

FCC Test Report

Report No.: RFBEAD-WTW-P21030489A-1

FCC ID: 2AWAYSFCS1

Test Model: SFCS1

Received Date: Jul. 25, 2022

Test Date: Aug. 01 ~ Aug. 05, 2022

Issued Date: Sep. 16, 2022

Applicant: BioFire Diagnostics, LLC

Address: 515 Colorow Drive, Salt Lake City, UT 84108, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City
33383, Taiwan

FCC Registration /
Designation Number: 788550 / TW0003

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record	3
1 Certificate of Conformity	4
2 Summary of Test Results.....	5
2.1 Measurement Uncertainty.....	5
2.2 Modification Record	5
3 General Information	6
3.1 General Description of EUT	6
3.2 Description of Test Modes.....	8
3.2.1 Test Mode Applicability and Tested Channel Detail.....	10
3.3 Duty Cycle of Test Signal	12
3.4 Description of Support Units	13
3.4.1 Configuration of System under Test	13
3.5 General Description of Applied Standards and References	14
4 Test Types and Results	15
4.1 Radiated Emission and Bandedge Measurement	15
4.1.1 Limits of Radiated Emission and Bandedge Measurement	15
4.1.2 Test Instruments	17
4.1.3 Test Procedures.....	18
4.1.4 Deviation from Test Standard	18
4.1.5 Test Setup.....	19
4.1.6 EUT Operating Conditions.....	20
4.1.7 Test Results	21
4.2 Conducted Emission Measurement.....	26
4.2.1 Limits of Conducted Emission Measurement	26
4.2.2 Test Instruments	26
4.2.3 Test Procedures.....	27
4.2.4 Deviation from Test Standard	27
4.2.5 Test Setup.....	27
4.2.6 EUT Operating Conditions.....	27
4.2.7 Test Results	28
4.3 Transmit Power Measurement.....	32
4.3.1 Limits of Transmit Power Measurement	32
4.3.2 Test Setup.....	32
4.3.3 Test Instruments	33
4.3.4 Test Procedure	33
4.3.5 Deviation from Test Standard	33
4.3.6 EUT Operating Conditions.....	33
4.3.7 Test Results	34
5 Pictures of Test Arrangements.....	38
Appendix – Information of the Testing Laboratories	39

Release Control Record

Issue No.	Description	Date Issued
RFBEAD-WTW-P21030489A-1	Original Release	Sep. 16, 2022

1 Certificate of Conformity

Product: BioFire SpotFire

Brand: bioMérieux

Test Model: SFCS1

Sample Status: Engineering Sample

Applicant: BioFire Diagnostics, LLC

Test Date: Aug. 01 ~ Aug. 05, 2022

Standards: 47 CFR FCC Part 15, Subpart E (Section 15.407)
ANSI C63.10-2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : Gina Liu, **Date:** Sep. 16, 2022
Gina Liu / Specialist

Approved by : Jeremy Lin, **Date:** Sep. 16, 2022
Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)			
FCC Clause	Test Item	Result	Remarks
15.407(b)(9)	AC Power Conducted Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -0.59 dB at 0.69400 MHz.
15.407(b) (1/2/3/4(i/ii)/9)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -1.5 dB at 76.22 MHz.
15.407(a)(1/2/3)	Max Average Transmit Power	Pass	Meet the requirement of limit.
---	Occupied Bandwidth Measurement	-	Reference only
15.407(a)(1/2/3)	Peak Power Spectral Density	N/A	Refer to Note 1
15.407(e)	6 dB Bandwidth	N/A	Refer to Note 1
15.407(g)	Frequency Stability	N/A	Refer to Note 1
15.203	Antenna Requirement	N/A	Refer to Note 1

Note:

1. This report is a partial report. Therefore, only AC Power Conducted Emission, Radiated Emissions and Max Average Transmit Power were verified and recorded in this report. For AC Power Conducted Emission and Radiated Emissions test, according to the worst case of the original report. Other testing data please refer to the original BV CPS report no.: RFBEAD-WTW-P21030489-1 R2.
2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.79 dB
Radiated Emissions up to 1 GHz	9 kHz ~ 30 MHz	3.04 dB
	30 MHz ~ 200 MHz	2.93 dB
	200 MHz ~ 1000 MHz	2.95 dB
	1 GHz ~ 18 GHz	2.26 dB
Radiated Emissions above 1 GHz	18 GHz ~ 40 GHz	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	BioFire SpotFire
Brand	bioMérieux
Test Model	SFCS1
Status of EUT	Engineering Sample
Power Supply Rating	100-240Vac
Modulation Type	256QAM, 64QAM, 16QAM, QPSK, BPSK
Modulation Technology	OFDM
Transfer Rate	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0 Mbps 802.11n: up to 300.0 Mbps 802.11ac: up to 866.7 Mbps
Operating Frequency	5180 ~ 5240 MHz, 5260 ~ 5320 MHz, 5500 ~ 5720 MHz, 5745 ~ 5825 MHz
Number of Channel	5180 ~ 5240 MHz: 4 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 2 for 802.11n (HT40), 802.11ac (VHT40) 1 for 802.11ac (VHT80) 5260 ~ 5320 MHz: 4 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 2 for 802.11n (HT40), 802.11ac (VHT40) 1 for 802.11ac (VHT80) 5500 ~ 5720 MHz: 12 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 6 for 802.11n (HT40), 802.11ac (VHT40) 3 for 802.11ac (VHT80) 5745 ~ 5825 MHz: 5 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 2 for 802.11n (HT40), 802.11ac (VHT40) 1 for 802.11ac (VHT80)
Output Power	206.545 mW for 5180 ~ 5240 MHz 202.453 mW for 5260 ~ 5320 MHz 199.216 mW for 5500 ~ 5720 MHz 198.421 mW for 5745 ~ 5825 MHz
Antenna Type	Refer to Note as below
Antenna Connector	Refer to Note as below
Accessory Device	1.83m shielded power cable without core
Data Cable Supplied	Refer to Note as below

Note:

1. This report is prepared for FCC class II permissive change. This report is issued as a supplementary report of BV CPS report no.: RFBEAD-WTW-P21030489-1 R2. The difference from the original report is panel and Main board design was upgraded to accommodate new power IC, crystal and TPM IC which foot print were different from original sources. PCB layers, PCBA size and WiFi design remained the same. These components and functions do not affect RF performance. Only AC Power Conducted Emission, Radiated Emissions and Max Average Transmit Power were verified and recorded in this report.

