

TEST REPORT

Application No.: HKEM2001000024HS
Applicant: Kingtronics International Trading Co., Ltd
Address of Applicant: Units 1203, 05, 07 & Penthouse, Century Centre, 44-46 Hung To Road, Kwun Tong, Kowloon, HongKong
Manufacturer: CELIOS CORPORATION
Address of Manufacturer: 401 Edgewater Pl, Suite 190, Wakefield, MA, 01880, USA
Factory: KINGTRONICS CORPORATION OF ELEC.&MECH. TECHNOLOGY (ZHANGZHOU)CO., LTD
Address of Factory: NO.20 Longchi Road, Longchi Industrial Park, Zhangzhou Taiwanese Investment Zone
Equipment Under Test (EUT):
EUT Name: G200 Advanced Air Purifier
Model No.: G200¤
FCC ID 2AVYPPG200-CR-01
Trade Mark: **celios®**
Standard(s) : 47 CFR Part 15, Subpart C 15.247
Date of Receipt: 2020-03-21
Date of Test: 2020-03-24 to 2020-04-05
Date of Issue: 2020-04-11

Test Result:	Pass*
---------------------	--------------

* In the configuration tested, the EUT complied with the standards specified above.

Law Man Kit
EMC Manager

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request and accessible at <http://www.sgs.com/en/Terms-and-conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-conditions.aspx>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. The document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2020-04-11		Original

Authorized for issue by:				
		<hr/> Leo Xu /Project Engineer		Date: 2020-04-11
				Date: 2020-04-11
		<hr/> Law Man Kit /Reviewer		

2 Test Summary

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(b)(4)	Pass

Radio Spectrum Matter Part				
Item	Standard	Method	Requirement	Result
Conducted Disturbance at AC Power Line(150kHz-30MHz)	CFR 47 FCCPart 15, Subpart C 15.207	ANSI C63.10: 2013 Section 6.2	47 CFR FCC Part 15, Subpart C 15.207	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.2.3	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass

Declaration of EUT Family Grouping:

None

Abbreviation:

- Tx: In this whole report Tx (or tx) means Transmitter.
Rx: In this whole report Rx (or rx) means Receiver.
RF: In this whole report RF means Radiated Frequency.
CH: In this whole report CH means channel.
Volt: In this whole report Volt means Voltage.
Temp: In this whole report Temp means Temperature.
Humid: In this whole report Humid means humidity.
Press: In this whole report Press means Pressure.
N/A: In this whole report not application.

3 Contents

	Page
1 COVER PAGE	1
2 TEST SUMMARY.....	3
3 CONTENTS	4
4 GENERAL INFORMATION	6
4.1 DETAILS OF E.U.T.....	6
4.2 DESCRIPTION OF SUPPORT UNITS.....	6
4.3 MEASUREMENT UNCERTAINTY(95% CONFIDENCE LEVEL, K=2).....	7
4.4 TEST LOCATION	8
4.5 TEST FACILITY	8
4.6 DEVIATION FROM STANDARDS	8
4.7 ABNORMALITIES FROM STANDARD CONDITIONS	8
5 EQUIPMENT LIST	9
6 RADIO SPECTRUM TECHNICAL REQUIREMENT	12
6.1 ANTENNA REQUIREMENT.....	12
6.1.1 <i>Test Requirement:</i>	12
6.1.2 <i>Conclusion</i>	12
7 RADIO SPECTRUM MATTER TEST RESULTS	13
7.1 CONDUCTED DISTURBANCE AT AC POWER LINE(150kHz-30MHz).....	13
7.1.1 <i>E.U.T. Operation</i>	13
7.1.2 <i>Test Setup Diagram</i>	13
7.1.3 <i>Measurement Data</i>	14
7.2 MINIMUM 6dB BANDWIDTH	17
7.2.1 <i>E.U.T. Operation</i>	17
7.2.2 <i>Test Setup Diagram</i>	17
7.2.3 <i>Measurement Procedure and Data</i>	17
7.3 CONDUCTED PEAK OUTPUT POWER.....	18
7.3.1 <i>E.U.T. Operation</i>	18
7.3.2 <i>Test Setup Diagram</i>	18
7.3.3 <i>Measurement Procedure and Data</i>	18
7.4 POWER SPECTRUM DENSITY	19
7.4.1 <i>E.U.T. Operation</i>	19
7.4.2 <i>Test Setup Diagram</i>	19
7.4.3 <i>Measurement Procedure and Data</i>	19
7.5 CONDUCTED BAND EDGES MEASUREMENT	20
7.5.1 <i>E.U.T. Operation</i>	20
7.5.2 <i>Test Setup Diagram</i>	20
7.5.3 <i>Measurement Procedure and Data</i>	20
7.6 CONDUCTED SPURIOUS EMISSIONS.....	21
7.6.1 <i>E.U.T. Operation</i>	21
7.6.2 <i>Test Setup Diagram</i>	21
7.6.3 <i>Measurement Procedure and Data</i>	21
7.7 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS.....	22
7.7.1 <i>E.U.T. Operation</i>	22
7.7.2 <i>Test Setup Diagram</i>	22
7.7.3 <i>Measurement Procedure and Data</i>	23

7.8	RADIATED SPURIOUS EMISSIONS	24
7.8.1	<i>E.U.T. Operation</i>	25
7.8.2	<i>Test Setup Diagram</i>	25
7.8.3	<i>Measurement Procedure and Data</i>	26
8	PHOTOGRAPHS	30
9	APPENDIX 15.247	31
9.1	MINIMUM EMISSION BANDWIDTH 6 dB	31
9.2	CONDUCTED PEAK OUTPUT POWER.....	33
9.3	POWER SPECTRAL DENSITY	35
9.4	CONDUCTED BAND EDGES MEASUREMENT	37
9.5	CONDUCTED SPURIOUS EMISSIONS.....	39
9.6	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS.....	42

4 General Information

4.1 Details of E.U.T.

Power supply:	Adaptor model: YHY-15004000 Input: 100-240VAC, 50/60Hz, 1.5A Max Output: 15V, 4.0A
Battery:	Model: CB3200 Rated capacity: 3180mAh, 34.34Wh Voltage: 10.8VDC
Test voltage:	110VAC
Cable:	100cm 3pin unscreened AC cable
Antenna Gain:	0.5dBi
Antenna Type:	Chip Antenna
Bluetooth Version:	V5.0
Channel Spacing:	2MHz
Modulation Type:	GFSK
Number of Channels:	40
Operation Frequency:	2402MHz to 2480MHz
Tested Channels:	2402MHz, 2442MHz, 2480MHz

4.2 Description of Support Units

The EUT has been tested with corresponding accessories as below:

Supplied by client

Description	Manufacturer	Model No.	SN/Certificate NO
I2C/SPI Test Interface	TOTAL PHASE	N/A	N/A
MCHPRT 2 Test Software	N/A	Version 1.0	N/A

Supplied by SGS:

Description	Manufacturer	Model No.	SN/Certificate NO
NoteBook (EMC4)	Dell	P75F	N/A

4.3 Measurement Uncertainty(95% confidence level, k=2)

EMI

No.	Item	Measurement Uncertainty
1	Conduction emission	2.5dB (9kHz to 150kHz)
		2.6dB (150kHz to 30MHz)
2	Radiated emission	5.1dB (30MHz-1GHz)
		4.9dB (1GHz-6GHz)

