Page 1 of 40

FCC TEST REPORT FCC ID:2AW96-M800S

Report Number.....: ZKT-221109L8360-02

Date of Test.....: Nov. 07, 2022 -- Nov. 17, 2022

Date of issue: Nov. 17, 2022

Total number of pages: 40

Test Result: PASS

Testing Laboratory.....: Shenzhen ZKT Technology Co., Ltd.

Applicant's name: Telstar USA LLC

Address: 9817 Valley View Road, Eden Prairie, MN, US

Manufacturer's name: Shenzhen Orange Digital Technology Co.,Ltd

Test specification:

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013

Test procedure.....: KDB558074 D0115.247 Meas Guidance v 05r02

Non-standard test method: N/A

Test Report Form No.: TRF-EL-110_V0

Test Report Form(s) Originator: ZKT Testing

Master TRF Dated: 2020-01-06

This device described above has been tested by ZKT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZKT, this document may be altered or revised by ZKT, personal only, and shall be noted in the revision of the document.

Product name: Projector

Trademark: MIPOIT

Model/Type reference: M800S

Ratings: DC19V 3.42A from adapter

Project No.: ZKT-221109L8360-02 Page 2 of 40

Testing procedure and testing location:	<u> </u>
Testing Laboratory: Address:	Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Tested by (name + signature):	Alen He
Reviewer (name + signature):	
Approved (name + signature):	Lake Xie

Table of Contents

		Pag
1. VERSION	5	
2. SUMMARY OF TEST RESULTS	6	
3. GENERAL INFORMATION	7	
3.1 GENERAL DESCRIPTION OF EUT	7	
3.2 DESCRIPTION OF TEST MODES	8	
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9	
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	9	
3.5EQUIPMENTS LIST FOR ALL TEST ITEMS	10	
4. EMC EMISSION TEST	11	
4.1 CONDUCTED EMISSION MEASUREMENT	11	
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	11	
4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD	11 11	
4.1.4 TEST SETUP	12	
4.1.5 EUT OPERATING CONDITIONS	12	
4.1.6 TEST RESULT	13	
4.1.6 TEST RESULT	13	
4.2 RADIATED EMISSION MEASUREMENT	15	
4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	15 15	
4.2.3 DEVIATION FROM TEST STANDARD	16	
4.2.4 TEST SETUP	16	
4.2.5 EUT OPERATING CONDITIONS	17	
4.2.6 TEST RESULTS	17	
5.RADIATED BAND EMISSIONMEASUREMENT	22	
5.1 TEST REQUIREMENT:	22	
5.2 TEST PROCEDURE	22	
5.3 DEVIATION FROM TEST STANDARD	22	
5.4 TEST SETUP	23	
5.5 EUT OPERATING CONDITIONS	23	
5.6 TEST RESULT	24	
6.POWER SPECTRAL DENSITY TEST	25	
6.1 APPLIED PROCEDURES / LIMIT	25	
6.2 TEST PROCEDURE	25	
6.3 DEVIATION FROM STANDARD	25	
6.4 TEST SETUP	25	
6.5 EUT OPERATION CONDITIONS	25	
6.6 TEST RESULT	25	

I ugo + oi +c	Pag	е	4	of	40
---------------	-----	---	---	----	----

7. CHANNEL BANDWIDTH& 99% OCCUPY BANDWIDTH	26
7.1 APPLIED PROCEDURES / LIMIT	26
7.2 TEST PROCEDURE	26
7.3 DEVIATION FROM STANDARD	26
7.4 TEST SETUP	26
7.5 EUT OPERATION CONDITIONS	26
7.6 TEST RESULT	26
8.PEAK OUTPUT POWER TEST	27
8.1 APPLIED PROCEDURES/LIMIT	27
8.2 TEST PROCEDURE	27
8.3 DEVIATION FROM STANDARD	27
8.4 TEST SETUP	27
8.5 EUT OPERATION CONDITIONS	27
8.6 TEST RESULT	27
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	28
9.1 APPLICABLE STANDARD	28
9.2 TEST PROCEDURE	28
9.3 DEVIATION FROM STANDARD	28
9.4 TEST SETUP	28
9.5 EUT OPERATION CONDITIONS	28
9.6 TEST RESULTS	28
10. ANTENNA REQUIREMENT	29
11. APPENDIX1	30
-6DB BANDWIDTH	30
BANDEDGE	32
PEAK OUTPUT POWER	33
OWER SPECTRAL DENSITY	35
SPURIOUS EMISSION	37
12. TEST SETUP PHOTO	40
13. EUT CONSTRUCTIONAL DETAILS	40

