

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

March 16, 2021

Neogen Corporation
620 Lesher Place
Lansing, Michigan 48912

Dear Mike Wilcox,

Enclosed is the EMC test report for compliance testing of the Neogen Corporation, AccuPoint Advanced 2 Sanitation Monitoring System, tested to the requirements of Title 47 of the CFR, Part 15.225, Subpart C for Certification as an Intentional Radiator.

Thank you for using the services of Eurofins E&E North America. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,
EUROFINS E&E NORTH AMERICA.

Jennifer Warnell
Documentation Department

Reference: (\Neogen Corporation\WIR107592-FCC225 Rev. 2)

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins E&E North America. While use of the A2LA logo in this report reflects MET accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.

Eurofins MET Laboratories Inc. (Eurofins E&E North America) is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

Maryland | California | Texas
www.metlabs.com

Electromagnetic Compatibility Criteria Test Report

for the

**Neogen Corporation
AccuPoint Advanced 2 Sanitation Monitoring System**

Tested under
the FCC Certification Rules
contained in
15.225 Subpart C
for Intentional Radiators

MET Report: WIR107592-FCC225 Rev. 2

March 16, 2021

Prepared For:

**Neogen Corporation
620 Lesher Place
Lansing, Michigan 48912**

Prepared By:
Eurofins E&E North America.
914 W. Patapsco Ave.
Baltimore, MD 21230

Electromagnetic Compatibility Criteria Test Report

for the

Neogen Corporation
AccuPoint Advanced 2 Sanitation Monitoring System

Tested under
the FCC Certification Rules
contained in
15.225 Subpart C
for Intentional Radiators

Donald Salguero, Project Engineer
Electromagnetic Compatibility Lab

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.225 under normal use and maintenance.

Steve Pitta,
Operations Director

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	August 25, 2020	Initial Issue.
1	August 25, 2020	Changing recipient name on first page.
2	March 15, 2021	Updates per TCB Comments

Table of Contents

I.	Executive Summary	1
A.	Purpose of Test	1
B.	Executive Summary	1
II.	Equipment Configuration	2
A.	Overview.....	2
B.	References.....	2
C.	Test Site	3
D.	Measurement Uncertainty	3
E.	Description of Test Sample.....	3
F.	Equipment Configuration.....	4
G.	Support Equipment	4
H.	Ports and Cabling Information.....	4
I.	Mode of Operation During Testing.....	4
J.	Modifications	5
a)	Modifications to EUT.....	5
b)	Modifications to Test Standard.....	5
K.	Disposition of EUT	5
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	6
§ 15.203	Antenna Requirement	6
§ 15.207(a)	Conducted Emissions Limits	7
20 dB Occupied Bandwidth.....		11
§ 15.225(a)	Spurious Emission Limits, within the band 13.553 – 13.567 MHz.....	13
§ 15.225(b)	Spurious Emission Limits, within the bands 13.410 – 13.553 MHz and 13.567 – 13.710 MHz	15
§ 15.225(c)	Spurious Emission Limits, within the bands 13.110 – 13.410 MHz and 13.710 – 14.010 MHz	18
§ 15.225(d)	Spurious Emission Limits, outside the bands 13.110 – 14.010 MHz.....	21
§ 15.225(e)	Frequency Stability	26
IV.	Test Equipment	28

List of Tables

Table 1. Executive Summary of EMC Part 15.225 Compliance Testing	1
Table 2. EUT Summary Table.....	2
Table 3. References	2
Table 4. Uncertainty Calculations Summary.....	3
Table 5. Equipment Configuration	4
Table 6. Support Equipment.....	4
Table 7. Ports and Cabling Information	4
Table 8. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	7
Table 9. Conducted Emissions, Test Results, Phase	9
Table 10. Conducted Emissions, Test Results, Neutral.....	9
Table 11. Frequency Stability, Test Results	26
Table 12. Test Equipment List	28

List of Plots

Plot 1. Conducted Emissions over AC mains_phase prescan.....	10
Plot 2. Conducted Emissions over AC mains_neutral prescan.....	10
Plot 3. 20dB BW - 13.56 MHZ	12
Plot 4. Spurious Emissions Within the Band 13.553 – 13.567 MHz, fundamental emission_parallel	14
Plot 5. Spurious Emissions Within the Band 13.553 – 13.567 MHz, fundamental emission_perpendicular	14
Plot 6. Radiated Emissions_13.41-13.553 MHz_parallel.....	16
Plot 7. Radiated Emissions_13.41-13.553 MHz_perpendicular.....	16
Plot 8. Radiated Emissions_13.567-13.71 MHz_parallel.....	17
Plot 9. Radiated Emissions_13.567-13.71 MHz_perpendicular.....	17
Plot 10. Radiated Emissions_13.11-13.41 MHz_parallel.....	19
Plot 11. Radiated Emissions_13.11-13.41 MHz_perpendicular.....	19
Plot 12. Radiated Emissions_13.71-14.01 MHz_parallel.....	20
Plot 13. Radiated Emissions_13.71-14.01 MHz_perpendicular.....	20
Plot 14. Radiated Emissions, 30-1000 MHz, Cumulative	21
Plot 15. Radiated Emissions, perpendicular_150 - 490 kHz	22
Plot 16. Radiated emissions_parallel_0.49 - 30 MHz	22
Plot 17 Spurious Emissions, Radiated emissions_parallel_9 - 150 kHz	23
Plot 18. Radiated emissions_parallel_150 - 490 kHz.....	23
Plot 19. Radiated emissions_perpendicular_0.49 - 30 MHz	24
Plot 20. Radiated emissions_perpendicular_9 - 150 kHz.....	24

List of Figures

Figure 1. Block Diagram of Test Configuration.....	3
Figure 2. CEV Test Setup.....	8
Figure 3. 20 dB Bandwidth Test Setup	11
Figure 4. Radiated Emissions Test Setup	25
Figure 5. Temperature Stability Test Setup.....	27

List of Photographs

No table of figures entries found.

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Neogen Corporation AccuPoint Advanced 2 Sanitation Monitoring System, with the requirements of Part 15, §15.225. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the AccuPoint Advanced 2 Sanitation Monitoring System. Neogen Corporation should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the AccuPoint Advanced 2 Sanitation Monitoring System, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.225, in accordance with Neogen Corporation, purchase order number 152573. All tests were conducted using measurement procedure ANSI C63.10-2013.

FCC Reference 47 CFR Part 15.225	Description	Compliance
Part 15 §15.203	Antenna Requirement	Compliant
Part 15 §15.207(a)	Conducted Emission Limits	Compliant
Part 15 §15.215	20dB Occupied Bandwidth	Compliant
Part 15 §15.225(a)	Field Strength emissions within the band 13.553 – 13.567 MHz	Compliant
Part 15 §15.225(b)	Field Strength emissions within the band 13.410 – 13.553 MHz and 13.567 – 13.710 MHz	Compliant
Part 15 §15.225(c)	Field Strength emissions within the band 13.110 – 13.410 MHz and 13.710 – 14.010 MHz	Compliant
Part 15 §15.225(d)	Outside-Band Field Strength emissions per 15.209 - 13.110 – 14.010 MHz	Compliant
Part 15 §15.225(e)	Frequency Tolerance of the Carrier	Compliant

Table 1. Executive Summary of EMC Part 15.225 Compliance Testing

II. Equipment Configuration

A. Overview

Eurofins E&E North America. was contracted by Neogen Corporation to perform testing on the AccuPoint Advanced 2 Sanitation Monitoring System, under Neogen Corporation's purchase order number 152573.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Neogen Corporation, AccuPoint Advanced 2 Sanitation Monitoring System.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	AccuPoint Advanced 2 Sanitation Monitoring System	
Model(s) Covered:	AccuPoint Advanced 2 Sanitation Monitoring System	
	Primary Power: 5V DC; rechargeable battery	
	FCC ID: 2AWD5-9904	
EUT Specifications:	Type of Modulations:	NFCIP-1,2
	Equipment Code:	DXX
	Peak Field Strength:	11.82 dBuV/m
	EUT Frequency Ranges:	13.56 MHz
Analysis:	The results obtained relate only to the item(s) tested.	
Temperature: 15-35° C		
Environmental Test Conditions:	Relative Humidity: 30-60%	
	Barometric Pressure: 860-1060 mbar	
	Evaluated by: Donald Salguero	
Report Date(s):	March 16, 2021	

