

TEST REPORT FOR CDMA TESTING

Report No.: SRTC2020-9004(F)-20050801(P)

Product Name: On-board Terminal (Telematics BOX)

Product Model: SR10006

Applicant: SiRun (Beijing) Technology Co., Ltd.

Manufacturer: SiRun (Beijing) Technology Co., Ltd.

Specification: FCC Part 24E, Part 22H, Part 2, Part 27 (2019)

FCC ID: 2AWCT-SR10006

The State Radio_monitoring_center Testing Center (SRTC)
15th Building, No.30 Shixing Street, Shijingshan District,
Beijing, P.R.China

Tel: 86-10-57996183 Fax: 86-10-57996388

CONTENTS

1. GENERAL INFORMATION	2
1.1 NOTES OF THE TEST REPORT	2
1.2 INFORMATION ABOUT THE TESTING LABORATORY	2
1.3 APPLICANT'S DETAILS	2
1.4 MANUFACTURER'S DETAILS	2
1.5 TEST ENVIRONMENT	3
2 DESCRIPTION OF THE DEVICE UNDER TEST	4
2.1 FINAL EQUIPMENT BUILD STATUS.....	4
2.2 SUPPORT EQUIPMENT.....	4
2.3 SUMMARY TABLE.	4
3 REFERENCE SPECIFICATION.....	5
4 KEY TO NOTES AND RESULT CODES	5
5 RESULT SUMMARY	6
6 TEST RESULT.....	7
6.1 RF POWER OUTPUT	7
6.2 EFFECTIVE RADIATED POWER AND EFFECTIVE ISOTROPIC RADIATED POWER	8
6.3 OCCUPIED BANDWIDTH.....	10
6.4 EMISSION BANDWIDTH.....	11
6.5 SPURIOUS EMISSIONS AT ANTENNA TERMINAL	12
6.6 BAND EDGES COMPLIANCE	13
6.7 FREQUENCY STABILITY	14
6.8 RADIATED SPURIOUS EMISSIONS.....	15
6.9 PEAK-AVERAGE RATIO.....	17
7 MEASUREMENT UNCERTAINTIES	18
8 TEST EQUIPMENTS	19
APPENDIX A – TEST DATA OF CONDUCTED EMISSION.....	20
APPENDIX B – TEST DATA OF RADIATED EMISSION.....	26

1. GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC). The test results relate only to individual items of the samples which have been tested. The certification and accreditation identifiers used in this report shall not be applicable to the tested or calibrated samples thereof. The manufacturer shall not mark the tested samples or items (or a separate part of the item) with the identifiers of certification and accreditation to mislead relevant parties about the tested samples or items.

1.2 Information about the testing laboratory

Company:	The State Radio_monitoring_center Testing Center (SRTC)
Address:	15th Building, No.30 Shixing Street, Shijingshan District, P.R.China
City:	Beijing
Country or Region:	P.R.China
Contacted person:	Liu Jia
Tel:	+86 10 57996183
Fax:	+86 10 57996388
Email:	liujiaf@srtc.org.cn

1.3 Applicant's details

Company:	SiRun (Beijing) Technology Co., Ltd.
Address:	F16, Block A, Building 2, No.2 Auto Museum East Road, Fengtai District, Beijing, China
City:	Beijing
Country or Region:	China
Contacted person:	Lingrong Zhou
Tel:	15010875309
Fax:	---
Email:	lingrong.zhou@sirun.net

1.4 Manufacturer's details

Company:	SiRun (Beijing) Technology Co., Ltd.
Address:	F16, Block A, Building 2, No.2 Auto Museum East Road, Fengtai District, Beijing, China
City:	Beijing
Country or Region:	China
Contacted person:	Lingrong Zhou
Tel:	15010875309
Fax:	---
Email:	lingrong.zhou@sirun.net

1.5 Test Environment

Date of Receipt of test sample at SRTC:	2020-05-08
Testing Start Date:	2020-05-08
Testing End Date:	2020-05-21

Environmental Data:	Temperature (°C)	Humidity (%)
Ambient	25	30
Maximum Extreme	70	---
Minimum Extreme	-30	---

Normal Supply Voltage (V d.c.):	12.0
Maximum Extreme Supply Voltage (V d.c.):	18.0
Minimum Extreme Supply Voltage (V d.c.):	9.0

2 DESCRIPTION OF THE DEVICE UNDER TEST

2.1 Final Equipment Build Status

Frequency Range	BC0: Tx:824.70~848.31MHz Rx:869.70~893.31MHz
Mode	CDMA2000 1x Advanced CDMA2000 1x EVDO Rel.0/Rev.A
Emission Designator	4M50F9W
Duplex Mode	FDD
Duplex Spacing	45MHz
Antenna Type	Fixed external Antenna
Antenna Gain	0dBi
Power Supply	DC Power
Hardware Version	V3.01
Software Version	V3.02
ICCID	898602F2101950003613

2.2 Support Equipment

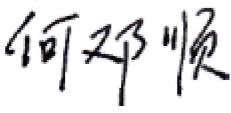
The following support equipment was used to exercise the DUT during testing:
NA

2.3 Summary table.

FCC Rule Part	Mode	Frequency Range(MHz)	ERP/ EIRP (dBm)	ERP/ EIRP (W)	Frequency Tolerance (ppm)	Emission Designator
22H	CDMA BC0	824.70-848.31	24.59	0.288	-0.093	1M27F9W

3 REFERENCE SPECIFICATION

Specification	Version	Title
FCC Part2	2019	Frequency allocations and radio treaty matters; general rules and regulations
FCC Part22	2019	Public mobile services
FCC Part24	2019	Personal communications services
FCC Part27	2019	Miscellaneous wireless communications services
ANSI C63.26	2015	American national standard for compliance testing of transmitters used in licensed radio services
KDB 971168 D01	April 9, 2018	Measurement guidance for certification of licensed digital transmitters
TIA-603-E-2016	March 2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards


4 KEY TO NOTES AND RESULT CODES

The following are the definition of the test result.