2. The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and two receivers.

Modulation Mode	Tx Function
802.11a	2TX
802.11n (HT20)	2TX
802.11n (HT40)	2TX
802.11ac (VHT20)	2TX
802.11ac (VHT40)	2TX
802.11ac (VHT80)	2TX

* The modulation, bandwidth and power are similar for 802.11n mode for HT20 / HT40 and 802.11ac mode for VHT20 / VHT40, therefore investigated worst case to representative mode in test report.
 (Final test mode refer section 3.2.1)

3. The following antennas were provided to the EUT.

No.	Antenna Type	Manufacturer	MPN	Connector	Gain (dBi)	
					2.4-2.5GHz	5.150-5.850GHz
1	Dipole	BJTEK NAVIGATION,INC.	BJHOT160000043B00B-B	RP-SMA(M)	2.5	3.0
2	Dipole	Joinsoon Electronics Manufacturing CO., LTD. (JEM)	1510-0237-0041	RSMA	3.74	3.70

*The maximum antenna gain is chosen for final test.

* Detail antenna specification please refer to antenna datasheet.

4. We had pre-tested all modes at 240V/60Hz and 120V/60Hz, test mode at 120V/60Hz was the worst case and only this mode was presented in the report.

5. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

For 5180 ~ 5240 MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
40	5200	48	5240

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	46	5230

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
42	5210

For 5260 ~ 5320 MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	60	5300
56	5280	64	5320

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	62	5310

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
58	5290

For 5500 ~ 5720 MHz

12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	124	5620
104	5520	128	5640
108	5540	132	5660
112	5560	136	5680
116	5580	140	5700
120	5600	144	5720

6 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	126	5630
110	5550	134	5670
118	5590	142	5710

3 channels are provided for 802.11ac (VHT80):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
106	5530	138	5690
122	5610		

For 5745 ~ 5825 MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	161	5805
153	5765	165	5825
157	5785		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	159	5795

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency (MHz)
155	5775

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode	Applicable To				Description
	RE≥1G	RE<1G	PLC	Power	
A	√	√	√	√	Panel (DMS-SA38-00A5E)
B	-	√	√	-	Panel (DMS-SA38-00A6E)

Where RE≥1G: Radiated Emission above 1 GHz

PLC: Power Line Conducted Emission

RE<1G: Radiated Emission below 1 GHz

Power: Transmit Power Measurement

Note:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **X-plane**.
2. “-” means no effect.

Radiated Emission Test (Above 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
A	5180-5240	802.11ac (VHT20)	36 to 48	40	OFDM	BPSK	MCS0

Radiated Emission Test (Below 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
A, B	5180-5240	802.11ac (VHT20)	36 to 48	40	OFDM	BPSK	MCS0

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
A, B	5180-5240	802.11ac (VHT20)	36 to 48	40	OFDM	BPSK	MCS0

Transmit Power Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

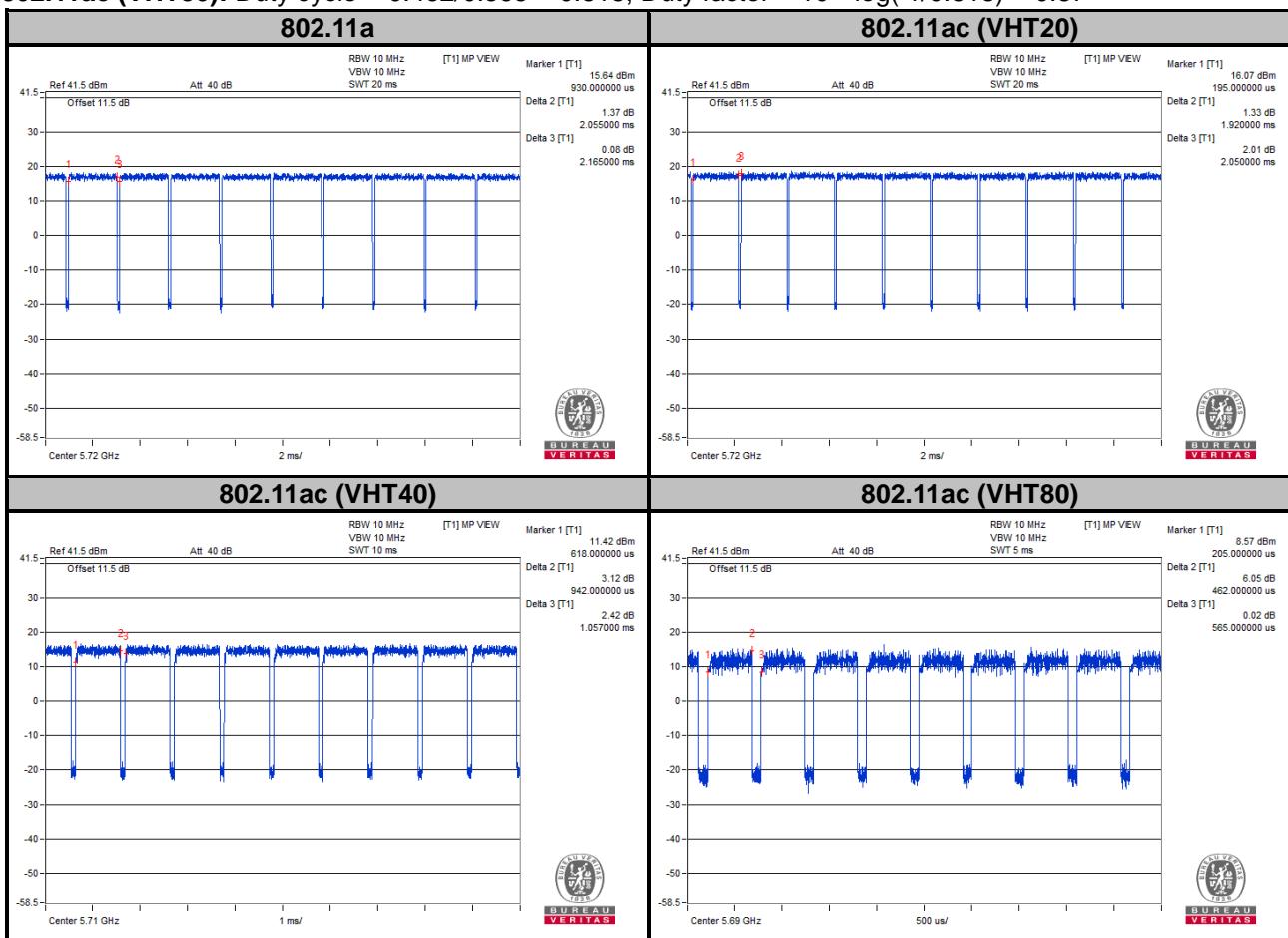
EUT Configure Mode	Frequency Band (MHz)	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
A	5180-5240	802.11a	36 to 48	36, 40, 48	OFDM	BPSK	6.0
		802.11ac (VHT20)	36 to 48	36, 40, 48	OFDM	BPSK	MCS0
		802.11ac (VHT40)	38 to 46	38, 46	OFDM	BPSK	MCS0
		802.11ac (VHT80)	42	42	OFDM	BPSK	MCS0
	5260-5320	802.11a	52 to 64	52, 60, 64	OFDM	BPSK	6.0
		802.11ac (VHT20)	52 to 64	52, 60, 64	OFDM	BPSK	MCS0
		802.11ac (VHT40)	54 to 62	54, 62	OFDM	BPSK	MCS0
		802.11ac (VHT80)	58	58	OFDM	BPSK	MCS0
	5500-5720	802.11a	100 to 144	100, 116, 140, 144	OFDM	BPSK	6.0
		802.11ac (VHT20)	100 to 144	100, 116, 140, 144	OFDM	BPSK	MCS0
		802.11ac (VHT40)	102 to 142	102, 110, 134, 142	OFDM	BPSK	MCS0
		802.11ac (VHT80)	106 to 138	106, 122, 138	OFDM	BPSK	MCS0
	5745-5825	802.11a	149 to 165	149, 157, 165	OFDM	BPSK	6.0
		802.11ac (VHT20)	149 to 165	149, 157, 165	OFDM	BPSK	MCS0
		802.11ac (VHT40)	151 to 159	151, 159	OFDM	BPSK	MCS0
		802.11ac (VHT80)	155	155	OFDM	BPSK	MCS0

