

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200602801V01

FCC SAR REPORT

Applicant: Hangzhou ALL IN E-Commerce Co., Ltd.

Address of Applicant: Room 1602, Building1, The Star City, 2028 Jiangling Road,

Binjiang District, Hangzhou City, Zhejiang Province

Equipment Under Test (EUT)

Product Name: broage NBOOK

Model No.: ACH-I515-01

FCC ID: 2AWGQI515

Applicable standards: FCC 47 CFR Part 2.1093

Date of Test: 24 Jul., 2020 ~ 25 Jul., 2020

Test Result: Maximum Reported 1-g SAR (W/kg)

Body: 0.298

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	01 Sep., 2020	Original
01	14 Sep., 2020	1. Updated 5.2G wifi information on page 5.

Huhend Cai
Report Clerk Prepared by: 14 Sep., 2020 Date:

Date: Reviewed by: 14 Sep., 2020

Project Engineer

Contents

1	(COVER PAGE	2
2	•	VERSION	2
3	(CONTENTS	3
4		SAR RESULTS SUMMARY	
5		GENERAL INFORMATION	
•	5.1		
	5.2		
	5.3	MAXIMUM RF OUTPUT POWER	
	5.4		
_	5.5		
6	ı	INTRODUCTION	
	6.1		
_	6.2		
7		RF EXPOSURE LIMITS	
	7.1		
	7.2 7.3		
8		SAR MEASUREMENT SYSTEM	
0			
	8.1		
	8.3		
	8.4	Measurement Server	12
	8.5		
	8.6 8.7		
	8.8		
	8.9		
9	٦	TISSUE SIMULATING LIQUIDS	18
10		SAR SYSTEM VERIFICATION	
11		EUT TESTING POSITION	
	11.1		
40		MEASUREMENT PROCEDURES	
12			
	12. ²		
	12.3		
	12.4		
	12.5		
	12.6		
13	•	CONDUCTED RF OUTPUT POWER	
	13.1		
	13.2		
	13.3		
14		EXPOSURE POSITIONS CONSIDERATION	
	14.1		
15		SAR TEST RESULTS SUMMARY	
	15.1		
	15.2 15.3		
	15.4		
	15.5		
16		REFERENCE	37
		NDIX A: PLOTS OF SAR SYSTEM CHECK	
- 41			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

	Report No: CCISE200602801V0

APPENDIX B: PLOTS OF SAR TEST DATA41 APPENDIX C: SYSTEM CALIBRATION CERTIFICATE......46

4 SAR Results Summary

The maximum results of Specific Absorption Rate (SAR) found during test as bellows:

<Highest Reported standalone SAR Summary>

Exposure Position	Frequency Band	Reported 1-g SAR (W/kg)	Equipment Class	Highest Reported 1-g SAR (W/kg)
Body	WLAN 2.4GHz	0.298	DTS	0.298
(0 mm Gap)	RLAN 5.2 GHz	0.292	NII	0.296

<Highest Reported simultaneous SAR Summary>

anglicet repetited entransacion of a community						
Exposure Position	Frequency Band	Reported 1-g SAR (W/kg)	Equipment Class	Highest Reported Simultaneous Transmission 1-g SAR (W/kg)		
Back	WLAN 2.4 GHz (ANT 1)	0.298	DTS	0.549		
	WLAN 2.4 GHz (ANT 2)	0.251	DTS	0.549		

Note:

- 1. The highest simultaneous transmission is scalar summation of Reported standalone SAR per FCC KDB 690783 D01 v01r03, and scalar SAR summation of all possible simultaneous transmission scenarios are < 1.6W/kg.
- 2. This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

General Information 5

5.1 Client Information

Applicant:	Hangzhou ALL IN E-Commerce Co., Ltd.			
Address of Applicant:	Room 1602, Building1, The Star City, 2028 Jiangling Road, Binjiang District, Hangzhou City, Zhejiang Province			

5.2 General Description of EUT

Product Name:	broage NBOOK			
Model No.:	ACH-I515-01			
Category of device	Portable device			
Operation Frequency:	Bluetooth: 2402 MHz ~ 2480 MHz Wi-Fi: 802.11b/g/n-HT20: 2412MHz ~ 2462 MHz 802.11n-HT40 :2422MHz~2452MHz 802.11a/ac/n: 5150MHz ~5250MHz			
Modulation technology:	Bluetooth: GFSK/π/4DQPSK/8DPSK Wi-Fi: 802.11b: DSSS, 802.11a/ac/g/n: OFDM			
Antenna Type:	Internal Antenna			
Antenna Gain:	WIFI/BT: 2.2 dBi			
Dimensions (L*W*H):	375 mm (L)× 243 mm (W)× 23 mm (H)			
Accessories information:	ies information: Adapter: Model: GEO651DA-190300 Input: AC100-240V, 50/60Hz, 1.5A Output: DC 19.0V, 3.0A Battery: Rechargeable Battery DC7.6			

5.3 Maximum RF Output Power

ANT1

WLAN 2.4 GHz Band Average Power (dBm)						
Mode/Band b g n (HT-20) n (HT-40)						
WLAN 2.4GHz	15.61	14.18	13.27	12.62		

WLAN 5.2 GHz Band Average Power (dBm)						
Mode/Band a ac20 ac40 ac80 n 20 n 40						
WLAN 5.2GHz 12.80 12.72 12.56 12.31 12.78 12.18						12.18

Bluetooth Peak Power (dBm)						
Mode/Band 1 Mbps(GFSK) 2 Mbps(π/4DQPSK) 3 Mbps (8DPSK) LE (BT 4.0)						
Bluetooth 2.4 GHz 3.20 -0.53 -0.29 1.73						

ANT2

WLAN 2.4 GHz Band Average Power (dBm)						
Mode/Band b g n (HT-20) n (HT-40)						
WLAN 2.4GHz	15.79	14.84	13.81	12.90		

WLAN 5.2 GHz Band Average Power (dBm)						
Mode/Band a ac20 ac40 ac80 n 20 n 40						
WLAN 5.2GHz 12.88 12.32 12.34 12.19 12.39 12.43						

5.4 Environment of Test Site

Temperature:	18°C ~25 °C
Humidity:	35%~75% RH
Atmospheric Pressure:	1010 mbar

5.5 Test Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen,

Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Page 7 of 87

6 Introduction

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \left(\frac{\delta T}{\delta t} \right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 RF Exposure Limits

7.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

7.3 RF Exposure Limits

SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS						
UNCONTROLLED CONTROLLED ENVIRONMENT ENVIRONMENT General Population Occupational (W/kg) or (mW/g) (W/kg) or (mW/g)						
SPATIAL PEAK SAR Brain	1.6	8.0				
SPATIAL AVERAGE SAR Whole Body	0.08	0.4				
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20				

Note:

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8 SAR Measurement System

Fig. 8.1 SPEAG DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- > Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- > The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Component details are described in the following sub-sections.

Page 10 of 87

8.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

E-Field Probe Specification <EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB
Directivity	± 0.3 dB in HSL (rotation around probe axis)
	± 0.5 dB in tissue material (rotation normal to
	probe axis)
Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2 dB
	(noise: typically < 1 μW/g)
Dimensions	Overall length: 330 mm (Tip: 20mm)
	Tip diameter: 2.5 mm (Body: 12mm)
	Typical distance from probe tip to dipole
	centers: 1 mm

Fig. 8.2 Photo of E-Field Probe

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y and Norm Z), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix E of this report.

8.2 Data Acquisition Electronics (DAE)

The Data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



Fig. 8.3 Photo of DAE

8.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Fig. 8.4 Photo of Robot

8.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY 5: 400MHz, Intel Celeron), chip-disk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Fig. 8.5 Photo of Server for DASY5

8.5 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

Fig. 8.6 Photo of Light Beam

8.6 Phantom

<SAM Twin Phantom>

2 ± 0.2 mm; Center ear point: 6 + 0.2 mm	
Approx. 25 liters Length: 1000mm; Width: 500mm; Height: adjustable feet	THE TOTAL
Left Head, Right Head, Flat phantom	Fig. 8.7 Photo of SAM Twin Phantom
	Center ear point: 6 ± 0.2 mm Approx. 25 liters Length: 1000mm; Width: 500mm; Height: adjustable feet

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom >

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209-2 and all known tissue simulating liquids.