RF

No.	Item	Measurement Uncertainty
1	Radio Frequency	$\pm 7.25 \times 10^{-8}$
2	Duty cycle	$\pm 0.37\%$
3	Occupied Bandwidth	$\pm 3\%$
4	RF conducted power (30MHz-40GHz)	1.5dB
5	RF power density	1.5dB
6	Conducted Spurious emissions	1.5dB
7	RF Radiated power	5.1dB (below 1GHz)
		5.3dB (above 1GHz)
8	Radiated Spurious emission test	5.1dB (below 1GHz)
		5.3dB (above 1GHz)
9	Temperature test	$\pm 1^\circ\text{C}$
10	Humidity test	$\pm 3\%$
11	Supply voltages	$\pm 1.5\%$
12	Time	$\pm 3\%$

Remark:

The Ulab (lab Uncertainty) is less than Ucispr (CISPR Uncertainty), so the test results

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

4.4 Test Location

All tests were performed at:

SGS IECC Limited (Member of the SGS Group (SGS SA))
Unit 2 and 3, G/F, Block A, Po Lung Centre,
11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong
Tel: +852 2305 2570 Fax: +852 2756 4480

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- **HOKLAS (Lab Code: 125)**

SGS IECC Limited has been accepted by HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a HOKLAS Accredited Laboratory, this laboratory meets the requirements of ISO/IEC 17025:2005 and it has been accredited for performing specific test as listed in the scope of accreditation within the test category of Electrical and Electronic Products.

- **FCC Recognized Accredited Test Firm(CAB Registration No.: 446297)**

SGS IECC Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0010, Test Firm Registration Number: 446297.

- **Industry Canada (Site Registration No.: 5193A; CAB Identifier No.: HK0010)**

SGS IECC Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0010, Site Registration Number: 5193A-2.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

5 Equipment List

Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539-00-2	E239	2019/9/23	2020/9/22
WMS32 Test Software	R&S	Version 10	N/A	--	--

Conducted Peak Output Power					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539-00-2	E239	2019/9/23	2020/9/22
WMS32 Test Software	R&S	Version 10	N/A	--	--

Power Spectrum Density					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539-00-2	E239	2019/9/23	2020/9/22
WMS32 Test Software	R&S	Version 10	N/A	--	--

Conducted Band Edges Measurement					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20

FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539-00-2	E239	2019/9/23	2020/9/22
WMS32 Test Software	R&S	Version 10	N/A	--	--

Conducted Emissions at Mains Terminals (150kHz-30MHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Test Receiver	Rohde & Schwarz	ESHS 30 / 839667/002	TE279D	2019/8/21	2020/8/20
Signal Generator	Rohde & Schwarz	SMT03	E177	2019/4/23	2020/4/22
Artificial Mains Network (LISN)	Schwarzbeck	NSLK 8127 / 8127312	TE10	2019/4/23	2020/4/22
Impulse Limiter	Rohde & Schwarz	ESH-3-Z2 / 357881052	TE36	2019/10/23	2020/10/22
EMC32 Test Software	R&S	Version 10	N/A	--	--

Radiated Spurious Emissions (30MHz-1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2019/8/9	2020/8/8
Coaxial Cable	SGS	N/A	E167	2019/7/22	2020/7/21
EMI Test Receiver 9kHz to 3.6GHz	Rohde & Schwarz	ESR3 / 102326	E231	2019/9/2	2020/9/1
TRILOG Super Broadb. Test Antenna, (25) 30-1000 (2)	Schwarzbeck	VULB 9168	E264	2018/10/20	2020/10/19
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	--	--
Turntable with Controller	ChamPro	EM1000	E238	--	--
EMC32 Test Software	R&S	Version 10	N/A	--	--

Radiated Spurious Emissions (above 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2019/8/9	2020/8/8
Coaxial Cable	SGS	N/A	E167	2019/7/22	2020/7/21
EMI Test Receiver 9kHz to 3.6GHz	Rohde & Schwarz	ESR3 / 102326	E231	2019/9/2	2020/9/1
Signal and Spectrum Analyzer 2Hz - 26.5GHz	Rohde & Schwarz	FSW26	E296	2019/10/29	2020/10/28
Spectrum Analyzer 9kHz - 30GHz	Rohde & Schwarz	FSP30	E204	2019/4/23	2020/4/22

Horn Antenna 1 - 18GHz	Schwarzbeck	BBHA9120D	E211	2020/1/29	2022/1/29
Horn Antenna 15 - 40GHz	Schwarzbeck	BBHA9170	E212	2017/10/17	2020/10/16
Preamplifier 33dB, 1 - 18GHz	Schwarzbeck	BBV9718	E214	2019/4/24	2020/4/23
Preamplifier 33dB, 18 - 26.5GHz	Schwarzbeck	BBV9719	E215	2019/4/24	2021/4/23
Broadband Coaxial Preamplifier typ. 30 dB, 18-40 G	Schwarzbeck	BBV 9721	E266	2019/8/22	2020/8/21
Highpass Filter 3.5- 26.5GHz	Wainwright	WHNX3.5/26.5 G-6SS	E205	2019/4/24	2021/4/23
Band Reject Filter 2.4- 2.5GHz	Wainwright	WRCJV 2400/2500- 2100	E206	2019/4/24	2021/4/23
RF cable SMA to SMA 10000mm	HUBER+SUHNER	SF104- 26.5/2*11SMA 45	E207-1	2019/9/26	2020/9/25
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	--	--
Turntable with Controller	ChamPro	EM1000	E238	--	--
EMC32 Test Software	R&S	Version 10	N/A	--	--

Conducted Spurious Emissions

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2019/8/21	2020/8/20
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2019/8/21	2020/8/20
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2019/8/21	2020/8/20
OSP	Rohde & Schwarz	OSP-B157W8	E242	2019/8/21	2020/8/20
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2019/9/23	2020/9/22
WMS32 Test Software	R&S	Version 10	N/A	--	--

General used equipment

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Digital temperature & humidity data logger	SATO	SK-L200TH II	E232	2019/10/28	2020/10/27
Electronic Digital Thermometer with Hygrometer	nil	2074/2075	E159	2019/10/28	2020/10/27
Barometer with digital thermometer	SATO	7612-00	E218	2019/05/19	2020/05/18
Conditional Chamber	Zhong Zhi Testing Instruments	CZ-E-608D	E216	2019/08/22	2020/08/21

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

FCC Part 15 Subpart C Section 15.247 & 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

15.203 requirement:

For intentional device. According to 15.203. an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna uses a unique coupling to the intentional radiator and no consideration of replacement.

The best case gain of the antenna: 0.5 dBi.

