

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2102464

FCC REPORT

Applicant: ASMART LIGHT CO.,LTD

Address of Applicant: 506 N GARFIELD AVE SUITE#210 ALHAMBRA, CA 91801 USA

Equipment Under Test (EUT)

Product Name: Corn light

Model No.: AST-CLW08E-120WXYZA1-adbcK, AST-CLW08E-

100WXYZA1-adbcK, AST-CLW08E-080WXYZA1-adbcK

Trade mark: ASMART

FCC ID: 2AW5A-CLW08E

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249

Date of sample receipt: 08 Nov., 2021

Date of Test: 09 Nov., to 10 Nov., 2021

Date of report issued: 22 Nov., 2021

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Nov., 2021	Original
01	22 Nov., 2021	Update page 4

Tested by:	Janet	Wei	Date:	22 Nov., 2021	
	Test Engin	eer			

Reviewed by:

Date: 22 Nov., 2021

Project Engineer

Page 2 of 35

Contents

		Page
1 COVER PAG	GE	1
2 VERSION		2
	S	
	MARY	
5 GENERAL I	INFORMATION	5
5.1 CLIENT	T Information	5
	RAL DESCRIPTION OF E.U.T	
	ENVIRONMENT AND MODE	
	RIPTION OF SUPPORT UNITS	
	JREMENT UNCERTAINTY	
5.6 Addition	ONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
5.7 LABORA	ATORY FACILITY	6
	ATORY LOCATION	
5.9 TEST IN	NSTRUMENTS LIST	7
6 TEST RESU	ULTS AND MEASUREMENT DATA	8
6.1 ANTENI	INA REQUIREMENT:	8
6.2 CONDU	JCTED EMISSION	9
6.3 RADIAT	TED EMISSION	12
	ld Strength Of The Fundamental Signal	
6.3.2 Spu	urious Emissions	15
	Bandwidth	
	EDGE	
6.5.1 Rad	diated Emission Method	18
7 TEST SETU	JP PHOTO	23
8 FUT CONST	TRUCTIONAL DETAILS	25

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203/15.249 (a)	Pass
AC Power Line Conducted Emission	15.207	Pass
Field Strength Of The Fundamental Signal	15.249 (a)	Pass
Radiated Spurious Emission	15.249(a)(d)/15.209	Pass
20dB Bandwidth	15.215 (c)	Pass*
Band Edge	15.249(a)(d)	Pass

Remark:

- 1. Pass: Meet the requirement.
- 2. N/A: Not Applicable for Non-adaptive equipment.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).
- 4. Pass*: refer to the FCC ID: 2AW5A-HB01DMS, Report No.: JYTSZB-R12-2101381. (The difference between FCC ID: 2AW5A-HB01DMS and FCC ID: 2AW5A-CLW08E is to install the EUT of FCC ID: 2AW5A-HB01DMS to the prototype of FCC ID: 2AW5A-CLW08E, and the RF module and RF parameters are the same)

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.249 Meas Guidance v05r02

Page 4 of 35

5 General Information

5.1 Client Information

Applicant:	ASMART LIGHT CO.,LTD
Address:	506 N GARFIELD AVE SUITE#210 ALHAMBRA,CA 91801 USA
Manufacturer/ Factory:	ASMART LIGHT CO.,LTD
Address:	506 N GARFIELD AVE SUITE#210 ALHAMBRA,CA 91801 USA