ELI4 has been optimized regarding its performance and can be integrated into a SPEAG standard phantom table. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points The phantom can be used with the following tissue simulating liquids:

- Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not in use; otherwise the parameters will change due to water evaporation.
- DGBE based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not in use (desirable at least once a week).
- Do not use other organic solvents without previously testing the phantom resistiveness.

Fig.8.8 Photo of ELI4 Phantom

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

8.7 Device Holder

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP).

Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-low POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 8.9 Photo of Device Holder

8.8 Data storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verifications of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe Parameters: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2}

- Conversion ConvF_i

- Crest cf

Media Parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With

 V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter) dcpⁱ = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E- Field Probes:
$$E_i = \sqrt{\frac{v_i}{Norm_i \cdot ConvF}}$$

H-Field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

With

 V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = senor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$

ConvF = sensitivity enhancement in solution a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency (GHz)

E_i = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

With

SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

 σ = conductivity in (mho/m) or (Siemens/m)

ρ = equipment tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Page 16 of 87

8.9 Test Equipment List

Manufacturer	Faultument Description	Model	S/N	Cal. Information		
Manufacturer	Equipment Description	Wodei	5/N	Last Cal.	Due Date	
SPEAG	2450MHz System Validation Kit	D2450V2	910	06.10.2019	06.09.2022	
SPEAG	5000MHz System Validation Kit	D5GHzV2	1182	02.21.2018	02.20.2021	
SPEAG	Data Acquisition Electronics	DAE4	1373	08.09.2019	08.08.2020	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3924	08.30.2019	08.29.2020	
SPEAG	DASY 52 Measurement Software	DASY 52	Version: 52.8.8.1222	N.C.R	N.C.R	
SPEAG	DASY 52 File Conversion Software	SEMCAD X	Version: 14.6.10 (7331)	N.C.R	N.C.R	
SPEAG	Phantom	Twin Phantom	1765	N.C.R	N.C.R	
SPEAG	Phantom	ELI V5.0	1208	N.C.R	N.C.R	
SPEAG	Phone Positioner	N/A	N/A	N.C.R	N.C.R	
Stäubli	Robot	TX60L	F13/5P6VB1/A/01	N.C.R	N.C.R	
HP	Network Analyzer	8753D	3410A06291	06.18.2020	06.17.2021	
Agilent	Spectrum Analyzer	ESRP7	101070	03.18.2020	03.17.2021	
R&S	Spectrum Analyzer	FSP30	101454	03.18.2020	03.17.2021	
R&S	Signal Generator	N5182A	MY49060014	11.10.2019	11.09.2020	
Huber Suhner	RF Cable	SUCOFLEX	12341	See N	Note 3	
Huber Suhner	RF Cable	SUCOFLEX	17268	See N	Note 3	
Huber Suhner	RF Cable	SUCOFLEX	2080	See N	Note 3	
Weinschel	Attenuator	23-3-34	BL5513	See Note 3		
Anritsu	Directional Coupler	MP654A	100217491	See Note 3		
SPEAG	Dielectric Assessment Kit	3.5 Probe	1119	See Note 4		
SPEAG	DAK Measurement Software	DAK	Version: DAK 3.5	N.C.R		
Mini-circuits	Low Noise Amplifier	Power amplifier	LNA-00500200- 2515	See N	Note 5	

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Speag.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1 W input power according to the ratio of 1 W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it
- 6. Attenuator insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check.
- 7. N.C.R means No Calibration Requirement.

Page 17 of 87

9 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 9.1, for body SAR testing, the liquid height from the center of the flat phantom to liquid top surface is larger than 15 cm, which is shown in Fig. 9.2.

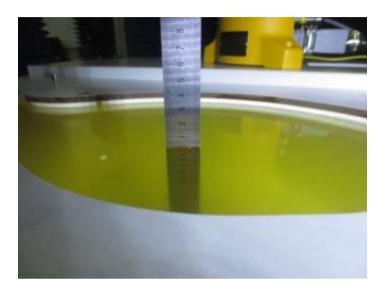


Fig. 9.1 Photo of Liquid Height for Body SAR of Twin Phantom (2000MHz~2600MHz) (depth>15cm)

Fig. 9.2 Photo of Liquid Height for Body SAR of Twin Phantom (5000MHz~5800MHz) (depth>15cm)

The relative permittivity and conductivity of the tissue material should be within ±5% of the values given in the table below recommended by the FCC OET 65 supplement C and RSS 102 Issue 5.

Target Frequency	Не	ad
(MHz)	εr	σ(S/m)
150	52.3	0.76
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
915	41.5	0.98
1450	40.5	1.20
1610	40.3	1.29
1800-2000	40.0	1.40
2450	39.2	1.80
3000	38.5	2.40
5800	35.3	5.27

($\varepsilon r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m³)$

The dielectric parameters of liquids were verified prior to the SAR evaluation using a Speag Dielectric Probe Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Frequency (MHz)	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (εr)	Conductivity Target(σ)	Permittivity Target(εr)	Delta (σ)%	Delta (εr)%	Limit (%)	Date (mm/dd/yy)
2450	22.7	1.79	38.77	1.80	39.20	-0.56	-1.10	±5	07.24.2020
5200	22.8	4.70	35.87	4.67	35.96	0.66	-0.25	±5	07.25.2020

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

10 SAR System Verification

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

> Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

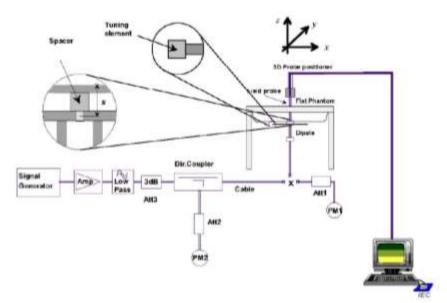


Fig.10.1 System Verification Setup Diagram

Fig.10.2 Photo of Dipole setup

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

> System Verification Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table as below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix C of this report.

Date (mm/dd/yy)	Frequency (MHz)	Power fed onto dipole (mW)	Measured 1g SAR (W/kg)	Normalized to 1W 1g SAR (W/kg)	1W Target 1g SAR (W/kg)	Deviation (%)
07.24.2020	2450	40	2.12	53.0	52.6	0.76
07.25.2020	5200	80	6.18	77.25	79.9	-3.32

11 EUT Testing Position

This EUT was tested in one position. It is Bottom Side of the EUT with phantom 0 cm gap, as illustrated below, please refer to Appendix for the test setup photos.

11.1 Body-supported Configurations

- > To position the device parallel to the phantom surface with bottom side direct against the flat phantom.
- To adjust the device parallel to the flat phantom.
- > To adjust the distance between the device surface and the flat phantom to 0 mm or holster surface and the flat phantom to 0 mm.

Fig.11.5 Illustration for Body-supported Position

12 Measurement Procedures

The measurement procedures are as bellows:

<Conducted power measurement>

- For WWAN power measurement, use base station simulator to configure EUT WWAN transition in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- > Read the WWAN RF power level from the base station simulator.
- For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- Connect EUT RF port through RF cable to the power meter or spectrum analyzer, and measure WLAN/BT output power.

<Conducted power measurement>

- Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- Place the EUT in positions as Appendix B demonstrates.
- Set scan area, grid size and other setting on the DASY software.
- Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band.
- Measure SAR results for other channels in worst SAR testing position if the Reported SAR or highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power drift measurement

12.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan.
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
- Generation of a high-resolution mesh within the measured volume.
- Interpolation of all measured values form the measurement grid to the high-resolution grid
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- Calculation of the averaged SAR within masses of 1g and 10g.

12.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

12.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r04 quoted below.

			≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5 ± 1 mm	%-6-ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20°±1°	
		5-1	≤2 GHz: ≤15 mm 3 - 4 GHz: ≤ 2 - 3 GHz: ≤12 mm 4 - 6 GHz: ≤		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}		≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm	3 - 4 GHz: ≤ 5 mm* 4 - 6 GHz: ≤ 4 mm*		
	uniform grid: $\Delta z_{Zoon}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid \[\Delta z_{2\sim}(n>1); \] between subsequent points		≤1.5·Δz	Zoon(n-1)	
Minimum zoom scan volume x, y, z		≥ 30 nun	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: 5 is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD post-processor scan combine and subsequently superpose these measurement data to calculating the multiband SAR.