Table 2. EUT Summary Table

B. References

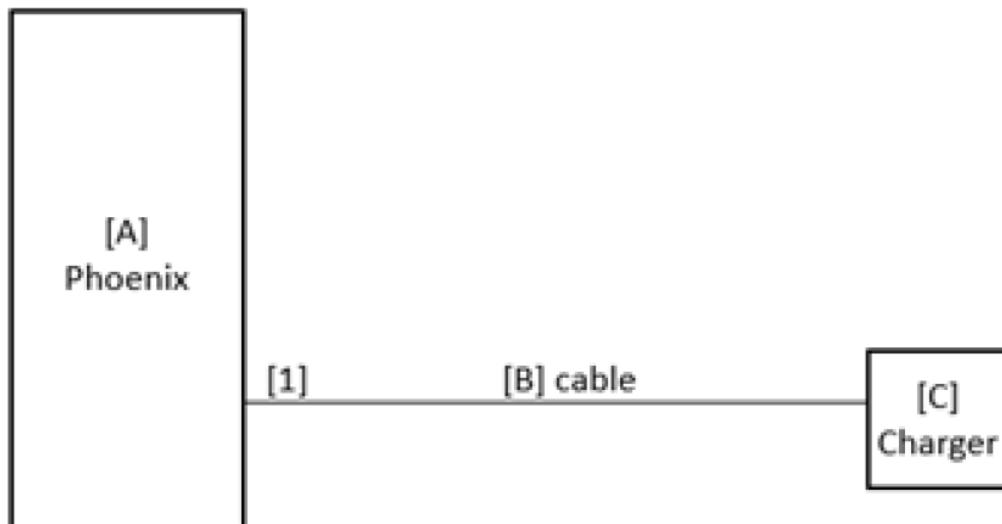
CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

Table 3. References

C. Test Site

All testing was performed at Eurofins E&E North America., 914 W. Patapsco Ave., Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.


D. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	K	Confidence Level
RF Frequencies	± 4.52 Hz	2	95%
RF Power Conducted Emissions	± 2.32 dB	2	95%
RF Power Conducted Spurious Emissions	± 2.25 dB	2	95%
RF Power Radiated Emissions	± 3.01 dB	2	95%
Radiated Emissions, (30 MHz – 1 GHz)	± 3.45	2	95%
Radiated Emissions, (1 - 6 GHz)	± 6.29	2	95%
Conducted Emission	± 3.8	2	95%
CEV Telecom Port	± 2.8	2	95%

Table 4. Uncertainty Calculations Summary

E. Description of Test Sample

The AccuPoint Advanced 2 Sanitation Monitoring System, Equipment Under Test (EUT), is a portable handheld device used to measure samples emitting extremely low light levels.

Figure 1. Block Diagram of Test Configuration

F. Equipment Configuration

The EUT was set up as outlined in Figure 1. All equipment incorporated as part of the EUT is included in the following list.

Ref. ID	Name / Description	Model Number	Part Number	Serial Number	Revision
--	AccuPoint	9904	--	--	--

Table 5. Equipment Configuration

G. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number
--	PC/laptop for host communications	--	--
--	HID_UART.exe Windows application SW	--	--
--	USB A-B micro cable	--	--
--	USB charger	Mega Electronics	MWM012T-W050VU-5346

Table 6. Support Equipment

H. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded (Y/N)	Termination Point
--	Data	Micro USB 2.0 type B connector	1	1	2	No
--	DC Input	Micro USB 2.0 type B connector	1	1	2	No

Table 7. Ports and Cabling Information

I. Mode of Operation During Testing

Idle/WiFi Disabled – EUT is waiting for user input, RFID is occasionally pinged. WiFi is disabled. (factory reset) unit connected to USB, powered-on, waiting on home screen. Stress All – Wifi searching for AP, RFID pinging rapidly, cycling vibrator motor, random patterns to screen, backlight on full, optical LED on full for 1hr. Power supply fully stressed. (factory reset) unit connected to USB, send “stress all” command over USB serial. Send “unstress all” or cycle power to resume idle.

The test software used during testing was Trace Data Grabber version 11/24/08.

J. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Neogen Corporation upon completion of testing.

III. Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203

Antenna Requirement

Test Requirement:

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT was analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT was compliant with the requirement of §15.203. EUT uses a built-in antenna.

Test Engineer(s): Donald Salguero

Test Date(s): 04/01/2020

Manufacturer: Taoglas

Type: NFC Flex antenna

Gain: N/A

Pat No: FXR.08.52.0075X.A

Electromagnetic Compatibility Criteria for Intentional Radiators**§ 15.207(a) Conducted Emissions Limits****Test Requirement(s):**

§ 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range (MHz)	§ 15.207(a), Conducted Limit (dB μ V)	
	Quasi-Peak	Average
* 0.15 - 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Table 8. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Note: *Decreases with the logarithm of the frequency.

Test Procedure:

The EUT was placed on a 0.8 m-high non-conducting table above a ground plane. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with *ANSI C63.10-2013 "Procedures for Compliance Testing of Unlicensed Wireless Devices"*. The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMI receiver. For the purpose of this testing, the transmitter was turned on at full power during scans.

Test Results:

The EUT was compliant with this requirement.

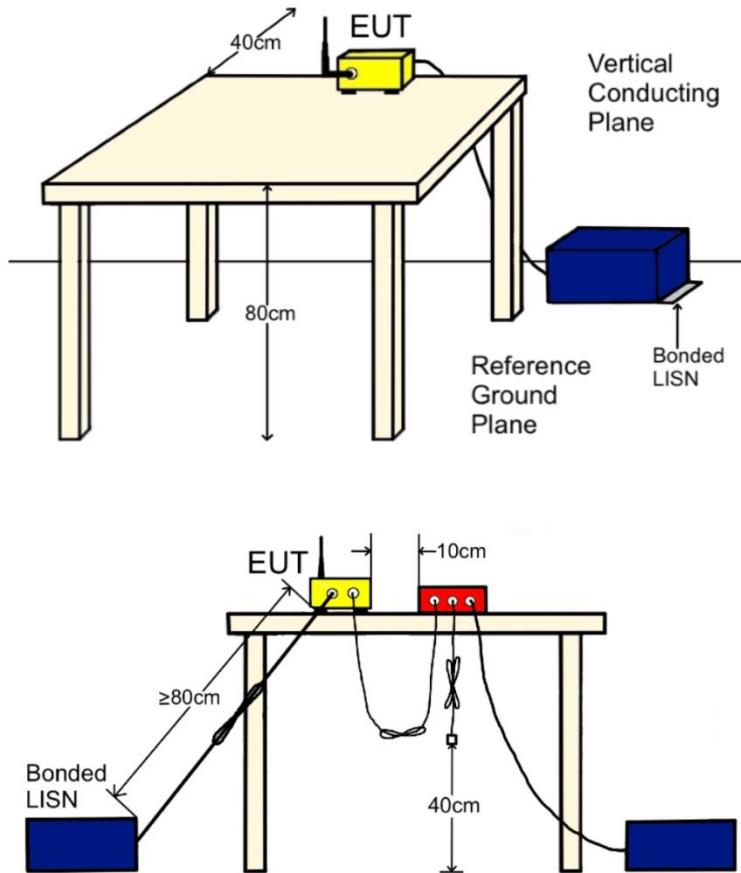
Test Engineer(s):

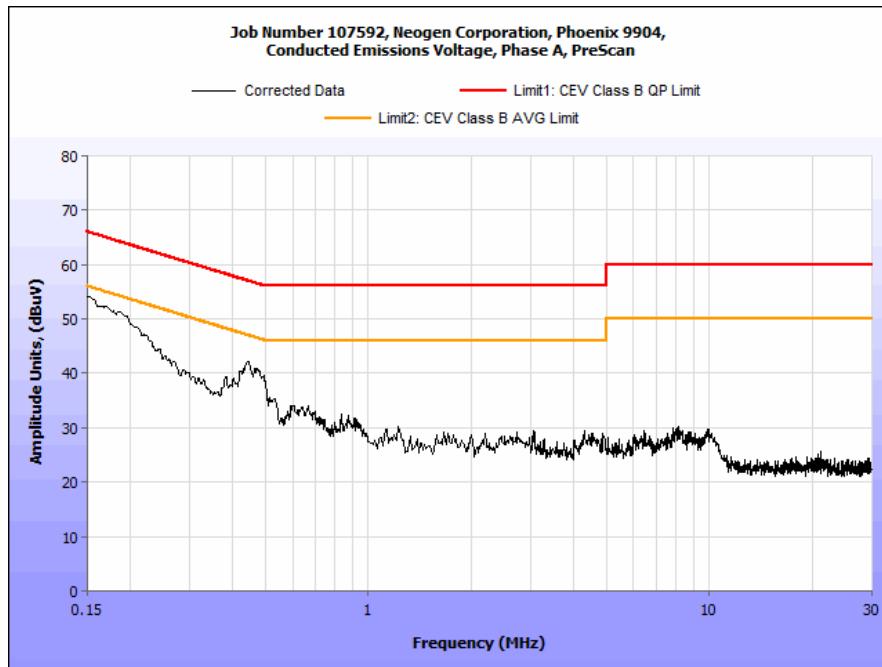
Donald Salguero

Test Date(s):

