

Belun Ring

Wireless Pulse Oximeter

Model: BLR-200

Operator's Manual

Rev01

1. INTRODUCTION

This Operator's Manual is written and compiled according to US FDA 21 CFR part 820. Subject to modifications and software upgrades, information in this document may change without notice. This manual describes the guidelines of using Belun Ring BLR-200 wireless pulse oximeter. Please read this manual carefully before using this product. This manual which describes the operating procedures should be followed strictly. Failure to follow may cause measuring abnormality, equipment damage and human injury. The manufacturer is NOT responsible for the safety, reliability and performance issue and any monitoring abnormality, human injury, and equipment damage due to users' negligence of the operation instructions. The manufacturer's warranty service does not cover such faults.

This product is calibrated before leaving factory.

Belun reserves the right to revise and improve this manual and the products it describes at any time, without notice or obligation.

2. PRODUCT DESCRIPTION

2.1 Intended Use

Belun Ring BLR-200 is a wireless, non-invasive and stand-alone pulse oximeter intended to be used for spot-checking and/or continuous data collection and recording of oxygen saturation of arterial hemoglobin (SpO_2) and the pulse rate of adult patients through index finger in hospital and home environment for up to ten hours, during no motion and motion conditions, and for patients who are well or poorly perfused. It is not intended for single-use and out-of-hospital transport use and does not have alarms.

2.2 Contraindications

- Do not use this device in a Magnetic Resonance (MR) environment or in the presence of flammable anesthetics or gases.
- This device is not defibrillation proof per IEC 60601-1.
- This device should not be used:
 - during cardiopulmonary resuscitation,
 - on hypovolemic patients,
 - for assessing the adequacy of ventilator support, or
 - for detecting worsening lung function in patients on a high concentration of oxygen.

Attention This device should not be used for treatment nor monitoring. Do not use this device when SpO_2 or pulse rate alarms are required.

Attention This device should not be used for life-support and diagnosis purposes.

Attention This device has motion tolerant software that minimizes the likelihood of motion artifacts being misinterpreted as good pulse quality.

Note If you have difficulties in understanding this operator's manual, you should operate this device only with the assistance from someone who can understand this operator's manual.

3. SAFETY WARNINGS AND CAUTIONS

3.1 General

- Check the package before use to ensure the device and parts are in accordance with the package list. Please contact customer service if there is any missing component.
- The included device and parts are designed to use together. Using other parts may cause injury to the patient or damage to the device.
- To prevent malperformance and/or patient injury, verify the compatibility of any accessory before use.
- When this device is used by the patient, the patient is the intended operator. The patient can use and maintain this device and its parts according to this manual.
- This device should not be used or interconnected with any other parts, accessories or equipment not specified in this manual.
- For cleaning and disinfecting, follow the direction of the section "15. CARE AND MAINTENANCE".
- The expected service life of the device is 3 years since its first use.

3.2 Safety

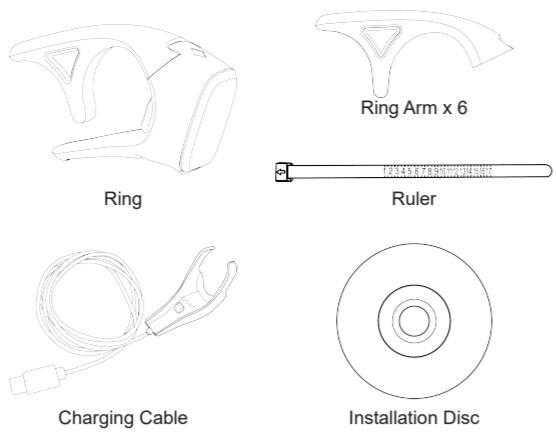
- The light emitting from this device is harmful to the eyes. Refrain from staring at the light.
- Keep this device away from children or pets. This device contains small parts that could cause choking; the cable could cause strangulation.
- Avoid excessive pressure to the sensor application site as this may cause damage to the skin beneath the sensor.