12.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1g and 10g cubes, the extrapolation distance should not be larger than 5 mm.

12.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Page 26 of 87

13 Conducted RF Output Power

13.1 WLAN 2.4 GHz Band Conducted Power

ANT 1:

Average Power (dBm)						
Channel	Frequency (MHz)	802.11 b	802.11 g	802.11n (HT20)		
CH 01	2412	15.61	14.02	13.02		
CH 06	2437	15.32	14.01	13.09		
CH 11	2462	15.47	14.18	13.27		

Average Power (dBm)					
Channel Frequency (MHz) 802.11n (HT40)					
CH 03	2422	12.50			
CH 06	2437	12.49			
CH 09	2452	12.62			

ANT 2:

· <u>· -</u> ·						
Average Power (dBm)						
Channel	Frequency (MHz)	802.11 b	802.11 g	802.11n (HT20)		
CH 01	2412	15.35	14.01	13.00		
CH 06	2437	15.61	14.49	13.41		
CH 11	2462	15.79	14.84	13.81		

Average Power (dBm)					
Channel	Frequency (MHz)	802.11n (HT40)			
CH 03	2422	12.35			
CH 06	2437	12.62			
CH 09	2452	12.90			

Note:

1. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

ANT 1:

Channel	Frequency (GHz)	Max. Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR
b/CH 01	2.412	16.0	39.81	5	12.34	3.0
g/CH 11	2.462	14.5	28.18	5	8.85	3.0

ANT 2:

Channel	Frequency (GHz)	Max. Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR
b/CH 11	2.462	16.0	39.81	5	12.50	3.0
g/CH 11	2.462	15.0	31.62	5	9.93	3.0

- Base on the result of note1, RF exposure evaluation of 802.11 b mode is required.
- Per KDB 248227 D01v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 4. Per KDB 248227 D01v02r02, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions: 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
 - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- The output power of all data rate were pre-scan, just the worst case (the lowest data rate) of all mode were shown in report.
- 6. Per KDB 248227 D01V02r02 section 2.2, when the EUT in continuously transmitting mode, the actual duty cycle is 97.8%, so the duty cycle factor is 1.02

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

13.2 WLAN 5.2GHz Band Conducted Power

ANT 1:

	Average Power (dBm)					
Channel	Frequency (MHz) 802.11 a 802.11 n20 802.11 ac					
CH 36	5180	12.80	12.78	12.72		
CH 40	5200	12.59	12.48	12.50		
CH 48	5240	12.26	12.10	12.04		

Average Power (dBm)					
Channel Frequency (MHz) 802.11n 40 802.11ac 40					
CH 38	5190	12.18	12.56		
CH 46	5230	12.09	12.13		

Average Power (dBm)					
Channel Frequency (MHz) 802.11ac 80					
CH 42	5210	12.31			

ANT 2:

• • • •					
	Average Power (dBm)				
Channel	Frequency (MHz)	802.11 a	802.11 n20	802.11 ac20	
CH 36	5180	12.51	12.02	12.29	
CH 40	5200	12.47	12.39	12.32	
CH 48	5240	12.88	12.01	12.07	

Average Power (dBm)						
Channel Frequency (MHz) 802.11n 40 802.11ac 40						
CH 38	5190	12.12	12.12			
CH 46	5230	12.43	12.34			

Average Power (dBm)					
Channel	Frequency (MHz)	802.11ac 80			
CH 42	5210	12.19			

Note:

1. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

ANT 1:

Channel	Frequency (GHz)	Max. Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR
a/CH 36	5.180	13.0	19.95	5	9.10	3.0

ANT 2:

Channel	Frequency (GHz)	Max. Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR
a/CH 48	5.240	13.0	19.95	5	9.14	3.0

- 2. Base on the result of note1, RF exposure evaluation of 802.11 a mode is not required.
- Per KDB 248227 D01v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 4. The output power of all data rate were pre-scan, just the worst case (the lowest data rate) of all mode were shown in report.
- 7. Per KDB 248227 D01V02r02 section 2.2, when the EUT in continuously transmitting mode, the actual duty cycle is 98.8%, so the duty cycle factor is 1.01

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

13.3 Bluetooth Conducted Power

Peak Power (dBm)						
Channel	Frequency (MHz)	GFSK	π/4-DQPSK	8DPSK		
CH 01	2402	3.20	-0.53	-0.29		
CH 39	2441	2.83	-0.90	-0.68		
CH 78	2480	1.93	-1.87	-1.69		

Peak Power (dBm)						
Channel Frequency (MHz) BLE (BT 4.0)						
CH 00	2402	1.73				
CH 20	2442	1.42				
CH 39	2480	0.45				

Note:

1. Per KDB 447498 D01v06, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

Channel	Frequency (GHz)	Max. tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR
CH 01	2.402	3.5	2.24	5	0.69	3.0

- 2. The max. tune-up power was provided by manufacturer, base on the result of note 1, RF exposure evaluation is not required.
- 3. The output power of all data rate were pre-scan, just the worst case of all mode were shown in report.
- 4. When the minimum *test separation distance* is < 5 mm, a distance of 5 mm according is applied to determine SAR test exclusion.

Exposure Positions Consideration

14.1 EUT Antenna Locations

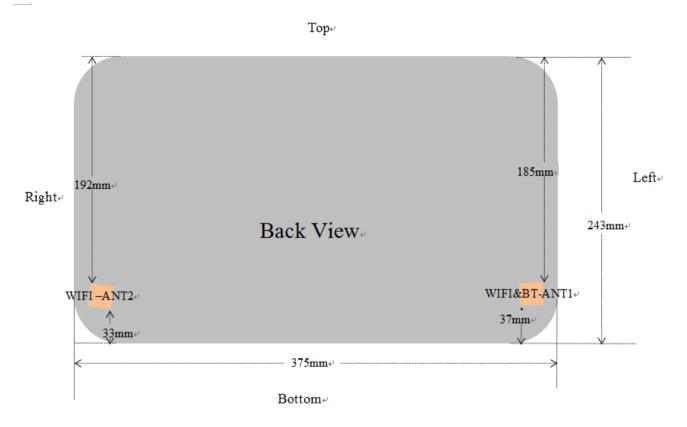


Fig.14.1 EUT Antenna Locations

Page 30 of 87

15 SAR Test Results Summary

15.1 Standalone Body SAR

WLAN 2.4GHz Body SAR

Plot No.	Band/Mode	Test Position	CH.	Freq. (MHz)	Ave. Power (dBm)	Power Drift (dB)	Tune-Up Limit (dBm)	Meas. SAR _{1g} (W/kg)	Scaling Factor	D.C Factor	Reported SAR _{1g} (W/kg)
1	2.4GHz/802.11b (ANT 1)	Back	01	2412	15.61	-0.10	16.0	0.267	1.094	1.02	0.298
2	2.4GHz/802.11b (ANT 2)	Back	11	2462	15.79	-0.12	16.0	0.234	1.050	1.02	0.251
ANSI / IEEE C95.1 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						N/kg (mV aged ove					

WLAN 5.2GHz Body SAR

	VVL/ (I V O.2 OT IZ DC										
Plot No.	Band/Mode	Test Position	CH.	Freq. (MHz)	Ave. Power (dBm)	Power Drift (dB)	Tune-Up Limit (dBm)	Meas. SAR _{1g} (W/kg)	Scaling Factor	D.C Factor	Reported SAR _{1g} (W/kg)
3	5.2GHz/802.11a (ANT 1)	Back	36	5180	12.80	0.18	13.0	0.276	1.047	1.01	0.292
4	5.2GHz/802.11a (ANT 2)	Back	48	5240	12.88	-0.09	13.0	0.214	1.028	1.01	0.222
Un	ANSI / IEEE C95.1 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							N/kg (mV aged ove			

Note:

- Body-supported SAR testing was performed at 0mm separation, and this distance is determined by the typically used in close proximity to users.
- 2. Per KDB 447498 D01v06, for each exposure position, if the highest output channel Reported SAR ≤0.8W/kg, other channels SAR testing is not necessary.
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the measured SAR is ≥0.8W/kg.
- 4. Per KDB 248227 D01v02r02, OFDM SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. Cuz the maximum output power specified for OFDM and DSSS are 28.18mW(14.5dBm) and 39.81mW(16.0dBm), the scaled SAR would be 0.298x(28.18/39.81)=0.211W/kg < 1.2 W/kg, therefore, SAR is not required for OFDM.
- 5. According to KDB 865664 D02v01r02, SAR plot is required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination.