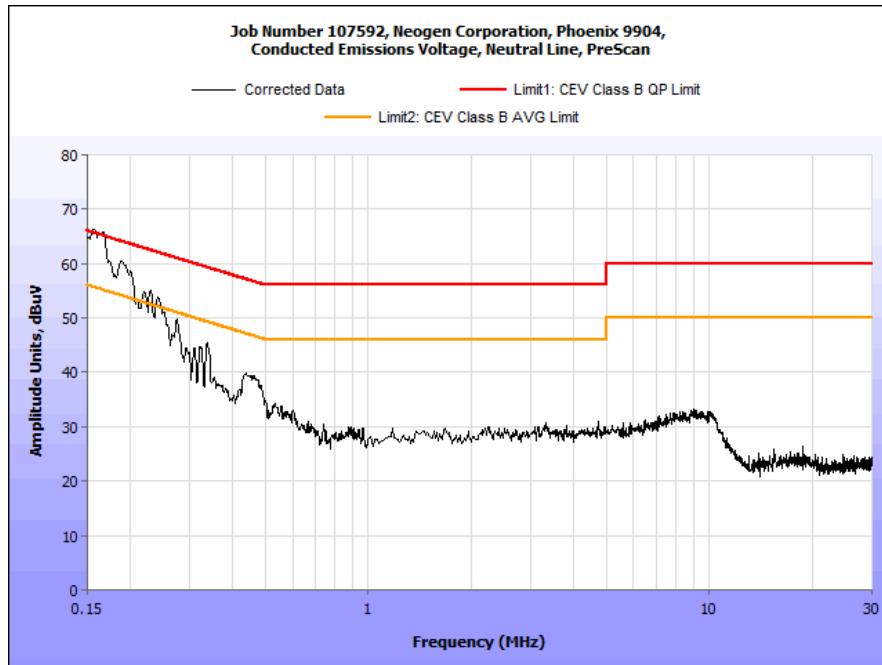
06/09/2020

Conducted Emissions Voltage Test Setup




Figure 2. CEV Test Setup

Freq. (MHz)	Uncorrected Meter Reading (dB μ V) QP	Cable Loss (dB)	External Atten. (dB)	Corrected Meas. (dB μ V) QP	Limit (dB μ V) QP	Pass / Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dB μ V) Avg.	Cable Loss (dB)	External Atten. (dB)	Corrected Meas. (dB μ V) AVG	Limit (dB μ V) AVG	Pass / Fail AVG	Margin (dB) AVG
0.15	39.34	0	10	49.34	66	PASS	-16.66	20.57	0	10	30.57	56	PASS	-25.43
0.179	35.6	0	10	45.6	64.53	PASS	-18.93	17.92	0	10	27.92	54.53	PASS	-26.61
0.4398	26.85	0	10	36.85	57.07	PASS	-20.22	14.71	0	10	24.71	47.07	PASS	-22.36
0.475	25.44	0	10	35.44	56.43	PASS	-20.99	12.54	0	10	22.54	46.43	PASS	-23.89
0.5018	20.84	0	10	30.84	56	PASS	-25.16	8.15	0	10	18.15	46	PASS	-27.85
0.8501	15.27	0	10	25.27	56	PASS	-30.73	5.73	0	10	15.73	46	PASS	-30.27


Table 9. Conducted Emissions, Test Results, Phase

Freq. (MHz)	Uncorrected Meter Reading (dB μ V) QP	Cable Loss (dB)	External Atten. (dB)	Corrected Meas. (dB μ V) QP	Limit (dB μ V) QP	Pass / Fail QP	Margin (dB) QP	Uncorrected Meter Reading (dB μ V) Avg.	Cable Loss (dB)	External Atten. (dB)	Corrected Meas. (dB μ V) AVG	Limit (dB μ V) AVG	Pass / Fail AVG	Margin (dB) AVG
0.1526	43.36	0	10	53.36	65.86	PASS	-12.5	23.88	0	10	33.88	55.86	PASS	-21.98
0.1612	42.82	0	10	52.82	65.4	PASS	-12.58	23.6	0	10	33.6	55.4	PASS	-21.8
0.2002	37.63	0	10	47.63	63.6	PASS	-15.97	20.07	0	10	30.07	53.6	PASS	-23.53
0.2188	33.85	0	10	43.85	62.86	PASS	-19.01	16.57	0	10	26.57	52.86	PASS	-26.29
0.3024	25.94	0	10	35.94	60.18	PASS	-24.24	11.3	0	10	21.3	50.18	PASS	-28.88
0.4505	26.42	0	10	36.42	56.87	PASS	-20.45	17.02	0	10	27.02	46.87	PASS	-19.85

Table 10. Conducted Emissions, Test Results, Neutral

Plot 1. Conducted Emissions over AC mains_phase prescan

Plot 2. Conducted Emissions over AC mains_neutral prescan

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.215(c) 20 dB Occupied Bandwidth

Test Requirement(s):

§ 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Test Procedure:

The transmitter was on and transmitting at the highest output power. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using an RBW approximately 1% of the total emission bandwidth. The 20 dB Bandwidth was measured and recorded.

Test Results:

The EUT was compliant with this requirement.

Test Engineer(s):

Donald Salguero

Test Date(s):

06/11/2020

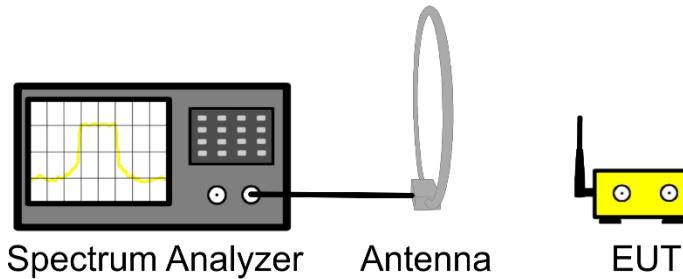
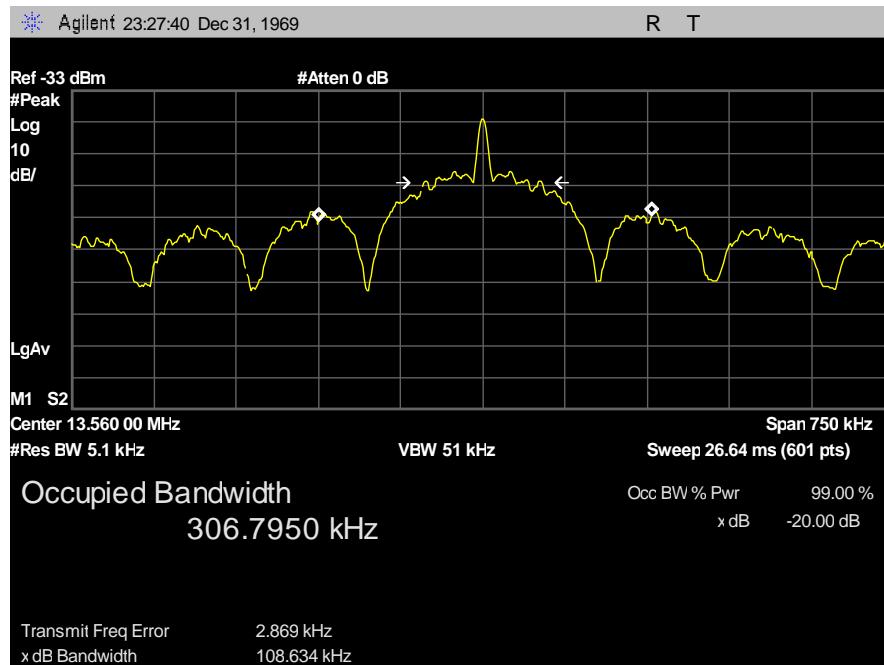



