

MEASUREMENT REPORT

FCC Part 15.245 / RSS-210 Issue 10

FCC ID: 2AWKC-71800247

IC: 26186-71800247

Applicant: Qingdao Haier Special Freezer Co Ltd

Application Type: Certification

Product: 1T1R doppler radar

Model No.: RKB1146

Brand Name: Haier

FCC Classification: Part 15 Field Disturbance Sensor (FDS)

FCC Rule Part(s): FCC Part 15.245

ISED Rule(s): RSS-210 Issue 10, RSS-Gen Issue 5

Test Procedure(s): ANSI C63.10-2013

Test Date: June 04 ~ 10, 2020

Reviewed By : *Sunny Sun*

(Sunny Sun)

Approved By : *Robin Wu*

(Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2006RSU010-U1	Rev. 01	Initial Report	06-16-2020	Valid

CONTENTS

Description	Page
1. INTRODUCTION	6
1.1. Scope	6
1.2. MRT Test Location	6
2. PRODUCT INFORMATION	7
2.1. Equipment Description.....	7
2.2. Test Mode	7
2.3. Test Configuration	7
2.4. EMI Suppression Device(s)/Modifications.....	7
2.5. Labeling Requirements.....	8
3. DESCRIPTION of TEST.....	9
3.1. Evaluation Procedure	9
3.2. AC Line Conducted Emissions	9
3.3. Radiated Emissions	10
4. ANTENNA REQUIREMENTS.....	11
5. TEST EQUIPMENT CALIBRATION DATE	12
6. MEASUREMENT UNCERTAINTY.....	14
7. TEST RESULT	15
7.1. Summary	15
7.2. Occupied Bandwidth Measurement	16
7.2.1. Test Limit	16
7.2.2. Test Procedure used.....	16
7.2.3. Test Setting.....	16
7.2.4. Test Setup.....	16
7.2.5. Test Result.....	17
7.3. Radiated Emission.....	18
7.3.1. Test Limit	18
7.3.2. Test Procedure used.....	20
7.3.3. Test Procedure.....	20
7.3.4. Test Setup.....	21
7.3.5. Test Results	23
7.4. Radiated Restricted Band Edge Measurement	25
7.4.1. Test Limit	25

7.4.2.	Test Procedure used.....	28
7.4.3.	Test Procedure.....	28
7.4.4.	Test Setup.....	29
7.4.5.	Test Result.....	30
7.5.	AC Conducted Emissions Measurement.....	34
7.5.1.	Test Limit	34
7.5.2.	Test Setup.....	34
7.5.3.	Test Result.....	35
8.	CONCLUSION.....	37
Appendix A - Test Setup Photograph		38
Appendix B - EUT Photograph.....		39

General Information

Applicant:	Qingdao Haier Special Freezer Co Ltd
Applicant Address:	HAIER GARDEN, QIANWANGANG RD ECONOMIC DEVELOPMENT ZONE QINGDAO SHANDONG 266510 CHINA
Manufacturer:	Qingdao Haier Special Freezer Co Ltd
Manufacturer Address:	HAIER GARDEN, QIANWANGANG RD ECONOMIC DEVELOPMENT ZONE QINGDAO SHANDONG 266510 CHINA
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Designation No. CN1166) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	1T1R doppler radar
Model No.	RKB1146
Frequency Range	24.09 ~ 24.15GHz
Operation Voltage	DC 3.5~ 5.5V
Identification Number	B3300181
Antenna Type	Printed Antenna

2.2. Test Mode

Test Mode	Mode 1: Continuous Transmit
-----------	-----------------------------

Note: The engineer test sample was provided by the manufacturer, it was configured into continuous TX status after power on and the duty cycle of the EUT is 100%.

2.3. Test Configuration

The device was tested per the guidance of FCC Part 15.245 and ANSI 63.10-2013 which was used to reference the appropriate EUT setup for radiated spurious emissions and AC line conducted emissions testing.

2.4. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.5. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

RSS-Gen Issue 5 Section 4

In addition to complying with the applicable RSSs and RSP-100, each unit of a product model (i.e. of a radio apparatus) shall meet the labelling requirements set out in this section prior to being marketed in Canada or imported into Canada.

For information regarding the labelling option, see Section 4.1, 4.2, 4.3, 4.4. The label for the certified product represents the manufacturer's or importer's compliance with Innovation, Science and Economic Development Canada's (ISED) regulatory requirements.

Please see attachment for IC label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the requirement provided in FCC Part 15.245 were used in the measurement of the EUT.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. For floor-standing equipment, The EUT is typically installed on the ground plane. In order to prevent direct metallic contact of the EUT and the reference ground plane, insulating material (up to 12 mm thick) shall be placed under the EUT. Two 10kHz-30MHz, 50Ω/50uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment which determined the worst-case emission. Once the worst-case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

“An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.”

- The antenna of this device is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2020/04/15
Two-Line V-Network	R&S	ENV 216	MRTSUE06002	1 year	2020/06/13
Two-Line V-Network	R&S	ENV 216	MRTSUE06003	1 year	2020/06/13
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2020/08/08
Shielding Room	MIX-BEP	Chamber-SR2	MRTSUE06215	N/A	N/A

Radiated Emission - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2020/08/01
Spectrum Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2021/04/14
EXA Signal Analyzer	Keysight	N9010B	MRTSUE06452	1 year	2020/07/11
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2021/04/03
Broad Band Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06023	1 year	2020/10/13
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06597	1 year	2020/12/17
Micro-Wave Antenna	MI-WWAVE	261U-25	MRTSUE06273	N/A	N/A
Micro-Wave Antenna	MI-WWAVE	261E-25	MRTSUE06276	N/A	N/A
Micro-Wave Antenna	MI-WWAVE	261F-25	MRTSUE06275	N/A	N/A
Waveguide Harmonic Mixer	Keysight	M1970V	MRTSUE06271	N/A	N/A
Waveguide Harmonic Mixer	Keysight	M1970W	MRTSUE06272	N/A	N/A
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2021/06/10
DC Power Supply	GWINSTEK	DPS-99306D	MRTSUE06063	1 year	N/A
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2020/08/08
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06212	1 year	2021/04/29