15.2 Multi-Band Simultaneous Transmission Considerations

> Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown in below Figure and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Fig.15.1 Simultaneous Transmission Paths

> Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v06, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR =
$$\frac{\sqrt{f(GHz)}}{7.5} \cdot \frac{\text{Max. power of channel, mW}}{\text{Min. Separation Distance, mm}}$$

Mode	Max. tune-up	Exposure Position	Body
Mode	Power (dBm)	Test Distance (mm)	0
Bluetooth	3.5	Estimated SAR (W/kg)	0.093

Note:

 When the minimum test separation distance is < 5 mm, a distance of 5 mm according is applied to determine estimated SAR.

Multi-Band simultaneous Transmission Consideration

	Position	Applicable Combination
Simultaneous Transmission		WLAN 2.4 GHz + WLAN 2.4 GHz
		WLAN 2.4 GHz + WLAN 5.2 GHz
	Body	WLAN 5.2GHz + WLAN 2.4 GHz
Consideration		WLAN 5.2GHz + WLAN 5.2GHz
		WLAN 2.4 GHz + Bluetooth
		WLAN 5.2 GHz + Bluetooth

Note:

- 1. For ANT1, WLAN 2.4GHz Band, WLAN 5.2GHz Band and Bluetooth Band share the same antenna, and cannot transmit simultaneously.
- 2. For ANT2, WLAN 2.4GHz Band and WLAN 5.2GHz Band share the same antenna, and cannot transmit simultaneously.
- 3. The Report SAR summation is calculated based on the same configuration and test position.
- 4. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i. Scalar SAR summation < 1.6 W/kg.
 - ii. SPLSR = $(SAR_1 + SAR_2)^{1.5} / (min. separation distance, mm)$, and the peak separation distance is determined from the square root of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$, where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the zoom scan If SPLSR ≤ 0.04 , simultaneously transmission SAR measurement is not necessary
 - iii. Simultaneously transmission SAR measurement, and the Reported multi-band SAR < 1.6 W/kg

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

15.3 SAR Simultaneous Transmission Analysis

> Body mode Simultaneous Transmission

Position	ANT 1 2.4GHz WLAN SAR _{1g} (W/kg)	ANT 2 2.4GHz WLAN SAR _{1g} (W/kg)	ΣSAR (W/kg)
Back	0.298	0.251	0.549

Position	ANT 1	ANT 2	
	2.4GHz	5.2GHz	ΣSAR
	WLAN	WLAN	(W/kg)
	SAR _{1g} (W/kg)	SAR _{1g} (W/kg)	` ',
Back	0.298	0.222	0.520

Position	ANT 1 5.2GHz WLAN SAR _{1g} (W/kg)	ANT 2 2.4GHz WLAN SAR _{1g} (W/kg)	ΣSAR (W/kg)
Back	0.292	0.251	0.543

Position	ANT 1 5.2GHz WLAN	ANT 2 5.2GHz WLAN	ΣSAR (W/kg)
	SAR _{1g} (W/kg)	SAR _{1g} (W/kg)	(11/119)
Back	0.292	0.222	0.514

Position	ANT 2 2.4GHz WLAN SAR _{1g} (W/kg)	ANT 1 Bluetooth Estimated SAR _{1g} (W/kg)	ΣSAR (W/kg)
Back	0.251	0.093	0.344

	ANT 2	ANT 1	
Position	5.2GHz	Bluetooth	ΣSAR
	WLAN	Estimated	(W/kg)
	SAR _{1g} (W/kg)	SAR _{1g} (W/kg)	
Back	0.222	0.093	0.315

> Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06.

15.4 Measurement Uncertainty

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A Type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in below Table.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor	1/k(b)	1/√3	1/√6	1/√2

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

		Uncert.	Prob.		(C _i)	(C _i)	Std. Unc.	Std. Unc.	
Uncertainty Component	Section	Value	Dist.	Div.	(1 g)	(10 g)	(1 g)	(10 g)	Vi
Measurement System									
Probe Calibration	E.2.1	±7.4%	N	1	1	1	±7.4%	±7.4%	∞
Axial Isotropy	E.2.2	±1.2%	R	$\sqrt{3}$	0.7	0.7	±0.49%	±0.49%	∞
Hemispherical Isotropy	E.2.2	±0.9%	R	$\sqrt{3}$	0.7	0.7	±0.36%	±0.36%	∞
Boundary Effects	E.2.3	±1.0%	R	$\sqrt{3}$	1	1	±0.58%	±0.58%	∞
Linearity	E.2.4	±0.9%	R	$\sqrt{3}$	1	1	±0.52%	±0.52%	∞
System Detection Limits	E.2.5	±0.25%	R	$\sqrt{3}$	1	1	±0.14%	±0.14%	∞
Readout Electronics	E.2.6	±0.3%	N	1	1	1	±0.3%	±0.3%	8
Response Time	E.2.7	±0.8%	R	$\sqrt{3}$	1	1	±0.46%	±0.46%	∞
Integration Time	E.2.8	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	E.6.1	±3.0%	R	$\sqrt{3}$	1	1	±1.73%	±1.73%	∞
RF Ambient Reflections	E.6.1	±3.0%	R	$\sqrt{3}$	1	1	±1.73%	±1.73%	∞
Probe positioner mechanical tolerances	E.6.2	±0.4%	R	$\sqrt{3}$	1	1	±0.23%	±0.23%	8
Probe positioning tolerance with respect to the phantom shell surface	E.6.3	±2.9%	R	√3	1	1	±1.68%	±1.68%	8
Interpolation, extrapolation, and integration algorithm For max. SAR Evaluation.	E.5	±1.0%	R	√3	1	1	±0.58%	±0.58%	8
Test Sample Related									
Device Positioning	E.4.2	±4.6%	N	1	1	1	±4.6%	±4.6%	M-1
Device Holder	E.4.1	±5.2%	N	1	1	1	±5.2%	±5.2%	M-1
Power Drift	6.6.2	±5.0%	R	√3	1	1	±2.89%	±2.89%	8
Phantom and Setup					l				
Phantom Uncertainty	E.3.1	±4.0%	R	√3	1	1	±2.31%	±2.31%	∞
Liquid conductivity (measured value)	E.3.3	±3.33%	N	1	0.78	0.71	±2.6%	±2.6%	М
Liquid dielectric constant (measured value)	E.3.3	±3.25%	N	1	0.23	0.26	±0.75%	±0.85%	М
Liquid Conductivity - Temperature Uncertainty	E.3.4	±1.3%	R	$\sqrt{3}$	0.78	0.71	±0.59%	±0.53%	∞
Liquid Dielectric Constant - Temperature Uncertainty	E.3.4	±1.1%	R	$\sqrt{3}$	0.23	0.26	±0.15%	±0.17%	∞
Combined Standard Uncertainty (RSS)							±11.56%	±11.50%	
Expanded Uncertainty (95% Confidence Level, k = 2)						±23.11%	±23.0%		
Uncertainty Budget for frequency range 200 MHz to 2 CHz eccepting									

Uncertainty Budget for frequency range 300 MHz to 3 GHz according to IEEE1528-2003

15.5 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

Page 36 of 87

Report No: CCISE200602801V01

16 Reference

- [1]. FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2]. ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3]. IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4]. SPEAG DASY52 System Handbook
- [5]. FCC KDB 248227 D01 v02r02, "SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS", October 2015
- [6]. FCC KDB 447498 D01 v06, "RF EXPOSURE PROCEDURES AND EQUIPMENT AUTHORIZATION POLICIES FOR MOBILE AND PORTABLE DEVICES", October 2015
- [7]. FCC KDB 616217 D04 v01r02, "SAR EVALUATION CONSIDERATIONS FOR LAPTOP, NOTEBOOK, NETBOOK AND TABLET COMPUTERS", October 2015
- [8]. FCC KDB 648474 D04 v01r03, "SAR EVALUATION CONSIDERATIONS FOR WIRELESS HANDSETS", October 2015
- [9]. FCC KDB 941225 D06 v02r01, " SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES", October 2015
- [10]. FCC KDB 865664 D01 v01r04, "SAR MEASUREMENT REQUIREMENTS FOR 100 MHz TO 6 GHz", August 2015