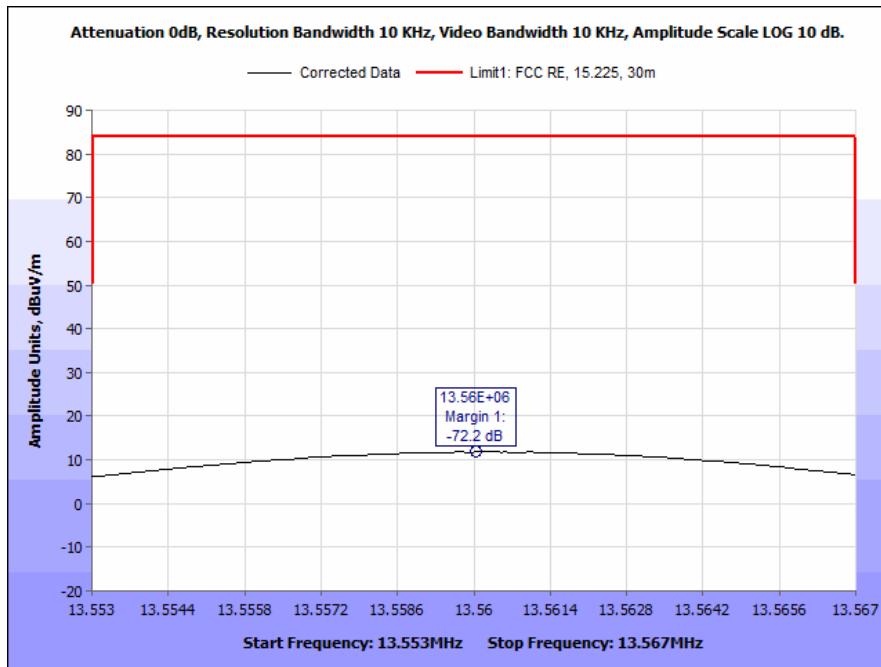
Figure 3. 20 dB Bandwidth Test Setup

Plot 3. 20dB BW - 13.56 MHZ

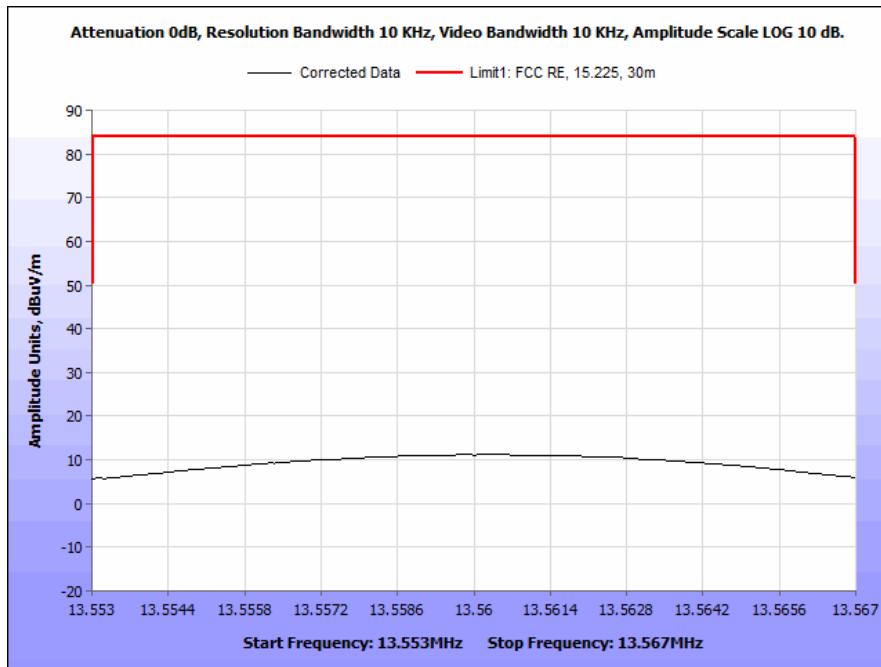
Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.225(a) Spurious Emission Limits, within the band 13.553 – 13.567 MHz

Test Requirement(s): **15.225 (a)** The field strength of any emissions within the band 13.553 – 13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.


Test Procedure: The EUT was set to transmit and placed on a 0.8m-high non-conductive table inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.10: 2013 were used. The loop antenna was located 3 m from the EUT. Measurements were conducted with the loop antenna at coaxial (parallel) and planar (perpendicular) orientations. The Spectrum analyzer RBW was set to 10 kHz and VBW was set to 30 kHz. A peak detector was used. The measurements were made at 3m and then extrapolated to 30m using the following correction factor.

$$40\log(3/30) = -40 \text{ dB}$$


Test Results: The EUT was compliant with the requirements of **§15.225(a)**.

Test Engineer(s): Donald Salguero

Test Date(s): 06/23/2020

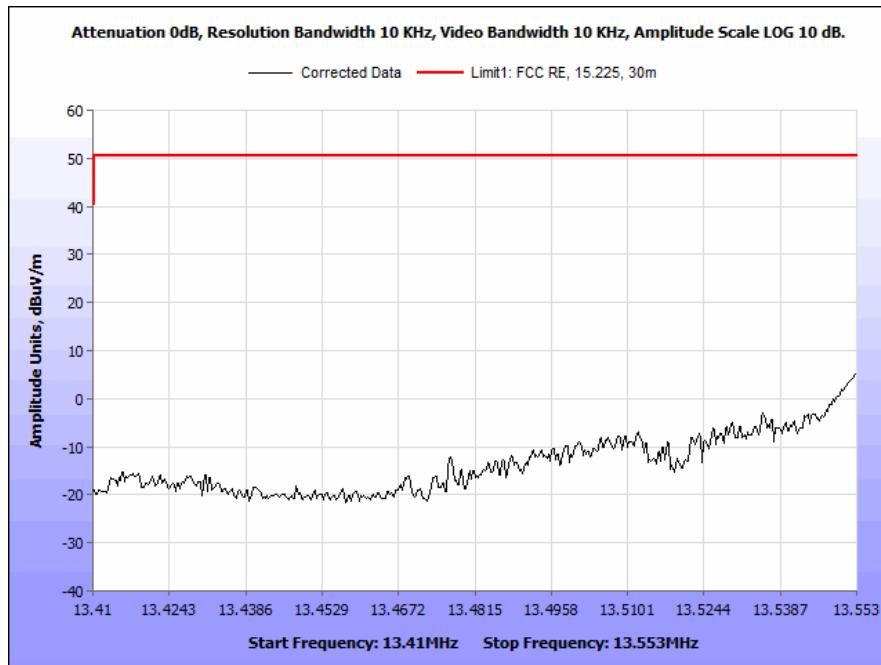
Plot 4. Spurious Emissions Within the Band 13.553 – 13.567 MHz, fundamental emission_parallel

Plot 5. Spurious Emissions Within the Band 13.553 – 13.567 MHz, fundamental emission_perpendicular

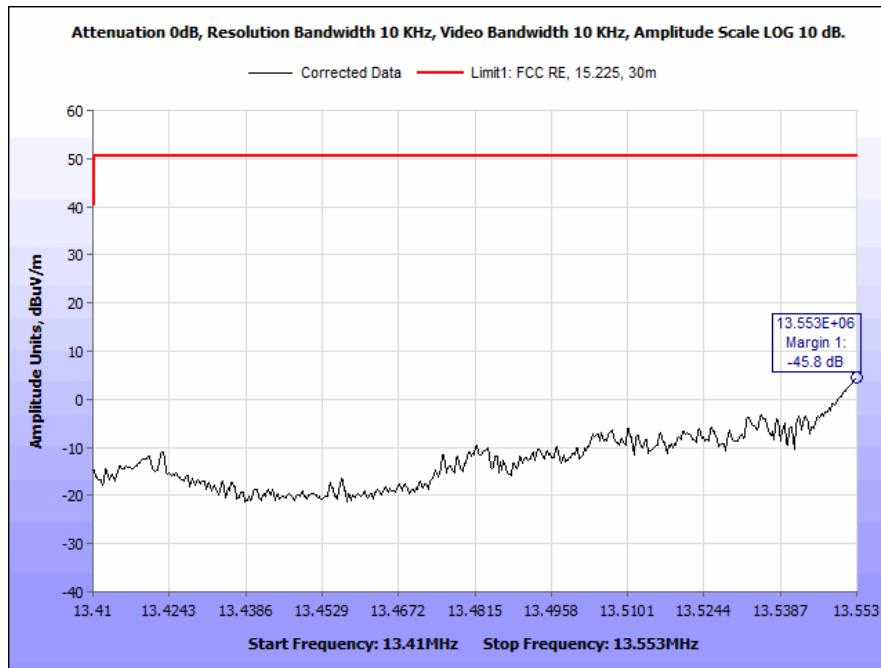
Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.225(b) Spurious Emission Limits, within the bands 13.410 – 13.553 MHz and 13.567 – 13.710 MHz