3.3 Limitation of Use

- This device is put into service according to the EMC information provided. Portable and mobile RF communication equipment may affect this device.
- Use the Ring on index finger only. Using it with any other fingers may affect the performance.
- Patient should not use skin-care product on the finger being measured (index finger).
- Pain or discomfort may occur when using this device continuously, especially for microcirculation barrier patients. It is recommended that the sensor should not be applied to the same finger for over 10 hours.
- For patients with special needs, please be cautious when using the device. This device cannot be used on edema or tender tissue.
- Patients allergic to TPE (Thermoplastic elastomers),PC (Polycarbonates) and ABS (Acrylonitrile Butadiene Styrene) should not use this device.
- This device is not recommended for patients who have significant skin pigmentation on the measurement site, e.g., tattoos, skin wound, etc.
- This device is not recommended for patients who suffer from smoke inhalation or carbon monoxide poisoning.
- This device may not work on every patient. If stable readings are unachievable, consider stop using this device.
- The accuracy for patients with BMI > 39.5 is not guaranteed.
- The interferences that may affect the accuracy of measurement include, but not limited to, excessive ambient light, excessive motion, restriction in blood flow, moisture in the sensor, low perfusion, venous pulsations, anemia, carboxyhemoglobin, methemoglobin, dysfunctional hemoglobin, improperly applied device, electrosurgical interference, and intravascular dyes.

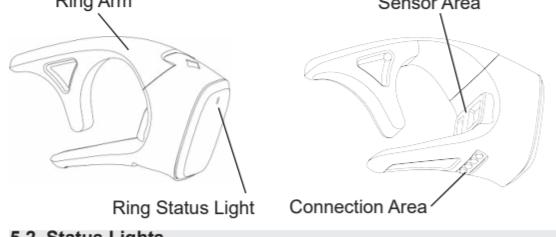
3.4 Battery

- The battery should be charged at least every 3 months to maintain its working life.
- Connect to a 5V DC power source to charge the battery, or else it may damage the device.
- Do not use this device while charging.
- The battery is non-removable and not user-replaceable.


3.5 Maintenance

- This device is a precision electronic device and necessary maintenance must be performed by Belun Technical Service ONLY except charging the battery.
- No modifications to this device are allowed as it may affect the device performance.
- Do not break the casing of the device as it may damage the sensor, which may lead to malfunction, and/or inaccurate measurement.
- Check the device and other parts at least once a week to ensure there is no visible damage that may affect safety and performance of this device. When obvious damage is observed, stop using this device.
- Do not service or maintain any part of this device while it is being used with a patient.
- A functional tester cannot be used to assess the accuracy of this device.

3.6 Environment


- Keep this device away from dust, lint, vibration, corrosive substances, explosive materials, high temperature and moisture.
- If this device gets wet, stop using it and let it completely dry before use.
- When it is carried from cold environment to warm or humid environment, do not use it immediately.
- The performance will be affected if there is any obstacle such as dust, lint, or stain on the sensor area. When necessary, clean the sensor area by following the direction in this manual.

4. PACKAGE CONTENT

5. PARTS AND STATUS LIGHTS

5.1 Parts

5.2 Status Lights

Color(s) & Pattern(s)	Meaning(s)
Solid Green	The Ring is ready for recording.
Breathing Green	The Ring is charging.
Solid Red	The Ring is not ready for a new recording. Refer to the section "14. TROUBLESHOOTING" for details.
Flashing Red	There is a hardware issue in the Ring. Refer to the section "14. TROUBLESHOOTING" for details.
Off	The Ring is standby. Move the Ring to wake it up. Or, the Ring is recording a measurement, or the Ring is power off.

6. PREPARATION

Before the first use, the following steps should be performed

- Install the Companion Application (6.1)
- Configure Belun Ring (6.2)

6.1 Install the Companion Application - Belun Ring Management (BRM)

System Minimum Requirements

- Operating system: Windows 10 Home/Professional 64 bit
- RAM: 4GB
- Hard drive space: 13 MB
- Display resolution: 1280*960
- Bluetooth 5.0

Locate the BRM Installer

The installer is stored in the installation disc. Follow the steps below to access it.

- Insert the installation disc into the disc drive of the computer.
- Go to "This PC" in File Explorer in the computer and find the drive "Belun".
- The installer is stored in the drive "Belun".

Install the BRM Application

- Run the installer "Belun Ring Management vX.X.X.msi" in the drive "Belun".
- The installation will start automatically. Follow the on-screen instructions until the installation is complete.

3. If a dialog asking "Do you want to allow this app from an unknown publisher to make changes to your device?" shows up, click Yes to allow the installation to continue.

4. Wait until the installation is done.

6.2 Configure Belun Ring

- Power on the Ring by connecting it to a power source (5V DC) using the charging cable.

2. Start BRM by double clicking the shortcut icon on the desktop.

3. Choose the Device Model and log in using the default password "BeWell222".

4. Conform to allow the necessary access permission.

5. Connect the Ring via Bluetooth by selecting the Ring SN and click the button BLE Connect.

6. Enter the device PIN for authentication.

7. The Ring will be configured automatically i.e. synchronize the clock when the connection is established.

6.3 Device Self-Test

The Ring performs a self-test when it is power on. In case of any error, the Ring Status Lights will Flash Red. Refer to the section "14. TROUBLESHOOTING" for solution.