Code	Meaning
PASS	Test result shows that the requirements of the relevant specification have been met.
FAIL	Test result shows that the requirements of the relevant specification have not been met.
NT	Normal Temperature
NV	Nominal voltage
HV	High voltage
LV	Low voltage

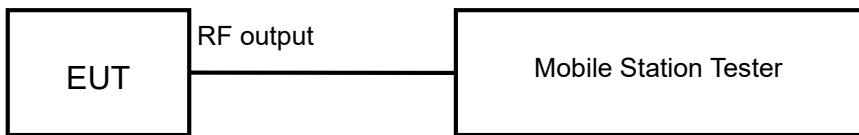
5 RESULT SUMMARY

No.	Test case	FCC reference	Verdict
1	RF Power Output	2.1046	Pass
2	Effective Radiated Power and Effective Isotropic Radiated Power	22.913(a),24.232(c),27.50(d)(4)	Pass
3	Occupied Bandwidth	2.1049	Pass
4	Emission Bandwidth	2.1049	Pass
5	Spurious Emissions at antenna terminal	2.1051,22.917(a),24.238(a),27.53(h)	Pass
6	Band Edges Compliance	2.1051,22.917(a),24.238(b),27.53(h)	Pass
7	Frequency Stability	2.1055,22.355,24.235,27.54	Pass
8	Radiated Spurious Emissions	2.1053,22.917(a),24.238(a),27.53(h)	Pass
9	Peak-Average Ratio	24.232(d),27.50(d) (5)	Pass

This Test Report Is Issued by: Mr. Peng Zhen 	Checked by: Mr. Li Bin
Tested by: Mr. He Dengshun 	Issued date: 20200522

6 TEST RESULT

6.1 RF Power Output


Rule Part(s):

2.1046

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	30%	101.9kPa

Test Setup:

Test procedure:

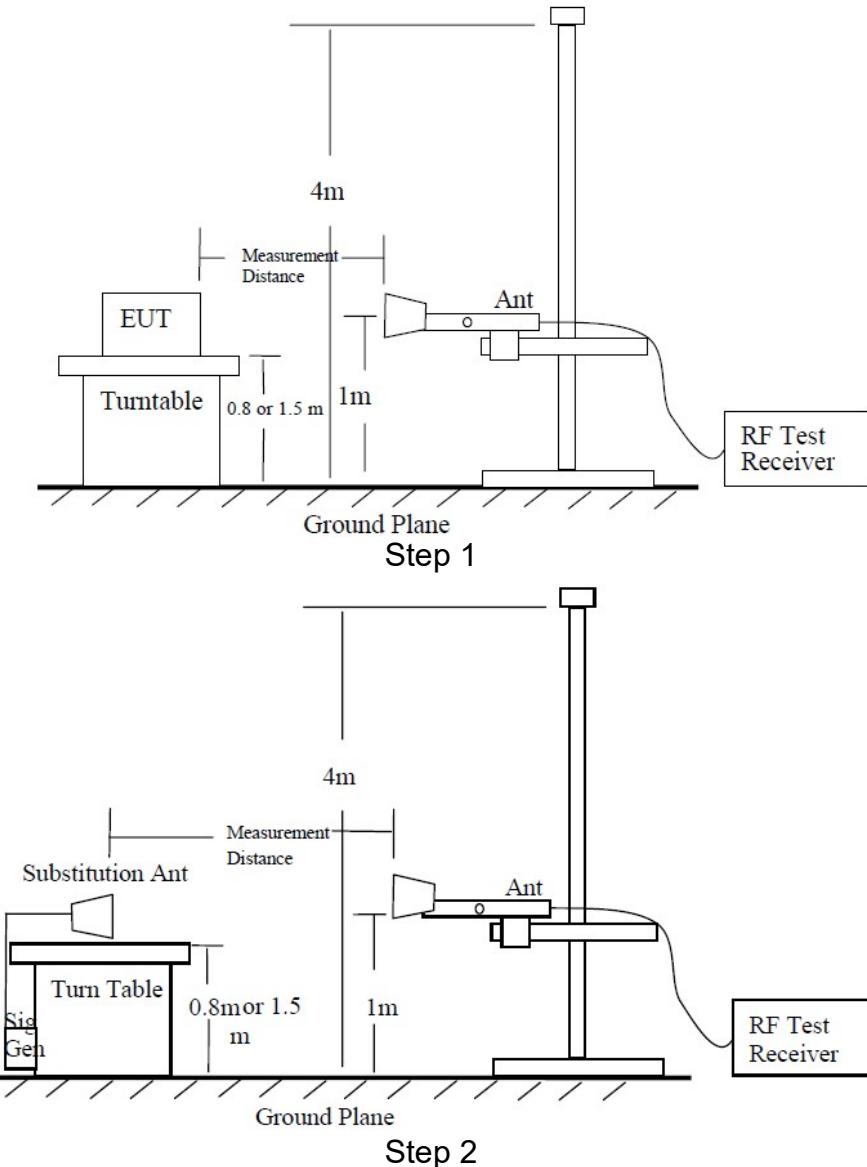
After a radio link has been established between EUT and Tester, the output power of the cell signal of the testing equipment will be decreased until the output power of the EUT reach a maximum value. Then the test data can be read at the tester screen. The loss between RF output port of the EUT and the input port of the tester will be taken into consideration. The measurement will be conducted at three channels (Low, middle and High channels).

Limits: No specific conduct power requirements in part 2.1046.

Test result:

The test results are shown in Appendix A.

6.2 Effective Radiated Power and Effective Isotropic Radiated Power


Rule Part(s):

FCC: 22.913(a) (5), 24.232(c), 27.50(d) (4)

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	30%	101.9kPa

Test setup:

Test procedure:

The measurements procedures in TIA-603-E-2016 are used.

Step 1:

The measurement is carried out in the chamber. EUT was placed on a 0.8m (f<1GHz)/1.5m (f>1GHz) high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. The height of receiving antenna from 1m to 4m and varies in certain range to find the maximum power value. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used and RBW is set to 100KHz(f<1GHz)/1MHz (f>1GHz). The antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum power value on spectrum analyzer or receiver. And the maximum value of the receiver should be recorded as (Pr).