7 Radio Spectrum Matter Test Results

7.1 Conducted Disturbance at AC Power Line(150kHz-30MHz)

Test Requirement FCC Part 15 Subpart C Section 15.207

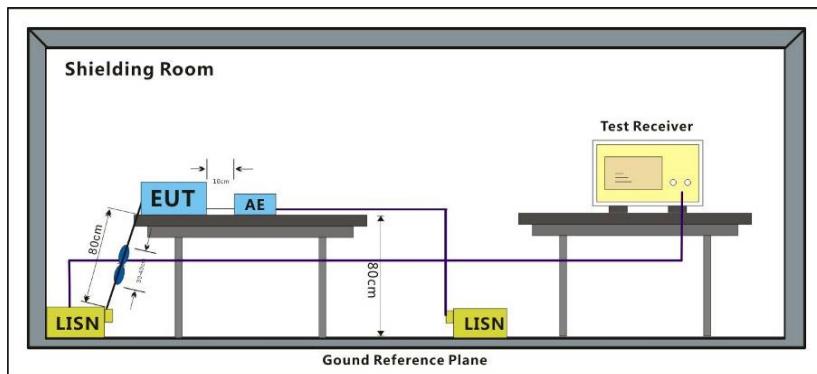
Test Method: ANSI C63.10 Section 6.2

Limit:

Frequency of emission(MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

7.1.1 E.U.T. Operation

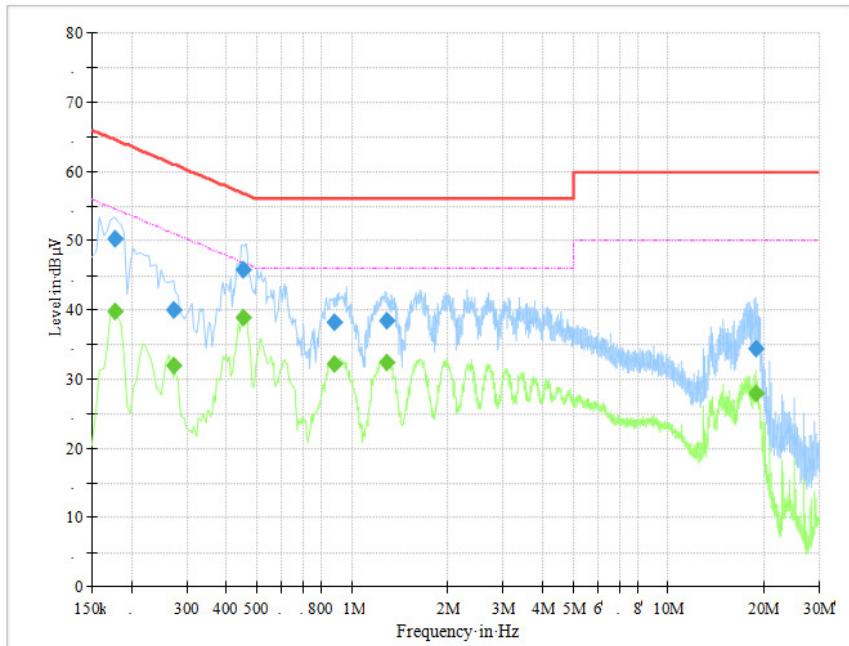

Operating Environment:

Temperature: 25.0 °C Humidity: 55 % RH Atmospheric Pressure: 1015 mbar

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

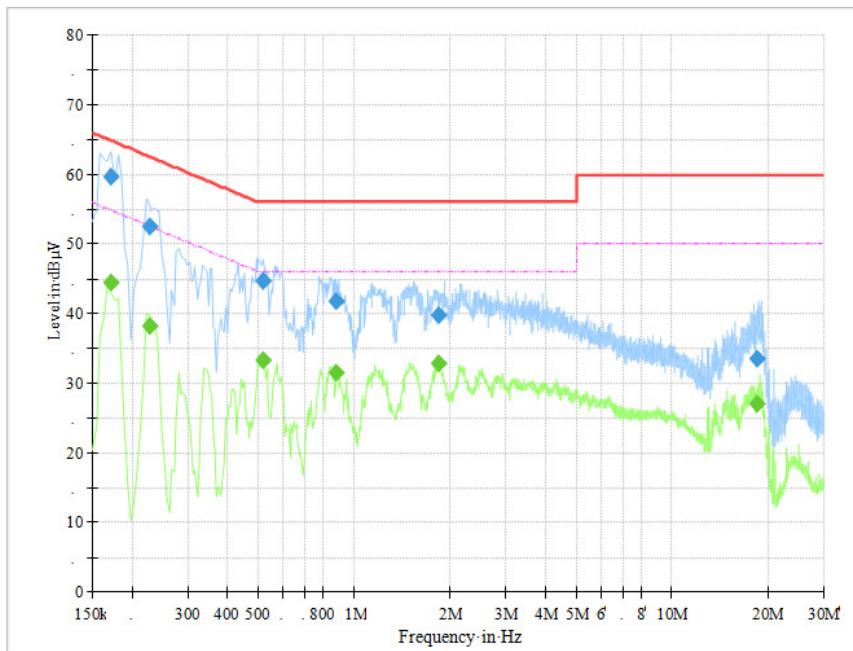
The worst case a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation for final test:

7.1.2 Test Setup Diagram


7.1.3 Measurement Data

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark:


1. For radiated emission test: Correction Factor = Antenna Factor + Cable Loss.
2. For conducted emission test: Correction Factor = LISN Factor + Cable Loss.
3. Margin = Limit – Reading
4. Pol = Polarization

Live Line

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Corr. (dB)	Result
0.177000	---	39.9	54.6	14.8	10.2	Pass
0.177000	50.4	---	64.6	14.3	10.2	Pass
0.271500	---	32.0	51.1	19.1	10.2	Pass
0.271500	40.0	---	61.1	21.1	10.2	Pass
0.451500	---	38.9	46.9	8.0	10.2	Pass
0.451500	45.9	---	56.9	10.9	10.2	Pass
0.874500	---	32.1	46.0	13.9	10.2	Pass
0.874500	38.1	---	56.0	17.9	10.2	Pass
1.288500	---	32.5	46.0	13.5	10.2	Pass
1.288500	38.5	---	56.0	17.6	10.2	Pass
19.014000	---	28.0	50.0	22.0	10.5	Pass
19.014000	34.3	---	60.0	25.7	10.5	Pass

Neutral Line

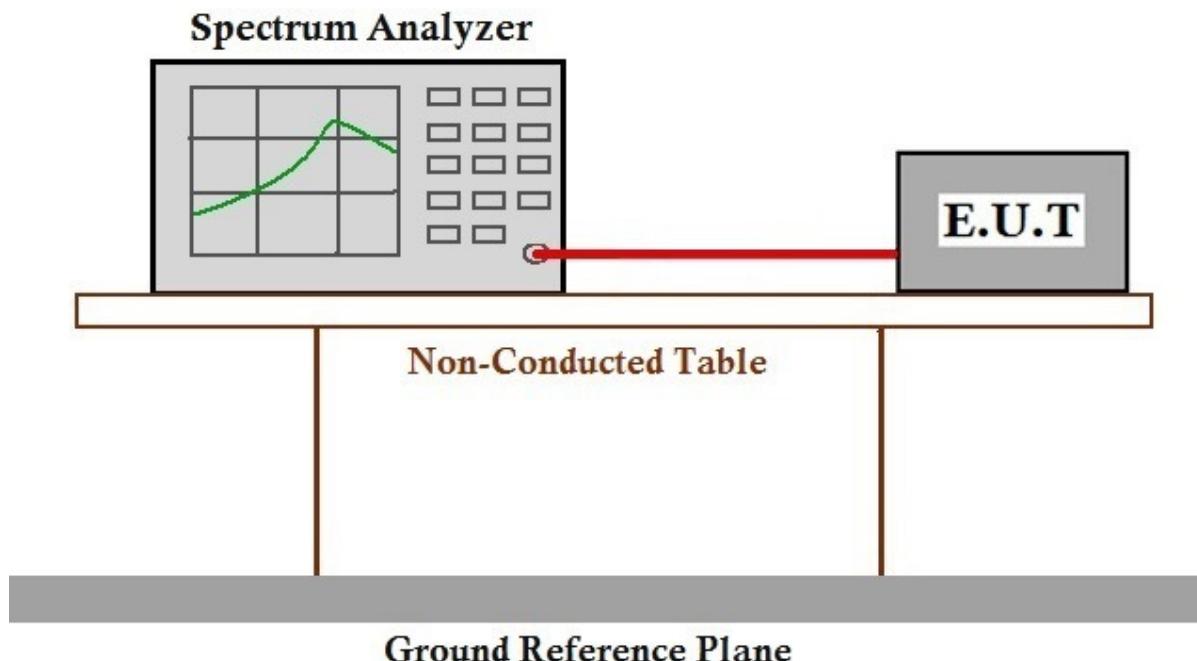
Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Corr. (dB)	Result
0.172500	---	44.5	54.8	10.3	10.2	Pass
0.172500	59.6	---	64.8	5.3	10.2	Pass
0.226500	---	38.3	52.6	14.3	10.2	Pass
0.226500	52.5	---	62.6	10.1	10.2	Pass
0.519000	---	33.3	46.0	12.7	10.2	Pass
0.519000	44.8	---	56.0	11.3	10.2	Pass
0.879000	---	31.5	46.0	14.5	10.2	Pass
0.879000	41.8	---	56.0	14.3	10.2	Pass
1.846500	---	33.0	46.0	13.1	10.2	Pass
1.846500	39.8	---	56.0	16.2	10.2	Pass
18.438000	---	26.9	50.0	23.1	10.5	Pass
18.438000	33.6	---	60.0	26.4	10.5	Pass

