	1.732	1	1.73	3.000
Probe Positioner	0.40	r	1.732	1	0.23	0.053
Probe Positioning	2.90	r	1.732	1	1.67	2.803
Max. SAR Eval.	1.00	r	1.732	1	0.58	0.333
Dipole / Generator / Power Meter Related						
Dipole positioning	2.90	n1	1	1	2.90	8.410
Dipole Calibration Uncertainty	0.68	r	1.732	1	0.39	0.154
Power Meter 1 Uncertainty (+20C to +25C)	0.13	n1	1	2	0.13	0.017
Power Meter 2 Uncertainty (+20C to +25C)	0.04	n1	1	3	0.04	0.002
Sig Gen VSWR Mismatch Error	1.80	n1	1	5	1.80	3.240
Sig Gen Resolution Error	0.01	n1	1	6	0.01	0.000
Sig Gen Level Error	0.90	n1	1	1	0.90	0.810
Phantom and Setup						
Phantom Uncertainty	4.00	r	1.732	1	2.31	5.334
Liquid Conductivity (target)	5.00	r	1.732	0.43	2.89	8.334
Liquid Conductivity (meas.)	2.50	n1	1	0.43	2.50	6.250
Liquid Permittivity (target)	5.00	r	1.732	0.49	2.89	8.334
Liquid Permittivity (meas.)	2.50	n1	1	0.49	2.50	6.250
Combined Standard Uncertainty		N1	1	1	11.63	135.247
Expanded Uncertainty		Normal k=	2		23.26	

4.3 Tissue Simulating Liquid Description and Validation

The dielectric parameters were verified to be within 5% of the target values prior to assessment. The dielectric parameters (ϵ' , σ) are shown in Table 4. A recipe for the tissue simulating fluid used is shown in Table 5.

Table 4: Dielectric Parameter Validations

Date	Temperature (C)		Tissue Type		Frequency Measure (MHz)			
2/20/2023	23.1		2450MHz MSL		2450			
ϵ' Target	σ Target	ϵ' Measured	σ Measured	ϵ'' Calculated	Dielectric % Deviation		Conductivity % Deviation	
52.7	1.95	54.1	2.03	14.91	2.62		4.21	

Table 5: Tissue Simulating Fluid Recipe

Composition of Ingredients for Liquid Tissue Phantoms (450MHz to 2450 MHz data only)													
Ingredient (% by weight)	f (MHz)												
	450		835		915		1900		2450		5500		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56	54.9	70.45	62.7	68.64	65.53	78.67	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.36	0.5				
Sugar	56.32	46.78	56	45	56.5	41.76							
HEC	0.98	0.52	1	1	1	1.21							
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27							
Triton X-100									36.8		17.235	10.665	
DGBE							44.92	29.18		31.37			
DGHE											17.235	10.665	
Dielectric Constant	43.42	58	42.54	56.1	42	56.8	39.9	53.3	39.8	52.7			
Conductivity (S/m)	0.85	0.83	0.91	0.95	1	1.07	1.42	1.52	1.88	1.95			

Tissue Simulating Liquid for 5GHz, MBBL3500-5800V5 Manufactured by SPEAG (proprietary mixture)

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

5 Evaluation Procedures

Prior to any testing, the appropriate fluid was used to fill the phantom to a depth of 15 cm \pm 0.2cm. The fluid parameters were verified and the dipole validation was performed as described in the previous sections.