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator. To repeat the same procedure as step1 and the level of signal generator will be adjusted till the same power value on the spectrum analyzer or receiver. The ERP/EIRP of the EUT can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna.

A power (Pmea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (Pmea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

A “reference path loss” should be calculated after test. The attenuation of “reference path loss” is the cable loss between the Signal Source with the Substitution Antenna (Pca) and the Substitution Antenna Gain (Ga).

The measurement results are obtained as described below:

$$\text{Power (EIRP)} = \text{Pmea} + \text{Pca} + \text{Ga}$$

ERP/EIRP LIMIT

This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, $\text{ERP} = \text{EIRP} - 2.15$ (dB).

22.913(a) (5)

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

24.232(c)

Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

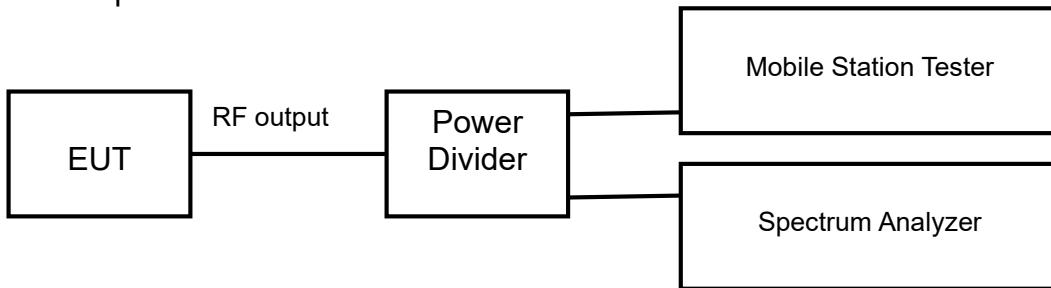
27.50(d) (4)

Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications

Test result:

The test results are shown in Appendix B.

6.3 Occupied Bandwidth


Rule Part(s):

FCC: 2.1049

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	30%	101.9kPa

Test Setup:

Test procedure:

KDB 971168 D01 v03r01 – Section 4.2

Test Settings

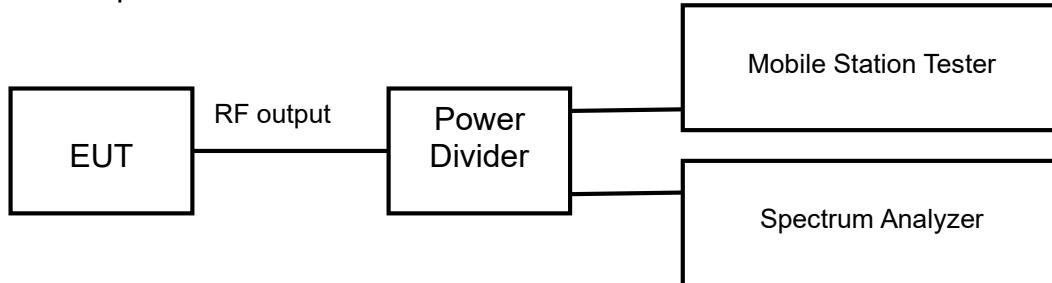
1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 1 – 5% of the expected OBW
3. VBW \geq 3 x RBW
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. The trace was allowed to stabilize
8. If necessary, steps 2 – 7 were repeated after changing the RBW such that it would be within 1 – 5% of the 99% occupied bandwidth observed in Step 7

Limits: No specific occupied bandwidth requirements in part 2.1049

Test result:

The test results are shown in Appendix A.

6.4 Emission Bandwidth


Rule Part(s):

FCC: 2.1049

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	30%	101.9kPa

Test Setup:

Test procedure:

KDB 971168 D01 v03r01 – Section 4.2

Test Settings

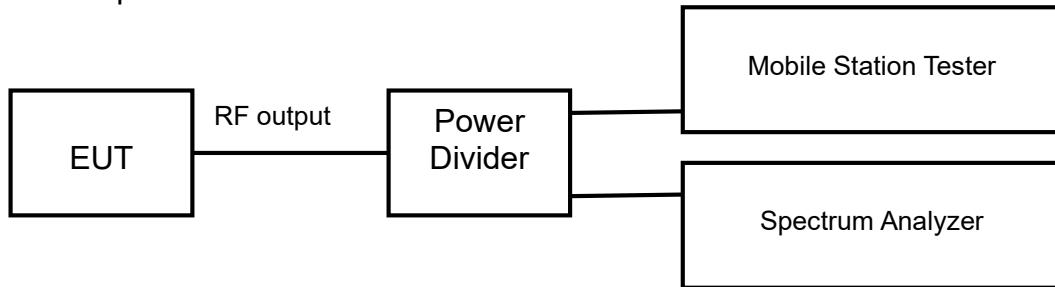
1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 26dB occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 1 – 5% of the expected OBW
3. VBW \geq 3 x RBW
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. The trace was allowed to stabilize
8. If necessary, steps 2 – 7 were repeated after changing the RBW such that it would be within 1 – 5% of the emission bandwidth observed in Step 7

Limits: No specific occupied bandwidth requirements in part 2.1049

Test result:

The test results are shown in Appendix A.

6.5 Spurious Emissions at antenna terminal


Rule Part(s):

FCC: 2.1051, 22.917(a), 24.238(a), 27.53(h)

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	30%	101.9kPa

Test Setup:

Test procedure:

KDB 971168 D01 v03r01 – Section 6.0

Test Settings

1. Start frequency was set to 30MHz and stop frequency was set to 10GHz for Cell, 20GHz for PCS
2. RBW=100 kHz (For below 1GHz), 1MHz (For above 1GHz)
3. VBW $\geq 3 \times$ RBW
4. Detector = RMS
5. Trace mode = trace average for continuous emissions, max hold for pulse emissions
6. Sweep time = auto couple
7. The trace was allowed to stabilize

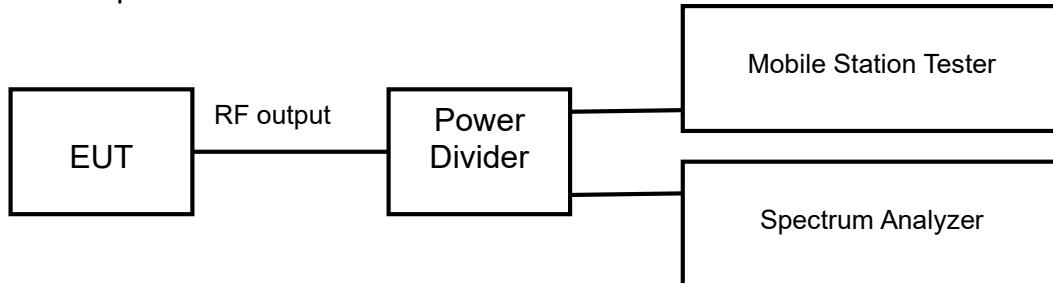
Limits:

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P)$ [Watts], where P is the transmitter power in Watts.