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2020/08/01
EXA Signal Analyzer	Keysight	N9010B	MRTSUE06452	1 year	2020/07/11
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2020/10/27
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06597	1 year	2020/12/17
Micro-Wave Antenna	MI-WWAVE	261U-25	MRTSUE06273	N/A	N/A
Micro-Wave Antenna	MI-WWAVE	261E-25	MRTSUE06276	N/A	N/A
Micro-Wave Antenna	MI-WWAVE	261F-25	MRTSUE06275	N/A	N/A
Waveguide Harmonic Mixer	Keysight	M1970V	MRTSUE06271	N/A	N/A
Waveguide Harmonic Mixer	Keysight	M1970W	MRTSUE06272	N/A	N/A
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2021/06/10
DC Power Supply	GWINSTEK	DPS-99306D	MRTSUE06063	1 year	N/A
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2020/12/15
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2021/04/29

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

Conducted Emission Measurement - SR2
The maximum measurement uncertainty is evaluated as: 9kHz~150kHz: 3.84dB 150kHz~30MHz: 3.46dB
Radiated Emission Measurement - AC1
The maximum measurement uncertainty is evaluated as: Horizontal: 30MHz~300MHz: 4.07dB 300MHz~1GHz: 3.63dB 1GHz~18GHz: 4.16dB Vertical: 30MHz~300MHz: 4.18dB 300MHz~1GHz: 3.60dB 1GHz~18GHz: 4.76dB
Radiated Emission Measurement - AC2
The maximum measurement uncertainty is evaluated as: Horizontal: 30MHz~300MHz: 3.75dB 300MHz~1GHz: 3.53dB 1GHz~18GHz: 4.28dB Vertical: 30MHz~300MHz: 3.86dB 300MHz~1GHz: 3.53dB 1GHz~18GHz: 4.33dB

7. TEST RESULT

7.1. Summary

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.215(c)	Occupied Bandwidth	N/A	Radiated	Pass	Section 7.2
15.209 15.245	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209		Pass	Section 7.3 & 7.4
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.5

RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
RSS-GEN Clause 6.7	Occupied Bandwidth	N/A	Radiated	Pass	Section 7.2
RSS-GEN Clause 8.9, RSS-210 Annex F.1	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in RSS-GEN clause 8.10		Pass	Section 7.3 & 7.4
RSS-GEN Clause 8.8	AC Conducted Emissions 150kHz - 30MHz	< RSS-GEN Clause 8.8 limits	Line Conducted	Pass	Section 7.5

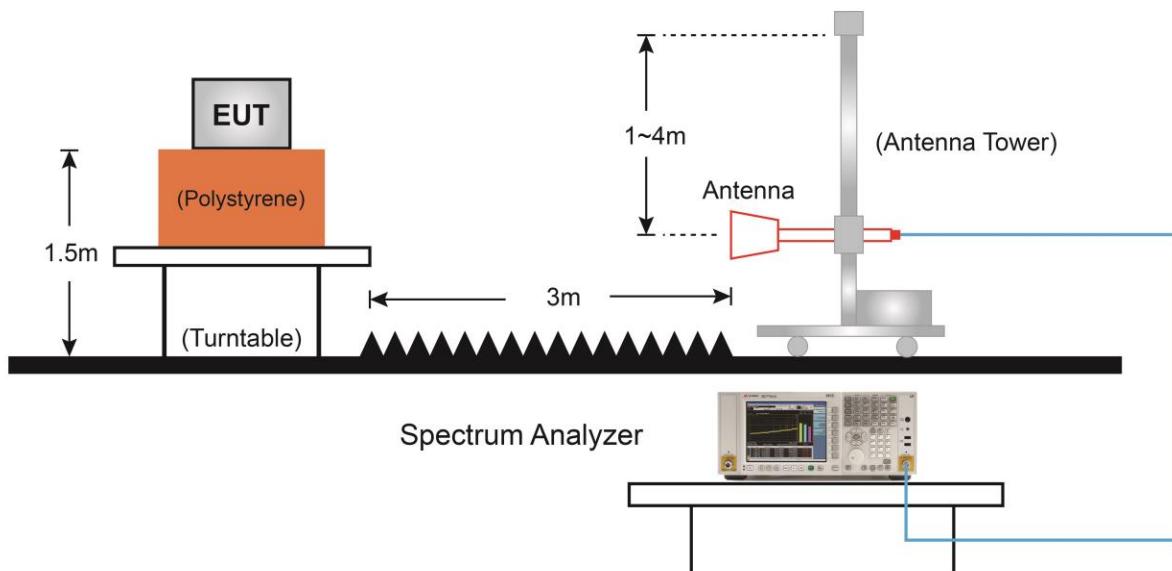
Notes: The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer.

The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

7.2. Occupied Bandwidth Measurement

7.2.1. Test Limit

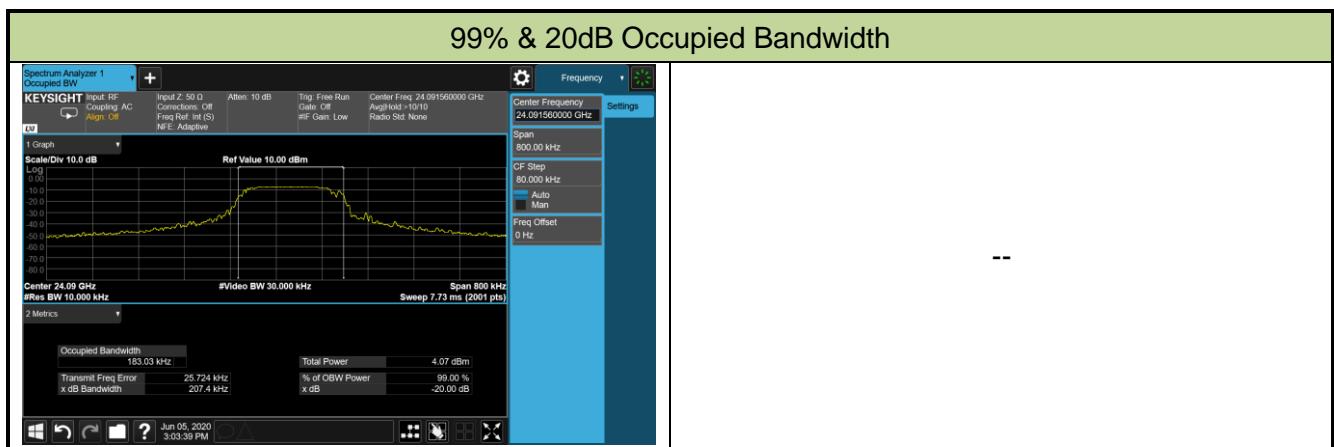
N/A


7.2.2. Test Procedure used

ANSI C63.10 Section 6.9

7.2.3. Test Setting

1. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.
The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
2. RBW = approximately 1% to 5% of the OBW.
3. VBW $\geq 3 \times$ RBW.
4. Detector = Peak.
5. Trace mode = max hold.