5.2 General Description of E.U.T.

Product Name:	Corn light
Model No.:	AST-CLW08E-120WXYZA1-adbcK, AST-CLW08E-100WXYZA1-adbcK, AST-CLW08E-080WXYZA1-adbcK
Operation Frequency:	5731.1 ~ 5859.1 MHz
Channel numbers:	Infinite (Customer claims)
Modulation technology:	FMCW
Antenna Type:	Internal Antenna
Antenna gain:	-0.61 dBi
Power supply:	AC 100V~277V, 50/60Hz
Remark:	Model No.: AST-CLW08E-120WXYZA1-adbcK,AST-CLW08E-100WXYZA1-adbcK,AST-CLW08E-080WXYZA1-adbcK were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being number of lamp beads leads to different power.We choose the maximum power mode: AST-CLW08E-120WXYZA1-adbcK to do all the tests. ***W = Rating Power
	X = LED manufacturer,Can be any letter Y= diffuser types: "F" for frosted type and "C " for clear type
	Z=Sensor type. "N"for none sensor, "M"for motion sensor, "P"for PIR sensor.
	a= the lamp base type,,the "a" represent the lamp base type, can be "E" for E39, "EX" for EX39, BLANK for E26
	d= dimming type: "L" for Continuous dimming and "S " for Segmented dimmer
	c= CAXX, XXcan be two digital
	"b" represent the Top cover material, can be "P" or "M" and "P" for plastic "M"for material.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel				
Frequency Frequency Frequency				
5731.1 MHz	5805.0 MHz	5859.1 MHz		

Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test.

Report No: JYTSZB-R12-2102464

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
LENOVO	Laptop	SL510	2847A65	DoC
EBYTE	Test suite	E25 D1	N/A	N/A
Sunshiny	Adapter	XS-1201000SCN	N/A	N/A

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022
EMI Test Software	Tonscend	TS+		Version:3.0.0.1	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022	
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022	
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /249(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

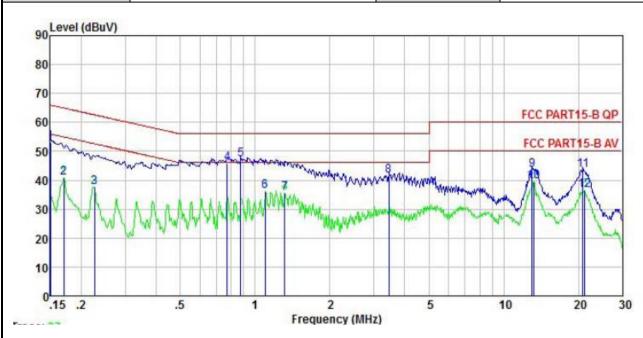
15.249(a) requirement:

(i) Systems operating in the 5725-5875 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an External antenna which cannot replace by end-user, the best-case gain of the antenna is -0.61 dBi.

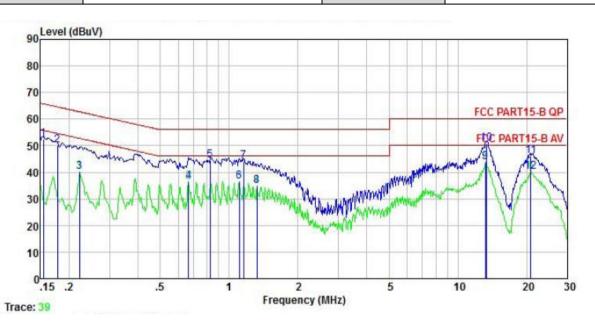
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.20	07					
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)	Limit (dBuV)				
	,	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarith	· · · · · · · · · · · · · · · · · · ·					
Test procedure	line impedance stabiliza 50ohm/50uH coupling ir 2. The peripheral devices a LISN that provides a 50 termination. (Please reference photographs). 3. Both sides of A.C. line a interference. In order to positions of equipment a	rs are connected to the nation network (L.I.S.N.), was mpedance for the measure are also connected to the ohm/50uH coupling imperent to the block diagram of the maximum find the maximum emiss and all of the interface catological control on control of the control of the interface catological control on control of the maximum emiss and all of the interface catological control on control of the interface catological control on control of the interface catological control on control of the interface catological catolo	which provides a ring equipment. The main power through a redance with 500hm of the test setup and a conducted rion, the relative bles must be changed				
Test setup:	Reference LISN 40cm AUX Equipment E.U. Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Notes Test table height=0.8m	BOCM Filter Filter EMI Receiver	— AC power				
Test Instruments:	Refer to section 5.9 for detail	ls					
Test mode:	Refer to section 5.3 for detail	ls					
Test results:	Passed						

Measurement Data:

Product name:	Corn light	Product model:	AST-CLW08E-120WXYZA1-adbcK	
Test by:	Janet	Test mode:	Tx mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral	
Test voltage:	AC 120 V/60 Hz	Environment:	Temp.: 23℃ Humi.: 53%	