Test result:

The test results are shown in Appendix A.

6.6 Band Edges Compliance


Rule Part(s)

FCC: 2.1051, 22.917(a), 24.238(a), 27.53(c)

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	30%	101.9kPa

Test Setup:

Test procedure:

KDB 971168 D01 v03r01 – Section 6.0

Test Settings

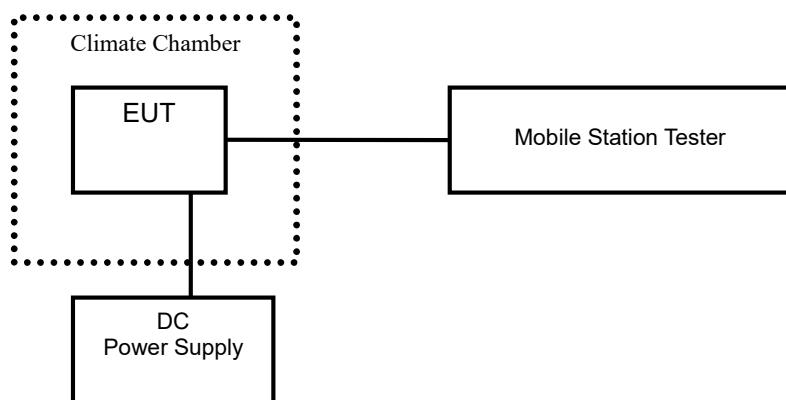
1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
2. Span=2MHz
3. RBW > 1% of the emission bandwidth
4. VBW > 3 x RBW
5. Detector = RMS
6. Number of sweep points $\geq 2 \times \text{Span}/\text{RBW}$
7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
8. Sweep time = auto couple
9. The trace was allowed to stabilize

Limit: The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P)$ [Watts], where P is the transmitter power in Watts.

Test result:

The test results are shown in Appendix A.

6.7 Frequency Stability


Rule Part(s)

FCC: 2.1055, 22.355, 24.235, 27.54

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	30%	101.9kPa

Test setup:

Test Procedure:

ANSI/TIA-603-E-2016

Test Settings

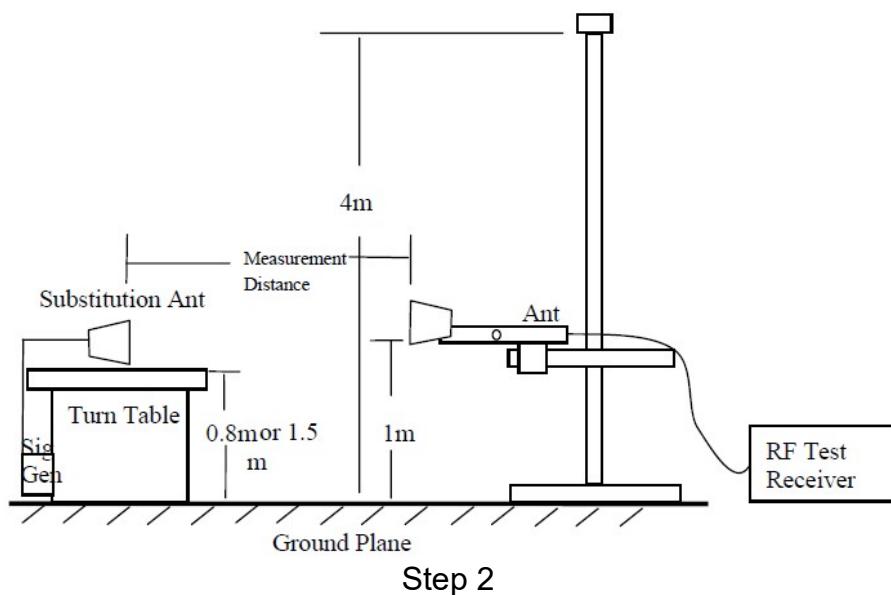
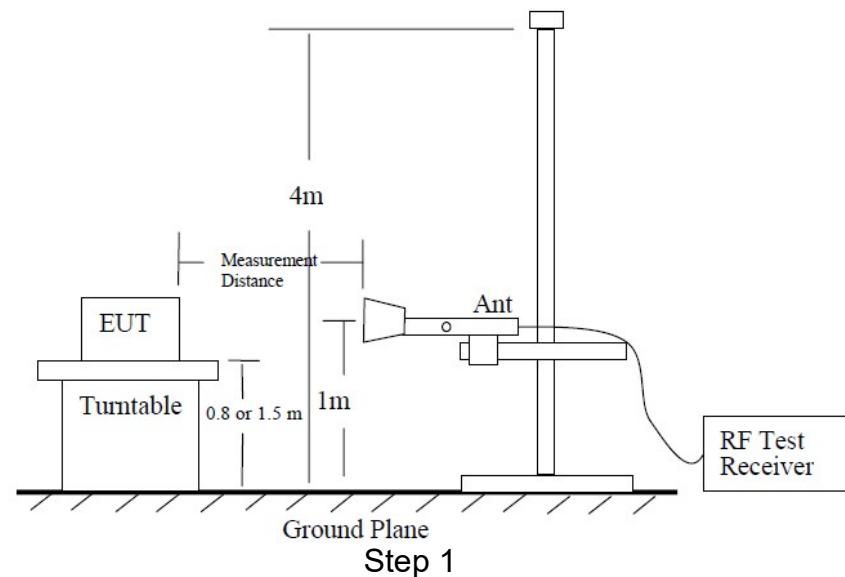
1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
2. The equipment is turned on in a “standby” condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C (The temperature range can be declared by the manufacturer). A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Limits: For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test result:

The test results are shown in Appendix A.