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE \geq 1G	25 deg. C, 74 % RH	120 Vac, 60 Hz	Noah Chang
RE<1G	25 deg. C, 75 % RH	120 Vac, 60 Hz	Noah Chang
PLC	25 deg. C, 75 % RH	120 Vac, 60 Hz	Noah Chang
Power	25 deg. C, 60 % RH	120 Vac, 60 Hz	Jisyong Wang

3.3 Duty Cycle of Test Signal

MODULATION TYPE: BPSK


Duty cycle of test signal is < 98 %, duty factor is required.

802.11a: Duty cycle = $2.055/2.165 = 0.949$, Duty factor = $10 * \log(1/0.949) = 0.23$

802.11ac (VHT20): Duty cycle = $1.92/2.05 = 0.937$, Duty factor = $10 * \log(1/0.937) = 0.28$

802.11ac (VHT40): Duty cycle = $0.942/1.057 = 0.891$, Duty factor = $10 * \log(1/0.891) = 0.50$

802.11ac (VHT80): Duty cycle = $0.462/0.565 = 0.818$, Duty factor = $10 * \log(1/0.818) = 0.87$

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Keyboard	DELL	KB216t	CN-0W33XP-LO300-79R-OUG9-A03	NA	--
B.	USB MOUSE	DELL	MS111-P	CN-011D3V-71581-1CJ-092E	DoC	--
C.	Flash*2	SanDisk	SDDDC3-032G	N/A	N/A	--
				N/A		
D.	Load	N/A	N/A	N/A	N/A	--

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	1.8	N	0	--
2.	USB Cable	1	1.8	N	0	--
3.	LAN Cable	1	1.5	N	0	RJ45

Note:

1. All power cords of the above support units are non-shielded (1.8m).

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart E (15.407)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_uV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Limits of Unwanted Emission Out of the Restricted Bands

Applicable To		Limit	
789033 D02 General UNII Test Procedures New Rules v02r01		Field Strength at 3 m	
		PK: 74 (dB μ V/m)	AV: 54 (dB μ V/m)
Frequency Band	Applicable To	EIRP Limit	Equivalent Field Strength at 3 m
5150~5250 MHz	15.407(b)(1)		
5250~5350 MHz	15.407(b)(2)	PK: -27 (dBm/MHz)	PK: 68.2 (dB μ V/m)
5470~5725 MHz	15.407(b)(3)		
5725~5850 MHz	<input checked="" type="checkbox"/> 15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2 (dB μ V/m) ^{*1} PK:105.2 (dB μ V/m) ^{*2} PK: 110.8 (dB μ V/m) ^{*3} PK:122.2 (dB μ V/m) ^{*4}
	<input type="checkbox"/> 15.407(b)(4)(ii)	Emission limits in section 15.247(d)	

*1 beyond 75 MHz or more above of the band edge.
 *2 below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.
 *3 below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.
 *4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \mu\text{V/m, where } P \text{ is the eirp (Watts).}$$

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Sep. 22, 2021	Sep. 21, 2022
Spectrum Analyzer ROHDE & SCHWARZ	FSW43	101582	Apr. 13, 2022	Apr. 12, 2023
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Oct. 28, 2021	Oct. 27, 2022
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-1170	Nov. 14, 2021	Nov. 13, 2022
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Oct. 26, 2021	Oct. 25, 2022
Loop Antenna TESEQ	HLA 6121	45745	Jul. 27, 2022	Jul. 26, 2023
Preamplifier Agilent (Below 1GHz)	8447D	2944A10631	May 14, 2022	May 13, 2023
Preamplifier KEYSIGHT (Above 1GHz)	83017A	MY53270295	Feb. 16, 2022	Feb. 15, 2023
RF Coaxial Cable WOKEN With 5dB PAD	8D-FB	Cable-CH4-01	Jul. 09, 2022	Jul. 08, 2023
RF Coaxial Cable EMCI	EMC102-KM-KM-3000	150929	May 14, 2022	May 13, 2023
RF Coaxial Cable EMCI	EMC102-KM-KM-600	150928	May 14, 2022	May 13, 2023
RF signal cable HUBER+SUHNER	SUCOFLEX 104	MY 13380+295012/04	Jan. 15, 2022	Jan. 14, 2023
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH4-03 (250724)	Jan. 15, 2022	Jan. 14, 2023
Software BV ADT	ADT_Radiated_V7.6.15.9.5	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021703	NA	NA
Turn Table BV ADT	TT100	TT93021703	NA	NA
Turn Table Controller BV ADT	SC100	SC93021703	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Pre-amplifier (18GHz-40GHz) EMC	EMC184045B	980175	Sep. 04, 2021	Sep. 03, 2022
Wideband Power Sensor KEYSIGHT	N1923A	MY58020002	Jan. 17, 2022	Jan. 16, 2023
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	Jan. 18, 2022	Jan. 17, 2023
Spectrum Analyzer ROHDE & SCHWARZ	FSV40	100980	Apr. 14, 2022	Apr. 13, 2023