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB	<u>dB</u>	₫B	dBu₹	dBu∜	dB	
1	0.150	42.79	10.19	0.01	0.01	53.00	66.00	-13.00	QP
2	0.170	30.53	10.20	0.01	0.01	40.75	54.94	-14.19	Average
3	0.226	27.21	10.23	0.00	0.02	37.46	52.61	-15.15	Average
4	0.771	35.45	10.30	0.05	0.03	45.83	56.00	-10.17	QP
1 2 3 4 5 6 7 8 9	0.876	36.62	10.31	0.06	0.04	47.03	56.00	-8.97	QP
6	1.100	25.86	10.31	0.09	0.07	36.33	46.00	-9.67	Average
7	1.317	25.04	10.31	0.12	0.11	35.58	46.00	-10.42	Average
8	3.454	30.66	10.36	0.41	0.08	41.51	56.00	-14.49	QP
9	12.988	30.16	10.68	2.50	0.11	43.45	60.00	-16.55	QP
10	13.197	26.09	10.69	2.57	0.11	39.46	50.00	-10.54	Average
11	20.814	32.09	10.88	0.32	0.18	43.47	60.00	-16.53	QP
12	21.147	24.96	10.88	0.36	0.17	36.37	50.00	-13.63	Average

Notes:

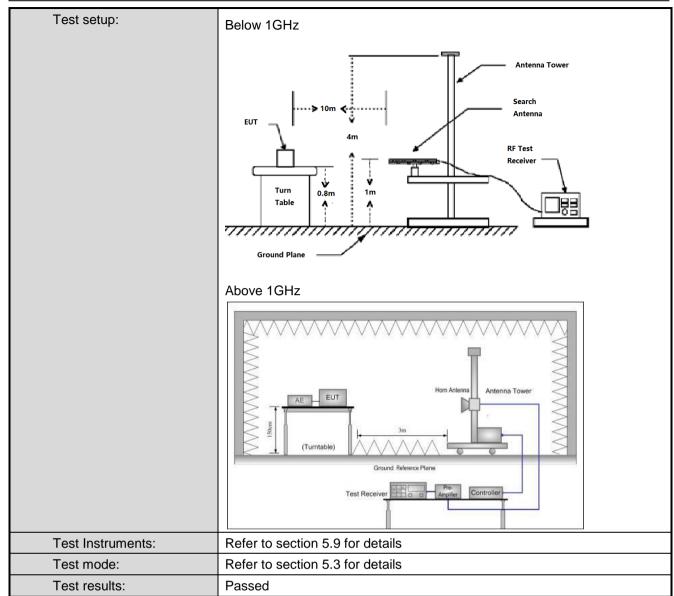
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Corn light	Product model:	AST-CLW08E-120WXYZA1-adbcK		
Test by:	Janet	Test mode:	Tx mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp.: 23℃ Humi.: 53%		

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	₫B	dBu∛	dBu∜	<u>dB</u>	
1	0.154	42.20	10.22	-0.06	0.01	52.37	65.78	-13.41	QP
2	0.178	40.10	10.23	-0.12	0.01	50.22	64.59	-14.37	QP
3	0.222	30.20	10.24	-0.19	0.03	40.28	52.74	-12.46	Average
1 2 3 4 5 6 7 8 9	0.665	26.75	10.30	-0.39	0.03	36.69	46.00	-9.31	Average
5	0.826	34.23	10.31	-0.01	0.03	44.56	56.00	-11.44	QP
6	1.106	25.84	10.32	0.35	0.07	36.58	46.00	-9.42	Average
7	1.160	33.50	10.32	0.29	0.08	44.19	56.00	-11.81	QP
8	1.324	24.39	10.32	0.15	0.11	34.97	46.00	-11.03	Average
9	13.197	29.88	10.72	3.08	0.11	43.79	50.00	-6.21	Average
10	13.337	36.96	10.72	3.11	0.11	50.90	60.00	-9.10	QP
11	20.814	34.27	10.92	0.91	0.18	46.28	60.00	-13.72	QP
12	20.814	28.27	10.92	0.91	0.18	40.28	50.00	-9.72	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.