6.8 Radiated Spurious Emissions



Rule Part(s)

FCC: 2.1053, 22.917(a), 24.238(a), 27.53(h)

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	30%	101.9kPa

Test Setup:

Test procedure:

The measurements procedures in TIA-603-E-2016 are used.

The spectrum was scanned from 30MHz to the 10th harmonic of the highest frequency generated within the equipment.

Step 1:

The measurement is carried out in the chamber. EUT was placed on a 0.8m ($f < 1\text{GHz}$)/1.5m ($f > 1\text{GHz}$) high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. The height of receiving antenna from 1m to 4m and varies in certain range to find the maximum power value. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used and RBW is set to 100 kHz ($f < 1\text{GHz}$)/1MHz ($f > 1\text{GHz}$). The antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum power value on spectrum analyzer or receiver. The spectrum analyzer scans from 30MHz to 10th harmonic of the carrier. A notch filter is necessary in the band near to the carrier frequency. A high pass filter is needed to avoid the distortion of the testing equipment in the band above the carrier frequency.

Step 2:

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

A power (P_{mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

A "reference path loss" should be calculated after test. The attenuation of "reference path loss" is the cable loss between the Signal Source with the Substitution Antenna (P_{ca}) and the Substitution Antenna Gain (G_a).

Calculation procedure:

The data of cable loss and antenna gain has been calibrated in full testing frequency range before the testing.

The power of the Radiated Spurious Emissions is calculated by adding the cable loss and antenna gain. The basic equation with a sample calculation is as followed:

$$\text{Power (EIRP)} = P_{mea} + P_{ca} + G_a$$

This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15dB) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, $ERP = EIRP - 2.15$ (dB).

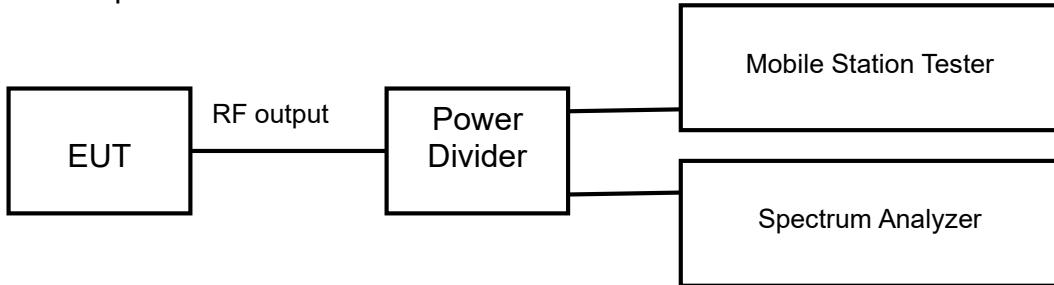
Assumed the power of signal source record is -20dBm. A cable loss of -30dB, and an antenna gain of 11dB are added.

$$P = P_{mea} + P_{ca} + G_a = (-20\text{dBm}) + (-30\text{dB}) + (11\text{dB}) = -39\text{dBm}$$

Test result:

The test results are shown in Appendix B.

6.9 Peak-Average Ratio


Rule Part(s)

FCC: 24.232(d), 27.50(d) (5)

Ambient condition:

Temperature	Relative humidity	Pressure
25°C	30%	101.9kPa

Test Setup:

Test procedure:

KDB 971168 D01 v03r01 – Section 5.7.1

Test settings:

1. The signal analyzer's CCDF measurement profile is enabled
2. Frequency = carrier center frequency
3. Measurement BW > Emission bandwidth of signal
4. The signal analyzer was set to collect one million samples to generate the CCDF curve
5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Limits: the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test result:

The test results are shown in Appendix A

7 MEASUREMENT UNCERTAINTIES

Items	Uncertainty	
RF Power Output	U=0.6 dB	
Occupied Bandwidth	3kHz	
Spurious Emissions	9kHz~2GHz	U=1.2dB
	2G~3.6GHz	U=1.4dB
	3.6G~8GHz	U=2.2dB
	8G~12.75GHz	U=2.7dB
Band Edges Compliance	1.2dB	
Frequency Stability	U=48 Hz	

8 TEST EQUIPMENTS

No.	Name/Model	Manufacturer	S/N	Calibration Date	Calibration Due Date
1	E5515C(8960) Mobile Station Tester	Agilent	MY50266302	2019.08.20	2020.08.19
2	N9020A Spectrum Analyzer	Agilent	MY48010771	2019.08.20	2020.08.19
3	6007 Power Divider	Weinschel	6007-GJ-1	2019.08.20	2020.08.19
4	DC Power Supply E3645A	Agilent	MY40000741	2020.03.01	2021.02.28
5	Temperature chamber SH241	ESPEC	92013758	2019.08.20	2020.08.19
6	12.65m×8.03m×7.50m Fully-Anechoic Chamber	FRANKONIA	----	----	----
7	23.18m×16.88m×9.60m Semi-Anechoic Chamber	FRANKONIA	---	----	----
8	Turn table Diameter:1m	FRANKONIA	----	----	----
9	Turn table Diameter:5m	FRANKONIA	----	----	----
10	Antenna master FAC(MA4.0)	MATURO	----	----	----
11	Antenna master SAC(MA4.0)	MATURO	----	----	----
12	9.080m×5.255m×3.525m Shielding room	FRANKONIA	----	----	----
13	HF 907 Double-Ridged Waveguide Horn Antenna	R&S	100512	2019.08.20	2020.08.19
14	HF 907 Double-Ridged Waveguide Horn Antenna	R&S	100513	2019.08.20	2020.08.19
15	HL562 Ultra log antenna	R&S	100016	2019.08.20	2020.08.19
16	3160-09 Receive antenna	SCHWARZ-BECK	002058-002	2019.08.20	2020.08.19
17	ESI 40 EMI test receiver	R&S	100015	2019.08.20	2020.08.19
18	ESCS30 EMI test receiver	R&S	100029	2019.08.20	2020.08.19
19	HL562 Receive antenna	R&S	100167	2019.08.20	2020.08.19
20	ENV216 AMN	R&S	3560.6550.12	2019.08.20	2020.08.19

