

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to isotropic radiator

R = distance to the center of radiation of the antenna

N	
PWR in dBm Maximum peak E.I.R.F	-13.1 dBm
Maximum peak output power at antenna input termina	al: 0.0 mW
Ant. gain in dBi Antenna gain(maximum): 3.3 dBi
Maximum antenna gai	n: 2.1 numeric
Use the duty cycle from test report or 100% Time Averagin	g: 100 %
Separation distance from antenna to user in cm. Prediction distance	e: 20 cm
Freq. in MHz Prediction frequence	y: 6494 MHz
FCC MPE limit for uncontrolled exposure at prediction frequence	y: 1.00 mW/cm ²
IC MPE limit for uncontrolled exposure at prediction frequence	y: 10.00 W/m ²
Power density at prediction frequenc	y: 0.00 mW/cm ²
This equates t	o: 0.00 W/m ²