Project No.: ZKT-221109L8360-02 Page 5 of 40

1. VERSION

Report No.	Version	Description	Approved
ZKT-221109L8360-02	Rev.01	Initial issue of report	Nov. 17, 2022

Page 6 of 40

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Test Item		Result	Remark		
FCC part 15.203/15.247 (c)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS			
FCC part 15.205/15.209	Spurious Emission	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd.

Add.: 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225

Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF power conducted	±0.16dB	
3	Spurious emissions conducted	±0.21dB	
4	All emissions radiated(<1G)	±4.68dB	
5	All emissions radiated(>1G)	±4.89dB	
6	Temperature	±0.5°C	
7	Humidity	±2%	

Project No.: ZKT-221109L8360-02 Page 7 of 40

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Projector
Model No.:	M800S
Hardware Version:	V1.0
Software Version:	N/A
Sample(s) Status:	Engineer sample
Channel numbers:	40
Channel separation:	2402MHz~2480MHz
Date rate:	1Mbps
Modulation technology:	GFSK
Antenna Type:	FPC antenna
Antenna gain:	3.03dBi
Power supply:	DC19V 3.42A from adapter

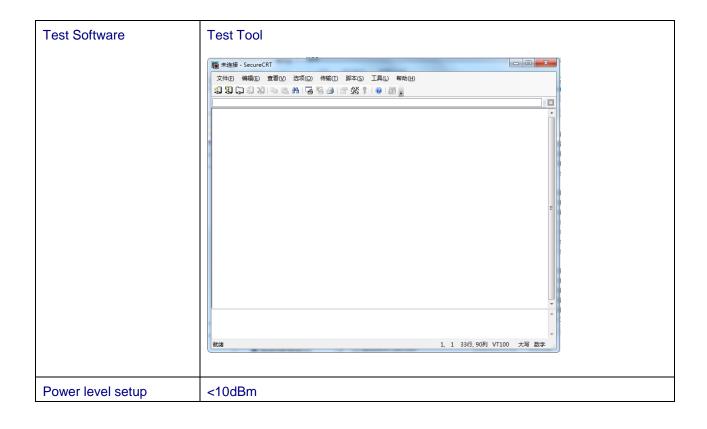
Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402	11	2422	21	2442	31	2462
2	2404	12	2424	22	2444	32	2464
3	2406	13	2426	23	2446	33	2466
4	2408	14	2428	24	2448	34	2468
5	2410	15	2430	25	2450	35	2470
6	2412	16	2432	26	2452	36	2472
7	2414	17	2434	27	2454	37	2474
8	2416	18	2436	28	2456	38	2476
9	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

Project No.: ZKT-221109L8360-02 Page 8 of 40

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz


3.2 DESCRIPTION OF TEST MODES

Transmitting mode Keep the EUT in continuously transmitting mode			
Remark: During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of nominal rated supply voltage, and found that the worst case was under the nominal rated supply			

condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Page 9 of 40

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

adapter EUT Radiated Emission adapter EUT Conducted Spurious adapter EUT

Conducted Emission

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	adapter	/	Model:ICP60A-190-3420 Input:100-240V ~50/60Hz 1.3A Output: 19.0V 3.42A 64.98W		FCC/CE/UL
2	remote control	Zhe jiang T-mall	/	/	FCC
3					
4					

