

FCC Test Report

FCC ID : 2AW34DS1023ST00

Equipment : MOTION SENSOR

Model No. : DS-1023ST-00

Brand Name : SeniorAdom

Applicant : KRG CORPORATE

Address : 5 rue Benjamin Raspail , 92240 Malakoff, France

Standard : 47 CFR FCC Part 15.247

Received Date : Jul. 06, 2020

Tested Date : Jul. 22 ~ Jul. 30. 2020

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen / Assistant Manager Gary Chang / Manager

Testing Laboratory

Report No.: FR070604 Page: 1 of 31

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	
1.5	Test Standards	
1.6	Reference Guidance	8
1.7	Deviation from Test Standard and Measurement Procedure	8
1.8	Measurement Uncertainty	8
2	TEST CONFIGURATION	9
2.1	Testing Facility	9
2.2	The Worst Test Modes and Channel Details	9
3	TRANSMITTER TEST RESULTS	10
3.1	Unwanted Emissions into Restricted Frequency Bands	10
3.2	Unwanted Emissions into Non-Restricted Frequency Bands	
3.3	Conducted Output Power	23
3.4	Number of Hopping Frequency	24
3.5	20dB and Occupied Bandwidth	
3.6	Channel Separation	28
3.7	Number of Dwell Time	30
4	TEST LABORATORY INFORMATION	31

Release Record

Report No.	Version	Description	Issued Date
FR070604	Rev. 01	Initial issue	Aug. 21, 2020

Report No.: FR070604 Page: 3 of 31

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	Note	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 2713.99MHz 48.74 (Margin -5.26dB) - AV	Pass
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(1)	Conducted Output Power	Power [dBm]: 22.48	Pass
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR070604 Page: 4 of 31

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz) Ch. Freq. (MHz) Modulation Data Rate					
902 ~ 905	600kbps				

1.1.2 Antenna Details

Ant. No.	Brand / Model	Туре	Connector	Antenna Gain (dBi)
1	INPAQ / Sigfox	Printed, Metal antenna	N/A	0.68

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	6Vdc from battery (1.5Vdc battery AAx4)
-------------------	---

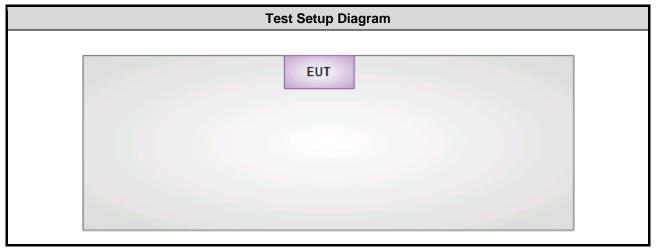
1.1.4 Accessories

	Accessories					
No.	No. Equipment Description					
1	Battery x4	Brand: GOLDEN POWER Model: GLR6A Rating: 1.5Vdc, 2550mAh				

1.1.5 Channel List

UL	MHz	Micro ch.1	Micro ch.2	Micro ch.3	Micro ch.4	Micro ch.5	Micro ch.6
1	902.2	902.1375	902.1625	902.1875	902.2125	902.2375	902.2625
2	902.5	902.4375	902.4625	902.4875	902.5125	902.5375	902.5625
3	902.8	902.7375	902.7625	902.7875	902.8125	902.8375	902.8625
4	903.1	903.0375	903.0625	903.0875	903.1125	903.1375	903.1625
5	903.4	903.3375	903.3625	903.3875	903.4125	903.4375	903.4625
6	903.7	903.6375	903.6625	903.6875	903.7125	903.7375	903.7625
7	904.0	903.9375	903.9625	903.9875	904.0125	904.0375	904.0625
8	904.3	904.2375	904.2625	904.2875	904.3125	904.3375	904.3625
9	904.6	904.5375	904.5625	904.5875	904.6125	904.6375	904.6625

Report No.: FR070604 Page : 5 of 31


1.1.6 Test Tool and Duty Cycle

Test Tool	Tera Term, Version: V4.7.4			
Duty Cycle and Duty Factor	Duty Cycle Of Test Signal (%)	Duty Factor (dB)		
Duty Cycle and Duty Factor	95.65%	0.19		

1.2 Local Support Equipment List

	Support Equipment List						
No.	No. Equipment Brand Model FCC ID Remarks						
1	Notebook	DELL	Latitude E5470	DoC			
2	Fixture				Provided by applicant.		