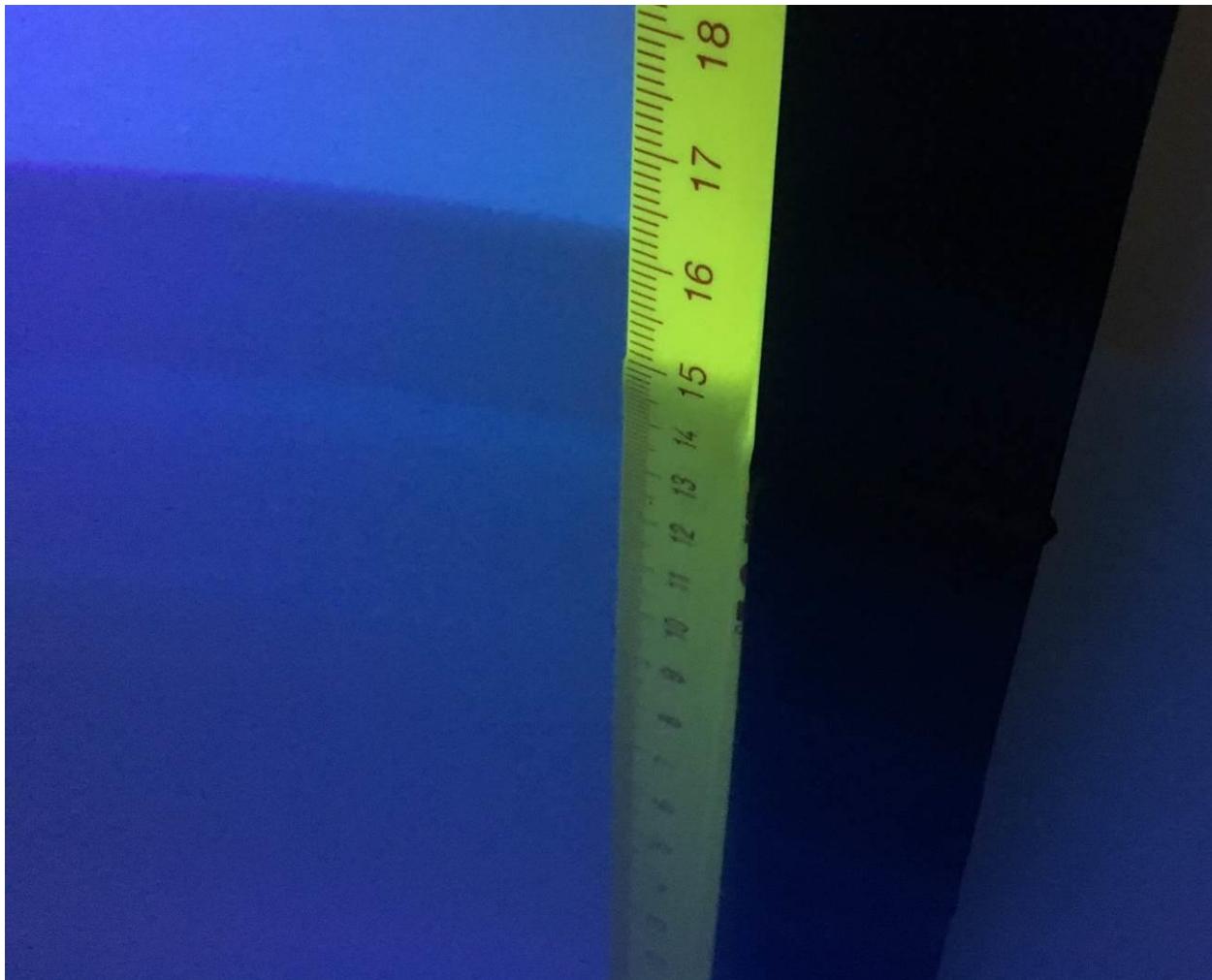


Figure 3: Fluid Depth 15cm

5.1 Test Positions:

The Device was positioned against the flat phantom using the exact procedure described in IEEE Std 1528:2013, IEC62209-2:2010, IEC 62209-1528:2020, and the Office of Engineering and Technology KDB 447498.

5.2 Reference Power Measurement:

The measurement probe was positioned at a fixed location above the reference point. A power measurement was made with the probe above this reference position so it could be used for the assessing the power drift later in the test procedure.

5.3 Area Scan:

A coarse area scan was performed in order to find the approximate location of the peak SAR value. This scan was performed with the measurement probe at a constant height in the simulating fluid. A two dimensional spline interpolation algorithm was then used to determine the peaks and gradients within the scanned area. The area scan resolution conformed to the requirements of KDB 865664 as shown in Table 6.

5.4 Zoom Scan:

A zoom scan was performed around the approximate location of the peak SAR as determined from the area scan. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure. The zoom scan resolution conformed to the requirements of KDB 865664 as shown in Table 6.

Table 6: SAR Area and Zoom Scan Resolutions

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location		30° ± 1°	20° ± 1°
		≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$		≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	graded grid	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
Minimum zoom scan volume	x, y, z	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the *reported* SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

5.5 Interpolation, Extrapolation and Detection of Maxima:

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and extrapolation routines. The interpolation, extrapolation and maximum search routines are all based on the modified Quadratic Shepard's method.

Thereby, the interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. The DASY5 routines construct a once-continuously differentiable function that interpolates the measurement values as follows:

- For each measurement point a trivariate (3-D) / bivariate (2-D) quadratic is computed. It interpolates the measurement values at the data point and forms a least-square fit to neighboring measurement values.
- The spatial location of the quadratic with respect to the measurement values is attenuated by an inverse distance weighting. This is performed since the calculated quadratic will fit measurement values at nearby points more accurate than at points located further away.
- After the quadratics are calculated for at all measurement points, the interpolating function is calculated as a weighted average of the quadratics.

There are two control parameters that govern the behavior of the interpolation method. One specifies the number of measurement points to be used in computing the least-square fits for the local quadratics. These measurement points are the ones nearest the input point for which the quadratic is being computed. The second parameter specifies the number of measurement points that will be used in calculating the weights for the quadratics to produce the final function. The input data points used there are the ones nearest the point at which the interpolation is desired. Appropriate defaults are chosen for each of the control parameters.