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

Project No.: ZKT-221109L8360-02 Page 10 of 40

3.5EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	Oct. 18, 2022	Oct. 17, 2023
2	Spectrum Analyzer (1GHz-40GHz)	R&S	FSQ	100363	Oct. 17, 2022	Oct. 16, 2023
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Oct. 18, 2022	Oct. 17, 2023
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	N/A	Oct. 17, 2022	Oct. 16, 2023
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	Oct. 17, 2022	Oct. 16, 2023
6	Loop Antenna	TESEQ	HLA6121	58357	Oct. 17, 2022	Oct. 16, 2023
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	060747	Oct. 17, 2022	Oct. 16, 2023
8	Amplifier (1GHz-26.5GHz)	Agilent	8449B	3008A00315	Oct. 18, 2022	Oct. 17, 2023
9	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Oct. 18, 2022	Oct. 17, 2023
10	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GH z	N/A	Oct. 18, 2022	Oct. 17, 2023
11	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Oct. 18, 2022	Oct. 17, 2023
12	ESG Signal Generator	Agilent	E4421B	N/A	Oct. 18, 2022	Oct. 17, 2023
13	Signal Generator	Agilent	N5182A	N/A	Oct. 22, 2022	Oct. 21, 2023
14	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	Oct. 17, 2022	Oct. 16, 2023
15	MWRF Power Meter Test system	MW	MW100-RPC B	N/A	Oct. 22, 2022	Oct. 21, 2023
16	Power sensor	KEYSIGHT	U200H	MY51190005	Oct. 22, 2022	Oct. 21, 2023
17	D.C. Power Supply	LongWei	TPR-6405D	N/A	\	\
18	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	\	\
19	RF Software	MW	MTS8310	V2.0.0.0	\	\
20	Turntable	MF	MF-7802BS	N/A	\	\
21	Antenna tower	MF	MF-7802BS	N/A	\	\

Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Oct. 22, 2022	Oct. 21, 2023
2	LISN	CYBERTEK	EM5040A	E1850400149	Oct. 22, 2022	Oct. 21, 2023
3	Test Cable	N/A	C01	N/A	Oct. 18, 2022	Oct. 17, 2023
4	Test Cable	N/A	C02	N/A	Oct. 18, 2022	Oct. 17, 2023
5	EMI Test Receiver	R&S	ESCI3	101393	Oct. 17, 2022	Oct. 16, 2023
6	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	\	\

Page 11 of 40

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

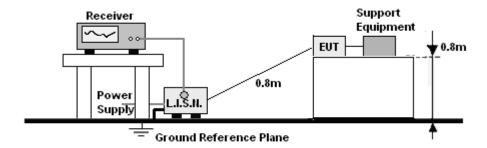
4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (Standard	
PREQUENCY (MHZ)	Quasi-peak	Average	Staridard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