7.2 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)

Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥ 500 kHz


7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 22.5 °C Humidity: 49.1 % RH :

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.2.2 Test Setup Diagram

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

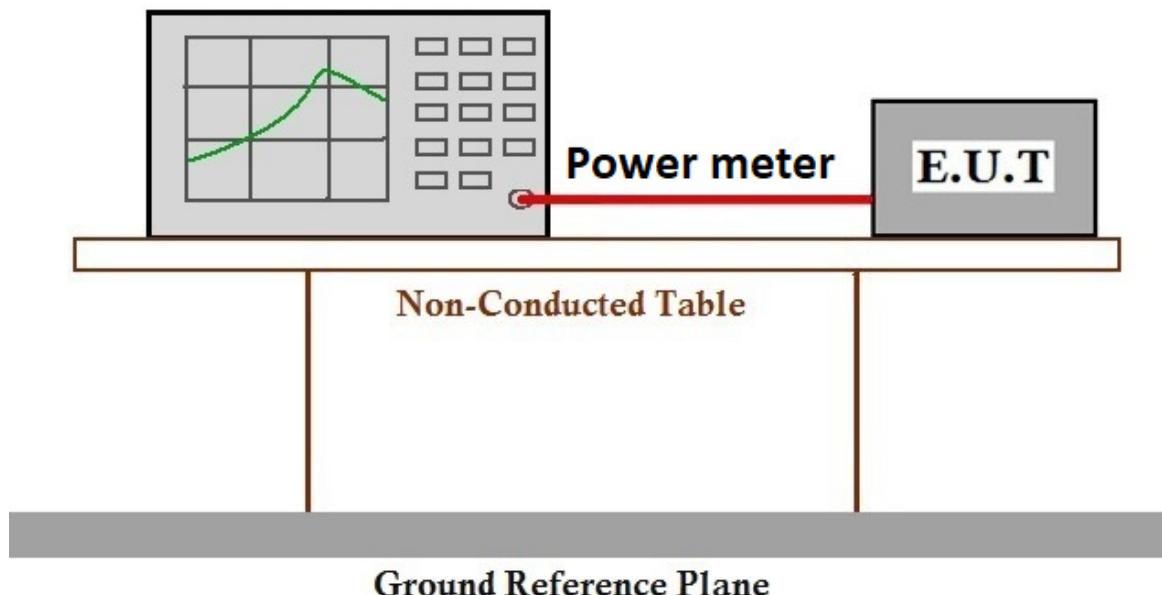
7.3 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3)

Test Method: ANSI C63.10 (2013) Section 11.9.2.3

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
902-928	1 for ≥ 50 hopping channels
	0.25 for $25 \leq$ hopping channels < 50
	1 for digital modulation
2400-2483.5	1 for ≥ 75 non-overlapping hopping channels
	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation


7.3.1 E.U.T. Operation

Operating Environment:

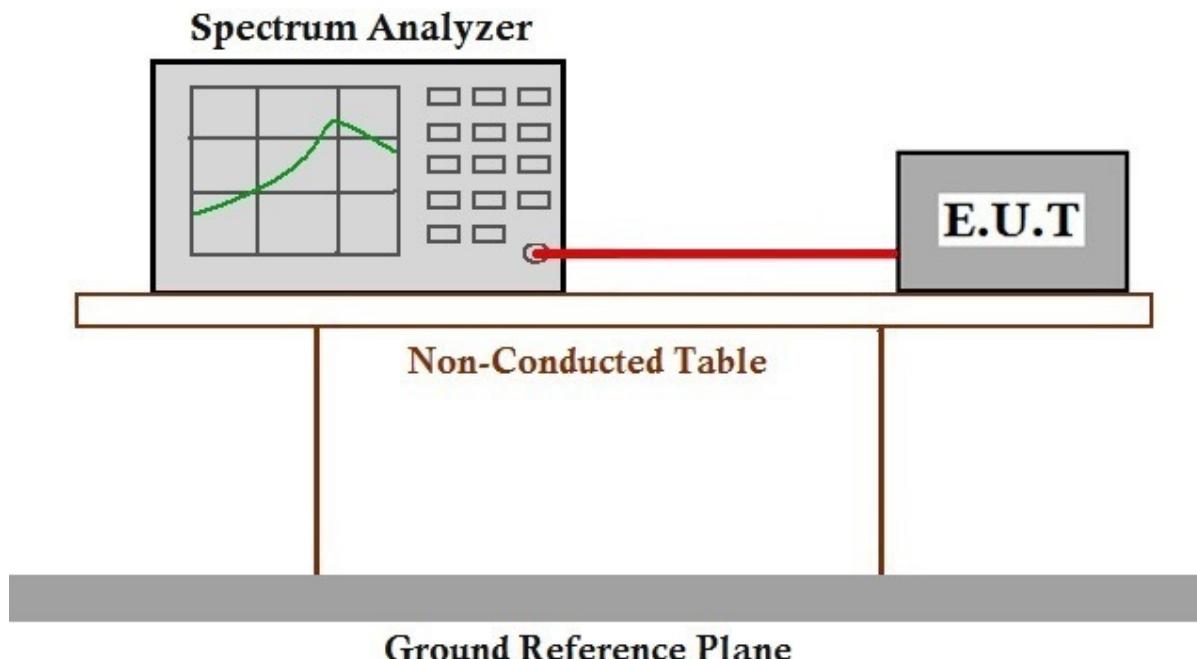
Temperature: 22.5 °C Humidity: 49.1 % RH :

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.3.2 Test Setup Diagram

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247


7.4 Power Spectrum Density

Test Requirement 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2
Limit: $\leq 8\text{dBm}$ in any 3 kHz band during any time interval of continuous transmission