7.2.4. Test Setup

7.2.5. Test Result

Product	1T1R doppler radar	Temperature	24°C
Test Engineer	Cat Hu	Relative Humidity	54%
Test Site	AC2	Test Date	2020/06/05

99% Bandwidth (kHz)	20dB Bandwidth (kHz)
183.03	207.40

7.3. Radiated Emission

7.3.1. Test Limit

FCC Part 15.245 & RSS-210		
Fundamental frequency (MHz)	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (millivolts/meter)
902 ~ 928	500	1.6
2435 ~ 2465	500	1.6
5785 ~ 5815	500	1.6
10500 ~ 10550	2500	25.0
24075 ~ 24175	2500	25.0

Note 1: Regardless of the limits shown in the above table, harmonic emissions in the restricted bands below 17.7 GHz, as specified in §15.205, shall not exceed the field strength limits shown in § 15.209. Harmonic emissions in the restricted bands at and above 17.7GHz shall not exceed the following field strength limits:

- (i) For the second and third harmonics of field disturbance sensors operating in the 24075-24175 MHz band and for other field disturbance sensors designed for use only within a building or to open building doors, 25.0 mV/m.
- (ii) For all other field disturbance sensors, 7.5 mV/m.
- (iii) Field disturbance sensors designed to be used in motor vehicles or aircraft must include features to prevent continuous operation unless their emissions in the restricted bands, other than the second and third harmonics from devices operating in the 24075-24175 MHz band, fully comply with the limits given in § 15.209. Continuous operation of field disturbance sensors designed to be used in farm equipment, vehicles such as fork lifts that are intended primarily for use indoors or for very specialized operations, or railroad locomotives, railroad cars and other equipment which travels on fixed tracks is permitted. A field disturbance sensor will be considered not to be operating in a continuous mode if its operation is limited to specific activities of limited duration (e.g., putting a vehicle into reverse gear, activating a turn signal, etc.).

Note 2: Field strength limits are specified at a distance of 3 meters.

Note 3: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Note 4: The emission limits shown above are based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209		
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

All out of band emissions appearing in a restricted band as specified in Section 8.10 of the RSS-Gen must not exceed the limits shown in Table per Section 8.9.

RSS-Gen Section 8.9			
Frequency (MHz)	Field Strength (μ V/m)	Magnetic Field Strength (H-Field) (μ A/m)	Measured Distance (m)
0.009 - 0.490	--	6.37/F (F in kHz)	300
0.490 - 1.705	--	6.37/F (F in kHz)	30
1.705 - 30	--	0.08	30
30 - 88	100	--	3
88 - 216	150	--	3
216 - 960	200	--	3
Above 960	500	--	3