1.3 Test Setup Chart

Note: The notebook and fixture are disconnected from EUT and removed from test table when EUT is set to transmit continuously.

Report No.: FR070604 Page: 6 of 31

1.4 The Equipment List

Test Item	Radiated Emission							
Test Site	966 chamber1 / (03Cl	966 chamber1 / (03CH01-WS)						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101498	Dec. 17, 2019	Dec. 16, 2020			
Receiver	R&S	ESR3	101657	Feb. 14, 2020	Feb. 13, 2021			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 10, 2020	Jul. 09, 2021			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 12, 2019	Dec. 11, 2020			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2019	Nov. 14, 2020			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 13, 2019	Nov. 12, 2020			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 07, 2019	Oct. 06, 2020			
Preamplifier	EMC	EMC02325	980225	Jul. 03, 2020	Jul. 02, 2021			
Preamplifier	Agilent	83017A	MY39501308	Oct. 08, 2019	Oct. 07, 2020			
Preamplifier	EMC	EMC184045B	980192	Jul. 21, 2020	Jul. 20, 2021			
RF Cable	EMC	EMC104-SM-SM-80 00	181106	Oct. 07, 2019	Oct. 06, 2020			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 07, 2019	Oct. 06, 2020			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Oct. 07, 2019	Oct. 06, 2020			
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 07, 2019	Oct. 06, 2020			
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 07, 2019	Oct. 06, 2020			
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Oct. 07, 2019	Oct. 06, 2020			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			

Test Item	tem RF Conducted							
Test Site	(TH01-WS)	TH01-WS)						
Instrument	nstrument Manufacturer Model No. Serial No. Calibration Date Calibration Un							
Spectrum Analyzer	R&S	FSV40	101499	Jan. 09, 2020	Jan. 08, 2021			
Power Meter	Anritsu	ML2495A	1241002	Oct. 23, 2019	Oct. 22, 2020			
Power Sensor	Anritsu	MA2411B	1207366	Oct. 23, 2019	Oct. 22, 2020			
AC POWER SOURCE	APC	AFC-500W	F312060012	Dec. 02, 2019	Dec. 01, 2020			
Measurement Software		SENSE-15247_FS	V5.10.1	NA	NA			
Note: Calibration Inte	Note: Calibration Interval of instruments listed above is one year.							

Report No.: FR070604 Page: 7 of 31

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty			
Parameters Uncertainty			
Bandwidth	±34.130 Hz		
Conducted power	±0.808 dB		
Power density	±0.583 dB		
Radiated emission ≤ 1GHz	±3.41 dB		
Radiated emission > 1GHz	±4.59 dB		
Time	±0.1%		

Report No.: FR070604 Page: 8 of 31

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corp.
Test Site	03CH01-WS, TH01-WS
Address of Test Site	No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

FCC Designation No.: TW2732FCC site registration No.: 181692

➤ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Radiated Emissions ≤ 1GHz				
Radiated Emissions > 1GHz				
Conducted Output Power	FHSS-DBPSK	902.1375 / 904.6625	600kbps	
Number of Hopping Channels				
Hopping Channel Separation 20dB and Occupied bandwidth				
Dwell Time	FHSS-DBPSK	902.3	600kbps	

NOTE: The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.

Report No.: FR070604 Page: 9 of 31

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit				
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)	
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300	
0.490~1.705	24000/F(kHz)	33.8 - 23	30	
1.705~30.0	30	29	30	
30~88	100	40	3	
88~216	150	43.5	3	
216~960	200	46	3	
Above 960	500	54	3	