The trivariate quadratics that have been previously computed for the 3-D interpolation and whose input data are at the closest distance from the phantom surface, are used in order to extrapolate the fields to the surface of the phantom.

In order to determine all the field maxima in 2-D (Area Scan) and 3-D (Zoom Scan), the measurement grid is refined by a default factor of 10 and the interpolation function is used to evaluate all field values between corresponding measurement points. Subsequently, a linear search is applied to find all the candidate maxima. In a last step, non-physical maxima are removed and only those maxima which are within 2 dB of the global maximum value are retained.

5.6 Averaging and Determination of Spatial Peak SAR

The interpolated data is used to average the SAR over the 1g and 10g cubes by spatially discretizing the entire measured volume. The resolution of this spatial grid used to calculate the averaged SAR is 1mm or about 42875 interpolated points. The resulting volumes are defined as cubical volumes containing the appropriate tissue parameters that are centered at the location. The location is defined as the center of the incremental volume. The spatial-peak SAR must be evaluated in cubical volumes containing a mass that is within 5% of the required mass. The cubical volume centered at each location, as defined above, should be expanded in all directions until the desired value for the mass is reached, with no surface boundaries of the averaging volume extending beyond the outermost surface of the considered region. In addition, the cubical volume should not consist of more than 10% of air. If these conditions are not satisfied then the center of the averaging volume is moved to the next location. Otherwise, the exact size of the final sampling cube is found using an inverse polynomial approximation algorithm, leading to results with improved accuracy. If one boundary of the averaging volume reaches the boundary of the measured volume during its expansion, it will not be evaluated at all. Reference is kept of all locations used and those not used for averaging the SAR. All average SAR values are finally assigned to the centered location in each valid averaging volume.

All locations included in an averaging volume are marked to indicate that they have been used at least once. If a location has been marked as used, but has never been assigned to the center of a cube, the highest averaged SAR value of all other cubical volumes which have used this location for averaging is assigned to this location. Only those locations that are not part of any valid averaging volume should be marked as unused. For the case of an unused location, a new averaging volume must be constructed which will have the unused location centered at one surface of the cube. The remaining five surfaces are expanded evenly in all directions until the required mass is enclosed, regardless of the amount of included air. Of the six possible cubes with one surface centered on the unused location, the smallest cube is used, which still contains the required mass.

If the final cube containing the highest averaged SAR touches the surface of the measured volume, an appropriate warning is issued within the post processing engine.

5.7 Power Drift Measurement:

The probe was positioned at precisely the same reference point and the reference power measurement was repeated. The difference between the initial reference power and the final one is referred to as the power drift. This value should not exceed 5%. The power drift measurement was used to assess the output power stability of the test sample throughout the SAR scan.

5.8 RF Ambient Activity:

During the entire SAR evaluation, the RF ambient activity was monitored using a spectrum analyzer with an antenna connected to it. The spectrum analyzer was tuned to the frequency of measurement and with one trace set to max hold mode. In this way, it was possible to determine if at any point during the SAR measurement there was an interfering ambient signal. If an ambient signal was detected, then the SAR measurement was repeated.

6 Criteria

The following ANSI/IEEE C95.1 – 1992 limits for SAR apply to portable devices operating in the General Population/Uncontrolled Exposure environment. Uncontrolled environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Exposure Type (General Population/Uncontrolled Exposure environment)	SAR Limit (W/kg or mW/g)
Average over the whole body	0.08
Spatial Peak (1g)	1.60
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00

7 Test Configuration

The User Interface Module (UIM) was designed to be used in a handheld configuration. Testing was performed with the UIM against the flat ELI phantom.

The device was evaluated according to the specific requirements found in the following KDBs and Standards:

- FCC KDB 447498D01 v06, General RF Exposure Guidance
- FCC KDB 865664D01 v01r04, SAR Measurement Requirements for 100MHz to 6GHz
- FCC KDB 248227 D01 802.11 wi-Fi SAR v02r02, SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters
- RSS-102 Issue 5, Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
- IEC 62209-1528, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices - Human models, instrumentation and procedures (Frequency range of 4 MHz to 10 GHz)

8 Test Results

The worst case 10-g SAR value for body exposure was less than the 4W/kg limit.

9 SAR Data:

The results on the following page(s) were obtained when the device was transmitting at maximum output power. The worst case plots, which reveal information about the location of the maximum SAR with respect to the device, are referenced are shown in APPENDIX B – Worst Case SAR Plot. The measured conducted output power was compared to the power declared by the manufacturer and used for scaling the measured SAR values.