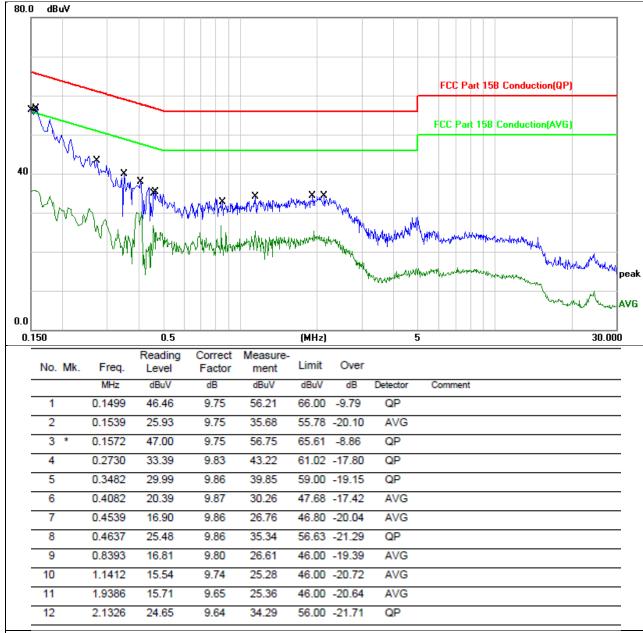
No deviation

Project No.: ZKT-221109L8360-02 Page 12 of 40

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

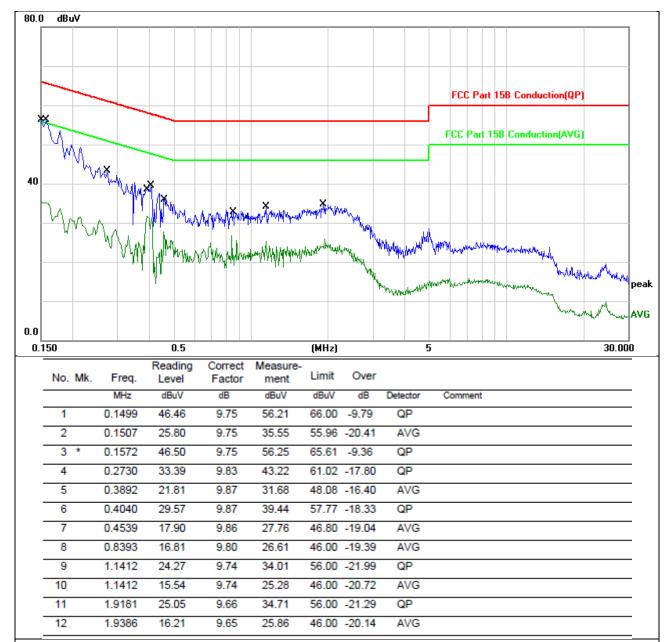

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

Project No.: ZKT-221109L8360-02 Page 13 of 40

4.1.6 TEST RESULT

4.1.6 Test Result

Temperature :	26°C	Relative Humidity :	54%
Pressure :	101kPa	Phase :	L
Test voltage:	AC 120V/60Hz	Test Mode:	High channel



Notes

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Page 14 of 40

Temperature :	26°C	Relative Humidity :	54%
Pressure :	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode:	High channel

Notes

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Page 15 of 40

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz					
Test site:	Measurement Dista	nce: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	9KHz-150KHz Quasi-peak 200Hz 600Hz Quasi-pe			Quasi-peak		
	150KHz-30MHz Quasi-peak 9KHz 30KHz Quasi-peak			Quasi-peak		
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-pea			Quasi-peak		
	Above 1GHz Peak 1MHz 3MHz		3MHz	Peak		
	Above IGHZ	Peak	1MHz	10Hz	Average	

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

EDECHENOV (MILE)	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoiccamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of avariable-height antenna tower.

Page 16 of 40

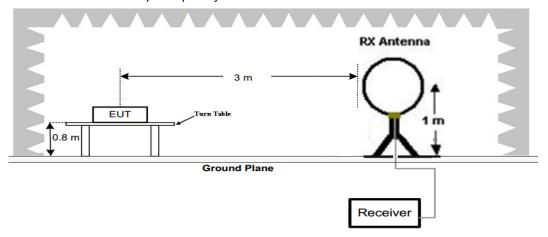
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum valueof the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned toheights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.

Above 1GHz test procedure as below:

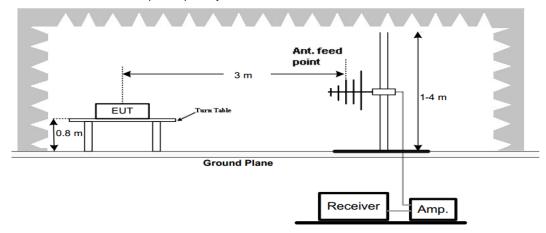
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and table 0.8 metre to 1.5 metre (Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

Note:

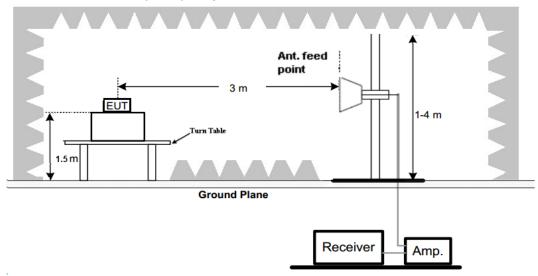

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD

No deviation


4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



Project No.: ZKT-221109L8360-02 Page 17 of 40

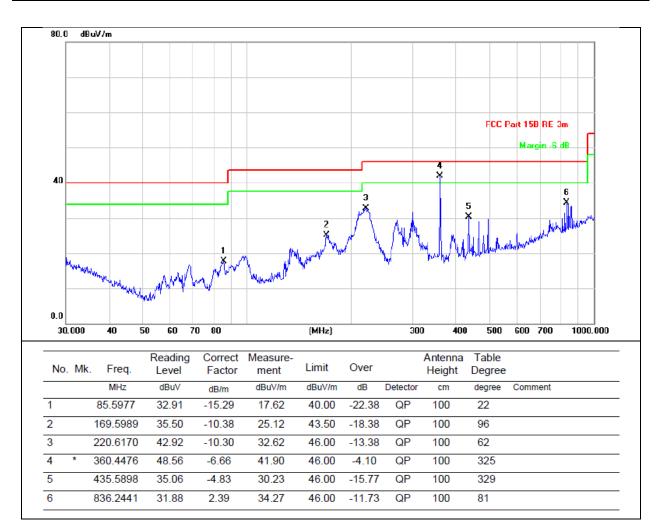
(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

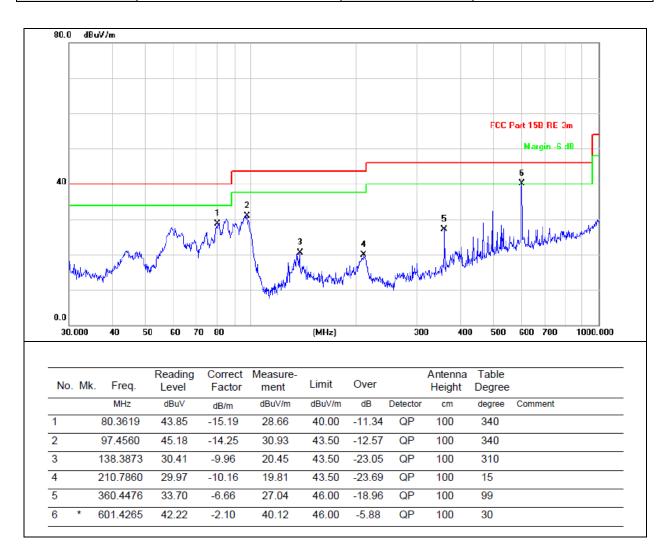
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS


Between 9KHz - 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Project No.: ZKT-221109L8360-02 Page 18 of 40


Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC120V 60Hz	Mode:	2480.00

Project No.: ZKT-221109L8360-02 Page 19 of 40

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC120V 60Hz	Mode:	2480.00

Remarks:

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Project No.: ZKT-221109L8360-02 Page 20 of 40

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detec tor
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type
			L	ow Chan	nel:2402MH	Z			
V	4804.00	54.67	30.55	5.77	24.66	54.55	74.00	-19.45	PK
V	4804.00	41.28	30.55	5.77	24.66	41.16	54.00	-12.84	AV
V	7206.00	54.26	30.33	6.32	24.55	54.80	74.00	-19.20	PK
V	7206.00	41.09	30.33	6.32	24.55	41.63	54.00	-12.37	AV
V	9608.00	56.10	30.85	7.45	24.69	57.39	74.00	-16.61	PK
V	9608.00	36.97	30.85	7.45	24.69	38.26	54.00	-15.74	AV
Н	4804.00	55.70	30.55	5.77	24.66	55.58	74.00	-18.42	PK
Н	4804.00	40.65	30.55	5.77	24.66	40.53	54.00	-13.47	AV
Н	7206.00	54.40	30.33	6.32	24.55	54.94	74.00	-19.06	PK
Н	7206.00	40.58	30.33	6.32	24.55	41.12	54.00	-12.88	AV
Н	9608.00	55.44	30.85	7.45	24.69	56.73	74.00	-17.27	PK
Н	9608.00	39.09	30.85	7.45	24.69	40.38	54.00	-13.62	AV