7.3.2. Test Procedure used

ANSI C63.10 Section 6.3 to 6.6

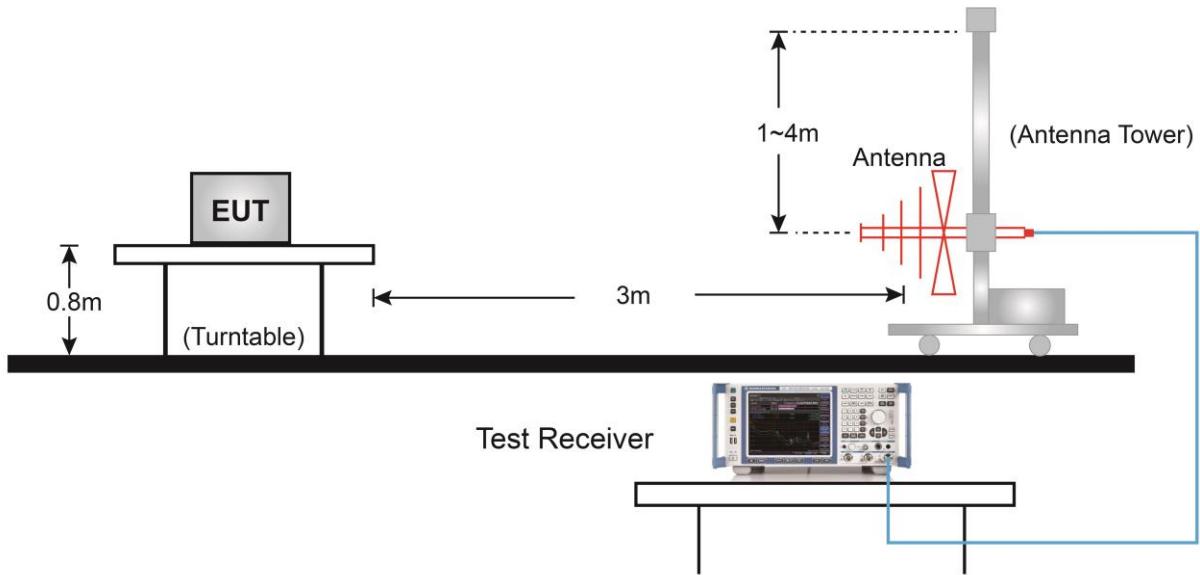
7.3.3. Test Procedure

Peak Field Strength Measurements

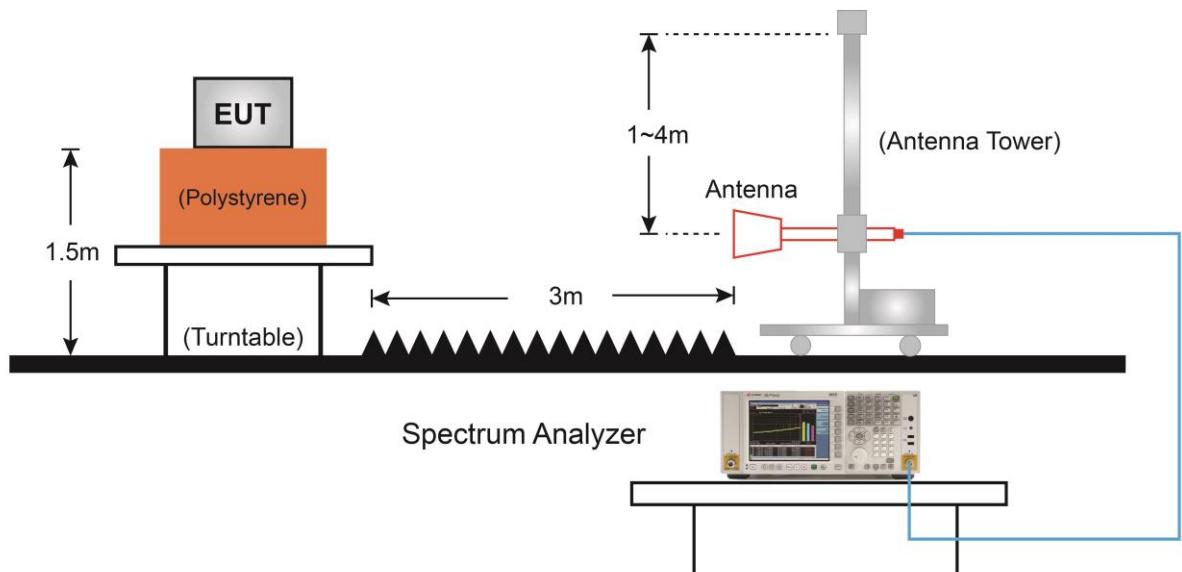
1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = as specified in Table 1
3. VBW = 3MHz
4. Detector = peak
5. Sweep time = auto couple
6. Trace mode = max hold
7. Trace was allowed to stabilize

Table 1 - RBW as a function of frequency

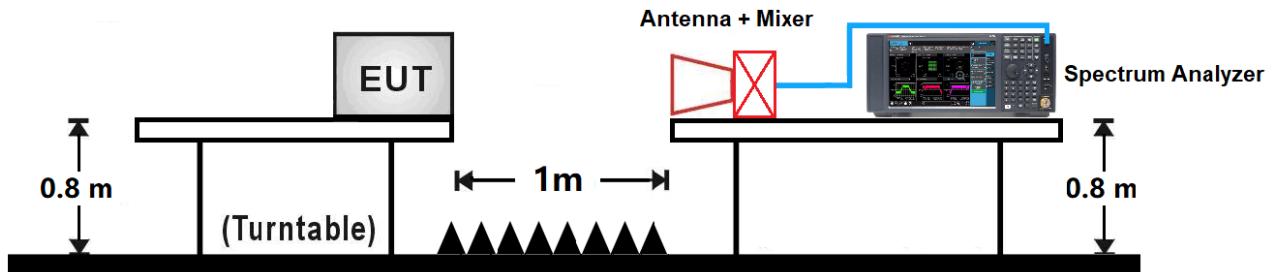
Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz
> 1000 MHz	1 MHz


Average Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW = 10Hz
4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
5. Detector = Peak
6. Sweep time = auto


7. Trace mode = max hold
8. Allow max hold to run for at least 50 times (1/duty cycle) traces

7.3.4. Test Setup


Below 1GHz Test Setup:

1GHz ~ 40GHz Test Setup:

Above 40GHz Test Setup:

7.3.5. Test Results

Product	1T1R doppler radar	Temperature	23°C
Test Engineer	Messiah Li	Relative Humidity	54%
Test Site	AC2	Test Date	2020/06/05
Remark:	Fundamental Radiated Emission		

Frequency (GHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
24091.5	100.9	-8.7	92.2	148	-55.8	Peak	Horizontal
24091.7	98.8	-8.7	90.1	128	-37.9	Average	Horizontal
24091.6	88.2	-8.7	79.5	148	-68.5	Peak	Vertical
24091.8	87.9	-8.7	79.2	128	-48.8	Average	Vertical

Note: Peak Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Product	1T1R doppler radar	Temperature	23°C
Test Engineer	Messiah Li	Relative Humidity	54%
Test Site	AC1	Test Date	2020/06/10
Remark:	Harmonics Radiated Emission		

Mark	Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
	47.6	6.2	14.3	20.6	40.0	-19.4	QP	Horizontal
	63.6	4.1	12.2	16.4	40.0	-23.6	QP	Horizontal
	49.8	20.1	14.4	34.5	40.0	-5.5	QP	Vertical
	57.6	13.7	13.7	27.3	40.0	-12.7	QP	Vertical
	5658.0	37.1	6.4	43.5	74.0	-30.5	Peak	Horizontal
	7137.0	37.9	10.4	48.3	74.0	-25.7	Peak	Horizontal
	5989.5	37.7	7.0	44.7	74.0	-29.3	Peak	Vertical
	7179.5	37.0	10.7	47.7	74.0	-26.3	Peak	Vertical
	26910.0	56.5	-7.5	49.0	74.0	-25.0	Peak	Horizontal
	34896.0	57.3	-6.5	50.8	74.0	-23.2	Peak	Horizontal
	26910.0	56.1	-7.5	48.7	74.0	-25.3	Peak	Vertical
	33829.0	56.6	-6.7	49.9	74.0	-24.1	Peak	Vertical
*	48218.8	27.0	46.6	73.6	117.5 (Note 2)	-43.9	Peak	Horizontal
*	48219.0	27.1	46.6	73.7	117.5 (Note 2)	-43.8	Peak	Vertical
*	72489.4	38.1	42.7	80.8	117.5 (Note 2)	-36.7	Peak	Horizontal
*	72489.4	42.0	42.7	84.7	117.5 (Note 2)	-32.8	Peak	Vertical

Note 1: "", it represents Harmonic emissions in the restricted bands, and its limit is 25 mV/m.

Note 2: AV Limit (dB μ V/m at 1m) = $\{20 \times \log[(25/1000)] + 120\} + 20 \times \log(3m/1m)$ dB μ V/m = 97.5 dB μ V/m

PK Limit (dB μ V/m at 1m) = AV Limit (dB μ V/m at 1m) + 20dB = 117.5 dB μ V/m

Note 3: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Note 4: Average measurement was not performed when the peak level lower than average limit.

Note 5: The amplitude of radiated emissions (frequency range from 9kHz to 30MHz and 75GHz to 100GHz) is that proximity to ambient noise, which also are attenuated more than 20 dB below the permissible value. Therefore, the data is not presented in the report.

7.4. Radiated Restricted Band Edge Measurement

7.4.1. Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41	--	--	--

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209		
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

For RSS-Gen Section 8.10 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 8.10 of RSS-Gen, must also comply with the radiated emission limits specified in Section 8.9.

Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 -1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 -2390	
12.51975 - 12.52025	2483.5 -2500	
12.57675 - 12.57725	2655 - 2900	
13.36 -13.41	3260 - 3267	
16.42 - 16.423	3332 -3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2		
108 - 138	8025 - 8500	

All out of band emissions appearing in a restricted band as specified in Section 8.10 of the RSS-Gen must not exceed the limits shown in Table per Section 8.9.

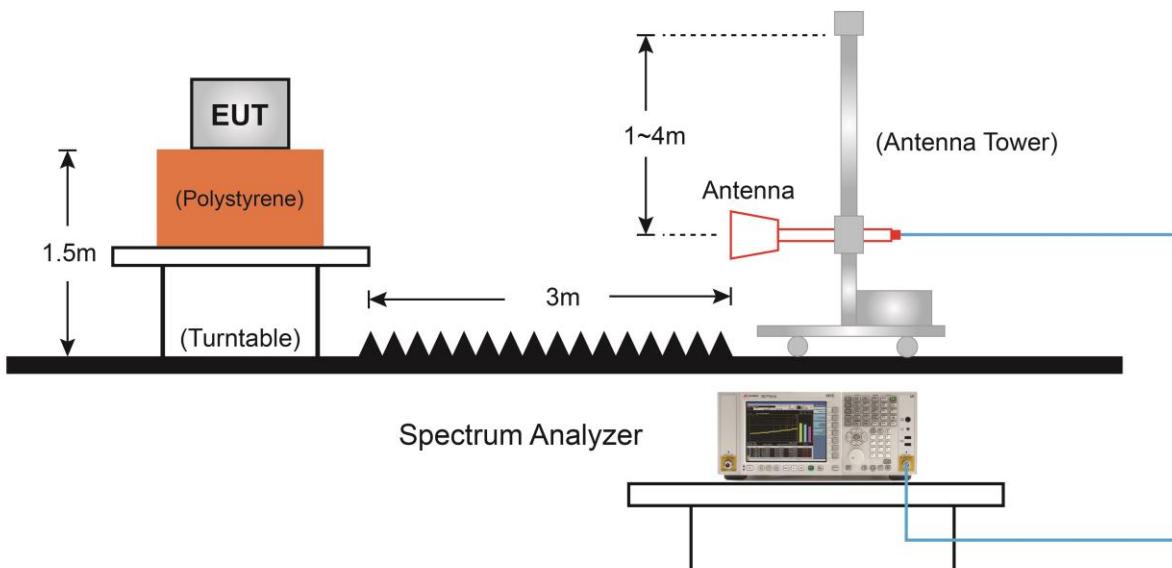
RSS-Gen Section 8.9			
Frequency (MHz)	Field Strength ($\mu\text{V/m}$)	Magnetic Field Strength (H-Field) ($\mu\text{A/m}$)	Measured Distance (m)
0.009 - 0.490	--	6.37/F (F in kHz)	300
0.490 - 1.705	--	6.37/F (F in kHz)	30
1.705 - 30	--	0.08	30
30 - 88	100	--	3
88 - 216	150	--	3
216 - 960	200	--	3
Above 960	500	--	3

7.4.2. Test Procedure used

ANSI C63.10 Section 6.10

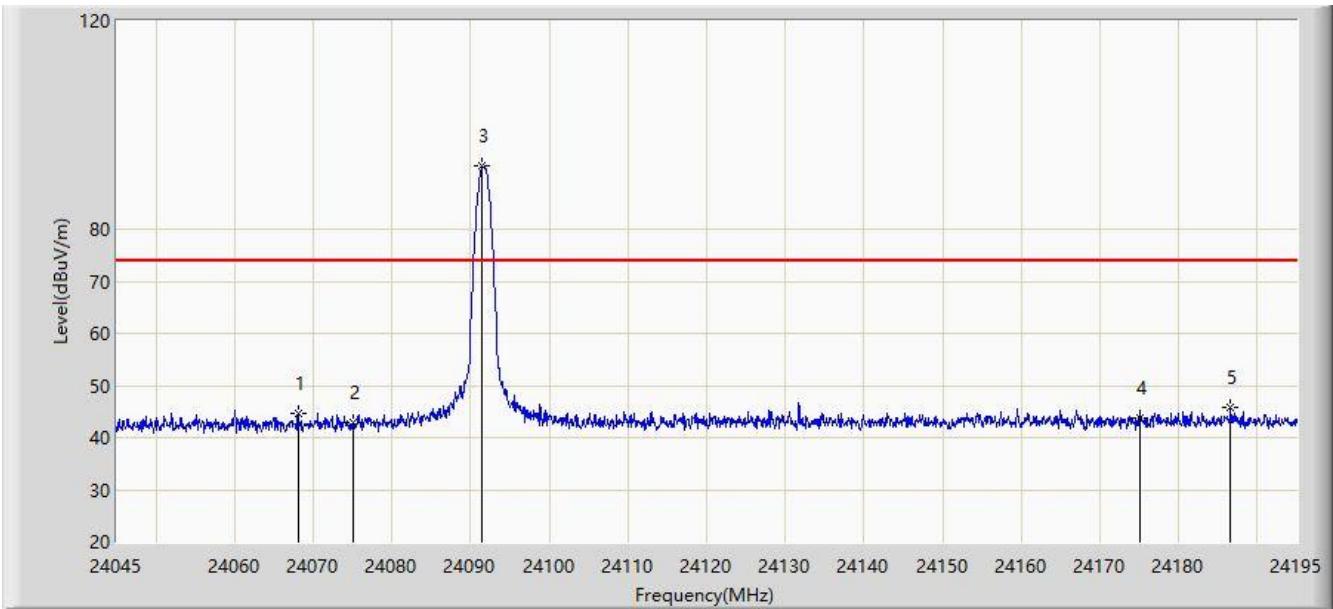
7.4.3. Test Procedure

Peak Field Strength Measurements


1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW = 3MHz
4. Detector = peak
5. Sweep time = auto couple
6. Trace mode = max hold
7. Trace was allowed to stabilize

Average Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW = 10Hz


4. As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
5. Detector = Peak
6. Sweep time = auto
7. Trace mode = max hold
8. Allow max hold to run for at least 50 times (1/duty cycle) traces