Table 7: SAR Results

TXChain	Channel	Measured Output Power (dBm)	Maximum Output Power (dBm)	Scaling Factor
0	1	23.42	24.00	1.143
0	6	23.49	24.00	1.125
0	11	23.38	24.00	1.153
1	1	23.49	24.00	1.125
1	6	23.63	24.00	1.089
1	11	23.54	24.00	1.112

TXChain	Channel	Position / Separation (mm)	Measured 10-g SAR (W/kg)	Reported 10-g SAR (W/kg)	10-g SAR Limit (W/kg)	Power Drift (dB)	Power Drift (%)
0	1	Back (0mm)	1.22E-01	1.39E-01	4	0.02	0.46%
0	1	Front (0mm)	1.11E+00	1.27E+00	4	0.07	1.62%
0	1	Left (0mm)	2.61E-02	2.98E-02	4	0.08	1.86%
0	1	Top (0mm)	8.96E-01	1.02E+00	4	-0.11	-2.50%
0	6	Front (0mm)	9.50E-01	1.07E+00	4	-0.04	-0.92%
0	11	Front (0mm)	7.69E-01	8.87E-01	4	0.03	0.69%
1	1	Front (0mm)	8.43E-01	9.48E-01	4	-0.06	-1.37%
1	1	Right (0mm)	1.09E+00	1.23E+00	4	0.03	0.69%
1	6	Back (0mm)	1.15E-01	1.25E-01	4	-0.02	-0.46%
1	6	Front (0mm)	1.11E+00	1.21E+00	4	0.03	0.69%
1	6	Right (0mm)	1.51E+00	1.64E+00	4	0.00	0.00%
1	11	Front (0mm)	1.24E+00	1.38E+00	4	0.02	0.46%
1	11	Right (0mm)	1.43E+00	1.59E+00	4	-0.04	-0.92%
1	11	Top (0mm)	3.47E-02	3.86E-02	4	0.12	2.80%

Test Personnel:	Brian Lackey	Test Date:	2/20/2023 – 2/21/2023
Supervising/Reviewing Engineer:			
(Where Applicable)	NA	Tissue Depth:	15cm
Signal Setup:	Test Commands	Ambient Temperature:	22.4C
Power Method:	Fully Charged Battery	Relative Humidity:	48.6%
Pretest Dipole Verification:	Yes	Atmospheric Pressure:	989.2mbar

Deviations, Additions, or Exclusions: by attestation of the client, the antennas do not transmit simultaneously and the device is thereby excluded from simultaneous transmission and MIMO considerations.

10 APPENDIX A – System Validation Summary

Per FCC KDB 865664, a tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters have been included in the summary table below. The validation was performed with reference dipoles using the required tissue equivalent media for system validation according to KDB 865664. Each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point. All measurements were performed using probes calibrated for CW signals. Modulations in the table above represent test configurations for which the SAR system has been validated. The SAR system was also validated with modulated signals per KDB 865664.

Table 8: SAR System Validation Summary

Frequency (MHz)	Date	Probe (SN#)	Probe (Model #)	Probe Calibration Point		Dielectric Properties		CW Validation			Modulation Validation		
				Frequency (MHz)	Fluid Type	σ	ϵ_r	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	PAR
2450	2/7/2023	3516	EX3DV3	2450	Body	50.65	2.02	Pass	Pass	Pass	OFDM	N/A	Pass
5200	2/7/2023	3516	EX3DV3	5200	Body	48.71	5.54	Pass	Pass	Pass	OFDM	N/A	Pass
5500	2/7/2023	3516	EX3DV3	5500	Body	47.68	6.29	Pass	Pass	Pass	OFDM	N/A	Pass
5800	2/7/2023	3516	EX3DV3	5800	Body	48.71	5.54	Pass	Pass	Pass	OFDM	N/A	Pass
Frequency (MHz)	Date	Probe (SN#)	Probe (Model #)	Probe Calibration Point		Dielectric Properties		CW Validation			Modulation Validation		
				Frequency (MHz)	Fluid Type	σ	ϵ_r	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	PAR
835	2/7/2023	3516	EX3DV3	835	Body	54.2	0.98	Pass	Pass	Pass	GMSK	Pass	N/A
900	2/7/2023	3516	EX3DV3	900	Body	54	1.02	Pass	Pass	Pass	GMSK	Pass	N/A
1750	2/7/2023	3516	EX3DV3	1800	Body	52.9	1.41	Pass	Pass	Pass	GMSK	Pass	N/A
1900	2/7/2023	3516	EX3DV3	1900	Body	52.7	1.48	Pass	Pass	Pass	GMSK	Pass	N/A

11 APPENDIX B – Worst Case SAR Plot

Date/Time: 2/21/2023 1:53:00 PM

Test Laboratory: Intertek

File Name: [2023-02-20 Wi-Fi SAR.da53:0](#)