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 4.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

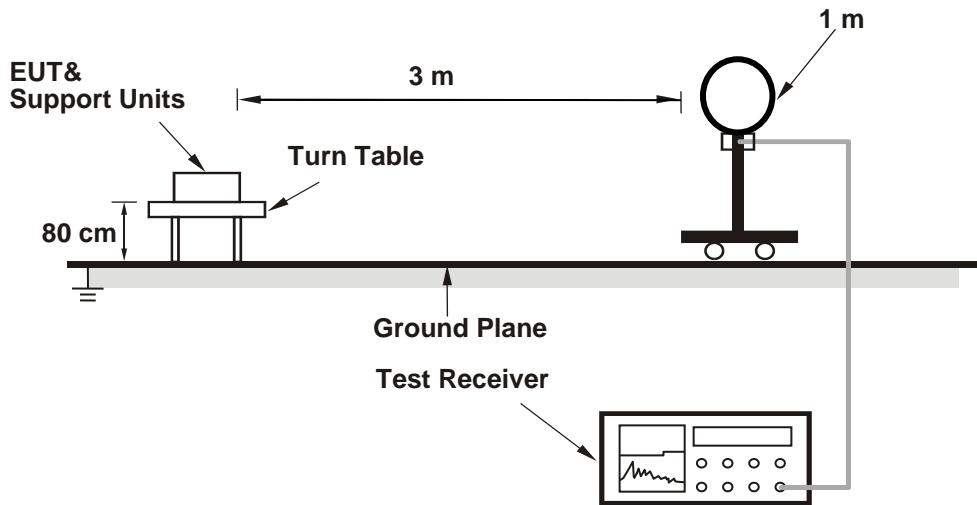
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

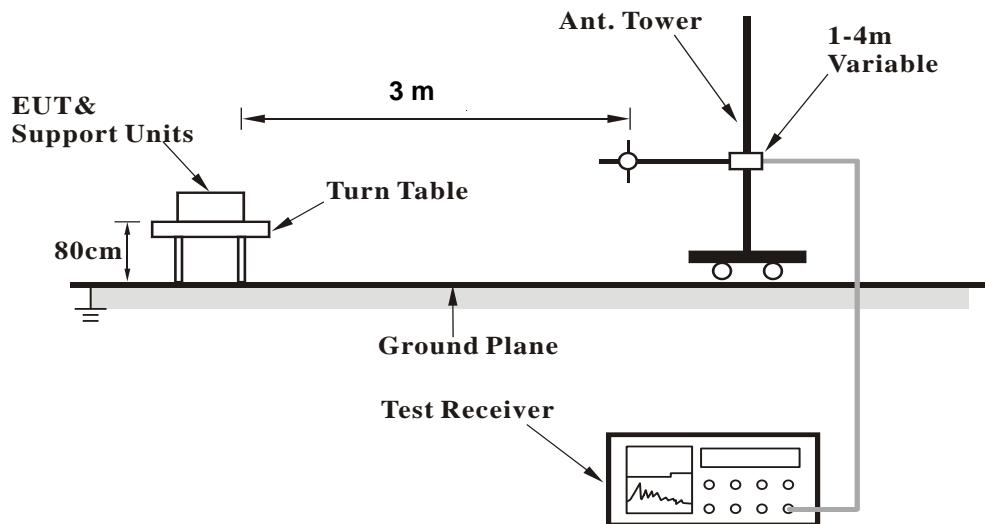
For Radiated Emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

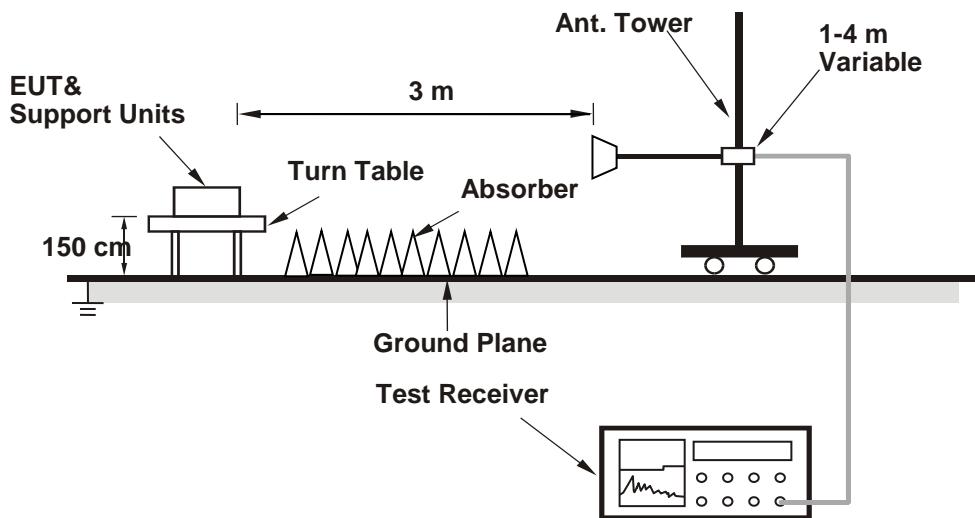
Note:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98 %) or 10 Hz (Duty cycle $\geq 98 \%$) for Average detection (AV) at frequency above 1 GHz. (11a: RBW = 1 MHz, VBW = 1 kHz ; 11ac (VHT20): RBW = 1 MHz, VBW = 1 kHz ; 11ac (VHT40): RBW = 1 MHz, VBW = 3 kHz ; 11ac (VHT80): RBW = 1 MHz, VBW = 3 kHz)
4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup


<Radiated Emission below 30 MHz>

<Radiated Emission 30 MHz to 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- Placed the EUT on a testing table.
- Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