Polar (H/V)	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detec tor
(1 1/ V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type
			Mi	ddle Cha	nnel:2440M	Hz			
V	4880.00	53.76	30.55	5.77	24.66	53.64	74.00	-20.36	PK
V	4880.00	39.36	30.55	5.77	24.66	39.24	54.00	-14.76	AV
V	7320.00	54.29	30.33	6.32	24.55	54.83	74.00	-19.17	PK
V	7320.00	40.23	30.33	6.32	24.55	40.77	54.00	-13.23	AV
V	9760.00	56.58	30.85	7.45	24.69	57.87	74.00	-16.13	PK
V	9760.00	37.01	30.85	7.45	24.69	38.30	54.00	-15.70	AV
Н	4880.00	55.86	30.55	5.77	24.66	55.74	74.00	-18.26	PK
Н	4880.00	42.14	30.55	5.77	24.66	42.02	54.00	-11.98	AV
Н	7320.00	53.38	30.33	6.32	24.55	53.92	74.00	-20.08	PK
Н	7320.00	41.48	30.33	6.32	24.55	42.02	54.00	-11.98	AV
Н	9760.00	56.32	30.85	7.45	24.69	57.61	74.00	-16.39	PK
Н	9760.00	39.16	30.85	7.45	24.69	40.45	54.00	-13.55	AV

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detec tor
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type
			Н	ligh Chan	nel:2480MH	z			
V	4960.00	56.17	30.55	5.77	24.66	56.05	74.00	-17.95	PK
V	4960.00	41.32	30.55	5.77	24.66	41.20	54.00	-12.80	AV
V	7440.00	53.92	30.33	6.32	24.55	54.46	74.00	-19.54	PK
V	7440.00	38.90	30.33	6.32	24.55	39.44	54.00	-14.56	AV
V	9920.00	56.19	30.85	7.45	24.69	57.48	74.00	-16.52	PK
V	9920.00	36.44	30.85	7.45	24.69	37.73	54.00	-16.27	AV
Н	4960.00	56.28	30.55	5.77	24.66	56.16	74.00	-17.84	PK
Н	4960.00	40.58	30.55	5.77	24.66	40.46	54.00	-13.54	AV
Н	7440.00	53.29	30.33	6.32	24.55	53.83	74.00	-20.17	PK
Н	7440.00	40.66	30.33	6.32	24.55	41.20	54.00	-12.80	AV
Н	9920.00	56.82	30.85	7.45	24.69	58.11	74.00	-15.89	PK
Н	9920.00	38.04	30.85	7.45	24.69	39.33	54.00	-14.67	AV

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value

Project No.: ZKT-221109L8360-02 Page 21 of 40

has no need to be reported.

Page 22 of 40

5.RADIATED BAND EMISSIONMEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above	Peak	1MHz	3MHz	Peak		
	1GHz	Average	1MHz	3MHz	Average		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

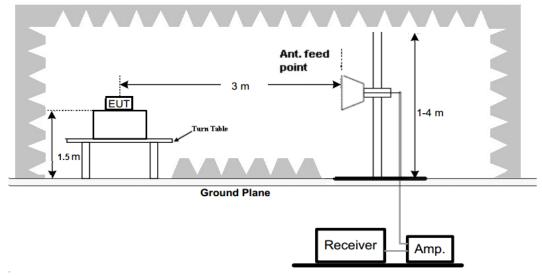
5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


5.3 DEVIATION FROM TEST STANDARD

No deviation

Project No.: ZKT-221109L8360-02 Page 23 of 40

5.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: ZKT-221109L8360-02 Page 24 of 40