2023-02-20 Wi-Fi SAR

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

DUT: Cogent HMS; Serial: EUIM0002

Communication System: UID 0, Generic 802.11b/g/n (0); Communication System Band: 2.4 GHz Band; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2437 \text{ MHz}$; $\sigma = 2.03 \text{ S/m}$; $\epsilon_r = 54.211$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.31, 8.31, 8.31) @ 2437 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2022
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.10.4(1535);

Configuration/802.11n txchain1 ch6 right/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

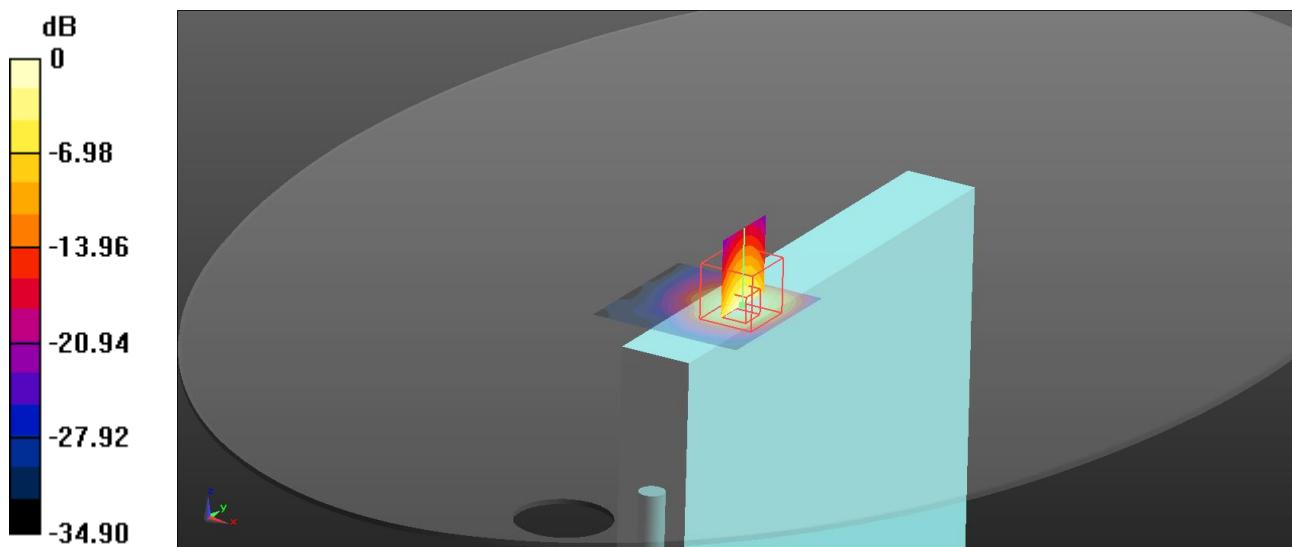
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.47 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 8.94 W/kg

SAR(1 g) = 3.98 W/kg; SAR(10 g) = 1.51 W/kg (SAR corrected for target medium)

Smallest distance from peaks to all points 3 dB below = 8 mm


Ratio of SAR at M2 to SAR at M1 = 48.5%

Maximum value of SAR (measured) = 4.81 W/kg

Configuration/802.11n txchain1 ch6 right/Area Scan (51x51x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 4.94 W/kg

0 dB = 4.94 W/kg = 6.94 dBW/kg

12 APPENDIX C – Dipole Validation Plots

Date/Time: 2/20/2023 10:52:57 AM

Test Laboratory: Intertek

File Name: [2023-02-20 D2450V2.da53:0](#)

12.1.1 2023-02-20 D2450V2

Procedure Notes:

DUT: D2450V2 - SN718; Serial: SN718

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz);
Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450 \text{ MHz}$; $\sigma = 2.032 \text{ S/m}$; $\epsilon_r = 54.078$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.31, 8.31, 8.31) @ 2450 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 11/10/2022
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.10.4(1535);