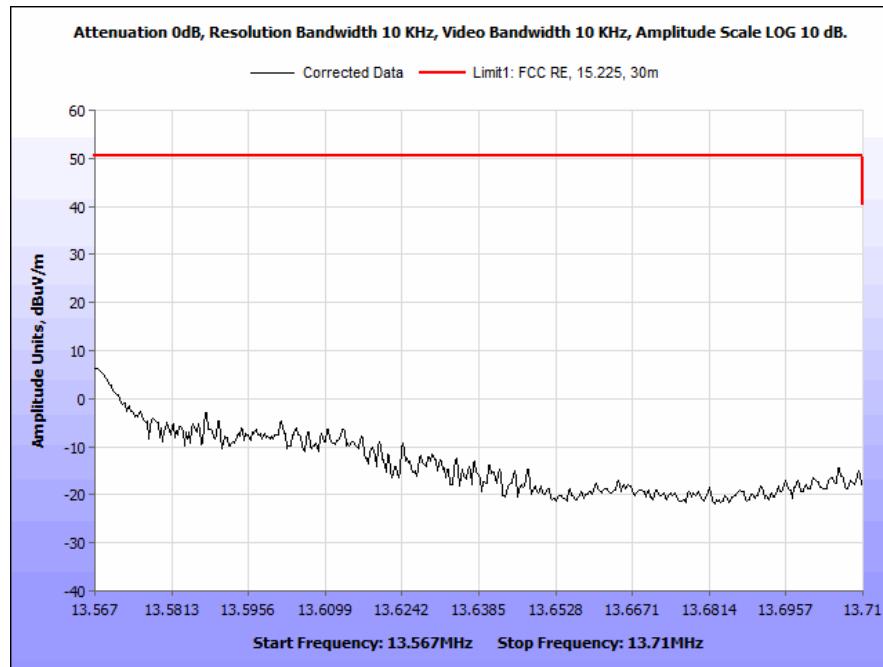
Test Requirement(s): **15.225 (b)** Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.


Test Procedures: The EUT was set to transmit and placed on a 0.8m-high wooden stand inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.10: 2013 were used. The loop antenna was located 3 m from the EUT. Measurements were conducted with the loop antenna at coaxial (parallel) and planar (perpendicular) orientations. The Spectrum analyzer RBW was set to 10 kHz and VBW was set to 30 kHz. A peak detector was used. The measurements were made at 3m and then extrapolated to 30m using the following correction factor.

$$40\log(3/30) = -40 \text{ dB}$$


Test Results: The EUT was compliant with the requirements of **§ 15.225(b)**.

Test Engineer(s): Donald Salguero


Test Date(s): 06/23/2020

Plot 6. Radiated Emissions_13.41-13.553 MHz_parallel

Plot 7. Radiated Emissions_13.41-13.553 MHz_perpendicular

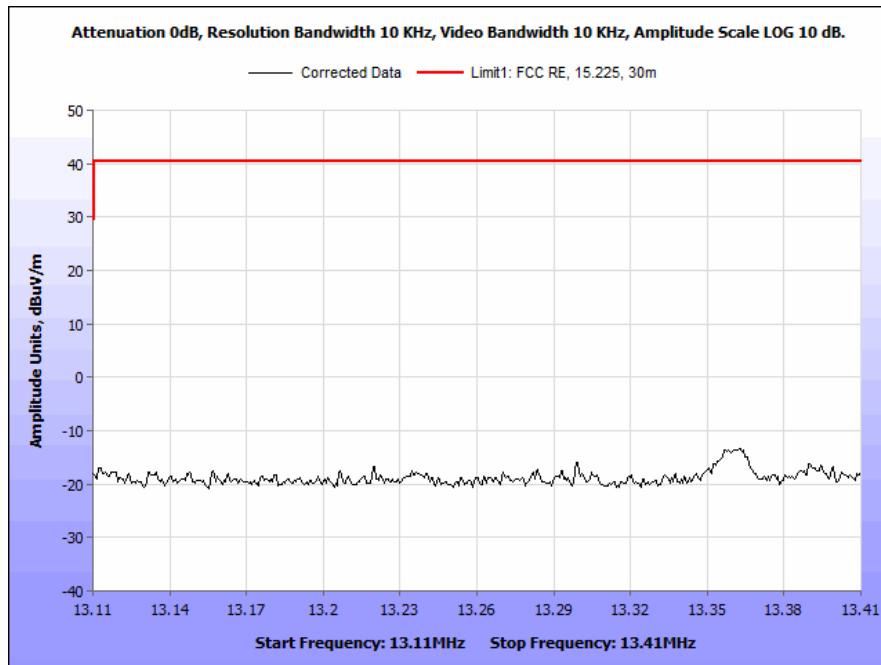
Plot 8. Radiated Emissions_13.567-13.71 MHz_parallel

Plot 9. Radiated Emissions_13.567-13.71 MHz_perpendicular

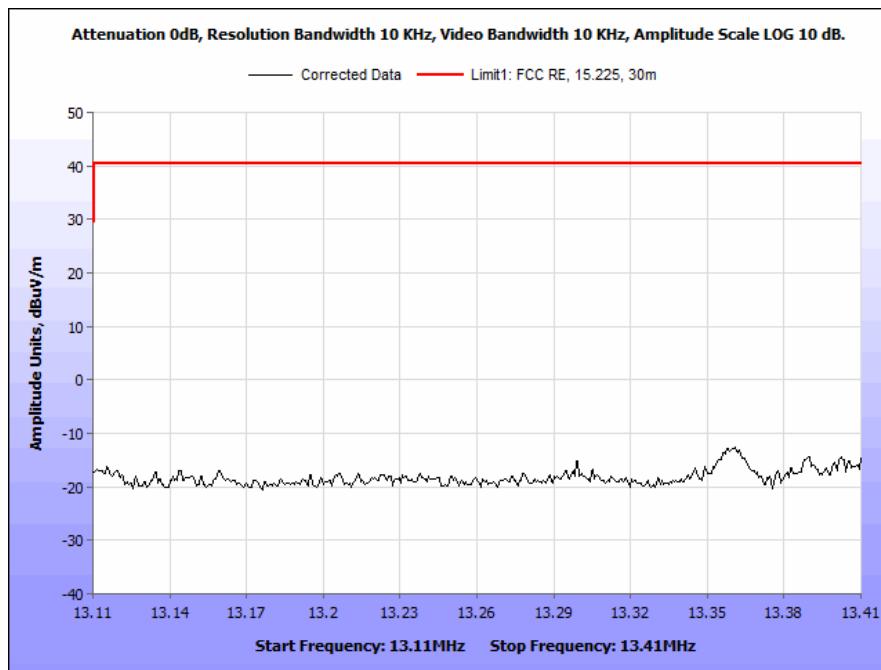
Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.225(c) Spurious Emission Limits, within the bands 13.110 – 13.410 MHz and 13.710 – 14.010 MHz

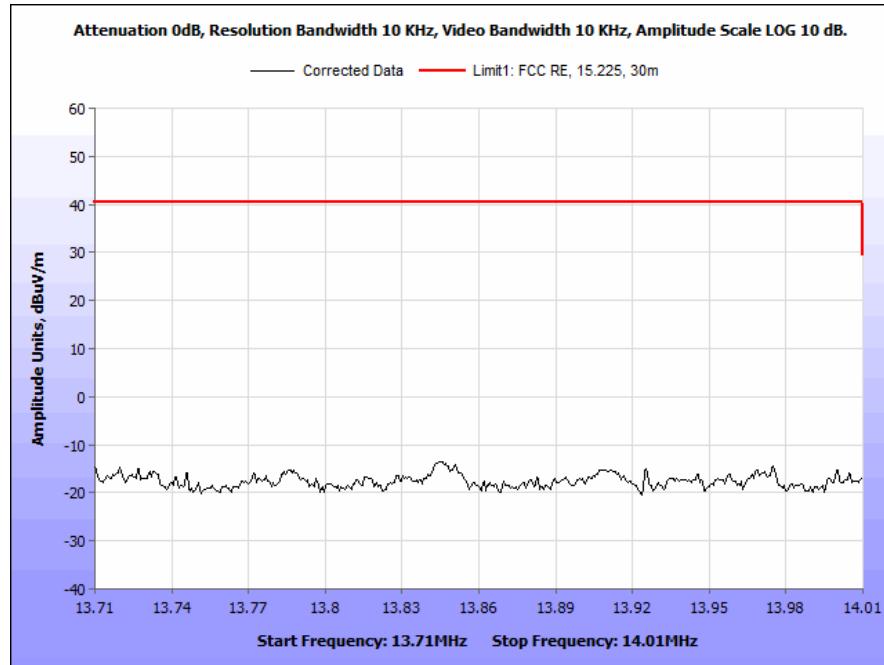
Test Requirement(s): **15.225 (c)** Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