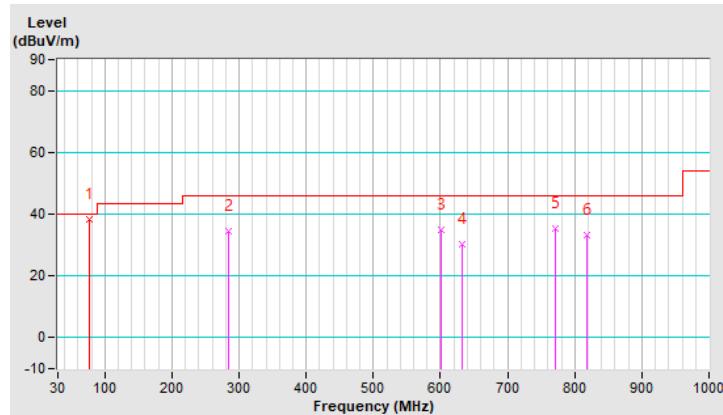
Above 1 GHz Data :

RF Mode	TX 802.11ac (VHT20)	Channel	CH 40 : 5200 MHz
Frequency Range	1GHz ~ 40GHz	Detector Function	Peak (PK) Average (AV)

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*5200.00	106.4 PK			1.51 H	353	63.9	42.5
2	*5200.00	96.2 AV			1.51 H	353	53.7	42.5
3	#10400.00	61.4 PK	68.2	-6.8	1.00 H	252	38.7	22.7
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*5200.00	115.3 PK			1.50 V	246	72.8	42.5
2	*5200.00	105.0 AV			1.50 V	246	62.5	42.5
3	#10400.00	62.3 PK	68.2	-5.9	2.15 V	216	39.6	22.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
6. " # ": The radiated frequency is out of the restricted band.

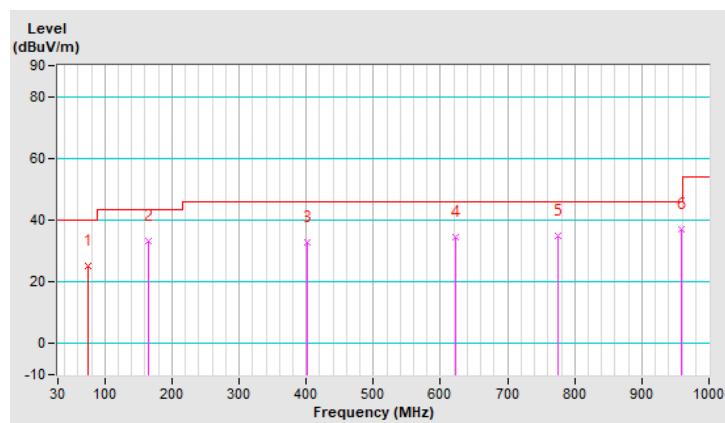

9 kHz ~ 1 GHz Worst-Case Data:
Mode A

RF Mode	TX 802.11ac (VHT20)	Channel	CH 40 : 5200 MHz
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	76.22	38.5 QP	40.0	-1.5	1.00 H	2	50.5	-12.0
2	284.14	34.4 QP	46.0	-11.6	1.00 H	265	42.1	-7.7
3	600.36	34.8 QP	46.0	-11.2	1.00 H	359	36.6	-1.8
4	631.40	30.4 QP	46.0	-15.6	1.00 H	309	31.5	-1.1
5	771.08	35.4 QP	46.0	-10.6	1.00 H	305	33.1	2.3
6	817.64	33.4 QP	46.0	-12.6	1.00 H	266	30.1	3.3

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

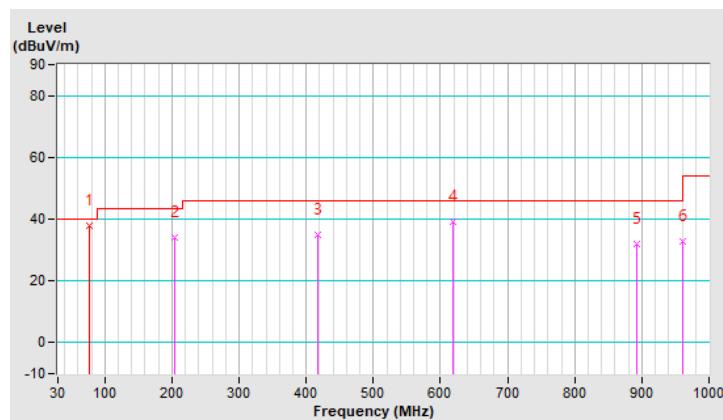


RF Mode	TX 802.11ac (VHT20)	Channel	CH 40 : 5200 MHz
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	74.85	25.0 QP	40.0	-15.0	1.00 V	311	36.5	-11.5
2	165.80	33.3 QP	43.5	-10.2	1.49 V	83	42.0	-8.7
3	402.48	33.0 QP	46.0	-13.0	1.49 V	83	38.9	-5.9
4	621.70	34.4 QP	46.0	-11.6	1.99 V	271	35.5	-1.1
5	774.96	34.9 QP	46.0	-11.1	1.99 V	206	32.6	2.3
6	959.26	37.0 QP	46.0	-9.0	1.99 V	270	30.6	6.4

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

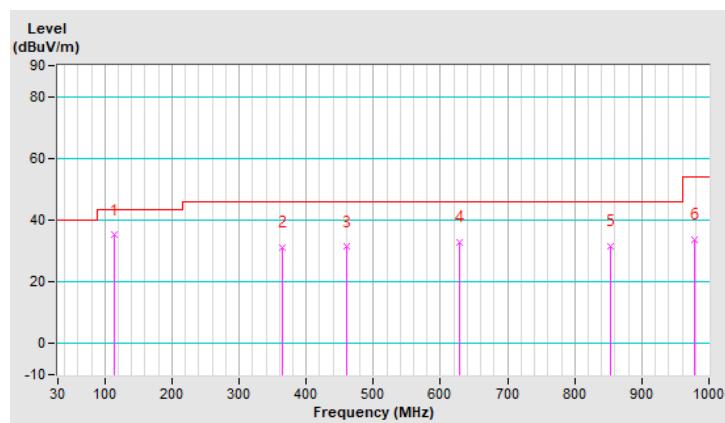

Mode B

RF Mode	TX 802.11ac (VHT20)	Channel	CH 40 : 5200 MHz
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	77.62	37.8 QP	40.0	-2.2	1.00 H	25	50.1	-12.3
2	204.60	34.0 QP	43.5	-9.5	1.99 H	196	45.4	-11.4
3	418.00	34.8 QP	46.0	-11.2	1.99 H	196	40.3	-5.5
4	617.82	39.0 QP	46.0	-7.0	1.99 H	228	40.3	-1.3
5	893.30	31.9 QP	46.0	-14.1	1.49 H	328	27.2	4.7
6	961.20	32.9 QP	54.0	-21.1	1.99 H	3	26.5	6.4