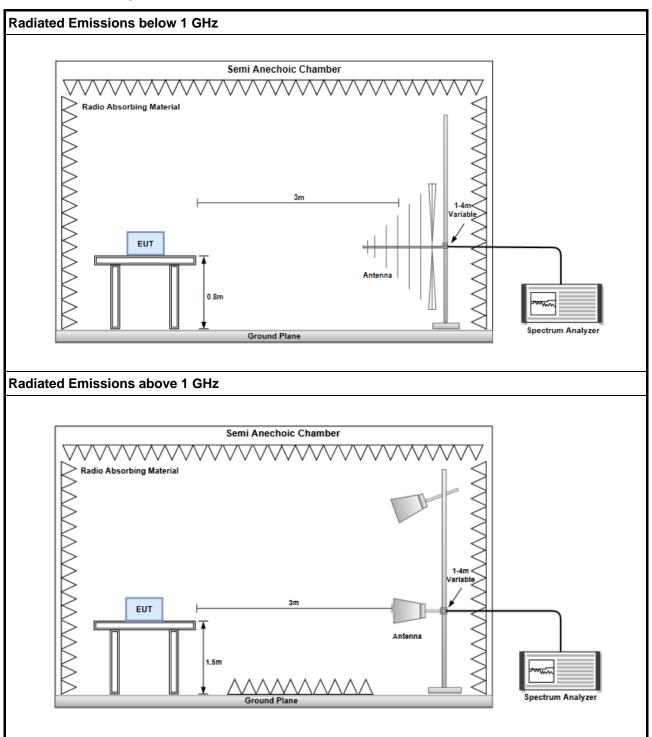
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

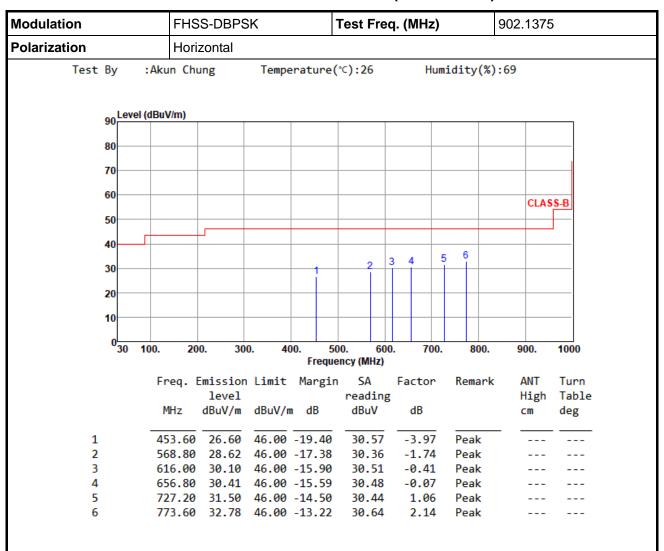
3.1.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

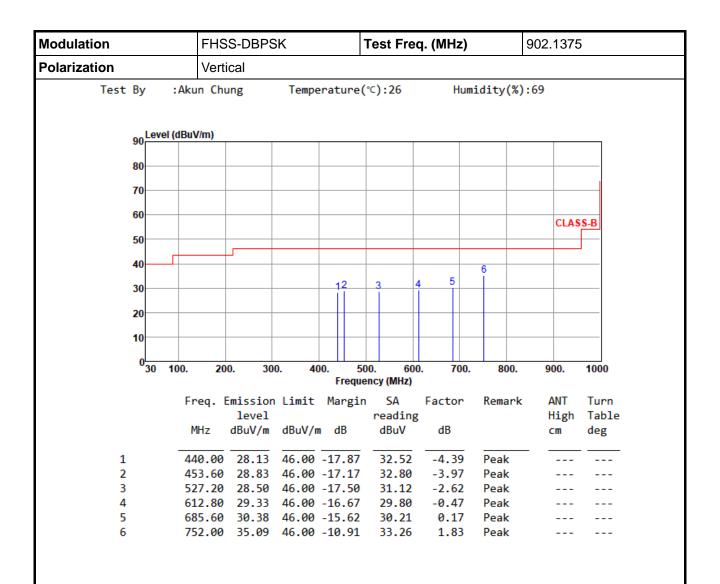
Report No.: FR070604 Page: 10 of 31


3.1.3 Test Setup

Report No.: FR070604 Page: 11 of 31

3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

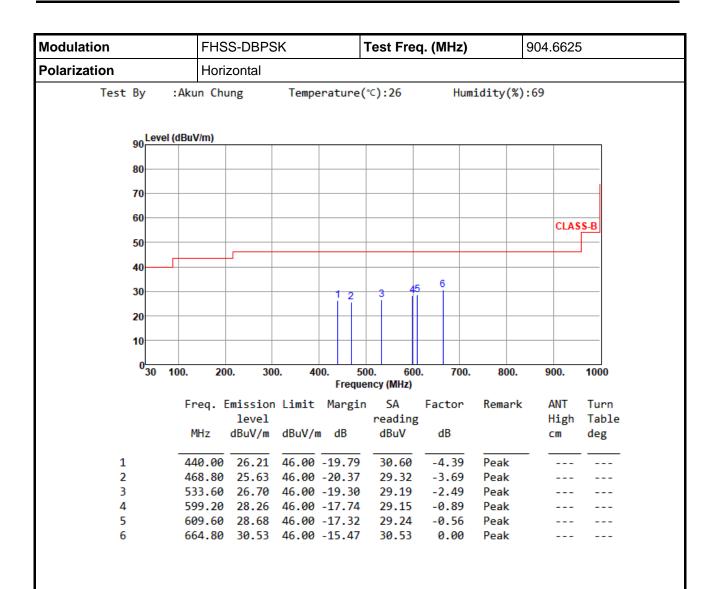
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