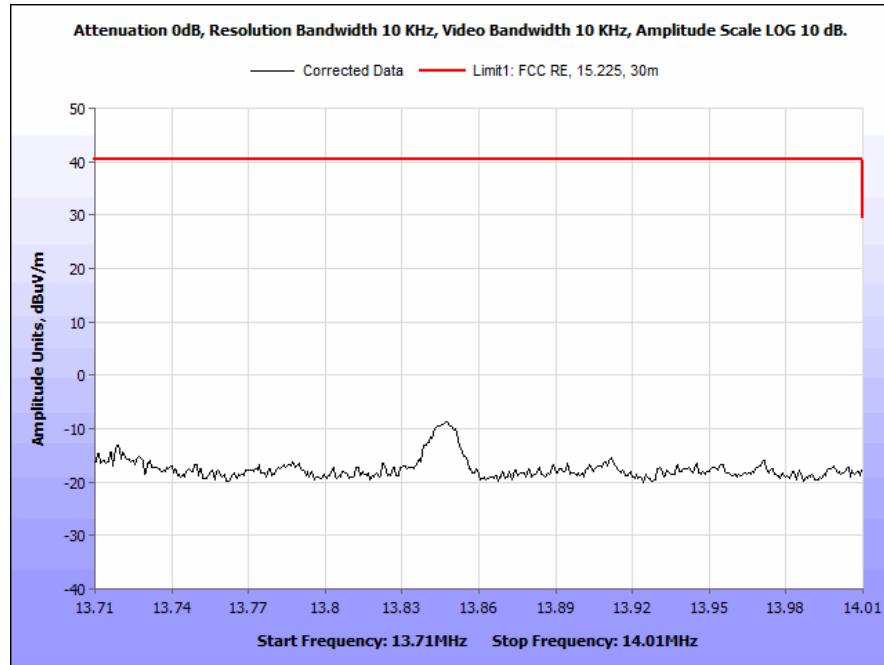

Test Procedures: The EUT was set to transmit and placed on a 0.8m-high wooden stand inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.10: 2013 were used. The loop antenna was located 3 m from the EUT. Measurements were conducted with the loop antenna at coaxial (parallel) and planar (perpendicular) orientations. The Spectrum analyzer RBW was set to 10 kHz and VBW was set to 30 kHz. A peak detector was used. The measurements were made at 3m and then extrapolated to 30m using the following correction factor.

$$40\log(3/30) = -40 \text{ dB}$$


Test Results: The EUT was compliant with the requirements of **§15.225(c)**.

Test Engineer(s): Donald Salguero


Test Date(s): 06/23/2020


Plot 10. Radiated Emissions_13.11-13.41 MHz_parallel

Plot 11. Radiated Emissions_13.11-13.41 MHz_perpendicular

Plot 12. Radiated Emissions_13.71-14.01 MHz_parallel

Plot 13. Radiated Emissions_13.71-14.01 MHz_perpendicular

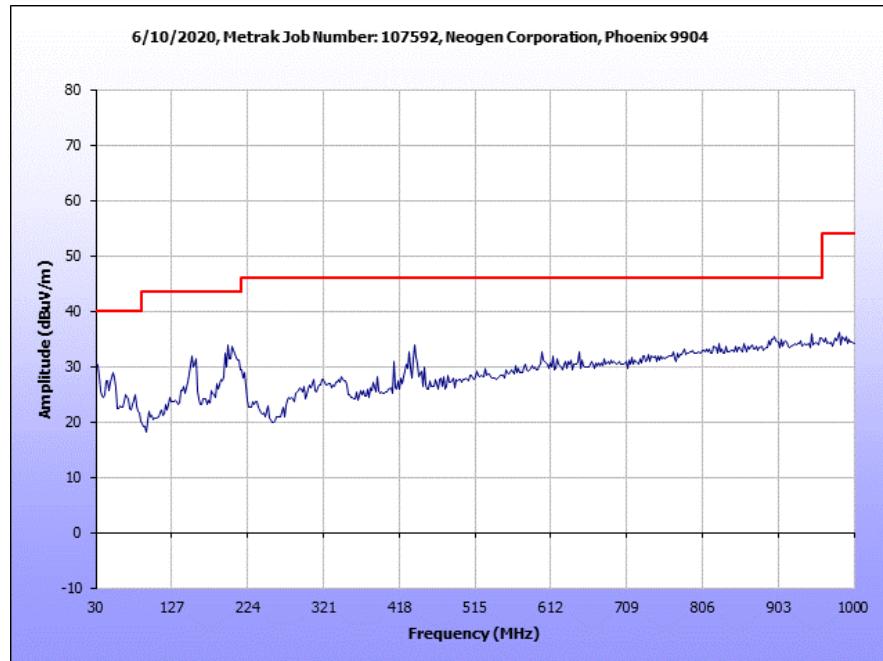
Electromagnetic Compatibility Criteria for Intentional Radiators**§ 15.225(d) Spurious Emission Limits, outside the bands 13.110 – 14.010 MHz**

Test Requirement(s): 15.225 (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

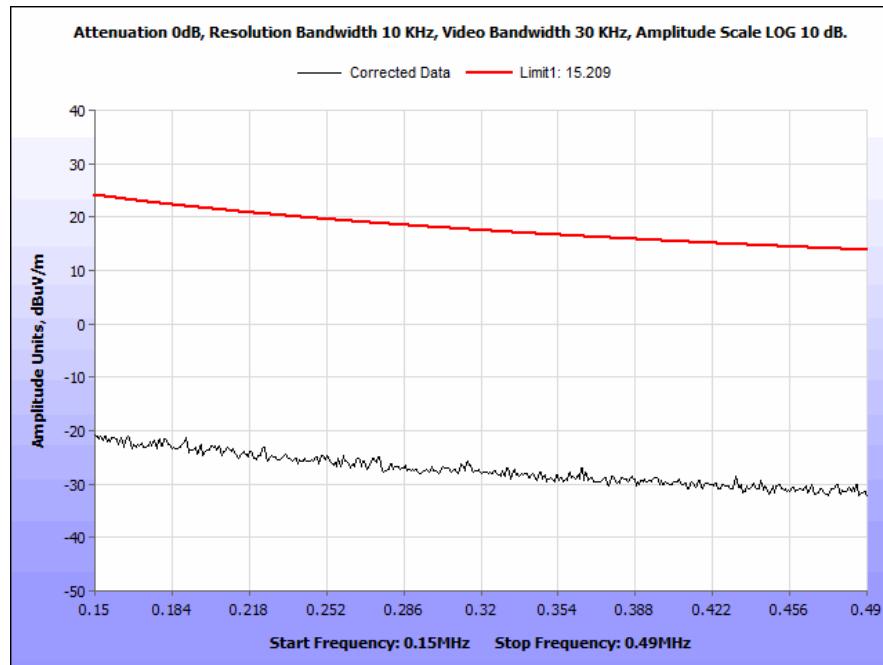
Test Procedures: The EUT was set to transmit and placed on a 0.8m-high wooden stand inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.4: 2014 and ANSI C63.10: 2013 were used. For measurements below 30 MHz a loop antenna placed 3m away from the unit was used. For measurements above 30 MHz a biconallog antenna placed 10m away from the unit was used. Measurements were conducted with the loop antenna at coaxial (parallel) and planar (perpendicular) orientations. The Spectrum analyzer RBW was set to 10 kHz and VBW was set to 30 kHz. Below 150 kHz, the RBW was set to 300 Hz and the VBW set to 1 kHz. A peak detector was used below 30 MHz and a Quasi-peak detector was used for measurements for above 30 MHz.

For measurements from 0.009-30MHz, they were made at 3m with the loop antenna then extrapolated to 30m or 300m using the following correction factors.