APPENDIX A – TEST DATA OF CONDUCTED EMISSION

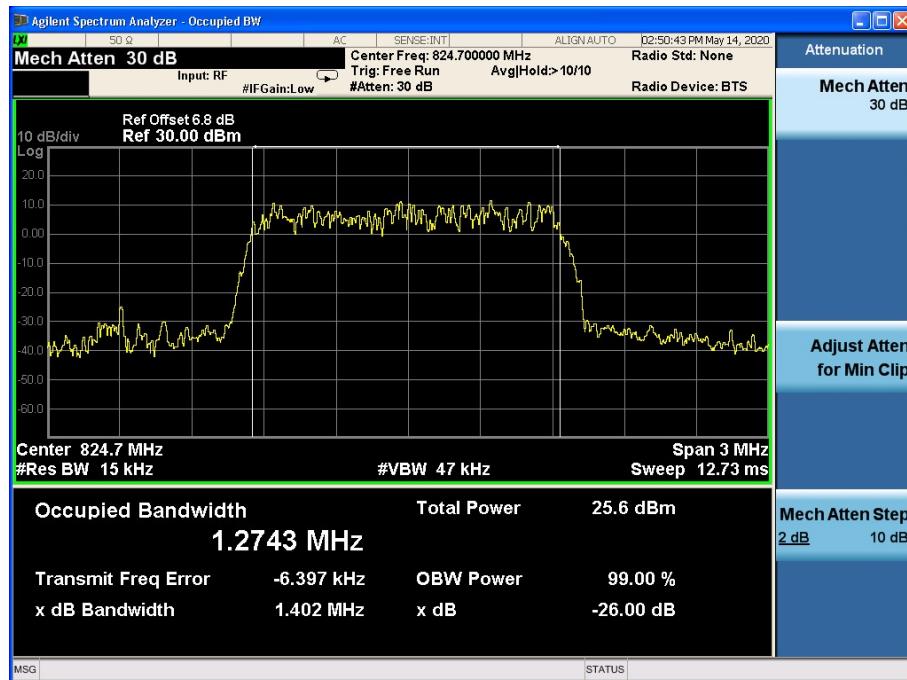
RF Power Output

CDMA BC0

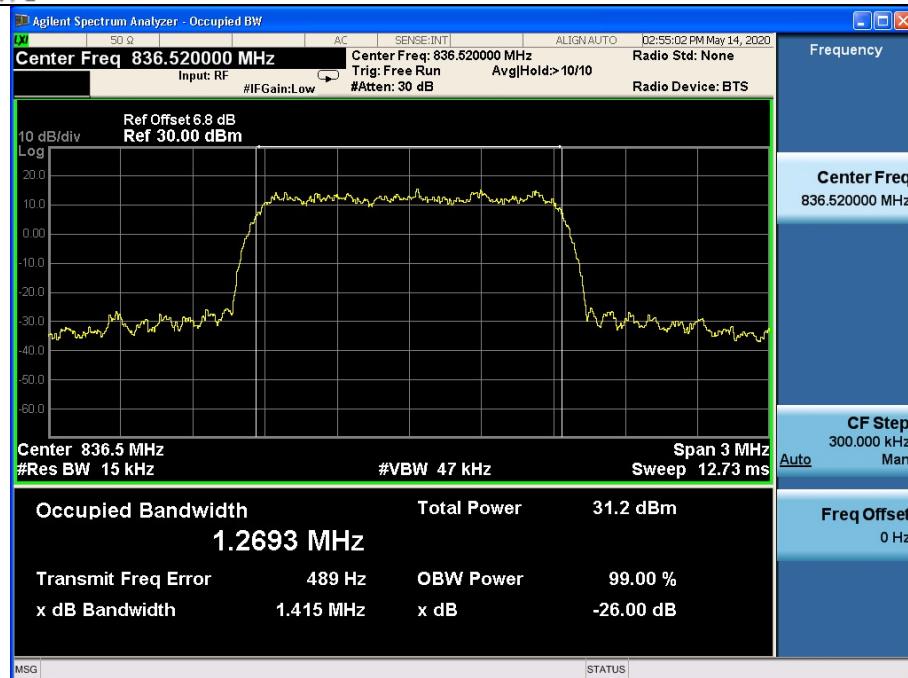
Mode	Radio Configuration (RC)	Service Option (SO)	Carrier frequency (MHz)	Channel No.	RF Power Output (dBm)
1xAdvanced	RC11	2 (Loopback)	824.70	1013	23.79
			836.52	384	23.84
			848.31	777	23.68
		75 (Loopback)	824.70	1013	23.76
			836.52	384	23.82
			848.31	777	23.75
1xEVDO Rel. 0	FTAP Rate: 307.2kbps (2 slot, QPSK)	RTAP Rate: 153.6kbps	824.70	1013	23.83
			836.52	384	23.87
			848.31	777	23.81
1xEVDO Rev. A	FETAP:307.2k, QPSK/ ACK	RETAP: 4096	824.70	1013	23.87
			836.52	384	23.88
			848.31	777	23.84