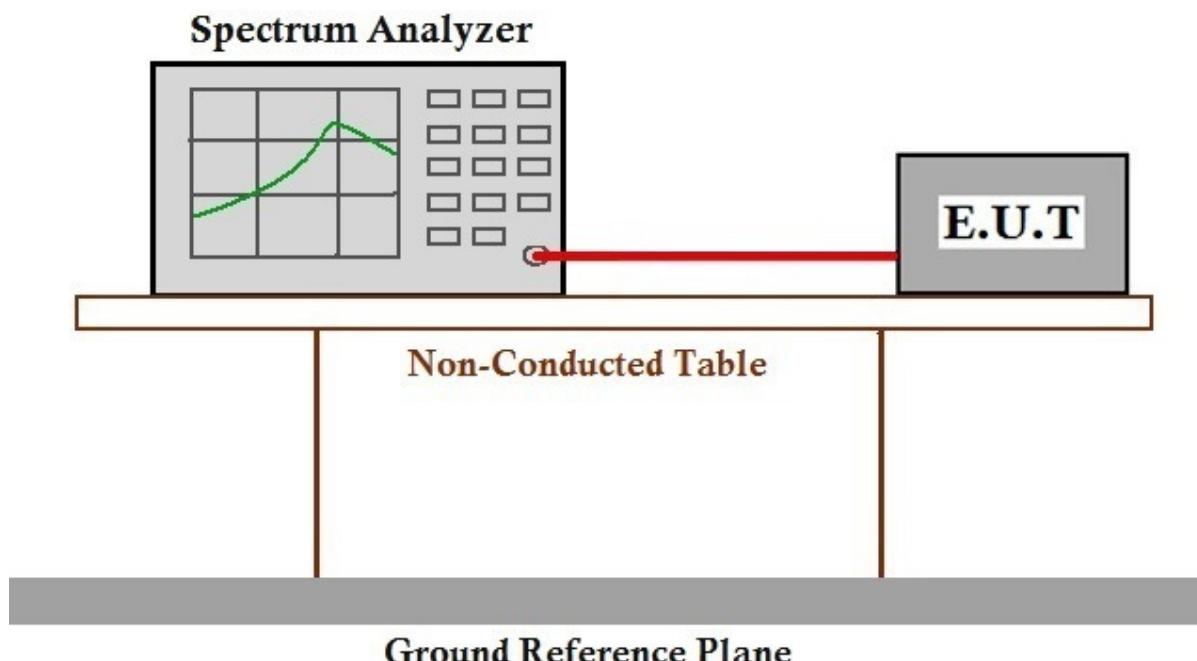
7.4.1 E.U.T. Operation

Operating Environment:
Temperature: 22.5 °C Humidity: 49.1 % RH :
Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.4.2 Test Setup Diagram

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247


7.5 Conducted Band Edges Measurement

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 11.13.3.2
Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

7.5.1 E.U.T. Operation

Operating Environment:
Temperature: 22.5 °C Humidity: 49.1 % RH :
Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.5.2 Test Setup Diagram

7.5.3 Measurement Procedure and Data

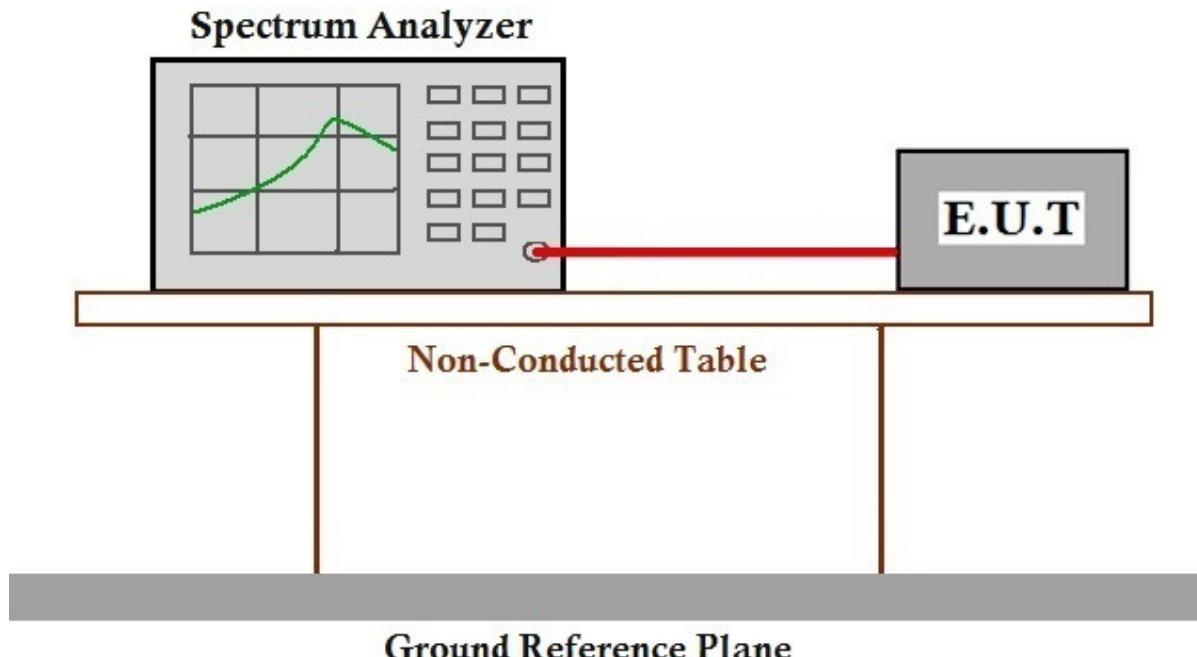
The detailed test data see: Appendix 15.247

7.6 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)

Test Method: ANSI C63.10 (2013) Section 11.11

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))


7.6.1 E.U.T. Operation

Operating Environment:

Temperature: 22.5 °C Humidity: 49.1 % RH :

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.6.2 Test Setup Diagram

7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

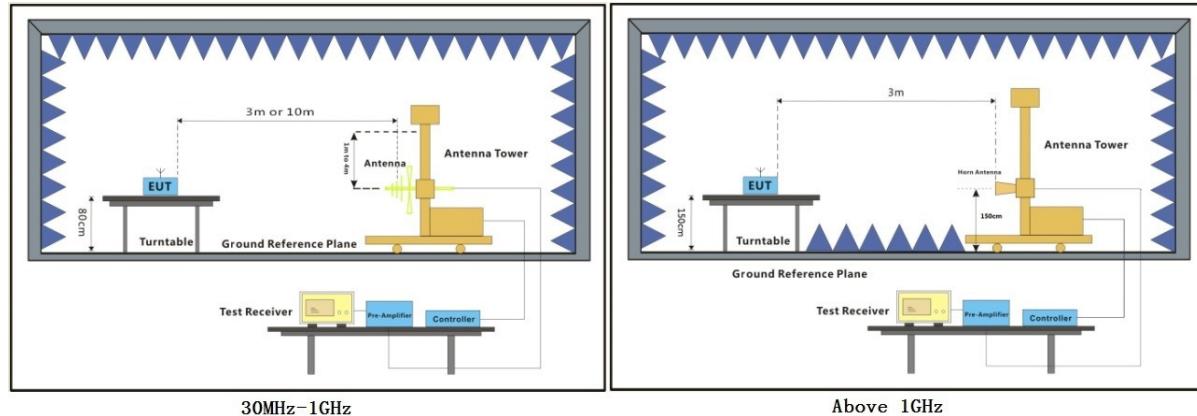
Test Method: ANSI C63.10 (2013) Section 6.10.5