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX 802.11ac (VHT20)	Channel	CH 40 : 5200 MHz
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	113.42	35.1 QP	43.5	-8.4	1.99 V	259	46.5	-11.4
2	363.68	31.2 QP	46.0	-14.8	1.00 V	200	37.6	-6.4
3	460.68	31.3 QP	46.0	-14.7	1.99 V	194	35.9	-4.6
4	627.52	32.8 QP	46.0	-13.2	1.00 V	329	33.9	-1.1
5	852.56	31.5 QP	46.0	-14.5	1.99 V	14	27.6	3.9
6	978.66	33.6 QP	54.0	-20.4	1.00 V	329	26.9	6.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-Peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

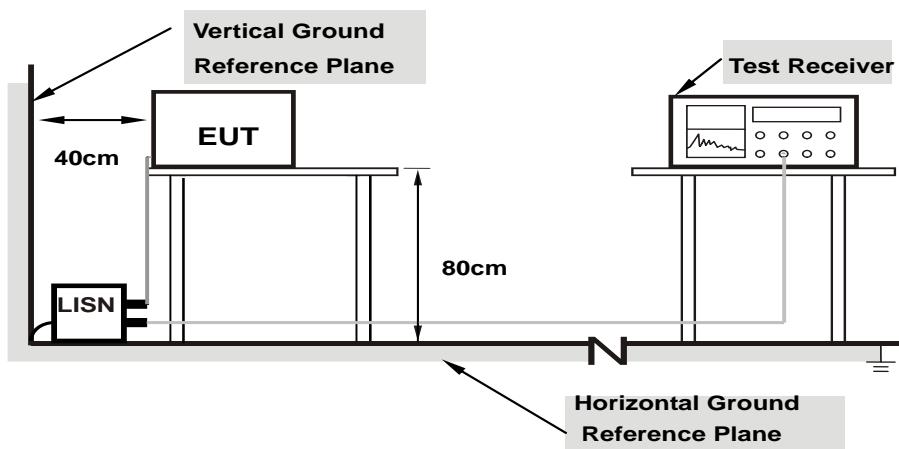
Note: 1. The lower limit shall apply at the transition frequencies.
 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 3, 2021	Dec. 2, 2022
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Jan. 15, 2022	Jan. 14, 2023
LISN/AMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Mar. 14, 2022	Mar. 13, 2023
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Sep. 7, 2021	Sep. 6, 2022
Software ADT	BV ADT_Cond_V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 2. The test was performed in HwaYa Shielded Room 1 (Conduction 1).
 3. The VCCI Site Registration No. is C-12040.

4.2.3 Test Procedures


- The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit -20 dB) was not recorded.

Note: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note:

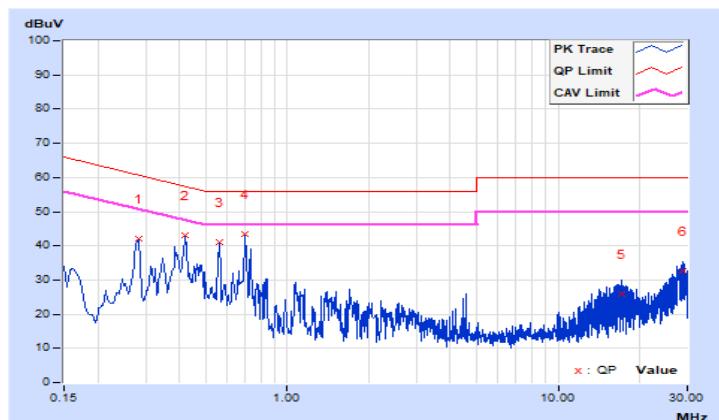
- Support units were connected to second LISN.
- Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

- Placed the EUT on a testing table.
- Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.2.7 Test Results

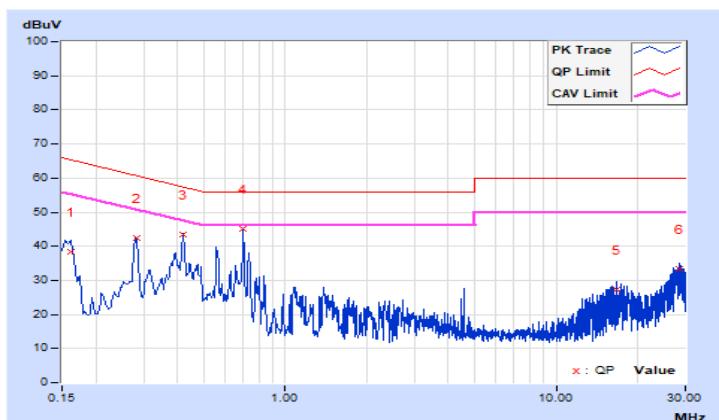

Mode A

Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Noah Chang	Test Date	2022/8/2

Phase Of Power : Line (L)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.28154	9.66	32.51	30.16	42.17	39.82	60.77	50.77	-18.60	-10.95
2	0.42200	9.69	33.46	29.28	43.15	38.97	57.41	47.41	-14.26	-8.44
3	0.56200	9.69	31.26	26.36	40.95	36.05	56.00	46.00	-15.05	-9.95
4	0.70200	9.70	33.90	30.28	43.60	39.98	56.00	46.00	-12.40	-6.02
5	17.07000	9.86	16.20	9.35	26.06	19.21	60.00	50.00	-33.94	-30.79
6	28.97000	9.88	22.94	15.44	32.82	25.32	60.00	50.00	-27.18	-24.68

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

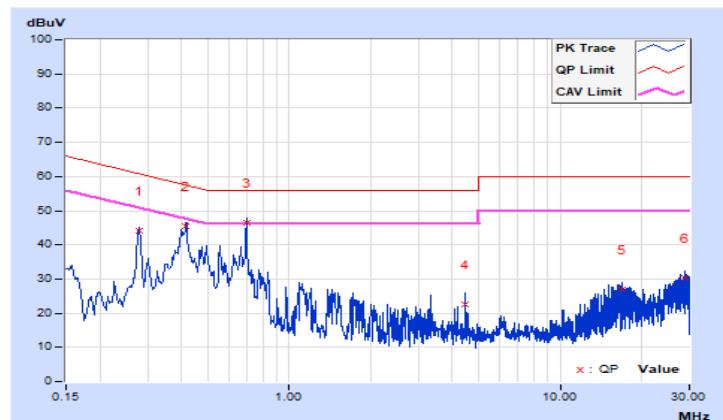


Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Noah Chang	Test Date	2022/8/2