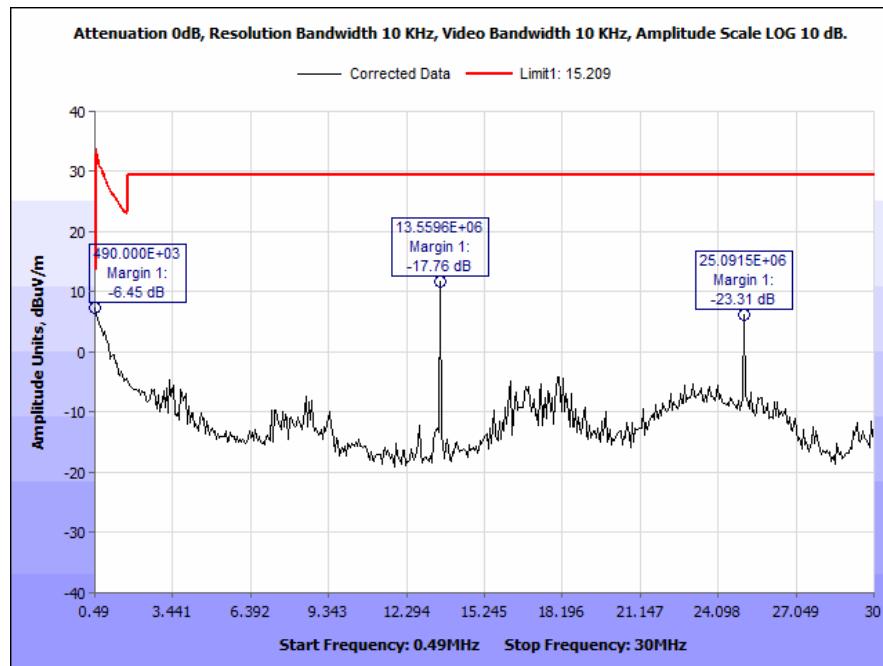
$$40\log(3/30) = -40 \text{ dB for measurements between 0.49-30 MHz}$$

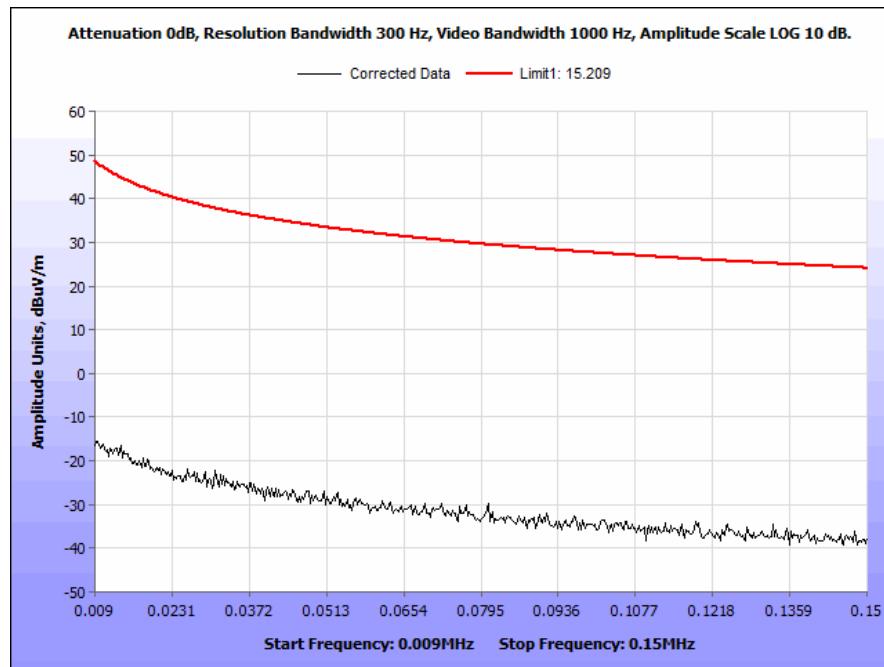

$$40\log(3/300) = -80 \text{ dB for measurements between 0.009-0.49 MHz}$$

The measurements from 30MHz – 1GHz were made at 3m with the biconilog antenna.

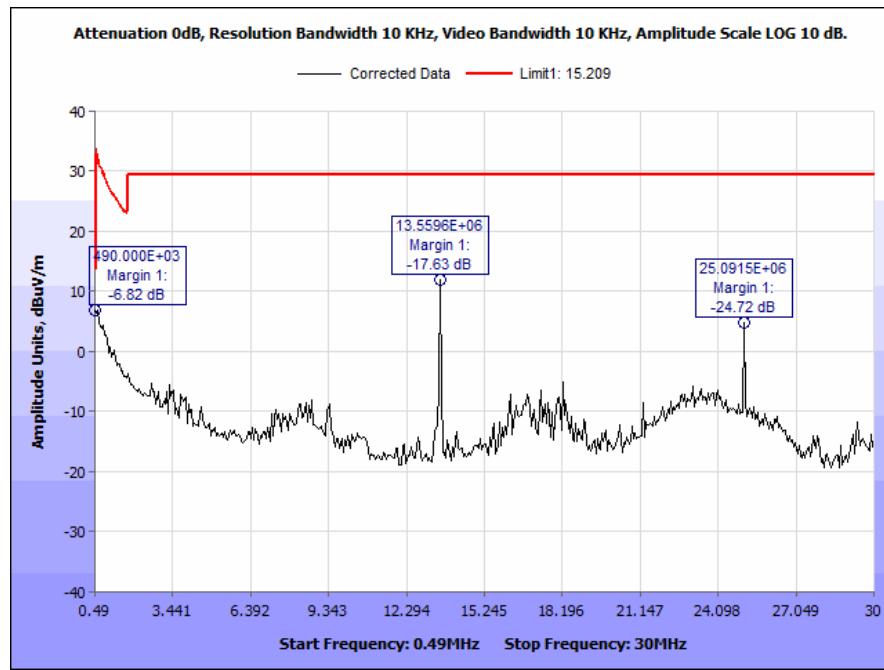

Test Results: The EUT was compliant with requirements of **§ 15.225 (d)**.