5.6 TEST RESULT

Dalas	Frequenc	Meter	Pre-	Cable	Antenna	Emission	Limit	Margin	Detect	
Polar	y	Reading	amplifier	Loss	Factor	level	(dBuV	(dBuV/	or	Result
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	`/m)	` m)	Type	
				Low C	hannel: 240	2MHz				
Н	2390.00	52.09	30.22	4.85	23.98	50.70	74	-23.30	PK	PASS
Н	2390.00	38.38	30.22	4.85	23.98	36.99	54	-17.01	AV	PASS
Н	2400.00	52.37	30.22	4.85	23.98	50.98	74	-23.02	PK	PASS
Н	2400.00	37.49	30.22	4.85	23.98	36.10	54	-17.90	AV	PASS
V	2390.00	53.49	30.22	4.85	23.98	52.10	74	-21.90	PK	PASS
V	2390.00	38.60	30.22	4.85	23.98	37.21	54	-16.79	AV	PASS
V	2400.00	54.23	30.22	4.85	23.98	52.84	74	-21.16	PK	PASS
V	2400.00	36.63	30.22	4.85	23.98	35.24	54	-18.76	AV	PASS
				High C	hannel: 248	0MHz				
Н	2483.50	53.20	30.22	4.85	23.98	51.81	74	-22.19	PK	PASS
Н	2483.50	38.02	30.22	4.85	23.98	36.63	54	-17.37	AV	PASS
Н	2500.00	52.17	30.22	4.85	23.98	50.78	74	-23.22	PK	PASS
Н	2500.00	37.52	30.22	4.85	23.98	36.13	54	-17.87	AV	PASS
V	2483.50	52.80	30.22	4.85	23.98	51.41	74	-22.59	PK	PASS
V	2483.50	38.29	30.22	4.85	23.98	36.90	54	-17.10	AV	PASS
V	2500.00	52.93	30.22	4.85	23.98	51.54	74	-22.46	PK	PASS
V	2500.00	36.39	30.22	4.85	23.98	35.00	54	-19.00	AV	PASS

Remark:

^{1.} Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

Page 25 of 40

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v 05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS				

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULT

Page 26 of 40

7. CHANNEL BANDWIDTH& 99% OCCUPY BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 xRBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULT

Page 27 of 40

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES/LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS				

8.2 TEST PROCEDURE

a. The EUT was directly connected to the analyzer

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULT

Page 28 of 40

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02		

9.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Project No.: ZKT-221109L8360-02 Page 29 of 40

10. ANTENNA REQUIREMENT

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

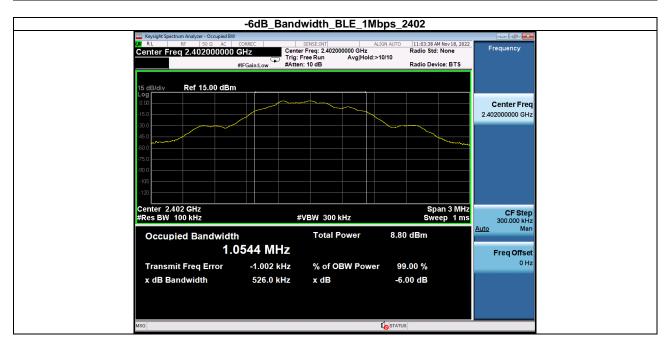
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is FPC antenna, the best case gain of the antennas are 3.03dBi, reference to the below photo for details ANT for BT