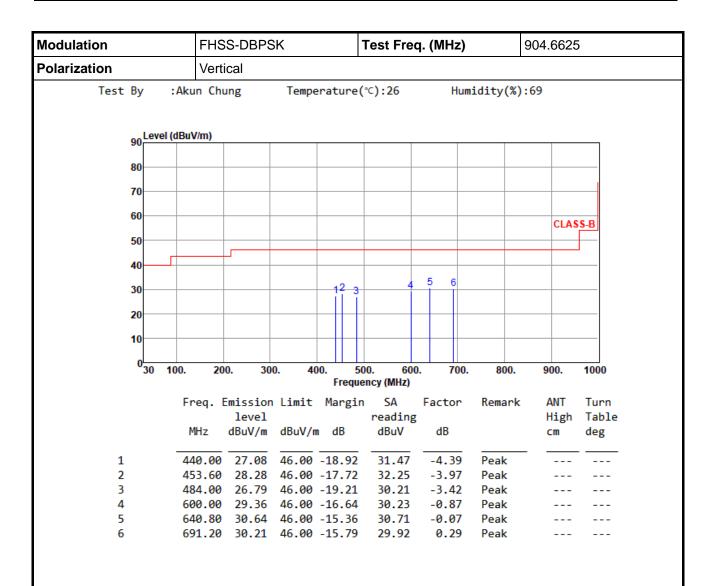
Report No.: FR070604 Page: 12 of 31


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR070604 Page: 13 of 31

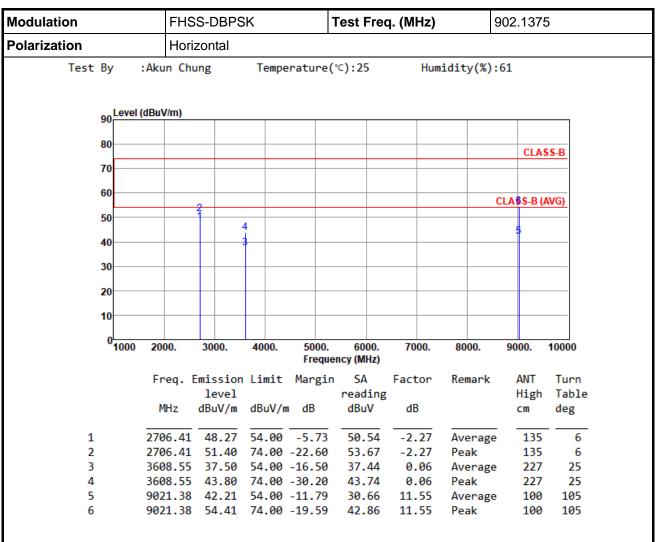

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR070604 Page: 14 of 31

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR070604 Page: 15 of 31

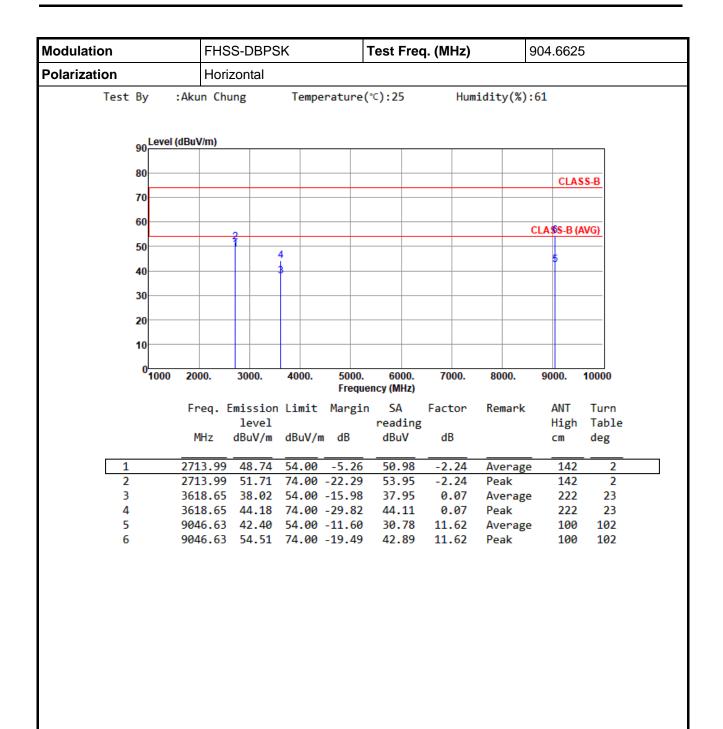
3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