6.3 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.249(a) (d)and 15.209						
Test Frequency Range:	30MHz to 40GHz						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:	Frequency	Remark					
	30MHz-1GHz	Quasi-peak	120kHz	300kH	z Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
Limit:	Frequen	cy L	imit (dBuV/m (@3m)	Remark		
(Field strength of the	5725-58	25	94		Average Value		
fundamental signal)	3723-36	23	114		Peak Value		
Limit:	Frequen	cy Li	mit (dBuV/m @	210m)	Remark		
(Spurious Emissions)	30MHz-88	MHz	30.0		Quasi-peak Value		
(-1	88MHz-216	SMHz	33.5		Quasi-peak Value		
	216MHz-96	0MHz	36.0		Quasi-peak Value		
	960MHz-1	GHz	44.0		Quasi-peak Value		
	54.0 Average V						
	Above 1(iHz						
Test Procedure:	Above 1GHz						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3.1 Field Strength Of The Fundamental Signal

Peak value: Frequency (MHz) Read Level (dB/m) (dB/m) (dBuV/m) Limit Line (dBuV/m) (dB) Polariza (dBuV/m) (dBuV/									
Frequency (MHz) Read Level (dBuV) Factor (dB/m) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) Polarization 5731.1 77.68 17.24 94.92 114 -19.08 Vertication 5731.1 72.54 17.24 89.78 114 -24.22 Horizon Average value: Frequency (MHz) Read Level (dBw) Factor (dB/m) Level (dBwV/m) Cover Limit (dB) Polarization 5731.1 75.32 17.24 92.56 94 -1.44 Vertication 5731.1 69.57 17.24 86.81 94 -7.19 Horizon	Lowest Field Strength Of The Fundamental Signal								
(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Polarization 5731.1 77.68 17.24 94.92 114 -19.08 Vertical 5731.1 72.54 17.24 89.78 114 -24.22 Horizon Average value: Frequency (MHz) Read Level (dBw) Level (dBw/m) Limit Line (dBw/m) Over Limit (dB) Polarization 5731.1 75.32 17.24 92.56 94 -1.44 Vertical 5731.1 69.57 17.24 86.81 94 -7.19 Horizon	Peak value:								
5731.1 72.54 17.24 89.78 114 -24.22 Horizon Average value: Frequency (MHz) Read Level (dBuV) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) Polariza 5731.1 75.32 17.24 92.56 94 -1.44 Vertic 5731.1 69.57 17.24 86.81 94 -7.19 Horizon	ation								
Average value: Frequency (MHz) Read Level (dBuV) Factor (dB/m) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) Polarization 5731.1 75.32 17.24 92.56 94 -1.44 Vertical 5731.1 69.57 17.24 86.81 94 -7.19 Horizon	cal								
Frequency (MHz) Read Level (dBuV) Factor (dB/m) Level (dBuV/m) Limit Line (dBuV/m) Over Limit (dB) Polariza 5731.1 75.32 17.24 92.56 94 -1.44 Vertical 5731.1 69.57 17.24 86.81 94 -7.19 Horizon	ntoal								
(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Polarization 5731.1 75.32 17.24 92.56 94 -1.44 Vertication 5731.1 69.57 17.24 86.81 94 -7.19 Horizon									
5731.1 69.57 17.24 86.81 94 -7.19 Horizon	ation								
	cal								
Middle Field Strength Of The Fundamental Signal	ntoal								
Peak value:									
Frequency Read Level Factor Level Limit Line Over Limit (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Polariza	ation								
5805 50.23 17.51 67.74 114 -46.26 Vertic	cal								
5805 52.64 17.51 70.15 114 -43.85 Horizon	ntoal								
Average value:									
Frequency Read Level Factor Level Limit Line Over Limit (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Polariza	ation								
5805 48.57 17.51 66.08 94 -27.92 Vertic	cal								
5805 50.67 17.51 68.18 94 -25.82 Horizon	ntoal								
Highest Field Strength Of The Fundamental Signal									
Peak value:									
Frequency Read Level Factor Level Limit Line Over Limit (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Polariza	ation								
5859.1 58.38 17.51 75.89 114 -38.11 Vertic	cal								
5859.1 57.98 17.51 75.49 114 -38.51 Horizon	ntoal								
Average value:									
Frequency Read Level Factor Level Limit Line Over Limit (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB)	ation								
5859.1 55.67 17.51 73.18 94 -20.82 Vertic	cal								
5859.1 54.21 17.51 71.72 94 -22.28 Horizon	ntoal								
Remark: 1. Final Level = Receiver Read level + Factor									