No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
	0.16148	9.62	28.84	19.87	38.46	29.49	65.39	55.39	-26.93	-25.90
2	0.28154	9.66	32.75	32.15	42.41	41.81	60.77	50.77	-18.36	-8.96
3	0.42200	9.69	33.86	29.82	43.55	39.51	57.41	47.41	-13.86	-7.90
4	0.69800	9.69	35.54	32.06	45.23	41.75	56.00	46.00	-10.77	-4.25
5	16.79400	9.87	17.34	10.97	27.21	20.84	60.00	50.00	-32.79	-29.16
6	28.68600	9.87	23.40	15.66	33.27	25.53	60.00	50.00	-26.73	-24.47

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

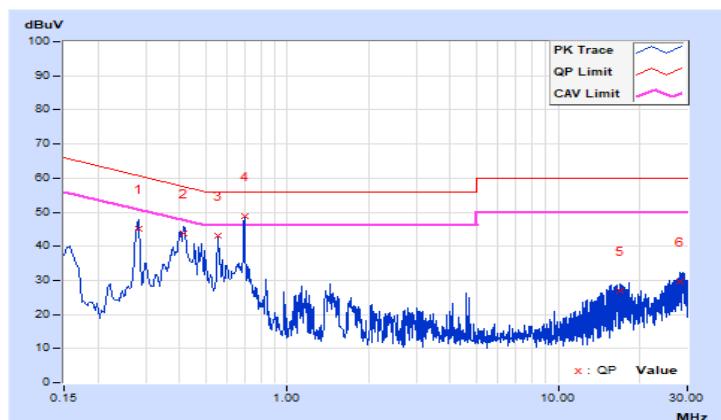

Mode B

Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Noah Chang	Test Date	2022/8/2

No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.27800	9.66	34.51	33.14	44.17	42.80	60.88	50.88	-16.71	-8.08
2	0.41689	9.69	35.77	31.54	45.46	41.23	57.51	47.51	-12.05	-6.28
3	0.69800	9.69	36.92	33.31	46.61	43.00	56.00	46.00	-9.39	-3.00
4	4.47400	9.75	12.83	-0.57	22.58	9.18	56.00	46.00	-33.42	-36.82
5	16.96200	9.85	16.96	10.55	26.81	20.40	60.00	50.00	-33.19	-29.60
6	29.05800	9.89	20.32	12.24	30.21	22.13	60.00	50.00	-29.79	-27.87

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value



Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested by	Noah Chang	Test Date	2022/8/2

Phase Of Power : Neutral (N)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.28200	9.66	35.38	31.95	45.04	41.61	60.76	50.76	-15.72	-9.15
2	0.41400	9.69	33.98	29.93	43.67	39.62	57.57	47.57	-13.90	-7.95
3	0.55400	9.69	33.31	28.33	43.00	38.02	56.00	46.00	-13.00	-7.98
4	0.69400	9.69	39.29	35.72	48.98	45.41	56.00	46.00	-7.02	-0.59
5	16.96200	9.88	17.05	10.55	26.93	20.43	60.00	50.00	-33.07	-29.57
6	28.08600	9.87	19.63	11.55	29.50	21.42	60.00	50.00	-30.50	-28.58

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

4.3 Transmit Power Measurement

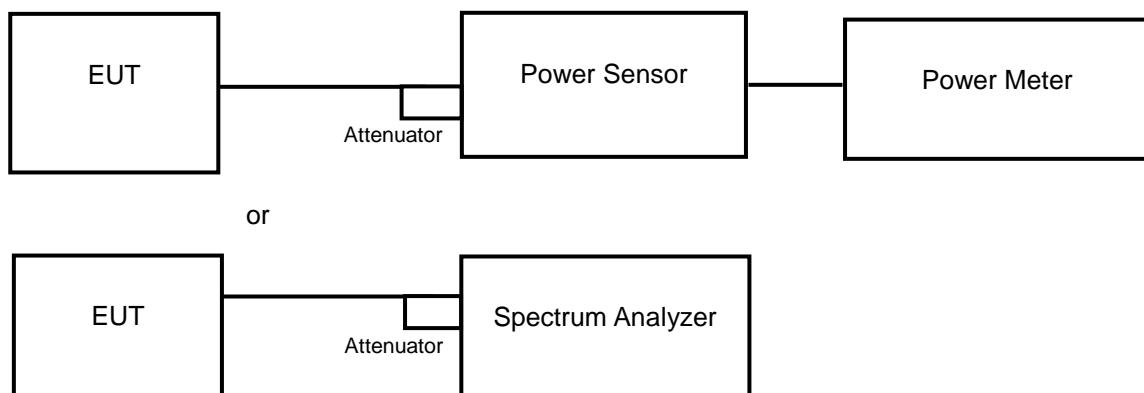
4.3.1 Limits of Transmit Power Measurement

Operation Band	EUT Category	Limit
U-NII-1	Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p \leq 125 mW (21 dBm) at any elevation angle above 30 degrees as measured from the horizon)
	Fixed point-to-point Access Point	1 Watt (30 dBm)
	Indoor Access Point	1 Watt (30 dBm)
	✓ Mobile and Portable client device	250 mW (24 dBm)
U-NII-2A	✓	250 mW (24 dBm) or $11 \text{ dBm} + 10 \log B^*$
U-NII-2C	✓	250 mW (24 dBm) or $11 \text{ dBm} + 10 \log B^*$
U-NII-3	✓	1 Watt (30 dBm)

*B is the 26 dB emission bandwidth in megahertz

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{\text{ANT}} \leq 4$;


Array Gain = 0 dB (i.e., no array gain) for channel widths $\geq 40 \text{ MHz}$ for any N_{ANT} ;

Array Gain = $5 \log(N_{\text{ANT}}/N_{\text{SS}})$ dB or 3 dB, whichever is less for 20 MHz channel widths with $N_{\text{ANT}} \geq 5$.

For power measurements on all other devices: Array Gain = $10 \log(N_{\text{ANT}}/N_{\text{SS}})$ dB.