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 22.5 °C Humidity: 49.1 % RH :

Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.7.2 Test Setup Diagram

7.7.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Remark:

1. For radiated emission test: Correction Factor = Antenna Factor + Cable Loss.
2. For conducted emission test: Correction Factor = LISN Factor + Cable Loss.
3. Margin = Limit – Reading
4. Pol = Polarization

7.8 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

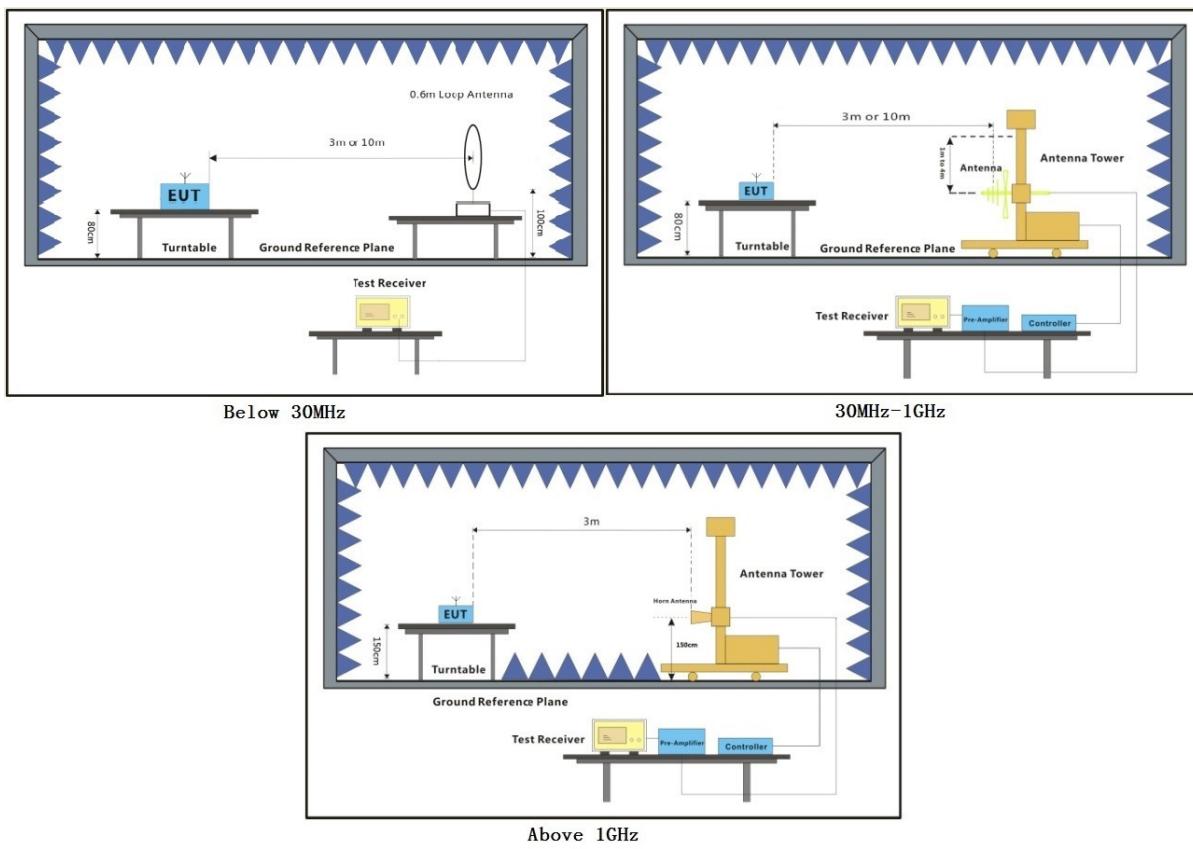
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C Humidity: 49.2 % RH :

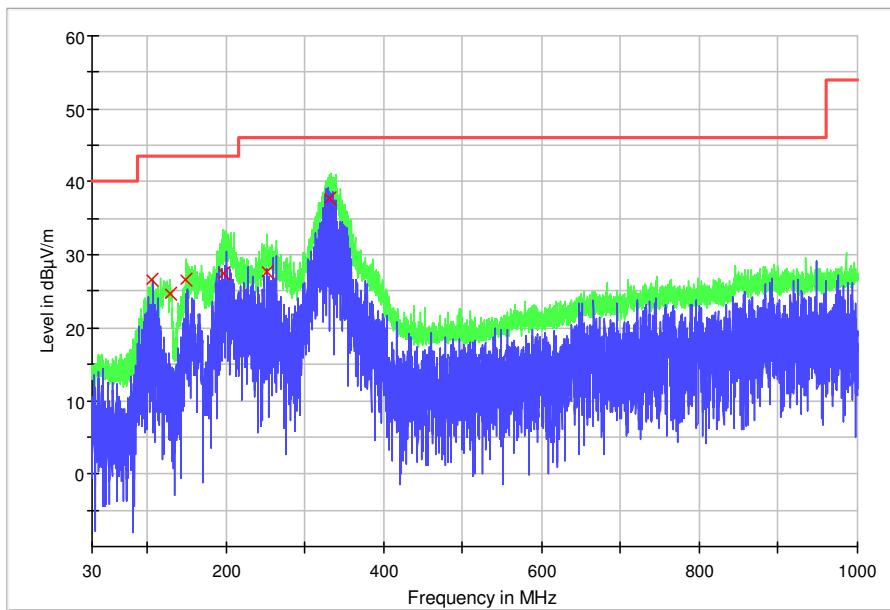
Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.8.2 Test Setup Diagram

7.8.3 Measurement Procedure and Data

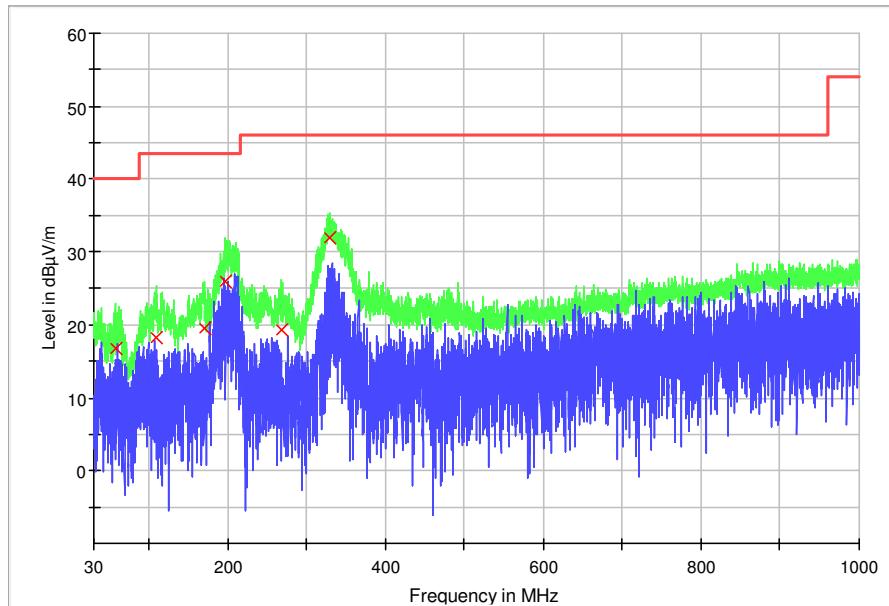
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:


- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Remark:

1. For radiated emission test: Correction Factor = Antenna Factor + Cable Loss.
2. For conducted emission test: Correction Factor = LISN Factor + Cable Loss.
3. Margin = Limit – Reading
4. Pol = Polarization


Radiated emission below 1GHz

Horizontal (worst plot was shown as below)

Frequency (MHz)	QuasiPeak (dB μ V/m)	Pol.	Corr. (dB/m)	Margin (dB)	Limit (dB μ V/m)	Result
105.854000	26.6	H	10.9	16.9	43.5	Pass
128.843000	24.8	H	12.5	18.8	43.5	Pass
149.310000	26.7	H	14.3	16.8	43.5	Pass
196.064000	27.5	H	10.8	16.0	43.5	Pass
252.518000	27.6	H	12.7	18.4	46.0	Pass
330.312000	37.7	H	15.4	8.3	46.0	Pass

Vertical (worst plot was shown as below)

Frequency (MHz)	QuasiPeak (dB μ V/m)	Pol.	Corr. (dB/m)	Margin (dB)	Limit (dB μ V/m)	Result
56.772000	16.9	V	13.1	23.1	40.0	Pass
108.376000	18.4	V	11.0	25.2	43.5	Pass
169.971000	19.5	V	14.0	24.0	43.5	Pass
196.549000	25.9	V	10.7	17.6	43.5	Pass
266.777000	19.4	V	12.8	26.6	46.0	Pass
328.566000	31.9	V	15.3	14.1	46.0	Pass

Above 1GHz

Channel:Low

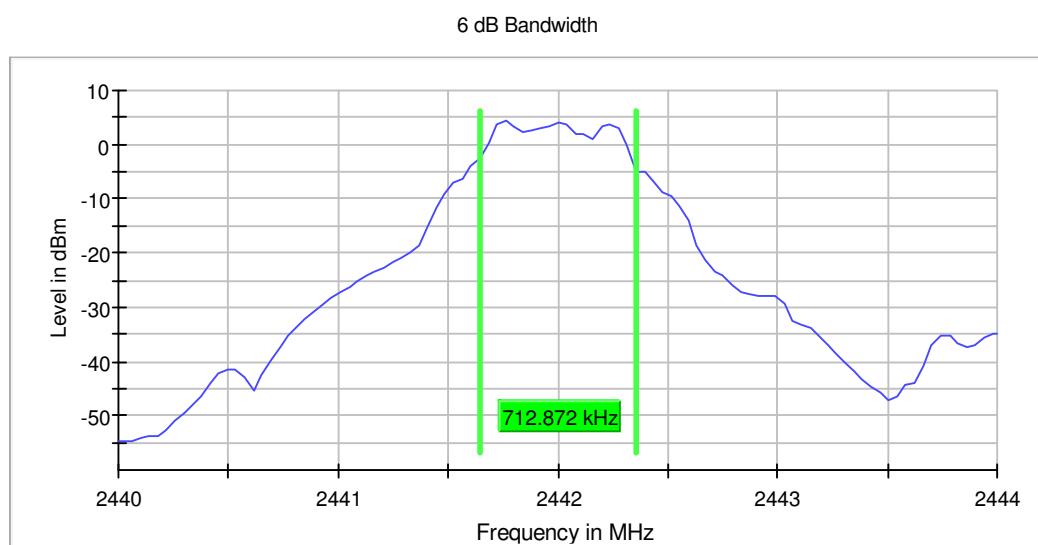
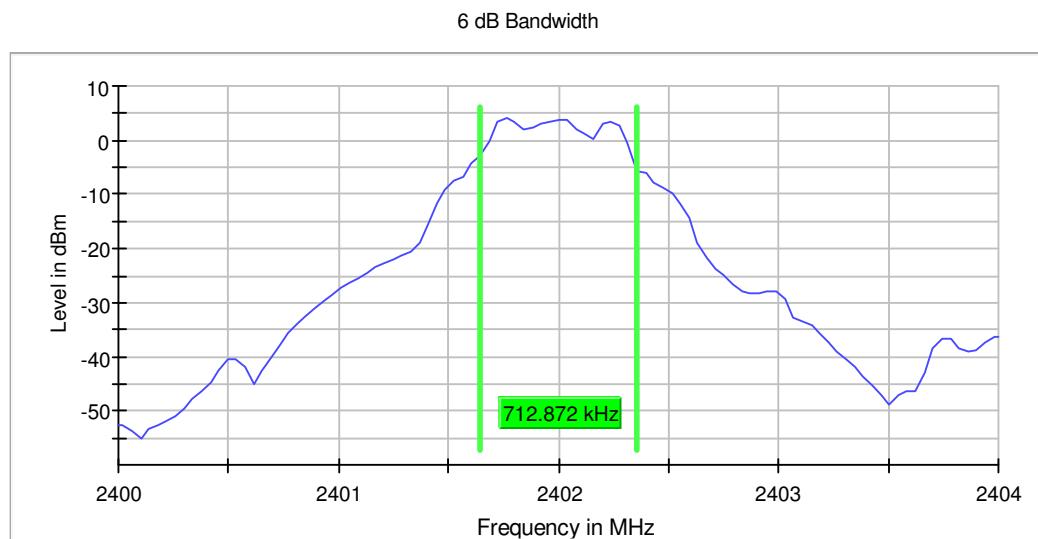
Frequency (MHz)	Antenna Polarization	Emission Level (dB μ V/m)		Limit (dB μ V/m)		Remark
		Peak	Average	Peak	Average	
1332.018	H	39.8	/	74.0	54.0	Pass
2017.025	H	41.9	/	74.0	54.0	Pass
5106.210	V	49.7	/	74.0	54.0	Pass
7863.330	V	59.2	48.7	74.0	54.0	Pass
8253.260	V	51.2	/	74.0	54.0	Pass
9982.200	H	56.6	47.5	74.0	54.0	Pass

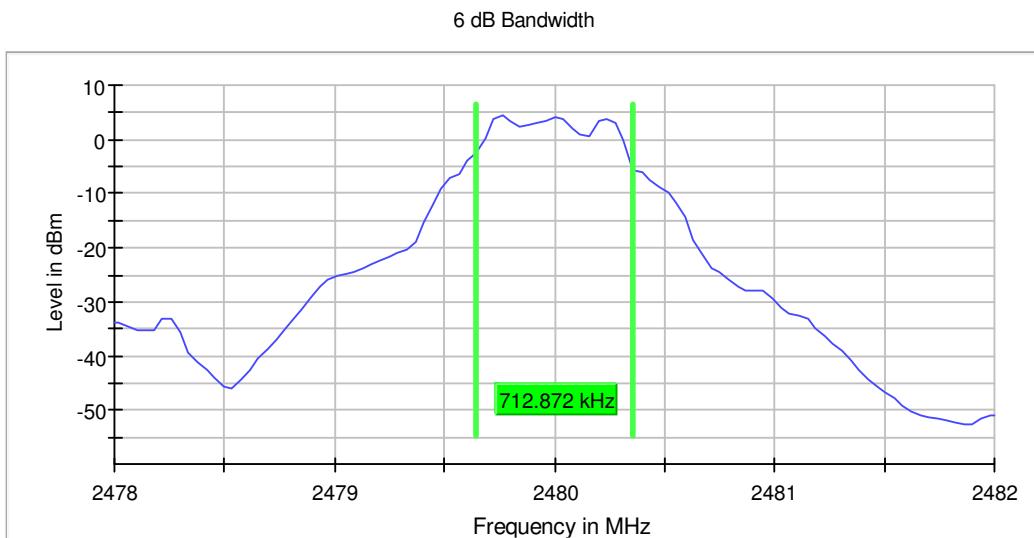
Channel:Middle

Frequency (MHz)	Antenna Polarization	Emission Level (dB μ V/m)		Limit (dB μ V/m)		Remark
		Peak	Average	Peak	Average	
1004.460	H	40.4	/	74.0	54.0	Pass
3717.780	H	47.6	/	74.0	54.0	Pass
5570.970	V	53.9	/	74.0	54.0	Pass
7671.940	V	59.2	/	74.0	54.0	Pass
8451.220	V	56.0	49.8	74.0	54.0	Pass
9814.380	H	61.9	49.2	74.0	54.0	Pass