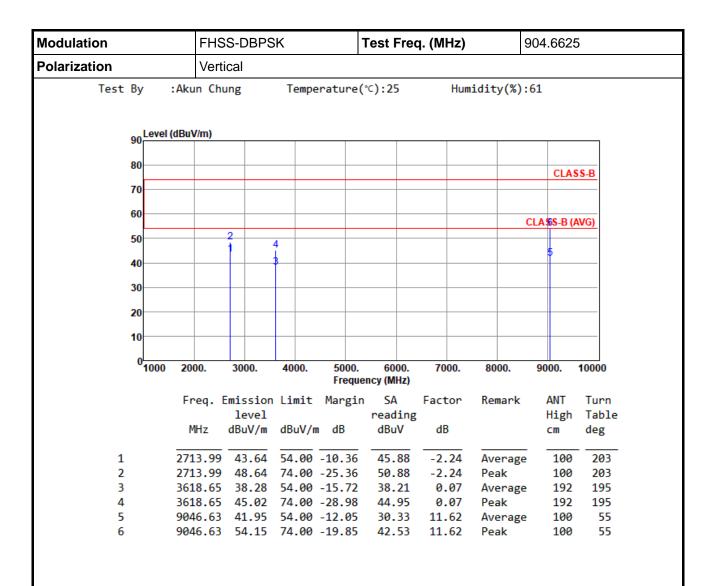
Report No.: FR070604 Page: 16 of 31



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR070604 Page: 17 of 31



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR070604 Page: 18 of 31

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

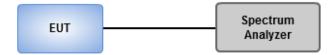
Report No.: FR070604 Page: 19 of 31

3.2 Unwanted Emissions into Non-Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.2.2 Test Procedures

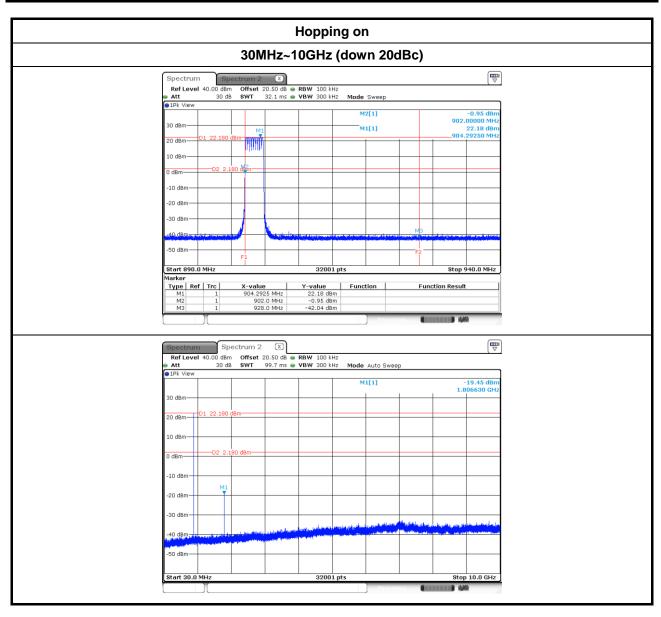

Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

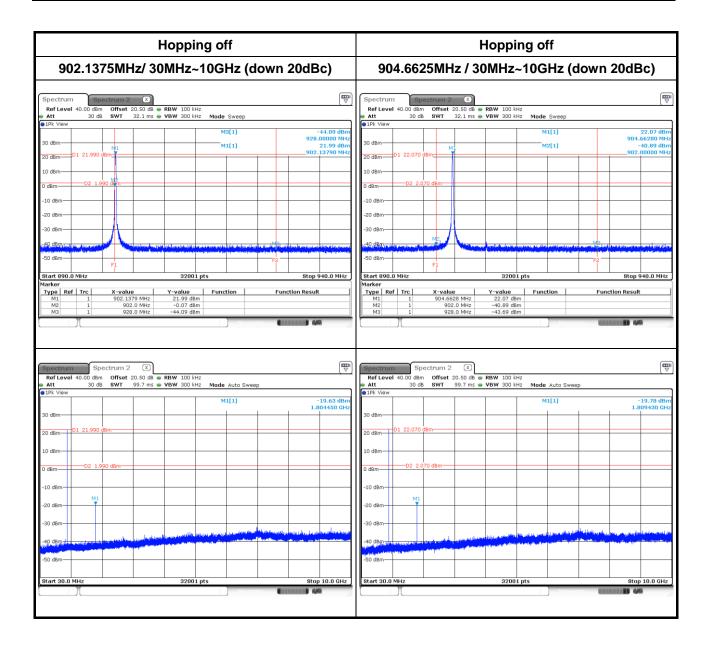
Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 10 GHz
- 4. Use the peak marker function to determine the maximum amplitude level

3.2.3 Test Setup



Report No.: FR070604 Page: 20 of 31


3.2.4 Unwanted Emissions into Non-Restricted Frequency Bands

Ambient Condition24°C / 67%Tested ByAska Huang

Report No.: FR070604 Page: 21 of 31

Report No.: FR070604 Page: 22 of 31

3.3 Conducted Output Power

3.3.1 Limit of Conducted Output Power

1 watt for systems employing at least 50 hopping channels