Report No: CCISE200602801V01

Appendix A: Plots of SAR System Check

Page 38 of 87

Test Laboratory: CCIS Date/Time: 07.24.2020 08:35:06

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: SN:910

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.789$ S/m; $\epsilon_r = 38.766$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

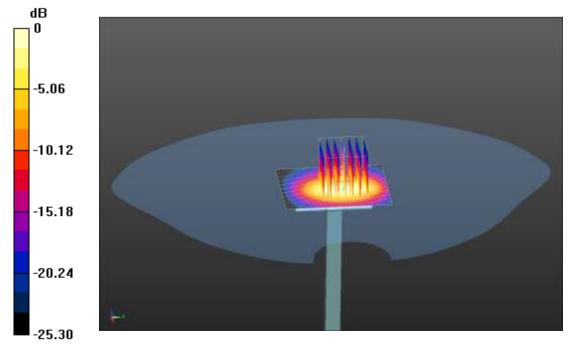
- Probe: EX3DV4 SN3924; ConvF(7.54, 7.54, 7.54); Calibrated: 08.30.2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1373; Calibrated: 08.09.2019
- Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequency 2450MHz Head Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Area Scan (51x61x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 3.51 W/kg

System Performance Check at Frequency 2450MHz Head Tissue/d=10mm, Pin=40 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 40.03 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 4.52 W/kg

SAR(1 g) = 2.12 W/kg; SAR(10 g) = 0.956 W/kg

Maximum value of SAR (measured) = 3.39 W/kg

0 dB = 3.39 W/kg = 5.30 dBW/kg

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Test Laboratory: CCIS Date/Time: 07.25.2020 08:43:26

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: SN:1182

Communication System: UID 0, CW (0); Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; $\sigma = 4.698$ S/m; $\varepsilon_r = 35.874$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

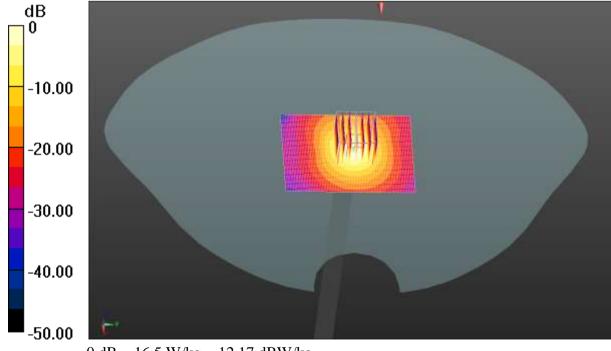
DASY5 Configuration:

- Probe: EX3DV4 SN3924; ConvF(5.48, 5.48, 5.48); Calibrated: 08.30.2019;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1373; Calibrated: 08.09.2019
- Phantom: SAM 5.0; Type: OD000P40CD; Serial: TP:1765
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequency 5GHz Head Tissue/d=10mm, Pin=80 mW, dist=2.0mm (EX-Probe)/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 17.3 W/kg

System Performance Check at Frequency 5GHz Head Tissue/d=10mm, Pin=80 mW, dist=2.0mm (EX-Probe)/Zoom Scan (8x8x7) (7x7x12)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 51.08 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 6.18 W/kg; SAR(10 g) = 1.65 W/kg

Maximum value of SAR (measured) = 16.5 W/kg

0 dB = 16.5 W/kg = 12.17 dBW/kg

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Appendix B: Plots of SAR Test Data

Date/Time: 07.24.2020 11:33:54 **Test Laboratory: CCIS**

DUT: broage NBOOK; Type: ACH-I515-01; Serial: 1#

Communication System: UID 0, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) (0);

Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.756$ S/m; $\varepsilon_r = 39.128$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3924; ConvF(7.54, 7.54, 7.54); Calibrated: 08.30.2019;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1373; Calibrated: 08.09.2019

Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765

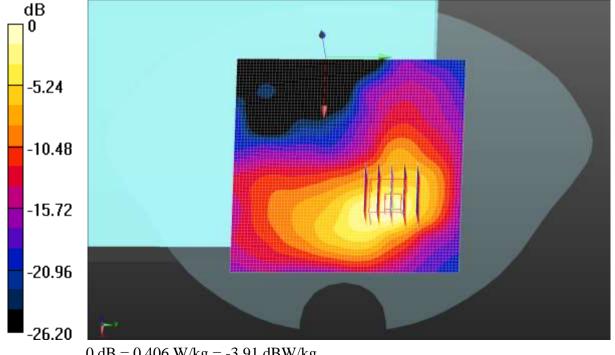
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

WIFI Body Back ANT 1/Low Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.290 V/m: Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.599 W/kg


SAR(1 g) = 0.267 W/kg; SAR(10 g) = 0.123 W/kg

Maximum value of SAR (measured) = 0.474 W/kg

WIFI Body Back ANT 1/Low Channel/Area Scan (71x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.406 W/kg

0 dB = 0.406 W/kg = -3.91 dBW/kg

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Test Laboratory: CCIS Date/Time: 07.24.2020 12:11:42

DUT: broage NBOOK; Type: ACH-I515-01; Serial: 1#

Communication System: UID 0, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) (0);

Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.804$ S/m; $\varepsilon_r = 38.491$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3924; ConvF(7.54, 7.54, 7.54); Calibrated: 08.30.2019;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1373; Calibrated: 08.09.2019

Phantom: SAM 5.0; Type: QD000P40CD; Serial: TP:1765

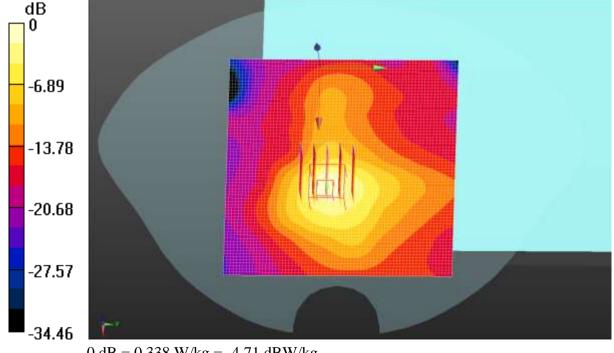
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

WIFI Body Back ANT 2/High Channel/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.454 V/m: Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.556 W/kg


SAR(1 g) = 0.234 W/kg; SAR(10 g) = 0.100 W/kg

Maximum value of SAR (measured) = 0.401 W/kg

WIFI Body Back ANT 2/High Channel/Area Scan (71x71x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.338 W/kg

0 dB = 0.338 W/kg = -4.71 dBW/kg

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Test Laboratory: CCIS Date/Time: 07.25.2020 14:21:42

DUT: broage NBOOK; Type: ACH-I515-01; Serial: 1#

Communication System: UID 0, IEEE 802.11a WiFi 5GHz (0); Frequency: 5180 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 5180 MHz; $\sigma = 4.673 \text{ S/m}$; $\epsilon_r = 35.913$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3924; ConvF(5.48, 5.48, 5.48); Calibrated: 08.30.2019;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1373; Calibrated: 08.09.2019

Phantom: SAM 5.0; Type: OD000P40CD; Serial: TP:1765

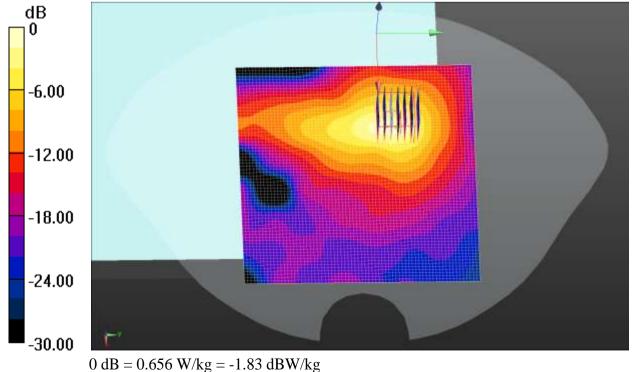
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5.2G WIFI Body Back ANT 1/Low Channel/Area Scan (71x71x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.496 W/kg

5.2G WIFI Body Back ANT 1/Low Channel/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.216 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.276 W/kg; SAR(10 g) = 0.097 W/kg

Maximum value of SAR (measured) = 0.656 W/kg

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Test Laboratory: CCIS Date/Time: 07.25.2020 15:03:34