4.3.2 Test Setup

<Power Output Measurement>

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

Average Power Measurement

<802.11a, 802.11ac (VHT20), 802.11ac (VHT40), 802.11ac (VHT80)>

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

<For straddle channel measurement>

- a. Set span to encompass the entire 26 dB EBW (or, alternatively, the entire 99 % occupied bandwidth) of the signal.
- b. Set sweep trigger to “free run”.
- c. Set RBW = 1 MHz.
- d. Set VBW \geq 3 MHz
- e. Number of points in sweep \geq 2 Span / RBW.
- f. Sweep time \leq (number of points in sweep) * T
- g. Using emission bandwidth to determine the frequency span for integration the channel bandwidth.
- h. Detector = RMS.
- i. Trace mode = max hold.
- j. Allow max hold to run for at least 60 seconds, or longer as needed to allow the trace to stabilize.
- k. Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

For straddle channels, measured in accordance with FCC KDB 789033 UNII Test Procedure Method SA-2A and tested with a spectrum analyzer, the duty cycle factor is included in the total power. The duty cycle factor can be found in chapter 3.3 of the report.

Power Output:

802.11a

Channel	Frequency (MHz)	Maximum Conducted Power (dBm)		Total Power (mW)	Total Power (dBm)	Power Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
36	5180	17.12	17.97	114.184	20.58	24	Pass
40	5200	19.62	20.29	198.528	22.98	24	Pass
48	5240	16.53	17.12	96.501	19.85	24	Pass
52	5260	18.87	20.08	178.949	22.53	24	Pass
60	5300	19.21	20.53	196.348	22.93	24	Pass
64	5320	17.42	17.13	106.849	20.29	24	Pass
100	5500	16.97	17.41	104.854	20.21	24	Pass
116	5580	19.82	20.14	199.216	22.99	24	Pass
140	5700	17.58	16.98	107.168	20.30	24	Pass
*144 (U-NII-2C)	5720	18.80	18.73	158.559	22.00	24	Pass
*144 (U-NII-3)	5720	10.73	10.01	23.023	13.62	30	Pass
149	5745	19.54	20.16	193.703	22.87	30	Pass
157	5785	19.19	20.03	183.678	22.64	30	Pass
165	5825	19.58	20.09	192.876	22.85	30	Pass

Notes:

- * : Test was performed in accordance with measurement follow FCC KDB 789033 UNII test procedure Method SA-2A and use spectrum analyzer test , the duty factor was included in the total power.
- Directional gain is the maximum gain of antennas.
- For U-NII-1, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.
- For U-NII-2A, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.
- For U-NII-2C, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.
- For U-NII-3, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11ac (VHT20)

Channel	Frequency (MHz)	Maximum Conducted Power (dBm)		Total Power (mW)	Total Power (dBm)	Power Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
36	5180	17.24	17.69	111.715	20.48	24	Pass
40	5200	19.93	20.34	206.545	23.15	24	Pass
48	5240	18.54	18.94	149.793	21.75	24	Pass
52	5260	19.76	20.07	196.249	22.93	24	Pass
60	5300	19.64	20.43	202.453	23.06	24	Pass
64	5320	17.86	18.14	126.257	21.01	24	Pass
100	5500	16.51	16.58	90.27	19.56	24	Pass
116	5580	20.02	19.86	197.289	22.95	24	Pass
140	5700	18.04	18.53	134.965	21.30	24	Pass
*144 (U-NII-2C)	5720	18.42	19.61	170.335	22.31	24	Pass
*144 (U-NII-3)	5720	10.73	11.60	27.824	14.44	30	Pass
149	5745	19.23	19.95	182.608	22.62	30	Pass
157	5785	19.13	19.74	176.035	22.46	30	Pass
165	5825	19.08	19.47	169.421	22.29	30	Pass

Notes:

1. * : Test was performed in accordance with measurement follow FCC KDB 789033 UNII test procedure Method SA-2A and use spectrum analyzer test , the duty factor was included in the total power.
2. Directional gain is the maximum gain of antennas.
3. For U-NII-1, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.
4. For U-NII-2A, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.
5. For U-NII-2C, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.
6. For U-NII-3, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11ac (VHT40)

Channel	Frequency (MHz)	Maximum Conducted Power (dBm)		Total Power (mW)	Total Power (dBm)	Power Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
38	5190	15.03	15.23	65.185	18.14	24	Pass
46	5230	18.43	18.92	147.646	21.69	24	Pass
54	5270	19.54	20.04	190.875	22.81	24	Pass
62	5310	14.89	15.26	64.406	18.09	24	Pass
102	5510	13.16	13.57	43.452	16.38	24	Pass
110	5550	18.86	19.27	161.441	22.08	24	Pass
134	5670	18.22	18.53	137.66	21.39	24	Pass
*142 (U-NII-2C)	5710	18.71	18.89	170.274	22.31	24	Pass
*142 (U-NII-3)	5710	6.01	6.31	9.275	9.67	30	Pass
151	5755	19.74	20.18	198.421	22.98	30	Pass
159	5795	19.12	19.58	172.44	22.37	30	Pass

Notes:

1. * : Test was performed in accordance with measurement follow FCC KDB 789033 UNII test procedure Method SA-2A and use spectrum analyzer test , the duty factor was included in the total power.
2. Directional gain is the maximum gain of antennas.
3. For U-NII-1, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.
4. For U-NII-2A, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.
5. For U-NII-2C, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.
6. For U-NII-3, the maximum gain is 3.7 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11ac (VHT80)

Channel	Frequency (MHz)	Maximum Conducted Power (dBm)		Total Power (mW)	Total Power (dBm)	Power Limit (dBm)	Pass / Fail
		Chain 0	Chain 1				
42	5210	13.87	14.03	49.671	16.96	24	Pass
58	5290	14.02	14.28	52.026	17.16	24	Pass
106	5530	11.72	12.17	31.341	14.96	24	Pass
122	5610	19.56	19.35	176.464	22.47	24	Pass
*138 (U-NII-2C)	5690	17.26	18.90	160.004	22.04	24	Pass
*138 (U-NII-3)	5690	0.97	2.13	3.526	5.47	30	Pass
155	5775	19.12	19.57	172.231	22.36	30	Pass

Notes:

1. * : Test was performed in accordance with measurement follow FCC KDB 789033 UNII test procedure Method SA-2A and use spectrum analyzer test , the duty factor was included in the total power.
2. Directional gain is the maximum gain of antennas.
3. For U-NII-1, the maximum gain is $3.7 \text{ dBi} < 6 \text{ dBi}$, so the output power limit shall not be reduced.
4. For U-NII-2A, the maximum gain is $3.7 \text{ dBi} < 6 \text{ dBi}$, so the output power limit shall not be reduced.
5. For U-NII-2C, the maximum gain is $3.7 \text{ dBi} < 6 \text{ dBi}$, so the output power limit shall not be reduced.
6. For U-NII-3, the maximum gain is $3.7 \text{ dBi} < 6 \text{ dBi}$, so the output power limit shall not be reduced.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---