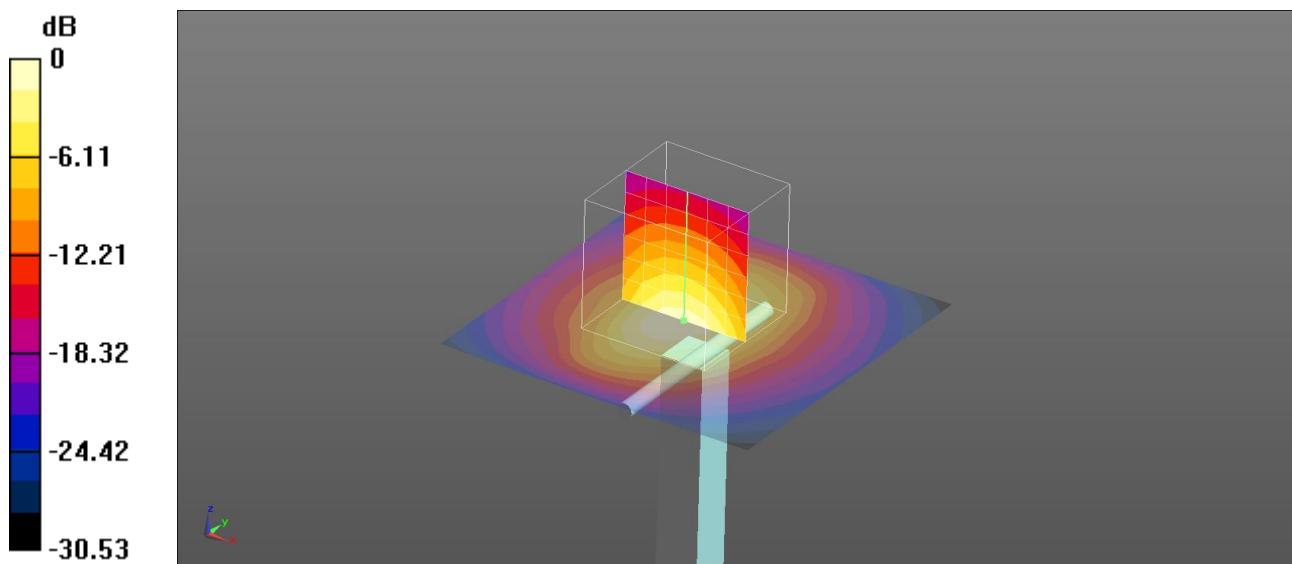
Configuration/Unnamed procedure/Volume Scan (7x7x7): Measurement grid:

$dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 82.88 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.06 W/kg (SAR corrected for target medium)


Total Absorbed Power = 0.0969 W

Maximum value of SAR (measured) = 14.9 W/kg

Configuration/Unnamed procedure/Area Scan (51x51x1): Interpolated grid: $dx=1.500$