7.4.4. Test Setup

7.4.5. Test Result

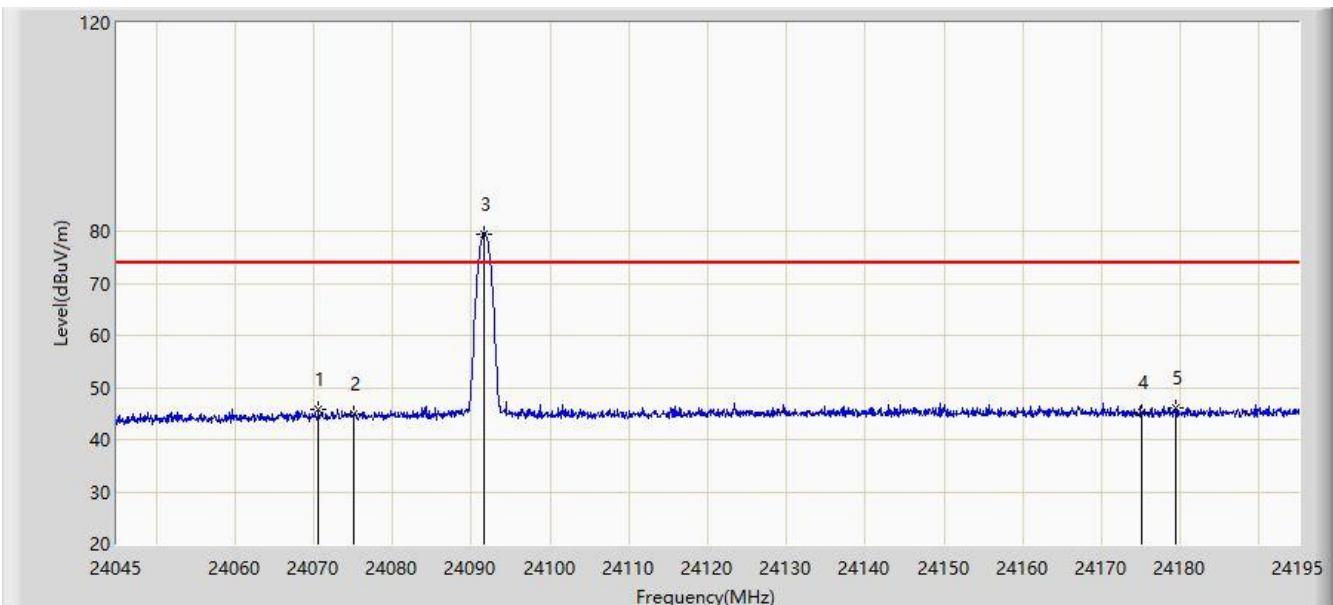
Site: AC2	Time: 2020/06/05 - 13:48
Limit: FCC_Part15.209_RE(3m)	Engineer: Messiah Li
Probe: BBHA9170_18-40GHz	Polarity: Horizontal
EUT: 1T1R doppler radar	Power: AC 120V/60Hz
Test Mode 1	

No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1			24068.100	44.734	53.252	-29.266	74.000	-8.518	PK
2			24075.000	42.852	51.399	-31.148	74.000	-8.546	PK
3	*		24091.500	92.238	100.929	18.238	74.000	-8.690	PK
4			24175.000	43.752	52.167	-30.248	74.000	-8.414	PK
5			24186.525	45.877	54.220	-28.123	74.000	-8.343	PK

Note: Peak Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Site: AC2	Time: 2020/06/05 - 13:56
Limit: FCC_Part15.209_RE(3m)	Engineer: Messiah Li
Probe: BBHA9170_18-40GHz	Polarity: Horizontal
EUT: 1T1R doppler radar	Power: AC 120V/60Hz
Test Mode 1	

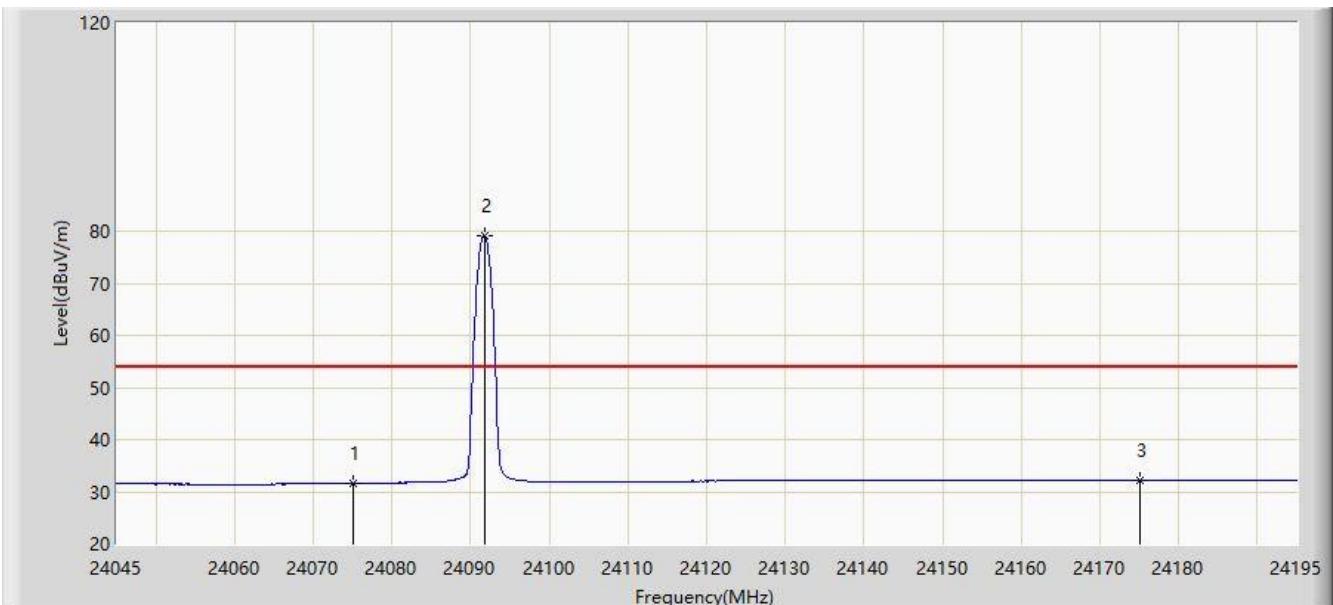


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dB μ V)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1			24075.000	31.872	40.419	-22.128	54.000	-8.546	AV
2		*	24091.650	90.101	98.793	36.101	54.000	-8.692	AV
3			24175.000	32.062	40.477	-21.938	54.000	-8.414	AV