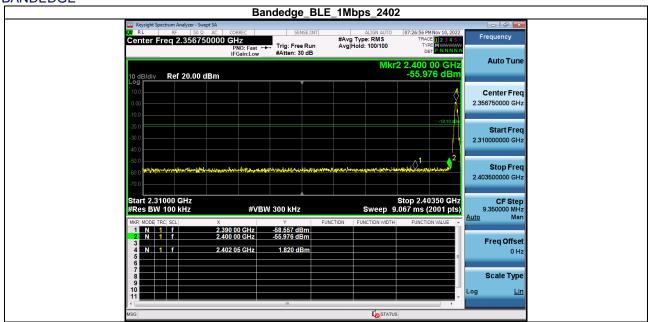


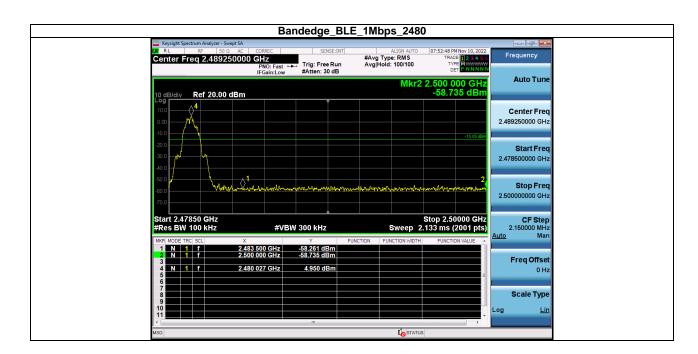
Project No.: ZKT-221109L8360-02 Page 30 of 40

11. APPENDIX1

-6DB BANDWIDTH

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402	0.526	500	Pass
NVNT	ANT1	1Mbps	2440	0.529	500	Pass
NVNT	ANT1	1Mbps	2480	0.5305	500	Pass





Project No.: ZKT-221109L8360-02 Page 32 of 40

BANDEDGE

Project No.: ZKT-221109L8360-02 Page 33 of 40

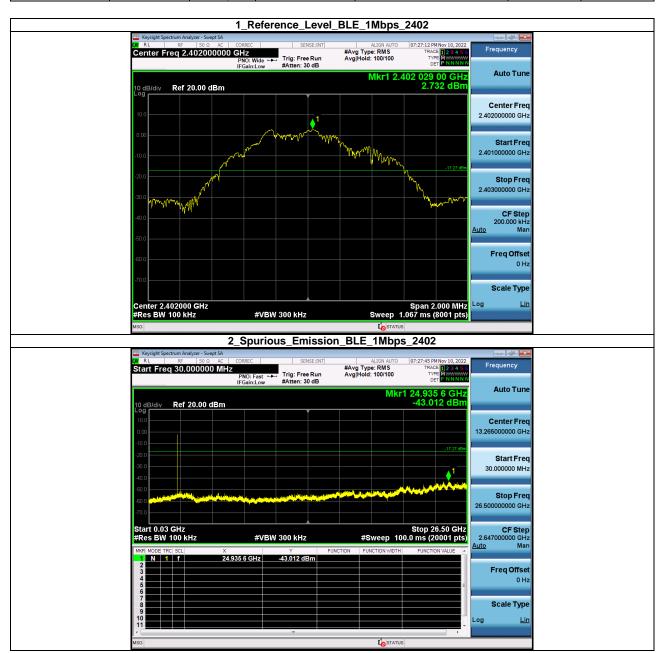
PEAK OUTPUT POWER

EAR CON ON CARE									
Condition	Condition Antenna Rate		Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result		
NVNT	ANT1	1Mbps	2402	2.860	1.932	1000	Pass		
NVNT	ANT1	1Mbps	2440	3.971	2.495	1000	Pass		
NVNT	ANT1	1Mbps	2480	5.093	3.231	1000	Pass		

Project No.: ZKT-221109L8360-02 Page 35 of 40

OWER SPECTRAL DENSITY

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result		
NVNT	ANT1	1Mbps	2402	-14.694	8	Pass		
NVNT	ANT1	1Mbps	2440	-13.953	8	Pass		
NVNT	ANT1	1Mbps	2480	-13.079	8	Pass		



Power_Spectral_Density_BLE_1Mbps_2480

SPURIOUS EMISSION


. 614666 244661614								
Condition	Antenna	Rate	Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result		
NVNT	ANT1	1Mbps	2402	-43.012	-23.48	Pass		
NVNT	ANT1	1Mbps	2440	-43.704	-21.94	Pass		
NVNT	ANT1	1Mbps	2480	-42.831	-22.66	Pass		

1_Reference_Level_BLE_1Mbps_2440_00

1_Reference_Level_BLE_1Mbps_2480

Project No.: ZKT-221109L8360-02 Page 40 of 40

12. TEST SETUP PHOTO

Reference to the report No.: ZKT-221109L8360-01 for details.

13. EUT CONSTRUCTIONAL DETAILS

Reference to the report No.: ZKT-221109L8360-01 for details.

**** END OF REPORT ****