mm , $dy=1.500 \text{ mm}$

Maximum value of SAR (interpolated) = 16.1 W/kg

0 dB = 16.1 W/kg = 12.07 dBW/kg

13 APPENDIX D – SAR Setup Photos

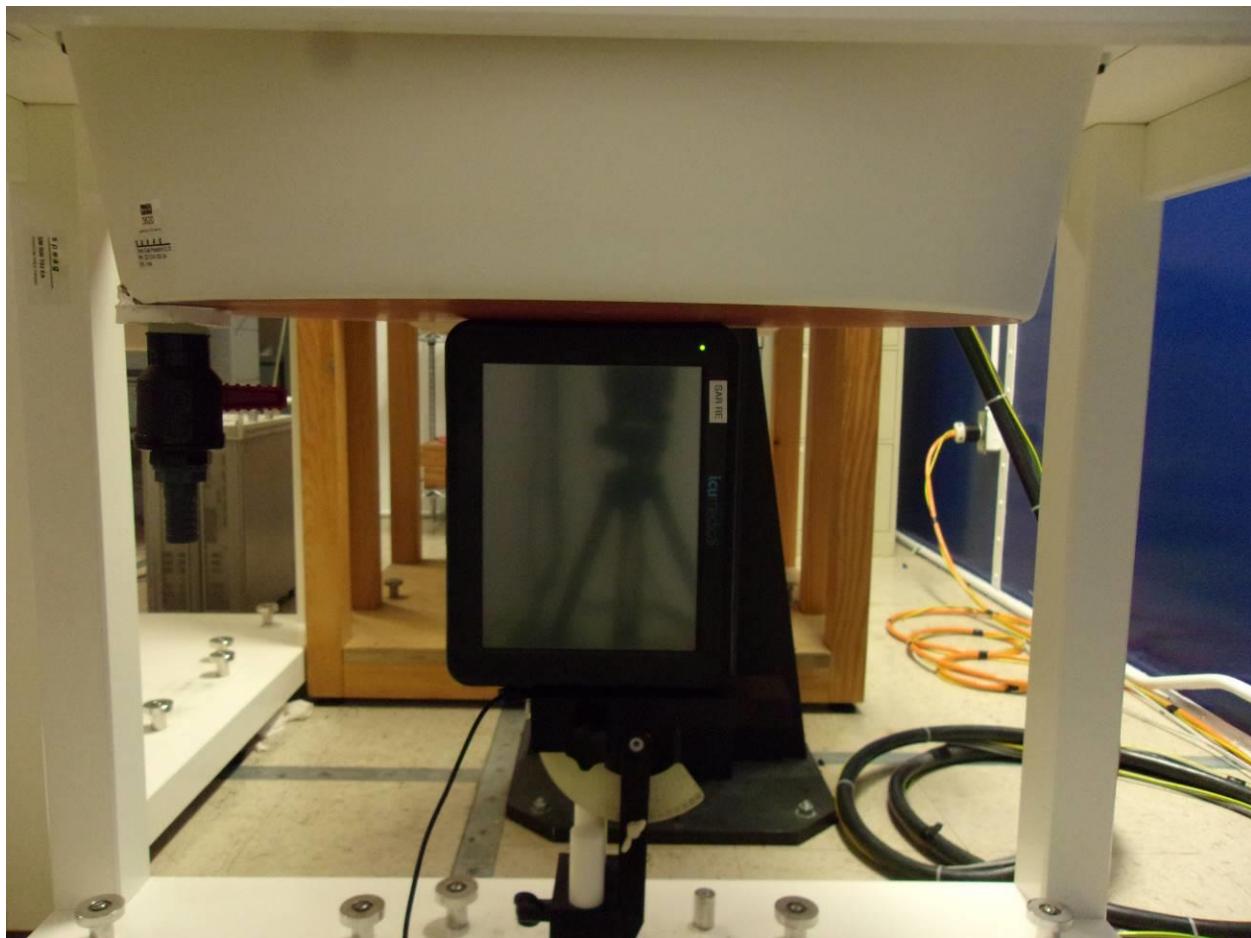


Figure 4 Left / Right Side

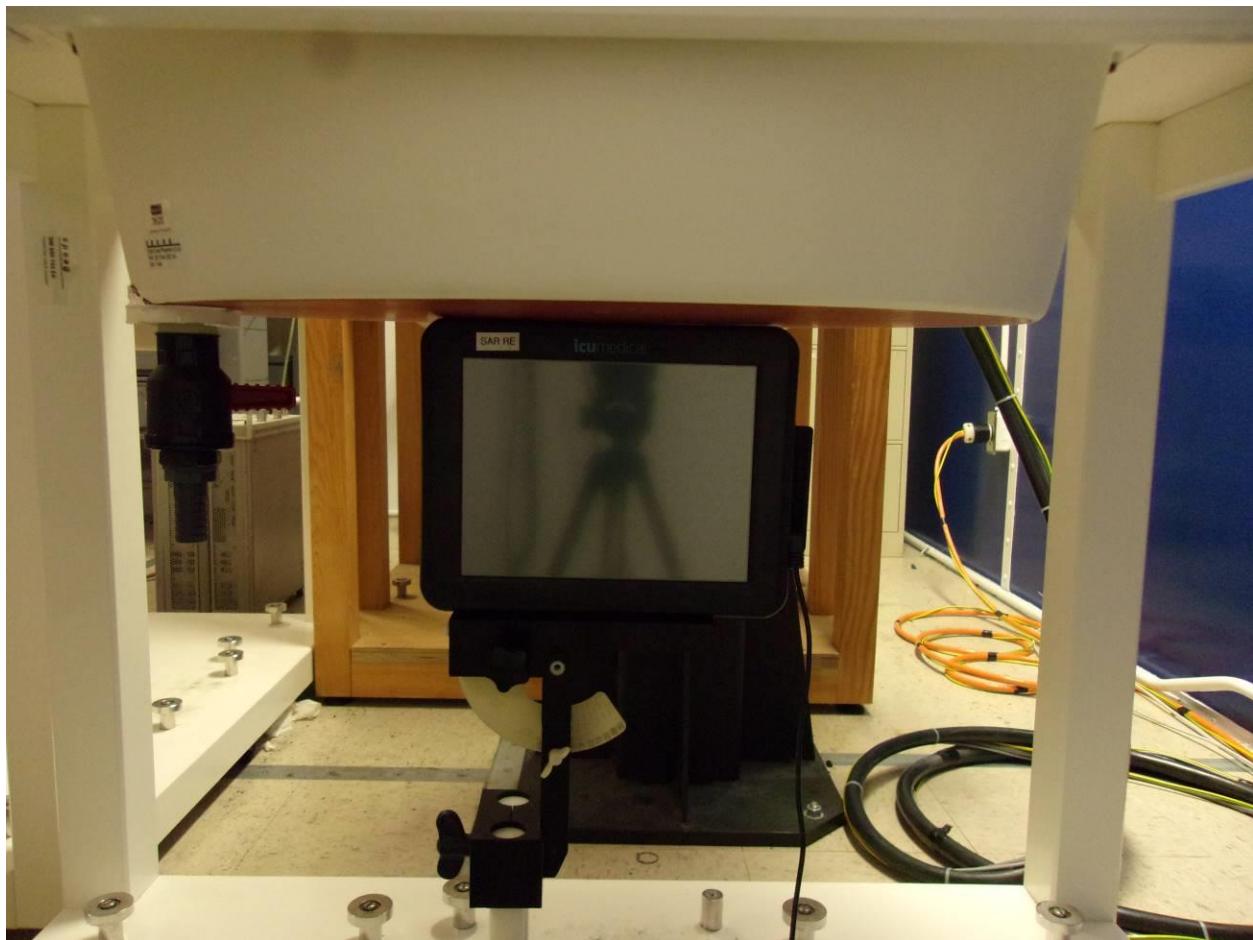
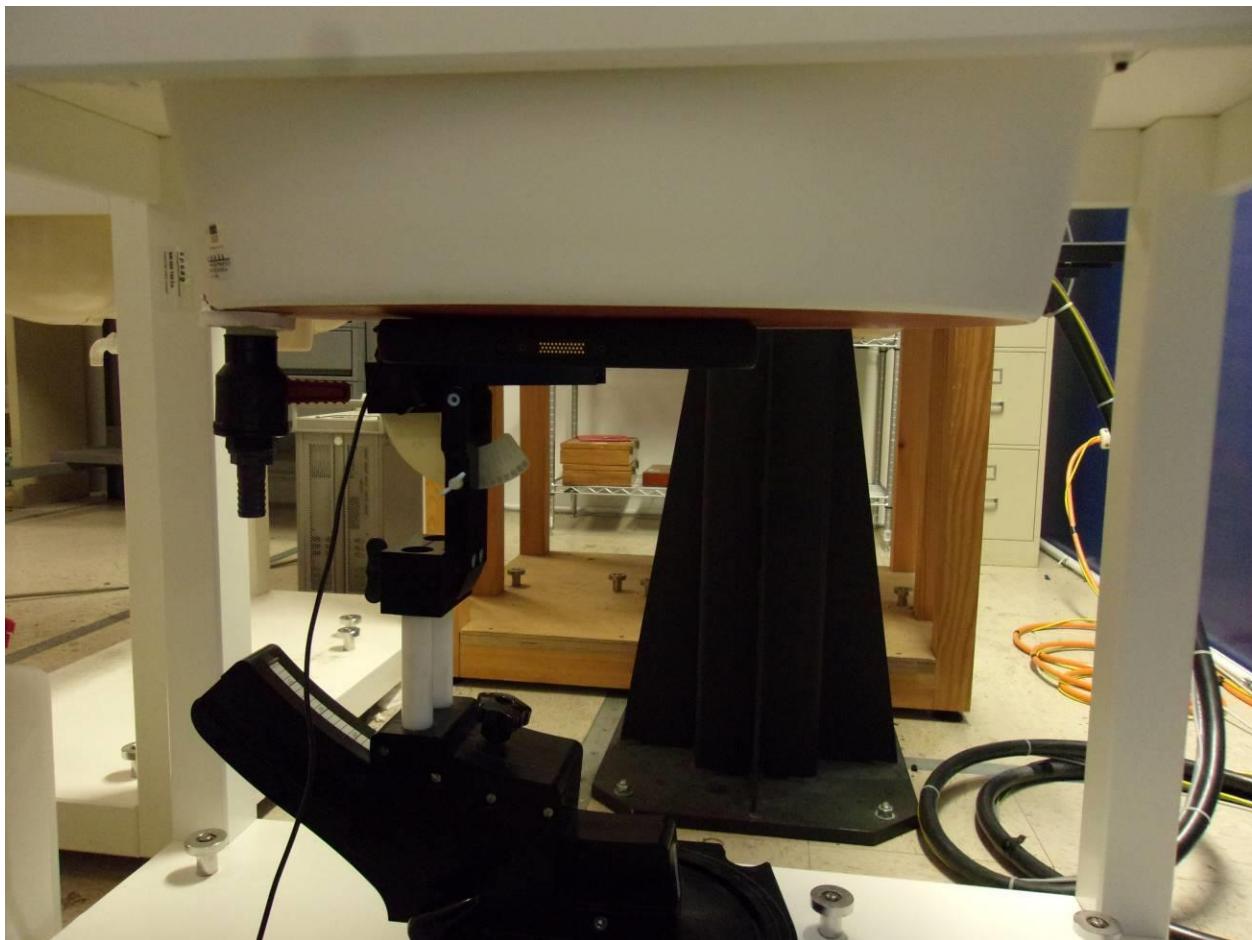



Figure 5 Top Side

Figure 6 Front / Back Side

Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	11/21/2022	104835038LEX-004	BZ	JTS	Original Issue
1	11/28/2022	104835038LEX-004.1	BZ	JTS	Fixed product description
2	2/27/2023	104835038LEX-004.2	BZ	JTS	Updated SAR data