3.3.2 Test Procedures

- A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.3.3 Test Setup

3.3.4 Test Result of Conducted Output Power

Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------

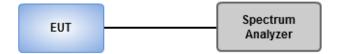
Modulation Mode	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (dBm)
FHSS-DBPSK	902.1375	170.61	22.32	30
FHSS-DBPSK	904.6625	177.01	22.48	30

Modulation Mode	Freq. (MHz)	AV Output Power (mW)	AV Output Power (dBm)
FHSS-DBPSK	902.1375	169.43	22.29
FHSS-DBPSK	904.6625	174.98	22.43

Note: Average power is for reference only.

Report No.: FR070604 Page: 23 of 31

3.4 Number of Hopping Frequency

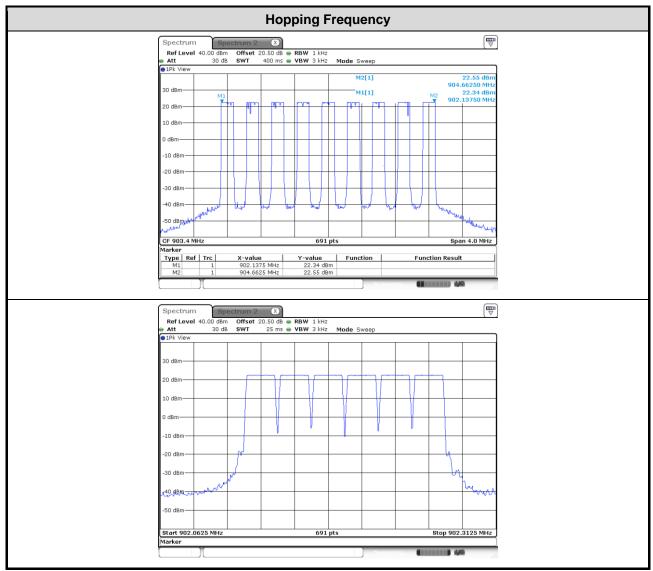

3.4.1 Limit of Number of Hopping Frequency

The 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies..

3.4.2 Test Procedures

- 1. Set RBW = 1kHz, VBW = 3kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

3.4.3 Test Setup



Report No.: FR070604 Page: 24 of 31

3.4.4 Test Result of Number of Hopping Frequency

Ambient Condition24°C / 67%Tested ByAska Huang

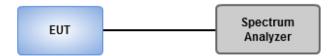
Note:

Plot 1: 9 groups

Plot 2: 6 channels / 1 group Total channel: 9 * 6 = 54 channels

Report No.: FR070604 Page: 25 of 31

3.5 20dB and Occupied Bandwidth

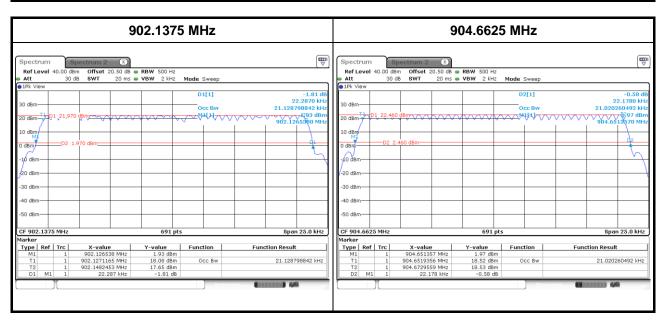

3.5.1 Limit of Number of 20dB Bandwidth

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

3.5.2 Test Procedures

- 1. Set resolution bandwidth (RBW) = 500 Hz, Video bandwidth = 2 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20dB relative to the maximum level measured in the fundamental emission.
- 5. Use the occupied measurement function of specturm analyzer to measure 99% occupied bandwidth.

3.5.3 Test Setup


Report No.: FR070604 Page: 26 of 31

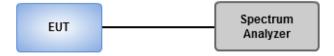
3.5.4 Test result of 20dB and Occupied Bandwidth

Ambient Condition	24°C / 67%	Tested By	Aska Huang

Modulation Mode	Freq. (MHz)	20dB Bandwidth (kHz)	Occupied Bandwidth (kHz)
FHSS-DBPSK	902.1375	22.29	21.13
FHSS-DBPSK	904.6625	22.18	21.02
Limit(kHz)	500	

Report No.: FR070604 Page: 27 of 31

3.6 Channel Separation

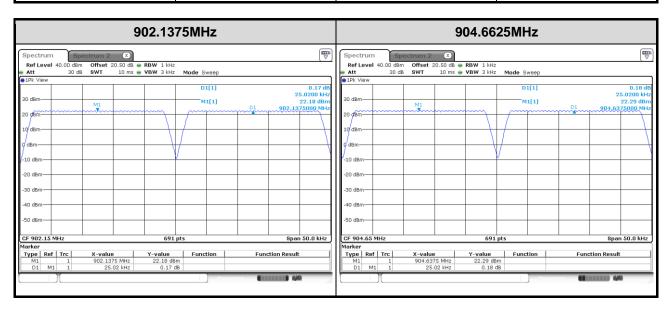

3.6.1 Limit of Channel Separation

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

3.6.2 Test Procedures

- 1. Set RBW=1 kHz, VBW=3 kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

3.6.3 Test Setup


Report No.: FR070604 Page: 28 of 31

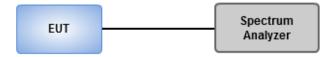
3.6.4 Test result of Channel Separation

Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------

Modulation Mode	Freq. (MHz)	Channel Separation (kHz)	Limit (kHz)
FHSS-DBPSK	902.1375	25.02	25.00
FHSS-DBPSK	904.6625	25.02	25.00

Report No.: FR070604 Page: 29 of 31

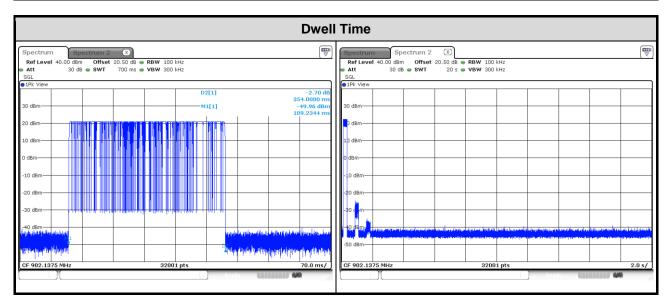
3.7 Number of Dwell Time


3.7.1 Limit of Dwell time

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period;

3.7.2 Test Procedures

- 1. Set RBW=100kHz,VBW=300kHz,Sweep time = 500 ms, Detector=Peak, Span=0Hz,Trace max hold
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.


3.7.3 Test Setup

3.7.4 Test Result of Dwell Time

Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------

Modulation Mode	Freq. (MHz)	Length of Transmission Time (sec)	Number of Transmission in 9.6s (24 Hopping*0.4)	Result (s)	Limit (s)
FHSS-DBPSK	902.3	0.354	1	0.354	0.4

Report No.: FR070604 Page: 30 of 31

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

___END___

Report No.: FR070604 Page: 31 of 31