Occupied Bandwidth

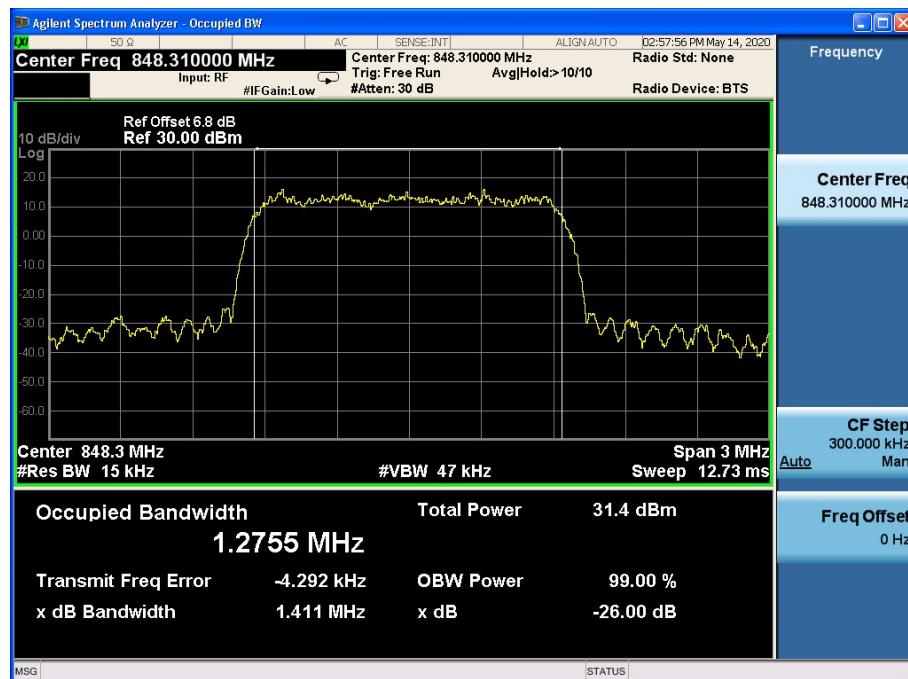
CDMA BC0 1xEVDO Rev. A


Carrier frequency (MHz)	Channel No.	Bandwidth of 99% Power (MHz)
824.70	1013	1.2743
836.52	384	1.2693
848.31	777	1.2755

Emission Bandwidth


CDMA BC0 1xEVDO Rev. A

Carrier frequency (MHz)	Channel No.	Bandwidth of -26dB transmitter power (MHz)
824.70	1013	1.402
836.52	384	1.415
848.31	777	1.411


CDMA BC0

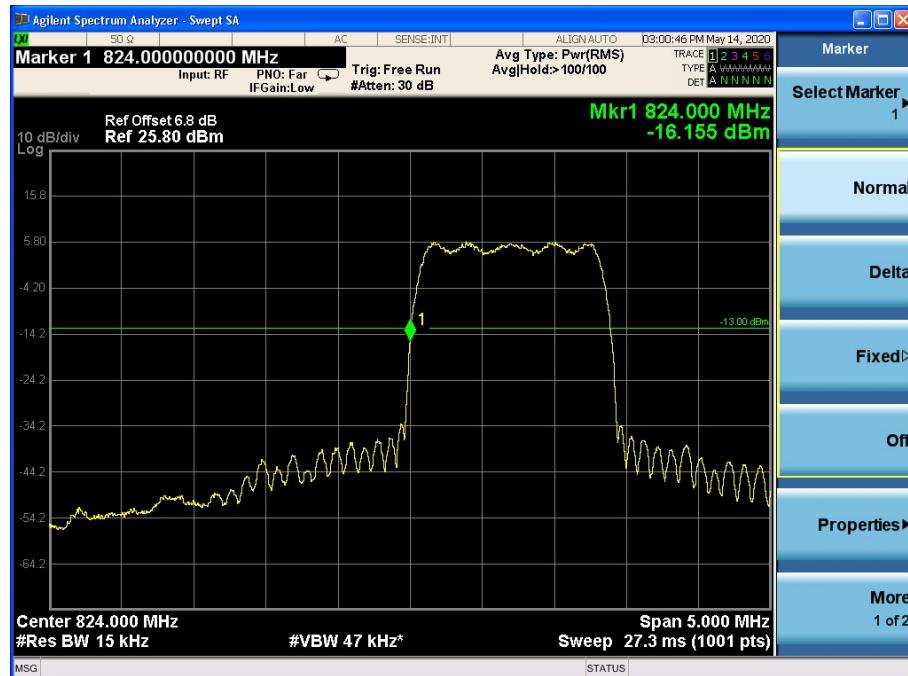
Channel 1013

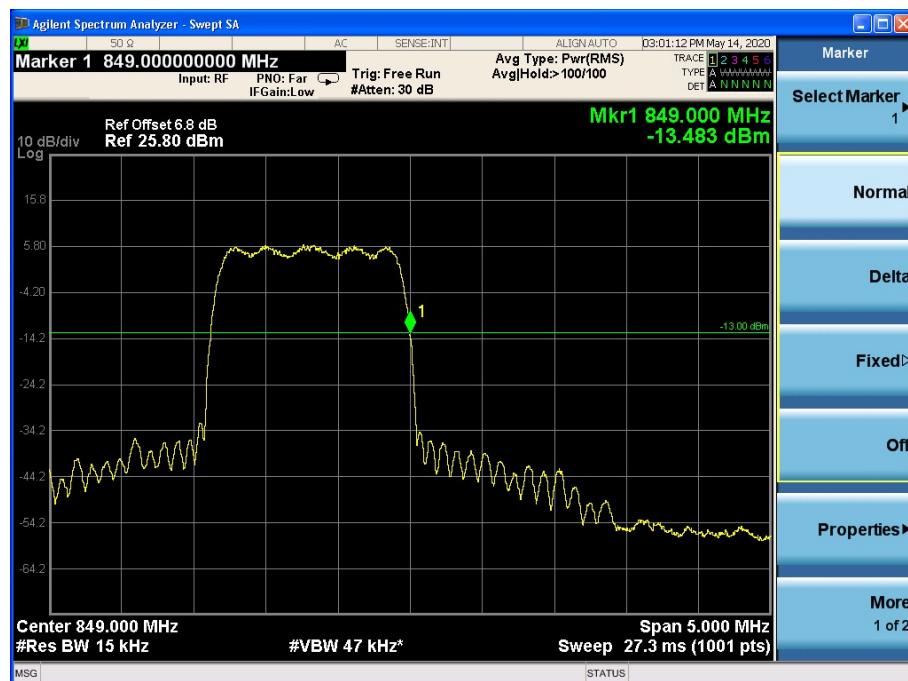
Channel 384

Channel 777

Spurious Emissions at antenna terminal

CDMA BC0 1xEVDO Rev. A


Channel 384, 30MHz~1GHz


Channel 384, 1GHz~10GHz

Band Edges Compliance

CDMA BC0 1xEVDO Rev. A

Channel 1013

Channel 777


Frequency Stability

CDMA BC0 1xEVDO Rev. A

Temperature(°C)	Test Result (ppm)@NV		
	Channel 1013	Channel 384	Channel 777
-30	-0.056	0.044	0.051
-20	-0.022	-0.045	0.004
-10	-0.022	-0.091	-0.062
0	-0.081	0.025	-0.024
+10	-0.021	-0.091	-0.093
+20	0.000	0.000	0.000
+30	-0.005	-0.065	-0.041
+40	-0.065	0.035	0.007
+50	0.044	-0.026	-0.061
+60	-0.071	0.063	0.053
+70	0.003	0.070	-0.088
LV@20°C	-0.038	-0.062	-0.020
HV@20°C	-0.022	-0.091	-0.062