Note: Peak Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Site: AC2	Time: 2020/06/05 - 13:58
Limit: FCC_Part15.209_RE(3m)	Engineer: Messiah Li
Probe: BBHA9170_18-40GHz	Polarity: Vertical
EUT: 1T1R doppler radar	Power: AC 120V/60Hz
Test Mode 1	



No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1			24070.574	45.756	54.276	-28.244	74.000	-8.520	PK
2			24075.000	44.929	53.476	-29.071	74.000	-8.546	PK
3	*		24091.574	79.535	88.227	5.535	74.000	-8.691	PK
4			24175.000	45.192	53.607	-28.808	74.000	-8.414	PK
5			24179.324	46.071	54.464	-27.929	74.000	-8.393	PK

Note: Peak Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

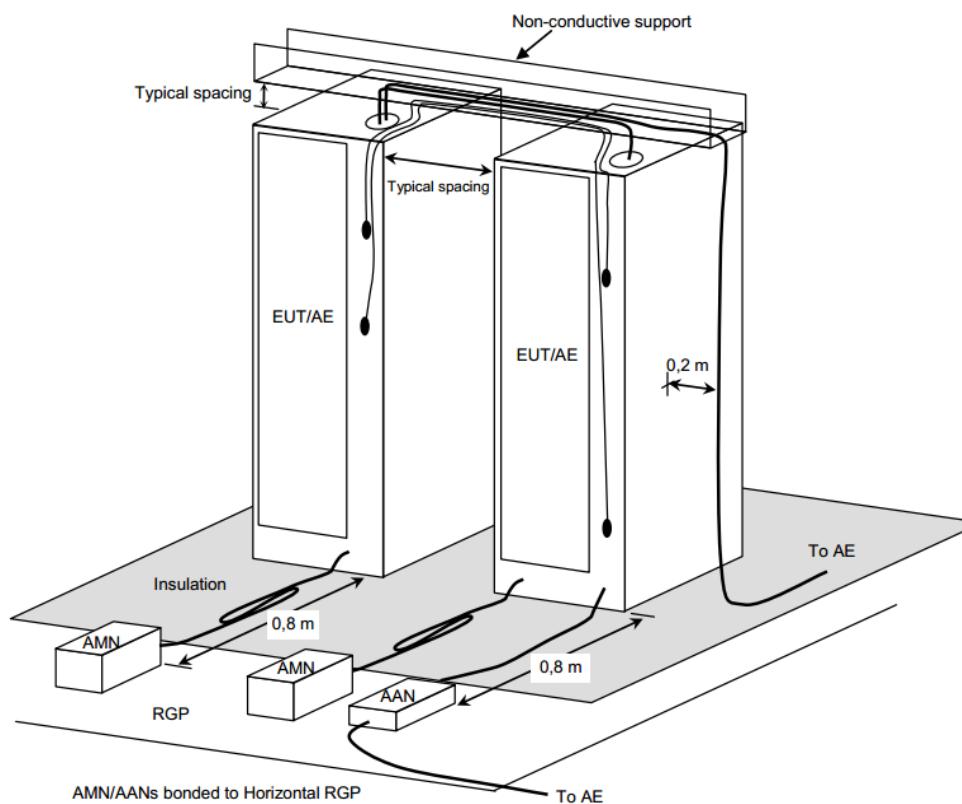
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Site: AC2	Time: 2020/06/05 - 14:04
Limit: FCC_Part15.209_RE(3m)	Engineer: Messiah Li
Probe: BBHA9170_18-40GHz	Polarity: Vertical
EUT: 1T1R doppler radar	Power: AC 120V/60Hz
Test Mode 1	

No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dB μ V)	Margin (dB)	Limit (dBuV/m)	Factor	Type
1			24075.000	31.604	40.151	-22.396	54.000	-8.546	AV
2		*	24091.801	79.168	87.862	25.168	54.000	-8.693	AV
3			24175.000	32.144	40.559	-21.856	54.000	-8.414	AV

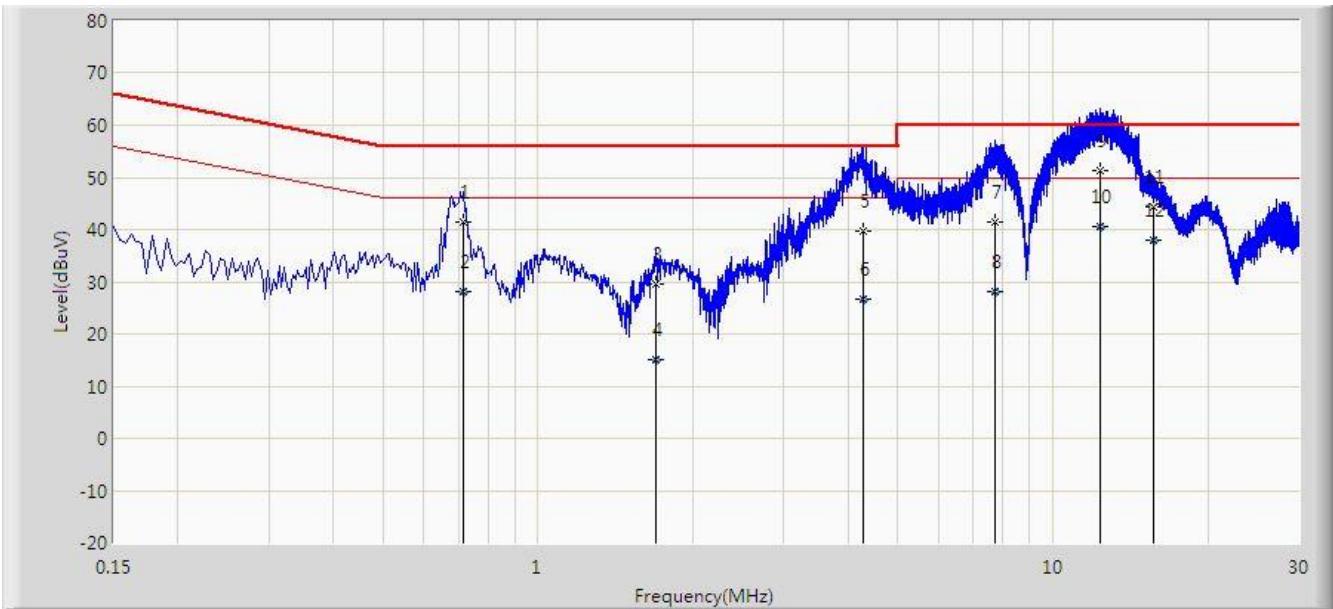
Note: Peak Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)