7. The Ring will vibrate for ~1 second to indicate it is power off.

6.4 Disposal

Follow the local laws and regulations to dispose of scrap parts, accessories, and packaging (including battery, plastic bags, foams, and paper boxes).

7. USE BELUN RING FOR SPOT CHECK

Perform spot check of the oxygen saturation (SpO_2) and pulse rate (PR).

- Start BRM and go to the **Spot Check Mode**.
- Connect the Ring to BRM (Refer to section "6.2 Configure Belun Ring").
- Wear the Ring and the measurement will start. Refer to "9. TIPS TO WEAR THE RING" to ensure the Ring is worn properly.

4. The measurement result will be shown on BRM.

5. The measurement result will be shown on BRM.

6. The measurement result will be shown on BRM.

7. The measurement result will be shown on BRM.

8. The measurement result will be shown on BRM.

9. The measurement result will be shown on BRM.

10. The measurement result will be shown on BRM.

11. The measurement result will be shown on BRM.

12. The measurement result will be shown on BRM.

13. The measurement result will be shown on BRM.

14. The measurement result will be shown on BRM.

15. The measurement result will be shown on BRM.

16. The measurement result will be shown on BRM.

17. The measurement result will be shown on BRM.

18. The measurement result will be shown on BRM.

19. The measurement result will be shown on BRM.

20. The measurement result will be shown on BRM.

21. The measurement result will be shown on BRM.

22. The measurement result will be shown on BRM.

23. The measurement result will be shown on BRM.

24. The measurement result will be shown on BRM.

25. The measurement result will be shown on BRM.

26. The measurement result will be shown on BRM.

27. The measurement result will be shown on BRM.

28. The measurement result will be shown on BRM.

29. The measurement result will be shown on BRM.

30. The measurement result will be shown on BRM.

31. The measurement result will be shown on BRM.

32. The measurement result will be shown on BRM.

33. The measurement result will be shown on BRM.

34. The measurement result will be shown on BRM.

35. The measurement result will be shown on BRM.

36. The measurement result will be shown on BRM.

37. The measurement result will be shown on BRM.

38. The measurement result will be shown on BRM.

39. The measurement result will be shown on BRM.

40. The measurement result will be shown on BRM.

41. The measurement result will be shown on BRM.

42. The measurement result will be shown on BRM.

43. The measurement result will be shown on BRM.

44. The measurement result will be shown on BRM.

45. The measurement result will be shown on BRM.

46. The measurement result will be shown on BRM.

47. The measurement result will be shown on BRM.

48. The measurement result will be shown on BRM.

49. The measurement result will be shown on BRM.

50. The measurement result will be shown on BRM.

51. The measurement result will be shown on BRM.

52. The measurement result will be shown on BRM.

53. The measurement result will be shown on BRM.

54. The measurement result will be shown on BRM.

55. The measurement result will be shown on BRM.

56. The measurement result will be shown on BRM.

57. The measurement result will be shown on BRM.

58. The measurement result will be shown on BRM.

59. The measurement result will be shown on BRM.

60. The measurement result will be shown on BRM.

61. The measurement result will be shown on BRM.

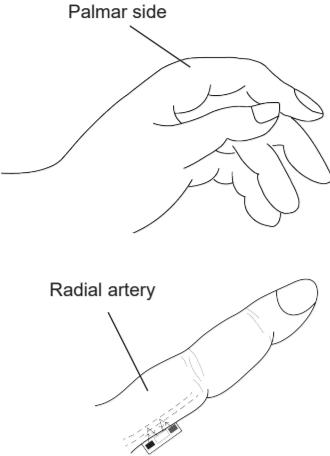
62. The measurement result will be shown on BRM.