Peak-Average Ratio

CDMA BC0 1xEVDO Rev. A

APPENDIX B – TEST DATA OF RADIATED EMISSION

The measurement results are obtained as described below:

Peak ERP = Pmea + Pca Cable loss+ Ga Antenna Gain- Correction

Sample calculation: (23.87 dBm) = (21.12 dBm) + (-3.4 dB) + (8.3 dB)- (2.15 dB), the corresponding frequency is 824.70MHz.

Frequency (MHz)	Peak ERP (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Correction (dB)	Pmea (dBm)	Polarization
824.70	23.87	-3.4	8.3	2.15	21.12	Vertical

BC0 Test result:

1X RTT BC0:

Frequency (MHz)	Peak ERP (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Correction (dB)	Pmea (dBm)	Polarization
824.70	23.87	-3.4	8.3	2.15	21.12	Vertical
836.52	24.59	-3.4	8.3	2.15	21.84	Vertical
848.31	23.86	-3.4	8.3	2.15	21.11	Vertical

1X EVDO R0 BC0:

Frequency (MHz)	Peak ERP (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Correction (dB)	Pmea (dBm)	Polarization
824.70	23.97	-3.4	8.3	2.15	21.22	Vertical
836.52	24.17	-3.4	8.3	2.15	21.42	Vertical
848.31	24.14	-3.4	8.3	2.15	21.39	Vertical

1X EVDO RA BC0:

Frequency (MHz)	Peak ERP (dBm)	Pca Cable loss(dB)	Ga Antenna Gain (dB)	Correction (dB)	Pmea (dBm)	Polarization
824.70	24.16	-3.4	8.3	2.15	21.41	Vertical
836.52	24.06	-3.4	8.3	2.15	21.31	Vertical
848.31	23.95	-3.4	8.3	2.15	21.20	Vertical

Test result:
1X RTT BC0
Channel 384:

Frequency (MHz)	Power (dBm)	Limited (dBm)	Polarization
1648.28	-52.64	-13	Vertical
1665.04	-51.17	-13	Vertical
2534.02	-44.72	-13	Vertical
2579.13	-43.98	-13	Vertical
8963.42	-39.78	-13	Vertical
9973.61	-35.91	-13	Vertical

Channel 777:

Frequency (MHz)	Power (dBm)	Limited (dBm)	Polarization
1646.54	-52.93	-13	Vertical
1666.57	-51.46	-13	Vertical
2534.85	-44.67	-13	Vertical
2577.93	-43.78	-13	Vertical
8961.07	-39.25	-13	Vertical
9973.51	-36.22	-13	Vertical

Channel 1013:

Frequency (MHz)	Power (dBm)	Limited (dBm)	Polarization
1649.32	-53.08	-13	Vertical
1665.77	-51.37	-13	Vertical
2535.81	-44.01	-13	Vertical
2577.58	-43.74	-13	Vertical
8963.70	-39.03	-13	Vertical
9971.91	-36.86	-13	Vertical

1X EVDO R0 BC0:

Channel 384:

Frequency (MHz)	Power (dBm)	Limited (dBm)	Polarization
1648.93	-53.28	-13	Vertical
1665.64	-51.17	-13	Vertical
2536.01	-43.90	-13	Vertical
2577.63	-43.97	-13	Vertical
8961.90	-39.51	-13	Vertical
9973.62	-36.33	-13	Vertical

Channel 777:

Frequency (MHz)	Power (dBm)	Limited (dBm)	Polarization
1650.43	-52.98	-13	Vertical
1666.42	-51.34	-13	Vertical
2532.66	-44.34	-13	Vertical
2577.55	-44.66	-13	Vertical
8961.79	-39.98	-13	Vertical
9971.35	-36.45	-13	Vertical

Channel 1013:

Frequency (MHz)	Power (dBm)	Limited (dBm)	Polarization
1647.05	-52.99	-13	Vertical
1667.27	-50.82	-13	Vertical
2536.04	-44.44	-13	Vertical
2576.11	-44.63	-13	Vertical
8960.91	-39.46	-13	Vertical
9973.17	-36.32	-13	Vertical

1X EVDO RA BC0:

Channel 384:

Frequency (MHz)	Power (dBm)	Limited (dBm)	Polarization
1649.32	-52.71	-13	Vertical
1666.44	-51.28	-13	Vertical
2535.31	-44.61	-13	Vertical
2579.03	-44.03	-13	Vertical
8964.55	-39.32	-13	Vertical
9972.81	-36.48	-13	Vertical

Channel 777:

Frequency (MHz)	Power (dBm)	Limited (dBm)	Polarization
1647.71	-53.22	-13	Vertical
1666.42	-51.34	-13	Vertical
2533.12	-44.06	-13	Vertical
2577.54	-43.92	-13	Vertical
8963.50	-39.36	-13	Vertical
9970.38	-36.11	-13	Vertical

Channel 1013:

Frequency (MHz)	Power (dBm)	Limited (dBm)	Polarization
1646.61	-53.39	-13	Vertical
1668.46	-50.97	-13	Vertical
2532.93	-44.27	-13	Vertical
2576.28	-44.08	-13	Vertical
8960.85	-39.58	-13	Vertical
9970.65	-36.55	-13	Vertical

---The end of the test report---