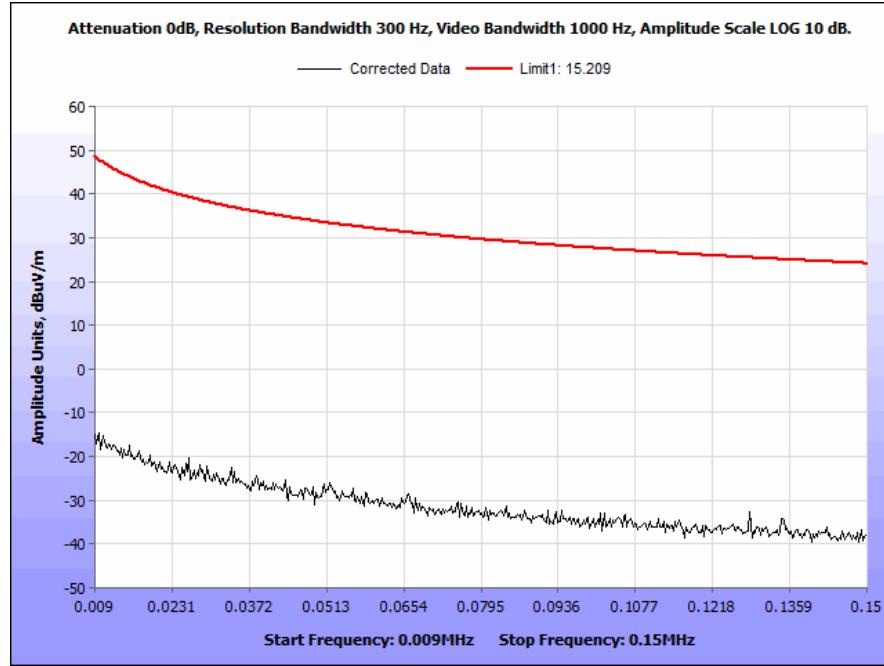
Test Engineer: Donald Salguero


Test Date: 06/23/2020

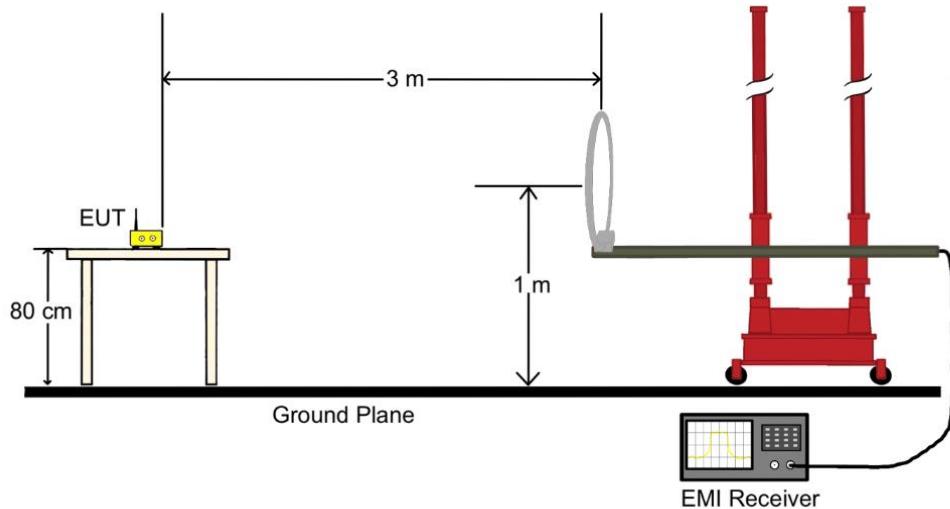

Plot 14. Radiated Emissions, 30-1000 MHz, Cumulative

Plot 15. Radiated Emissions, perpendicular_150 - 490 kHz


Plot 16. Radiated emissions_parallel_0.49 - 30 MHz


Plot 17 Spurious Emissions, Radiated emissions_parallel_9 - 150 kHz

Plot 18. Radiated emissions_parallel_150 - 490 kHz


Plot 19. Radiated emissions_perpendicular_0.49 - 30 MHz

Plot 20. Radiated emissions_perpendicular_9 - 150 kHz

Spurious Emissions Limits Test Setup

Radiated Emissions Below 30 MHz

Radiated Emissions 30 - 1000 MHz

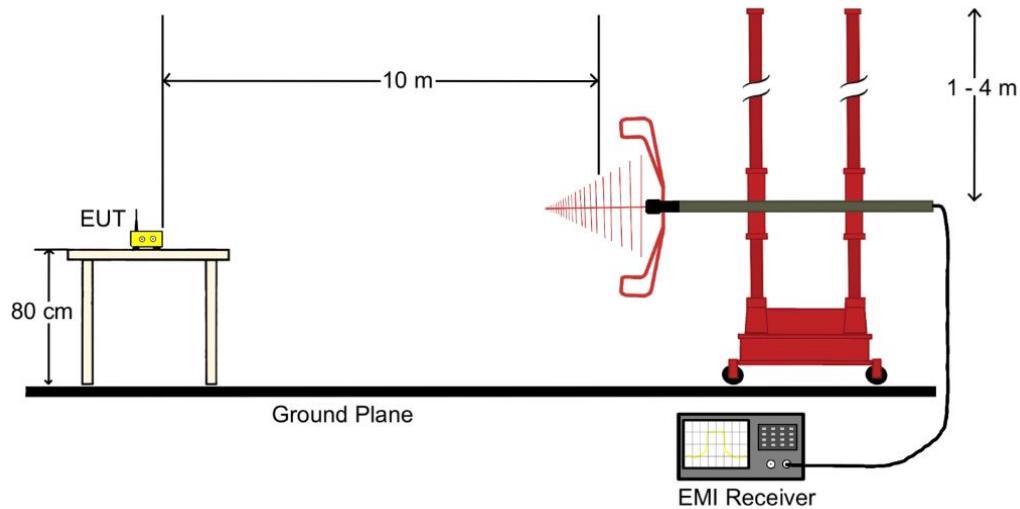


Figure 4. Radiated Emissions Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.225(e) Frequency Stability

Test Requirement(s): **15.225(e)** The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Procedure: Measurements are in accordance with Part 2.1055. The EUT was placed in the Environmental Chamber and allowed to reach desired temperature. A spectrum analyzer was used to measure the frequency drift. The EUT was set to transmit in the operating frequency range. Frequency drift was investigated for the extreme temperatures and nominal temperature, until the unit is stabilized then recorded the reading in tabular format with the temperature range of -20° to 50°C.

Test Results: The EUT was found compliant with the frequency stability requirements of this section.

Test Engineer(s): Donald Salguero

Test Date(s): 06/12/2020

Temperature	Measured Center Frequency	%
50	13.55999513	0.00062
40	13.56001091	0.0005
30	13.56004117	0.00028
20	13.56007885	0
10	13.56011375	0.00026
0	13.5601425	0.00047
-10	13.56015723	0.00058
-20	13.5601592	0.00059

Table 11. Frequency Stability, Test Results

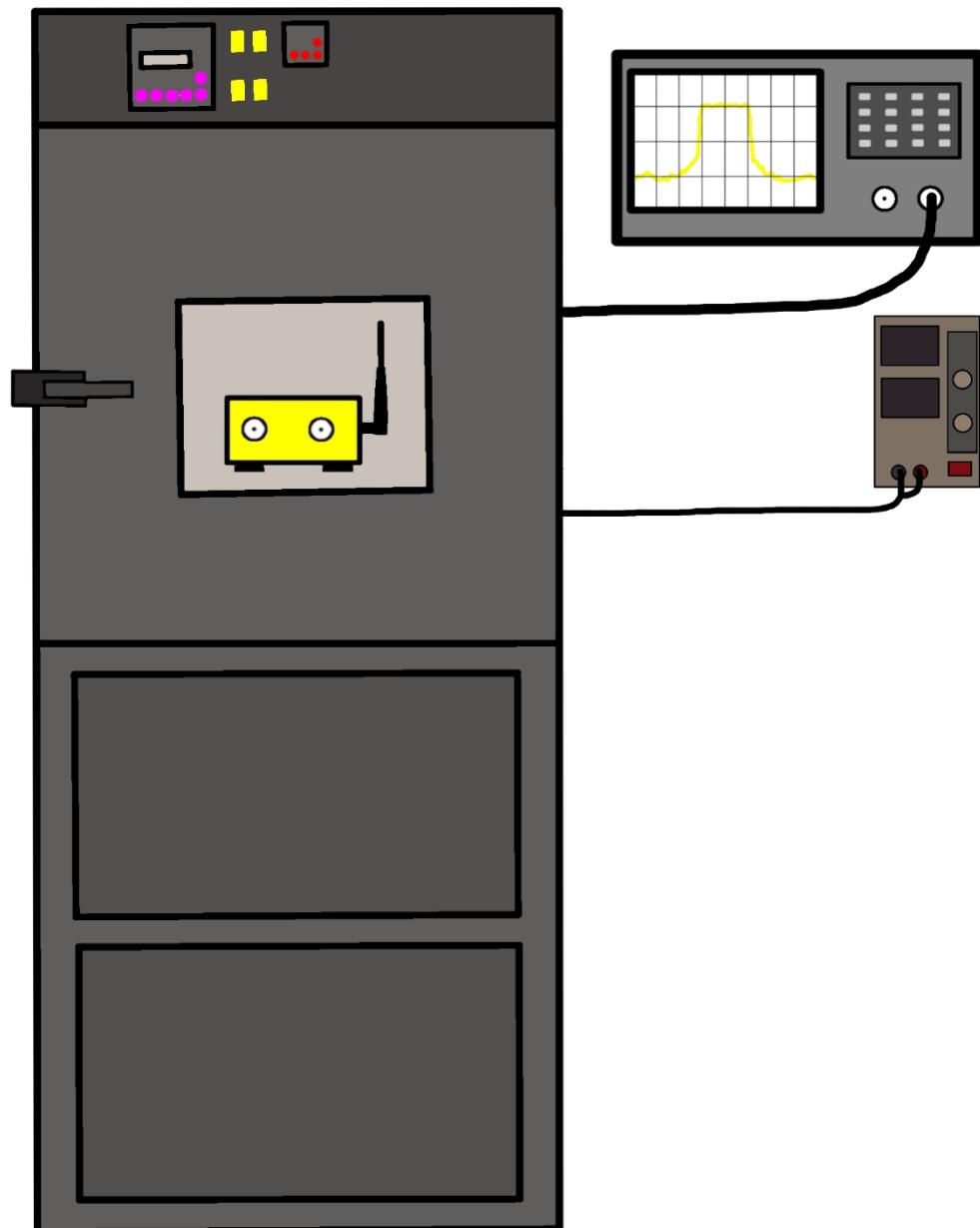


Figure 5. Temperature Stability Test Setup

IV. Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Asset	Equipment	Manufacturer	Model	Calibration Date	Calibration Due Date
1T4565	LISN (24 AMP)	SOLAR ELECTRONICS COMPANY	925-5-BNC	4/3/2019	10/3/2020
1T4771	PSA SPECTRUM ANALYZER	AGILENT TECHNOLOGIES	E4446A	2/26/2020	8/26/2021
1T7450	TRANSIENT LIMITER	COM-POWER	LIT-153A	NOT REQUIRED	
1T4504	SHIELDED ROOM	UNIVERSAL SHIELDING CORP	N/A	NOT REQUIRED	
1T4409	EMI Receiver	Rohde & Schwarz	ESIB7	1/4/2019	1/4/2021
1T4751	Antenna - Bilog	Sunol Sciences	JB6	5/2/2019	11/2/2020
1T9586	Active Loop Antenna	ETS-Lindgren	6502	10/30/2019	10/30/2020
2T8226	Temperature/Humidity Chamber	ESPEC	EPX-4H	1/12/2020	1/12/2021

Table 12. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

End of Report