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3.2 Spurious Emissions

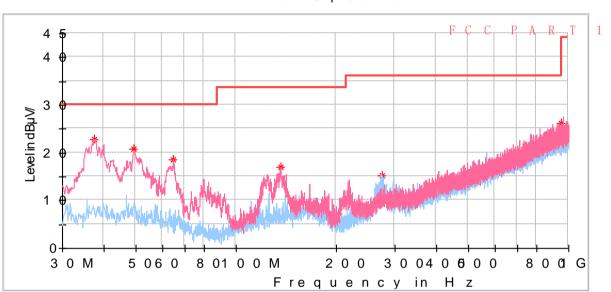
Above 1GHz

710010 10112								
	Lowest							
	Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11462.2	51.34	7.06	58.4	74	-15.6	Vertical		
11462.2	52.98	7.06	60.04	74	-13.96	Horizontal		
			Average Va	lue				
Frequency (MHz)	Read Level (dBuV)	Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11462.2	45.14	7.06	52.2	54	-1.8	Vertical		
11462.2	45.72	7.06	52.78	54	-1.22	Horizontal		
Middle								
	Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11610	52.03	6.72	58.75	74	-15.25	Vertical		
11610	53.12	6.72	59.84	74	-14.16	Horizontal		
Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11610	45.3	6.72	52.02	54	-1.98	Vertical		
11610	44.57	6.72	51.29	54	-2.71	Horizontal		
			Highest					
			Peak Valu	ıe				
Frequency (MHz)	Read Level (dBuV)	Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11718.2	52.45	7.44	59.89	74	-14.11	Vertical		
11718.2	53.21	7.44	60.65	74	-13.35	Horizontal		
			Average Va	1ue				
Frequency (MHz)	Read Level (dBuV)	Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11718.2	44.78	7.44	52.22	54	-1.78	Vertical		
11718.2	45.21	7.44	52.65	54	-1.35	Horizontal		
Romark:								

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{2.} Final Level = Receiver Read level + Factor


^{3.} The spurious emissions is tested up to 40GHz, the emission levels of other frequencies are very lower than the limit and not show in test report, , only report the worst case.

Below 1GHz

Product name:	Corn light	Product model:	AST-CLW08E-120WXYZA1-adbcK	
Test By:	Janet	Test mode:	Tx mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical& Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 23℃ Huni: 54%	

Critical_Freqs←

-	Frequency	MaxPeak↓	Limit	Margin↓	Height↓	Pol∈	Azimuth↓	Corr.↓
	(MHz)⊖	(dBμ V/m)∂	(dB _μ V/m)∂	(dB) <i></i> ₽	(cm)⊢		(deg)∉	(dB/m)⊬
•	37.566000↔	22.88	30.00€	7.12⊖	100.0∉	V↩	0.0⊹	-16.1↔
•	49.206000↔	20.71∉	30.00€	9.29⊖	100.0∉	V↩	0.0⊹	-15.8⊹
•	64.726000↔	18.52∉	30.00€	11.48⊖	100.0∉	V↩	0.0⊹	-17.3∉
•	135.924000⊕	17.12∉	33.50≓	16.38⊖	100.0∉	V↩	81.0∉	-15.9↔
•	275.216000⊕	15.30∉	36.00≓	20.70⊖	100.0∉	H↩	81.0∉	-15.0↔
-	947.523000	26.21∉	36.00∉	9.79⊖	100.0∉	V⇔	178.0∉	-0.1↔