DUT: broage NBOOK; Type: ACH-I515-01; Serial: 1#

Communication System: UID 0, IEEE 802.11a WiFi 5GHz (0); Frequency: 5240 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 5240 MHz; $\sigma = 4.723 \text{ S/m}$; $\varepsilon_r = 35.845$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3924; ConvF(5.48, 5.48, 5.48); Calibrated: 08.30.2019;

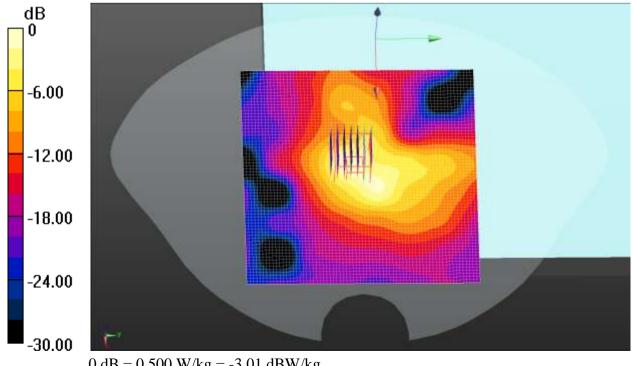
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1373; Calibrated: 08.09.2019
- Phantom: SAM 5.0; Type: OD000P40CD; Serial: TP:1765
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5.2G WIFI Body Back ANT 2/High Channel/Area Scan (71x71x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.470 W/kg

5.2G WIFI Body Back ANT 2/High Channel/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.16 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.081 W/kg

Maximum value of SAR (measured) = 0.500 W/kg

0 dB = 0.500 W/kg = -3.01 dBW/kg

No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Report No: CCISE200602801V01

Appendix C: System Calibration Certificate

Calibration information for E-field probes

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

CCIS

Fax: +86-10-62304633-2504 Http://www.chinattl.en

Certificate No: Z19-60260

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3924

Calibration Procedure(s)

Client

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

August 30, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Power sensor NRP-Z91	101547	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Power sensor NRP-Z91	101548	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 7307	24-May-19(SPEAG,No.EX3-7307_May19)	May-20
DAE4	SN 1331	06-Feb-19(SPEAG, No.DAE4-1331_Feb19)	Feb -20
DAE4	SN 917	07-Dec-18(SPEAG, No.DAE4-917_Dec18)	Dec -19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	18-Jun-19 (CTTL, No.J19X05127)	Jun-20
Network Analyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan -20
22 07 80 302	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	And
Reviewed by:	Lin Hao	SAR Test Engineer	unt to
Approved by:	Qi Dianyuan	SAR Project Leader	26
			04 0040

Issued: August 31, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60260

Page 1 of 11

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Report No: CCISE200602801V01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

diode compression point

DCP CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A,B,C,D Polarization Φ

Φ rotation around probe axis

Polarization θ

θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx. (no uncertainty required).

Certificate No: Z19-60260

Page 2 of 11

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 3924

Calibrated: August 30, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z19-60260

Page 3 of 11

Add: No.51 Xueyunn Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3924

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²)^	0.50	0.42	0.67	±10.0%
DCP(mV) ^B	101.3	100.5	100.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	Х	0.0	0.0	1.0	0.00	181.3	±2.3%	
		Y	0.0	0.0	1.0		161.5	
		Z	0.0	0.0	1.0		206.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

B Numerical linearization parameter: uncertainty not required.

Certificate No: Z19-60260

Page 4 of 11

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3924

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.07	10.07	10.07	0.40	0.80	±12.1%
835	41.5	0.90	9.67	9.67	9.67	0.16	1.34	±12.1%
900	41.5	0.97	9.69	9.69	9.69	0.20	1.20	±12.1%
1750	40.1	1.37	8.40	8.40	8.40	0.22	1.07	±12.1%
1900	40.0	1.40	8.17	8.17	8.17	0.28	0.97	±12.1%
2300	39.5	1.67	7.85	7.85	7.85	0.46	0.76	±12.1%
2450	39.2	1.80	7.54	7.54	7.54	0.51	0.75	±12.1%
2600	39.0	1.96	7.30	7.30	7.30	0.60	0.69	±12.1%
5250	35.9	4.71	5.48	5.48	5.48	0.40	1.40	±13.3%
5600	35.5	5.07	4.86	4.86	4.86	0.40	1.40	±13.3%
5750	35.4	5.22	4.98	4.98	4.98	0.45	1.40	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60260

Page 5 of 11

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3924

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.07	10.07	10.07	0.17	1.40	±12.1%
835	55.2	0.97	9.72	9.72	9.72	0.19	1.34	±12.1%
900	55.0	1.05	9.75	9.75	9.75	0.24	1.14	±12.1%
1750	53.4	1.49	8.12	8.12	8.12	0.23	1.06	±12.1%
1900	53.3	1.52	7.83	7.83	7.83	0.23	1.08	±12.1%
2300	52.9	1.81	7.66	7.66	7.66	0.49	0.88	±12.1%
2450	52.7	1.95	7.51	7.51	7.51	0.56	0.80	±12.1%
2600	52.5	2.16	7.26	7.26	7.26	0.64	0.71	±12.1%
5250	48.9	5.36	4.90	4.90	4.90	0.40	1.70	±13.3%
5600	48.5	5.77	4.28	4.28	4.28	0.50	1.30	±13.3%
5750	48.3	5.94	4.32	4.32	4.32	0.55	1.50	±13.3%

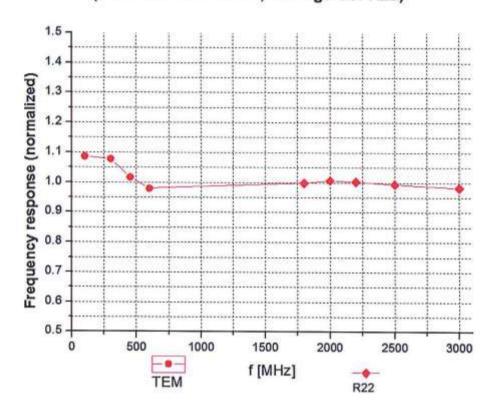
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60260

Page 6 of 11

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyunn Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

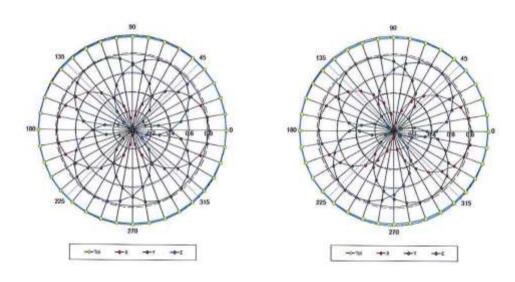
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

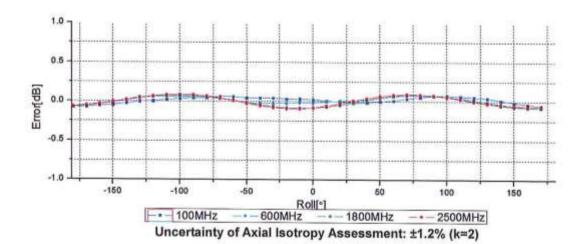
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z19-60260