63. The measurement result will be shown on BRM.

64. The measurement result will be shown on BRM.

65. The measurement result will be shown on BRM.

66. The measurement result will be shown on BRM.

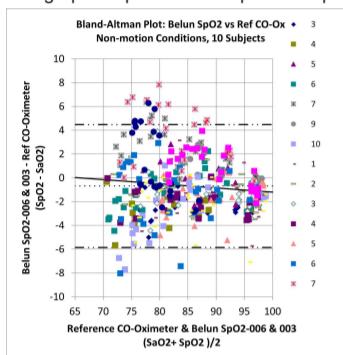

67. The measurement result will be shown on BRM.

68. The measurement result will be

17. TECHNICAL INFORMATION

17.1 Principle

Using spectrophotometric methodology, BLR-200 measures oxygen saturation by illuminating the skin and measuring changes in light absorption of oxygenated (oxyhemoglobin) and deoxygenated blood (reduced hemoglobin) using two-wavelengths light: red and infrared. The ratio of absorbance at these wavelengths is calculated and calibrated against direct measurements of arterial oxygen saturation (SaO₂) to establish the pulse oximeter's measurement of functional oxygen saturation of arterial hemoglobin (SpO₂). Also, the sensor should be placed on the palmar side of the proximal phalanx of the index finger and along the radial artery such that the accuracy of the device will be minimally affected by the skin color.


17.2 Function Specification

SpO₂ Parameter

Accuracy	70% - 100%: $\pm 2.7\%$ below 70%: unspecified
Average	8 seconds
Data Update Period	8 seconds

% - percentage, unit of SpO₂

The graphical plot of all sampled data points:

Please note that certain data tables and plots were obtained from a controlled, induced hypoxia study in healthy adult volunteers. The performance below 80% in one individual gave high positive bias. Further details can be found in the section Testing Summary.

Pulse Rate Parameter

Measuring range	30 bpm - 250 bpm
Resolution	1 bpm
Accuracy	± 2.5 bpm or $\pm 2\%$ whichever is larger
Average	Average over 8 beats

bpm - beat per minute, unit of pulse rate

Measurement in Low Perfusion

SpO₂ and pulse rate can be shown correctly when the perfusion index is greater than 0.1%.

Resistance to Surrounding Light

The deviation between the values measured under the condition of artificial light or indoor natural light and that of darkroom is less than $\pm 1\%$.

17.3 System Specification

Safety Type

Class II, internally powered, BF type

Power Source

Internal Battery	3.7V rechargeable lithium battery
Charging Voltage & Current	DC 5V, 150mA
Recording Time of a Fully Charged Battery	~ 10 hours ^{1,2}
Battery Lifetime	Charge and discharge no less than 300 times if recharge at least every 3 months

¹ Charge the battery as soon as possible when the Ring Status Light turns Solid Red to ensure normal operation. The recording time is estimated on a new battery and it will be reduced as the battery degrades.

² Based on the assumption that the sensor is emitting at the typical power. A higher power will lead to a reduction in the recording time.

Sensor (Wavelength and Power)

Red	658nm ± 2 nm, 8.1mW max.
Infrared	886nm ± 6 nm, 6.6mW max.

The sensor information is especially useful for clinicians performing photodynamic therapy.

Data Memory

Ring	Up to 10 hours of data ¹
------	-------------------------------------

¹ The memory of the Ring will be automatically cleared after the data has been transferred to the Belun Ring Management.

Dimension and Weight

Dimension	Ring: 44 x 60 x 18mm ³
Weight	Ring: approximately 14g ³

³ The measurement is base on a Ring with a Ring Arm size of 11.

Operating Environment

Temperature	+10 - +38 °C
Relative Humidity	$\leq 75\%$
Atmospheric Pressure	700hPa - 1060hPa

Expected Service Life

The expected service life is 3 years* since the first use.

¹ Based on the assumption that the device is used to record for 8 hours per day in 80% of days and the battery is recharged at least every 3 months.

17.4 Testing Summary

SpO₂ accuracy, low perfusion and pulse rate accuracy testing was conducted by Belun Technology Limited as described below.

SpO₂ Accuracy Testing

A SpO₂ accuracy comparison was conducted by an independent clinical trial laboratory. The test was conducted in accordance to the US Code of Federal Regulations (CFR) for Non-Significant Risk (NSR) investigational studies, following ISO14155:2011 as appropriate and the pulse oximetry guidelines of ISO 80601-2-61:2017 application sections, and Pulse Oximeters - Premarket Notifications Submissions [510(k)s] Guidance For Industry and Food and Drug Administration Staff (Issue: March 4, 2013, US FDA).

Healthy, adult, male and female, light- to dark-skinned subjects are recruited. During non-motion and normal operating environment conditions, subjects were in a reclined position and connected to a breathing circuit, for administering medical grade oxygen and nitrogen. The gas flow delivery was adjusted for subject comfort. The gas mixture was controlled to various levels of induced hypoxia resulting in stable oxygen saturation plateaus between 100% and 70% SaO₂. Arterial blood samples were drawn during simultaneous data collection from the control pulse oximeter and the test oximeter. The blood was immediately analyzed by Reference CO-Oximeter providing functional SaO₂ for the basis of the SpO₂ accuracy comparison. The Arms is calculated using weighted data, i.e., if the subject has both right and left sided data, each data will be weighted by 0.5, otherwise the data will be weighted by 1, such that the data is not skewed towards any individuals.