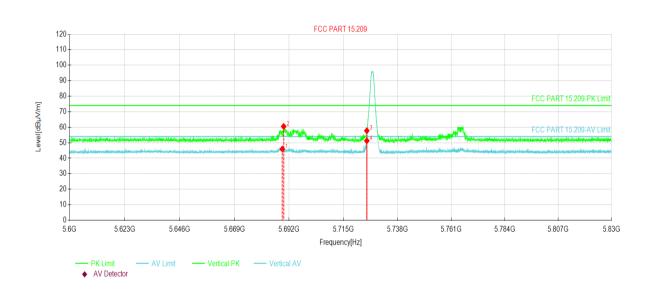
Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.4 20dB Bandwidth

Test Requirement:	FCC Part15 C Section 15.215(c)					
Receiver setup:	RBW=1kHz, VBW=3kHz, detector: Peak					
Limit:	N/A					
Test Procedure:	According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT.					
	2. Set the EUT to proper test channel.					
	3. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points.					
	4. Read 20dB bandwidth.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to the FCC ID: 2AW5A-HB01DMS, Report No.: JYTSZB-R12-2101381.					

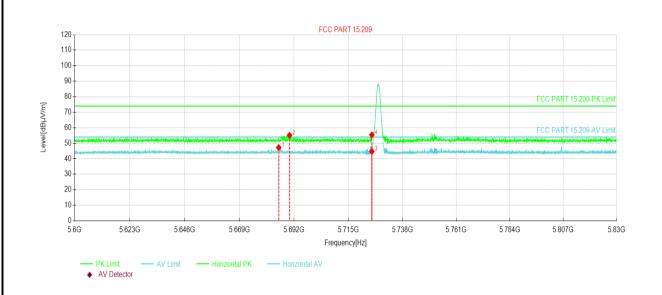

6.5 Band Edge

651 Radiated Emission Method

6.5.1 Radiated Emissio								
Test Requirement:	FCC Part15 C Section 15.209 and 15.249							
Test Frequency Range:	5600MHz to 6000H	5600MHz to 6000Hz						
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency							
	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value			
Limit:	Frequency		nit (dBuV/m	·	Average Value Remark			
Littiit.			54.00	30,	Average Value			
	Above 1GHz		74.00		Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5m(above 1GHz) above the groundat a 3 meter chamber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified andthen reported in a data sheet. 							
Test setup:	Above 1GHz	Ground Reference		ntenna Tower				
Test Instruments:	Refer to section 5.9	for details						
Test mode:	Refer to section 5.3	for details						
Test results:	Refer to the FCC ID:	2AW5A-HB01	DMS, Report	No.: JYTS	ZB-R12-2101381.			

Product name:	Corn light	Product model:	AST-CLW08E-120WXYZA1- adbcK
Test By:	Janet	Test mode:	Tx mode
Test Channel:	Lowest channel	owest channel Polarization:	
Test Voltage:	AC120V	Environment:	Temp: 23°C Huni: 35%

Suspected Data List								
NO.∉	Freq.∉ [MHz]∉	Reading⊯ [dBuV/m]∉	Level⊲ [dBµV/m]⊲	Factor⊎ [dB]⊎	Limit⊬ [dBµV/m]≓	Margin⊬ [dB]⊬	Trace⊖	Polarity∉
1∈	5689.21	28.89∉	46.00€	17.11₫	54.00∉	8.00⊄	AV∈	Vertical⊲ ←
2←	5689.75	43.37∉	60.48₽	17.11₫	74.00⊄	13.52	PK∈	Vertical⊲⊸
3↩	5725.00	40.54₽	57.77₽	17.23∉	74.00⊄	16.23∉	PK∈	Vertical⊲⊸
4∈	5725.00	34.05∉	51.28↩	17.23∂	54.00⊄	2.72₽	AV₽	Vertical∉

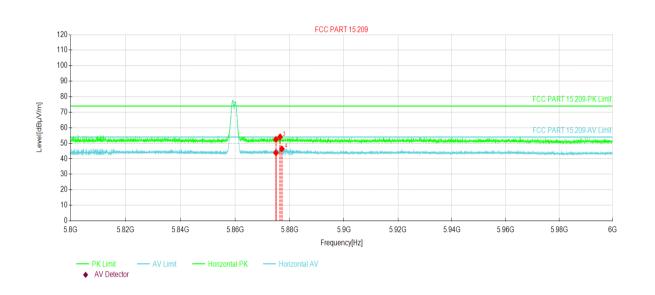

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Corn light	Product model:	AST-CLW08E-120WXYZA1- adbcK
Test By:	Janet	Test mode:	Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC120V	Environment:	Temp: 23°C Huni: 35%