7.5. AC Conducted Emissions Measurement

7.5.1. Test Limit

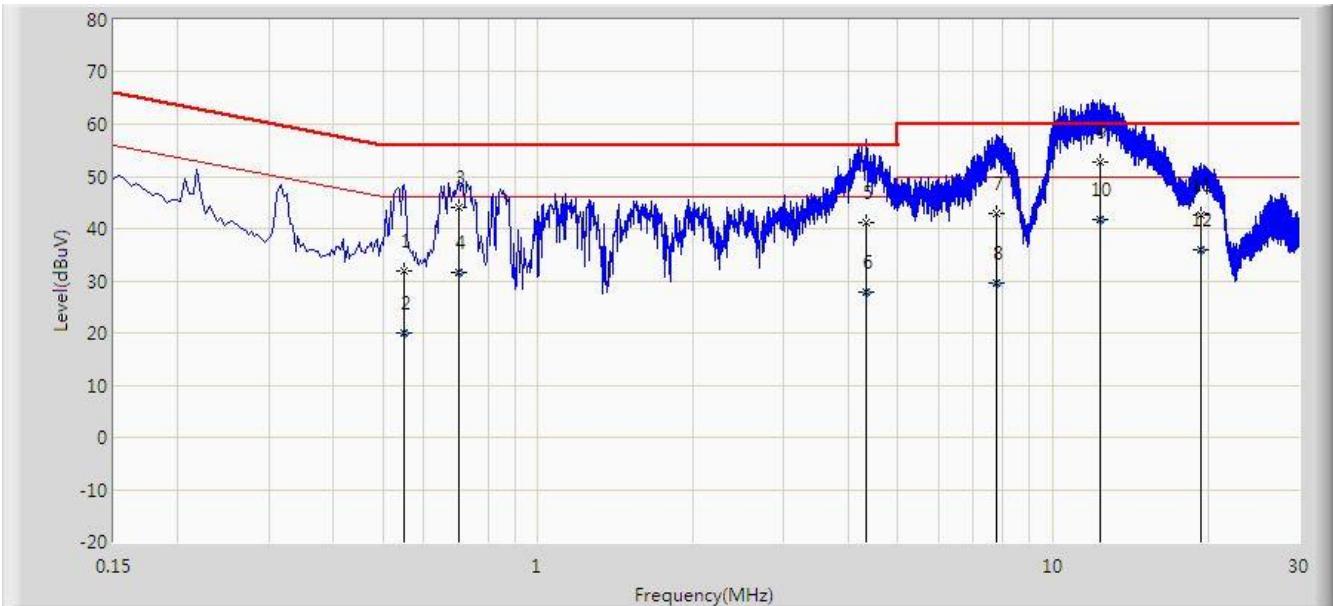
FCC Part 15.207 & RSS-GEN Limits		
Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 ~ 0.50	66 ~ 56	56 ~ 46
0.50 ~ 5.0	56	46
5.0 ~ 30	60	50


Note 1: The lower limit shall apply at the transition frequencies.
Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.5.2. Test Setup

7.5.3. Test Result

Site: SR2	Time: 2020/06/04 - 10:11
Limit: FCC_Part15.207_CE	Engineer: Dillon Diao
Probe: ENV216_101683_Filter On	Polarity: Line
EUT: 1T1R doppler radar	Power: AC 120V/60Hz
Note: Mode 1	



No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV)	Reading Level (dBuV)	Margin (dB)	Limit (dBuV)	Factor	Type
1			0.718	41.404	31.632	-14.596	56.000	9.772	QP
2			0.718	28.121	18.349	-17.879	46.000	9.772	AV
3			1.698	29.465	19.613	-26.535	56.000	9.851	QP
4			1.698	15.072	5.221	-30.928	46.000	9.851	AV
5			4.274	39.739	29.663	-16.261	56.000	10.075	QP
6			4.274	26.576	16.501	-19.424	46.000	10.075	AV
7			7.698	41.475	31.116	-18.525	60.000	10.359	QP
8			7.698	28.165	17.806	-21.835	50.000	10.359	AV
9	*		12.362	51.297	40.970	-8.703	60.000	10.326	QP
10			12.362	40.613	30.287	-9.387	50.000	10.326	AV
11			15.690	44.412	34.105	-15.588	60.000	10.307	QP
12			15.690	37.927	27.620	-12.073	50.000	10.307	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

Site: SR2	Time: 2020/06/04 - 10:15
Limit: FCC_Part15.207_CE	Engineer: Dillon Diao
Probe: ENV216_101683_Filter On	Polarity: Neutral
EUT: 1T1R doppler radar	Power: AC 120V/60Hz
Note: Mode 1	

No	Flag	Mark	Frequency (MHz)	Measure Level (dB μ V)	Reading Level (dB μ V)	Margin (dB)	Limit (dB μ V)	Factor	Type
1			0.550	31.823	22.156	-24.177	56.000	9.667	QP
2			0.550	20.050	10.382	-25.950	46.000	9.667	AV
3			0.702	44.025	34.357	-11.975	56.000	9.668	QP
4			0.702	31.639	21.972	-14.361	46.000	9.668	AV
5			4.350	41.181	31.175	-14.819	56.000	10.006	QP
6			4.350	27.853	17.847	-18.147	46.000	10.006	AV
7			7.746	42.863	32.611	-17.137	60.000	10.251	QP
8			7.746	29.433	19.182	-20.567	50.000	10.251	AV
9	*		12.326	52.668	42.469	-7.332	60.000	10.199	QP
10			12.326	41.725	31.526	-8.275	50.000	10.199	AV
11			19.430	42.543	32.240	-17.457	60.000	10.303	QP
12			19.430	36.020	25.717	-13.980	50.000	10.303	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

8. CONCLUSION

The data collected relate only the item(s) tested and show that this device is in compliance with Part 15C of the FCC Rules and ISED Rules.

Appendix A - Test Setup Photograph

Refer to "2006RSU010-UT" file.

Appendix B - EUT Photograph

Refer to "2006RSU010-UE" file.