Page 7 of 11

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

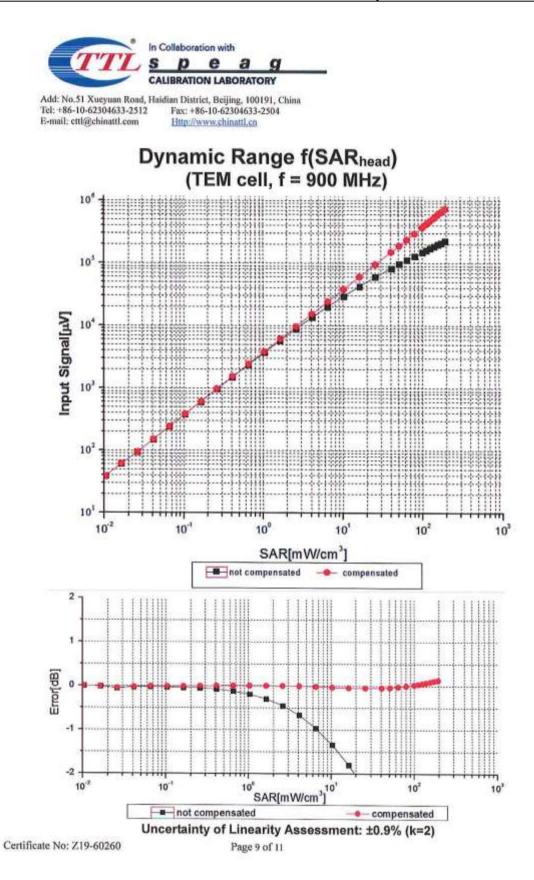




Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

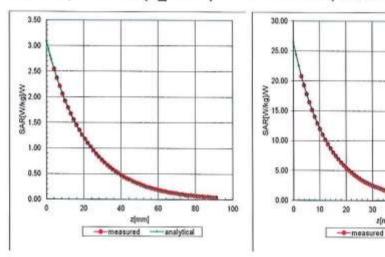


Certificate No: Z19-60260

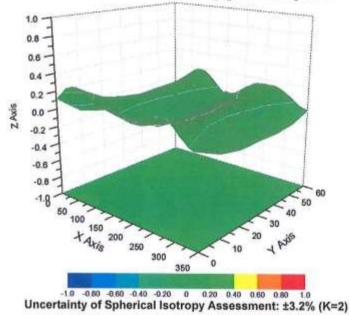
Page 8 of 11

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com

Conversion Factor Assessment


f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

elmm1s.

Deviation from Isotropy in Liquid

Certificate No: Z19-60260 Page 10 of 11

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: eth@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3924

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	159.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z19-60260

Page 11 of 11

Report No: CCISE200602801V01

Calibration information for Dipole

In Collaboration with

e CALIBRATION LABORATORY

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com CCIS

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Certificate No:

Z19-60177

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 910

Calibration Procedure(s)

Client

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 10, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Power sensor NRP8S	104291	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Reference Probe EX3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1556	20-Aug-18(SPEAG,No.DAE4-1556_Aug18)	Aug-19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20

econos anazo	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	是礼
Reviewed by:	Lin Hao	SAR Test Engineer	# 76
Approved by:	Qi Dianyuan	SAR Project Leader	200

Issued: June 14, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60177

Page 1 of 8

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Report No: CCISE200602801V01

In Collaboration with

S D E A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016

c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010

d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60177

Page 2 of 8

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

In Collaboration with

S P e a g

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	1.96 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	****	200

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.9 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.94 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60177

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1Ω+ 2.51 jΩ	
Return Loss	- 26.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52,3Ω+ 3.40 jΩ	
Return Loss	- 27.9dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.020 ns
Control of the Contro	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z19-60177

Page 4 of 8

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Date: 06.10.2019

In Collaboration with

S D C A G

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910

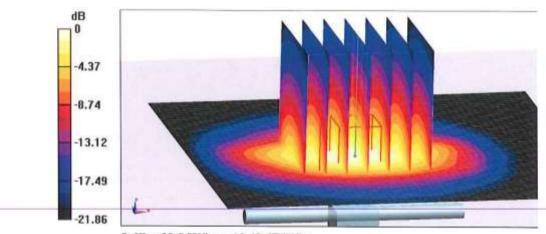
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.825$ S/m; $\varepsilon_t = 39.75$; $\rho = 1000$ kg/m3

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 97.66 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.4 W/kg

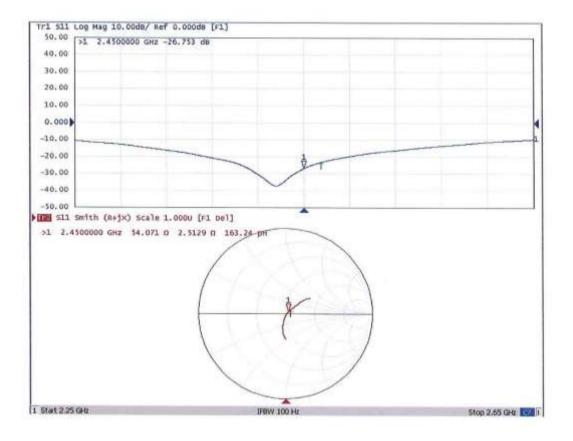
SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

Certificate No: Z19-60177

Page 5 of 8


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60177

Page 6 of 8

Page 63 of 87

Date: 06.10.2019

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910

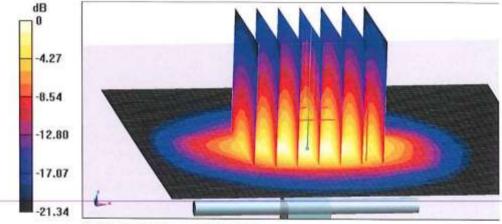
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.962$ S/m; $\varepsilon_r = 52.06$; $\rho = 1000$ kg/m3

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.13, 7.13, 7.13) @ 2450 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 89.63 V/m; Power Drift = -0.02 dB

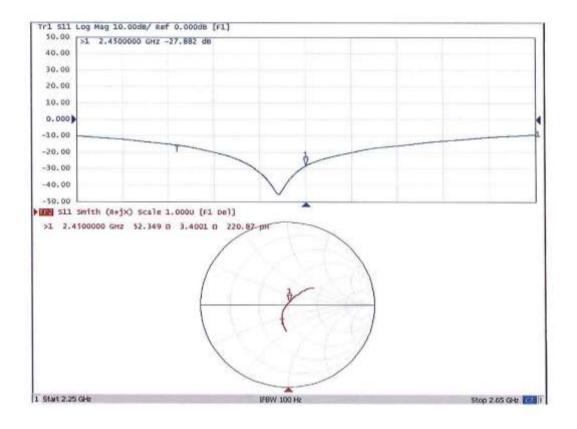
Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.94 W/kg

Maximum value of SAR (measured) = 21.3 W/kg

0 dB = 21.3 W/kg = 13.28 dBW/kg

Certificate No: Z19-60177


Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60177

Page 8 of 8

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client CCIS

Certificate No: D5GHzV2-1182 Feb18

Object	D5GHzV2 - SN:	1182	1000000
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	edure for dipole validation kits bet	tween 3-6 GHz
Calibration date:	February 21, 201	18	
This calibration certificate docum	ents the traceability to nat	ional standards, which realize the physical ur	nits of measurements (SI).
The measurements and the unce	ertainties with confidence p	probability are given on the following pages ar	nd are part of the certificate.
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 ± 3)*	C and humidity < 70%.
			1
Calibration Equipment used (M&)	TE critical for calibration)		
Delman Chandrada	line	Pod Podo (PodPodo No.)	5.1.1.1.5.T
THE RESIDENCE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power meter NRP Power sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5056 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5056 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3603 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Apr-18 Apr-16 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18
Power meter NRIP Power sensor NRIP-Z91 Power sensor NRIP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3603 SN: 601	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3603 SN: 601	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3603 SN: 601	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 Is house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3603 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3603 SN: 601	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 Is house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3603 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Oct-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5056 (20k) SN: 5047 2 / 06327 SN: 3603 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3603 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Oct-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N miamatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5056 (20k) SN: 5047 2 / 06327 SN: 3603 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3503_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function	Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Oct-18 Scheduled Check In house check: Oct-18

Certificate No: D5GHzV2-1273_Feb18

Page 1 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com Page 66 of 87

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1273_Feb18

Page 2 of 16

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Page 67 of 87

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	36.4 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	+444

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7,98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1273_Feb18

Page 3 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.64 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	2.02

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.4 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.0 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1273_Feb18

Page 4 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	170000	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2,40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.16 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1273_Feb18

Page 5 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.41 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7,40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.05 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1273_Feb18

Page 6 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	7777

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		Here

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2,23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1273_Feb18

Page 7 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	6.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	****

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.70 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1273_Feb18

Page 8 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	47.8 Ω - 3.3 jΩ	
Return Loss	- 27.9 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	$48.3 \Omega + 0.8 j\Omega$
Return Loss	- 34.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	47.8 Ω + 1.6 jΩ	
Return Loss	- 31.2 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.2 Ω + 2.1 jΩ
Return Loss	- 28.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.5 Ω + 3.4 jΩ	
Return Loss	- 27.8 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	47.8 Ω - 3.1 jΩ
Return Loss	- 28.3 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	$48.4 \Omega + 2.3 j\Omega$
Return Loss	- 30.8 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	$48.4 \Omega + 2.0 j\Omega$
Return Loss	- 31.6 dB