Suspected Data List									
NO.	NO.∉	Freq.⊎	Reading∈	Level⊎	Factor⊎	Limit∉	Margin∈	Trace/ Delect	Dolority 1
	NO.∈	[MHz]∈	[dBuV/m]∈	[dBµV/m]∈	[dB]∈	[dBuV/m]∈	[dB]∉	Trace∈	Polarity∈
	1∂	5685.53	30.14년	47.24₽	17.10↩	54.00⊄	6.76	AV∈	Horizontal₽
	2↩	5690.13	38.01∉	55.12↩	17.11∂	74.00←	18.88₽	PK∂	Horizontal₽
	3↩	5725.00	27.44₽	44.67₽	17.23∉	54.00₽	9.33₽	AV₽	Horizontal₽
	4↩	5725.00	38.17∉	55.40↩	17.23∉	74.00₽	18.60⊄	PK∂	Horizontal₽

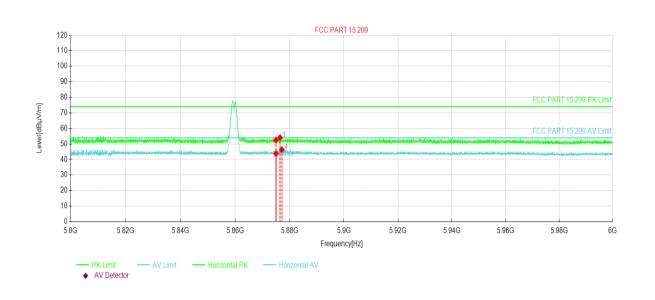

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 20 of 35

Product name:	Corn light	Product model:	AST-CLW08E-120WXYZA1- adbcK
Test By:	Janet	Test mode:	Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC120V	Environment:	Temp: 23°C Huni: 35%

Suspe	Suspected Data List									
NO.	Freq.⊌	Reading∈	Level⊎	Factor∈	Limit∈	Margin∈	T(1			
NO.∉	[MHz]∂	[dBuV/m]∈	[dBµV/m]∈	[dB]∈	[dBuV/m]∈	[dB]∈	Trace⊖	Polarity∈		
1∈	5875.00	26.23₽	43.80⊄	17.57∉	54.00⊄	10.20⊄	AV∈	Horizontal₽		
2↩	5875.00	34.88∉	52.45₽	17.57₽	74.00€	21.55↩	PK∈	Horizontal₽		
3↩	5876.52	36.53₽	54.10₽	17.57₽	74.00₽	19.90⊄	PK₽	Horizontal₽		
4↩	5877.17	28.81₽	46.38₽	17.57₽	54.00↩	7.62↩	AV∂	Horizontal₽		


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2111032

Product name:	Corn light	Product model:	AST-CLW08E-120WXYZA1-adbcK
Test By:	Janet	Test mode:	Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120V	Environment:	Temp: 23°C Huni: 35%

1.									
Suspected Data List									
	NO.□	Freq.∉	Reading∈	Level⊎	Factor⊎	Limit⊬	Margin∈	Trans4	Dolority 1
	NO.∈	[MHz]∈	[dBuV/m]∈	[dBµV/m]∈	[dB]∉	[dBuV/m]∈	[dB]∉	Trace⊖	Polarity∈
	1₽	5875.00	26.23₽	43.80⊄	17.57∉	54.00⊄	10.20∉	AV∂	Horizontal₽
	2↩	5875.00	34.88∉	52.45₽	17.57∉	74.00∂	21.55↩	PKċ	Horizontal₽
	3↩	5876.52	36.53₽	54.10↩	17.57∉	74.00∂	19.90⊄	PKċ	Horizontal₽
	4↩	5877.17	28.81₽	46.38₽	17.57₽	54.00₽	7.62	AV∂	Horizontal₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 22 of 35