During the test, there was an individual who had an increasing high bias in the range below 80% of SaO₂ as measured by the Reference CO-Oximeter. During this period the perfusion index decreased. As seen historically with hypoxia studies, it is typical for perfusion to decrease along with the lowering of the oxygen saturation level. It is also well established for those experienced in the field of oximetry for the SpO₂ values to increase in scatter as the oxygen saturation levels decrease. This is especially observed when the oxygen saturation levels are below 80%.

Low Perfusion Testing

This test uses a SpO₂ functional tester to provide an artificial simulated pulse rate, with adjustable pulse amplitude at different SpO₂ levels for the oximeter to read. The oximeter should maintain accuracy in accordance with ISO 80601-2-61:2017 for pulse rate 61:2017 for pulse rate.

Pulse Rate Accuracy Testing

This test measures pulse rate oximeter accuracy by compared to reference heart rate provided by a 3-lead ECG monitoring. This test determines whether the oximeter meets the criteria of ISO 80601-2-61:2017 for pulse rate.

Motion Testing

This test measures SpO₂ and pulse rate oximeter accuracy with

motion artifact simulation introduced by a pulse oximeter tester. This test determines whether the oximeter meets the criteria of ISO 80601-2-61 for SpO₂ and pulse rate during simulated movement, tremor, and spike motions.

The accuracy for patients with BMI > 39.5 is not guaranteed.

17.5 Radio Information

Bluetooth LE Wireless Technology Information

Modulation Type	GFSK
Max. Output Power	see test report
Frequency Range	2402MHz - 2480MHz
Antenna Peak Gain	+1.8dBi
Recommended Range	<10m
Radio Compliance	
Radio Modes	Bluetooth LE 5.0

The wireless medical device is home-use in the 2.4GHz band. Potential interferers include: IEEE 802.11b/g/n networks (2.4GHz), B/T BTLE devices, and home wireless telephones (2.4GHz).

Federal Communications Commission (FCC) Notice

Potential for Radio / Television Interference (for U.S.A. only) This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: This device has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This device generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this device does cause harmful interference to radio or television reception, which can be determined by turning the device off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- ◊ Reorient or relocate the receiving antenna.
- ◊ Increase the distance between the device and the receiver.
- ◊ Connect the device to an outlet on a circuit different from the outlet to which the receiver is connected.
- ◊ Consult the dealer or a qualified radio/TV technician for assistance.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

18. MANUFACTURER'S DECLARATION

The following tables describe specific information regarding this device's compliance to IEC 60601-1-2.

Essential performance of the BLR-200 is defined as SpO₂ accuracy and pulse rate accuracy. Accuracies may be affected as a result of exposure to electromagnetic disturbances that are outside of the environments listed in the PRODUCT DESCRIPTION and SAFETY WARNINGS AND CAUTIONS. If issues are experienced, move the Belun device away from the source of electromagnetic disturbances.

Emission table for IEC 60601-1-2, 4th edition:

Guidance and manufacturer's declaration - electromagnetic emissions

This BLR-200 is intended for use in the electromagnetic environment specified below. The operator of BLR-200 should ensure that it is used in such an environment.

Emissions Test

Compliance

Electromagnetic Environment—Guidance

BLR-200 uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.

RF Emissions CISPR 11

Group 1

Harmonic emissions IEC 61000-3-2

N/A

Voltage fluctuations / flicker emissions IEC 61000-3-3

N/A

Guidance and manufacturer's declaration - electromagnetic immunity

Portable and mobile RF communications equipment should be used no closer to any part of BLR-200, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.

Immunity Test IEC 60601

Test Level

Compliance Level

Recommended separation distance

Conducted RF IEC 61000-4-6

3 Vrms

150 kHz to 80 MHz

N/A

$d = 1.2 \sqrt{P} 150$

$\text{kHz to } 80 \text{ MHz}$

$d = 0.7 \sqrt{P} 800$

$\text{MHz to } 2.7 \text{ GHz}$

$d = 0.35 \sqrt{P} 800$

$\text{MHz to } 2.7 \text{ GHz}$

$d = 0.23 \sqrt{P} 385$

$\text{MHz to } 2.7 \text{ GHz}$

$d = 0.13 \sqrt{P} 450$

$\text{MHz to } 2.7 \text{ GHz}$