Certificate No: D5GHzV2-1273_Feb18

Page 9 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	52.7 Ω + 4.2 jΩ	
Return Loss	- 26.3 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.4 Ω + 5.2 jΩ	
Return Loss	- 25.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 19, 2017

Certificate No: D5GHzV2-1273_Feb18

Page 10 of 16

DASY5 Validation Report for Head TSL

Date: 21.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1273

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.53$ S/m; $\varepsilon_r = 36.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.64 \text{ S/m}$; $\epsilon_r = 36.3$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma = 4.84$ S/m; $\epsilon_r = 36$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.95$ S/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.16$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.75, 5.75, 5.75); Calibrated: 30.12.2017, ConvF(5.5, 5.5, 5.5); Calibrated: 30.12.2017, ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.96, 4.96, 4.96); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.07 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.58 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 29.8 W/kg

SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.34 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.24 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 33.7 W/kg

SAR(1 g) = 8.59 W/kg; SAR(10 g) = 2.44 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

Certificate No: D5GHzV2-1273_Feb18

Page 11 of 16

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Page 76 of 87

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.41 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 8.39 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

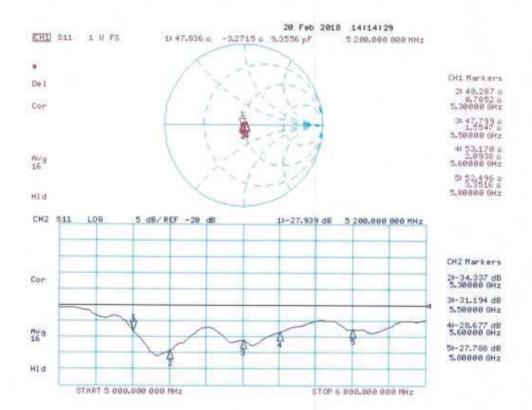
Reference Value = 68.42 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.1 W/kg = 12.58 dBW/kg


Certificate No: D5GHzV2-1273_Feb18

Page 12 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1273_Feb18

Page 13 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

DASY5 Validation Report for Body TSL

Date: 20.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1273

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.41$ S/m; $\epsilon_r = 47.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.54$ S/m; $\epsilon_r = 47.3$; $\rho = 1000$ kg/m³,

Medium parameters used: f = 5500 MHz; $\sigma = 5.8$ S/m; $\varepsilon_c = 47$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5600 MHz; $\sigma = 5.95$ S/m; $\varepsilon_c = 46.8$; $\rho = 1000$ kg/m³.

Medium parameters used: f = 5800 MHz; $\sigma = 6.23 \text{ S/m}$; $\varepsilon_r = 46.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.35, 5.35, 5.35); Calibrated: 30.12.2017,
 ConvF(5.15, 5.15, 5.15); Calibrated: 30.12.2017, ConvF(4.7, 4.7, 4.7); Calibrated: 30.12.2017,
 ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.97 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 28.0 W/kg

SAR(1 g) = 7.4 W/kg; SAR(10 g) = 2.05 W/kg

Maximum value of SAR (measured) = 17.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.85 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 29.8 W/kg

SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.13 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

Certificate No: D5GHzV2-1273_Feb18

Page 14 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

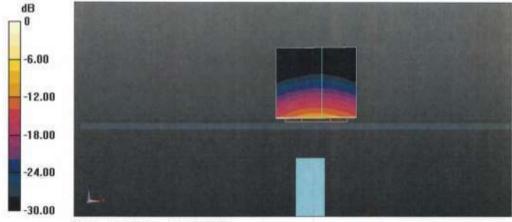
Reference Value = 65.86 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 33.7 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

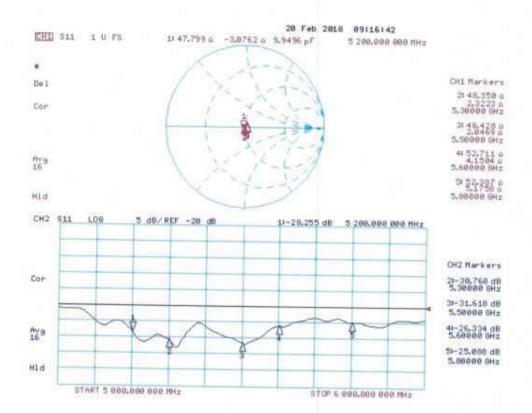
Reference Value = 64.37 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 7.7 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

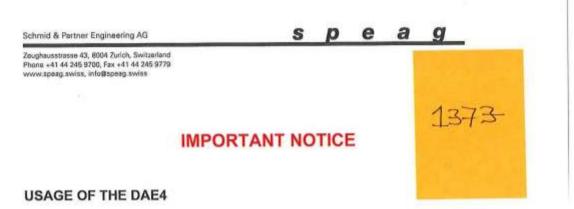
0 dB = 17.2 W/kg = 12.36 dBW/kg


Certificate No: D5GHzV2-1273_Feb18

Page 15 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Impedance Measurement Plot for Body TSL


Certificate No: D5GHzV2-1273_Feb18

Page 16 of 16

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Calibration information for DAE

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

TN_EH190306AE DAE4.docx

07.03.2019

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Page 82 of 87

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CCIS-SZ

Accreditation No.: SCS 0108

Certificate No: DAE4-1373_Aug19

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BM - SN: 1373

Calibration procedure(s)

QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

August 09, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	10 #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Sep-18 (No:23488)	Sep-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-19 (in house check)	In house check: Jan-20
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-19 (in house check)	In house check: Jan-20

Calibrated by:

Name Dominique Steffen Function

Laboratory Technician

Approved by:

Sven Kühn

Deputy Manager

Issued: August 9, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1373_Aug19

Page 1 of 5

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com

Page 83 of 87

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasso 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1373_Aug19

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV full range = -1......+3mV

Low Range: 1LSB = 61nV ,

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	403.900 ± 0.02% (k=2)	403.865 ± 0.02% (k=2)	404.160 ± 0.02% (k=2)
Low Range	3.98780 ± 1.50% (k=2)	4.00905 ± 1.50% (k=2)	4.01338 ± 1.50% (k=2)

Connector Angle

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Connector Angle to be used in DASY system	345.5°±1°

Certificate No: DAE4-1373_Aug19

Page 3 of 5





## Appendix (Additional assessments outside the scope of SCS0108)

## 1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Inp	ut 200036.64	-1.49	-0.00
Channel X + Inp	at 20007.66	1.67	0.01
Channel X - Inpu	t -20003.26	2.58	-0.01
Channel Y + Inp	ut 200034.92	-3.47	-0,00
Channel Y + Inp	ut 20005.00	-0.97	-0.00
Channel Y - Inpu	t -20006.45	-0.51	0.00
Channel Z + Inp	ut 200037.03	-1.49	-0.00
Channel Z + Inp	ut 20004.07	-1.80	-0.01
Channel Z - Inpi	ıt -20007.76	-1.72	0.01

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2001.79	0.32	0.02
Channel X	+ Input	201.61	0.11	0.05
Channel X	- Input	-198.39	0.12	-0.06
Channel Y	+ Input	2001.55	0.19	0.01
Channel Y	+ Input	200.46	-0.94	-0.47
Channel Y	- Input	-199.08	-0.47	0.24
Channel Z	+ Input	2001.56	0.26	0.01
Channel Z	+ Input	199.82	-1.52	-0.76
Channel Z	- Input	-200.52	-1.83	0.92

## 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	8.18	6.30
	- 200	-5.94	-7.46
Channel Y	200	10.49	10.28
	- 200	-12.77	-12.84
Channel Z	200	6.36	6.21
	- 200	-9.67	-10.13

### 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

7	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	0.96	-5.39
Channel Y	200	8.75	*	1.70
Channel Z	200	9.62	5.88	-

Certificate No: DAE4-1373_Aug19



4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15936	15515
Channel Y	15863	15901
Channel Z	15893	17897

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

nnut 10MC

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1,11	0.38	2.16	0.31
Channel Y	0.40	-0.61	1.25	0.33
Channel Z	-1.61	-2.89	-0.27	0.46

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1373_Aug19

Page 5 of 5

-----End of Report-----

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info@ccis-cb.com