Channel: High

Frequency (MHz)	Antenna Polarization	Emission Level (dB μ V/m)		Limit (dB μ V/m)		Remark
		Peak	Average	Peak	Average	
1758.625	H	41.3	/	74.0	54.0	Pass
4897.531	H	48.4	/	74.0	54.0	Pass
7018.982	V	49.8	/	74.0	54.0	Pass
8115.200	H	50.9	/	74.0	54.0	Pass
9398.560	H	52.7	/	74.0	54.0	Pass
9982.375	V	53.8	/	74.0	54.0	Pass



8 Photographs


Remark: Photos refer to Appendix A, Appendix B and Appendix C of HKEM200100002402.

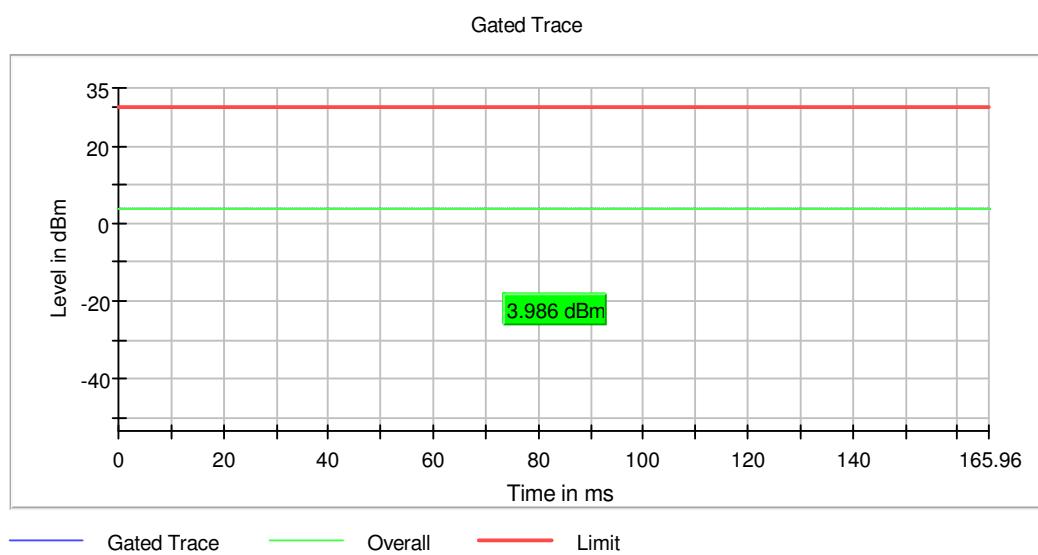
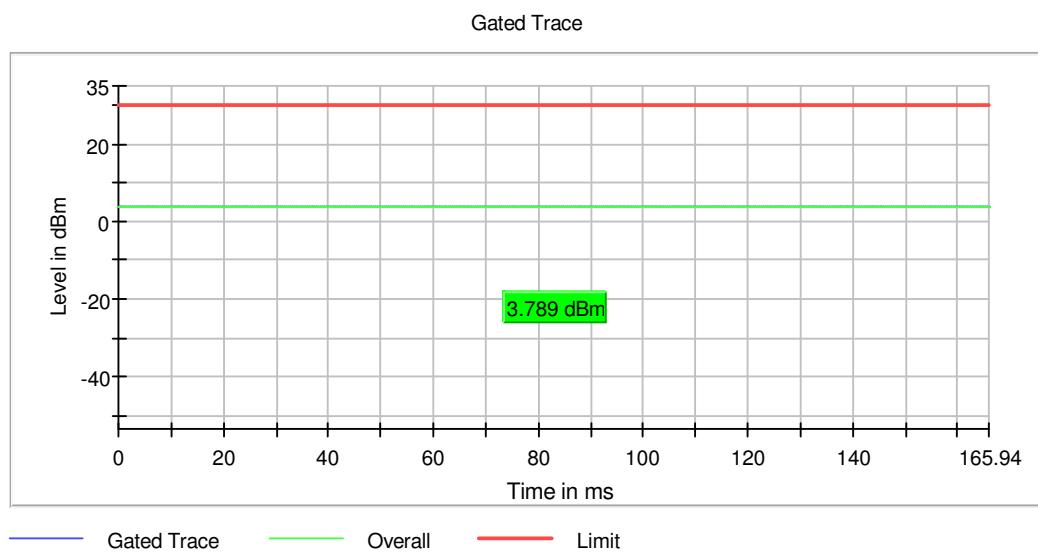
9 Appendix 15.247

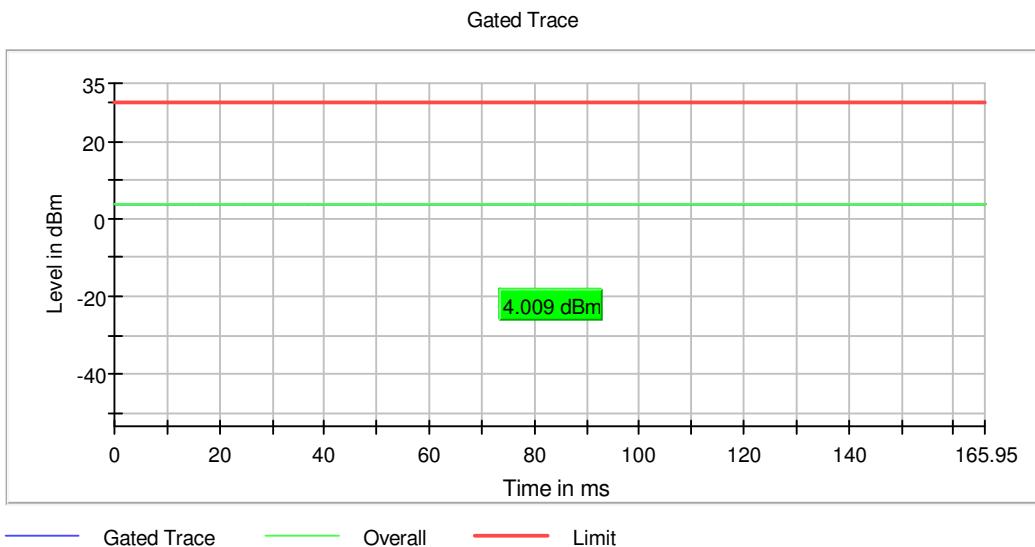
9.1 Minimum Emission Bandwidth 6 dB

DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)
2402.000000	0.712872	0.500000	---	2401.643564	2402.356436
2442.000000	0.712872	0.500000	---	2441.643564	2442.356436
2480.000000	0.712872	0.500000	---	2479.643564	2480.356436

Test Plot:

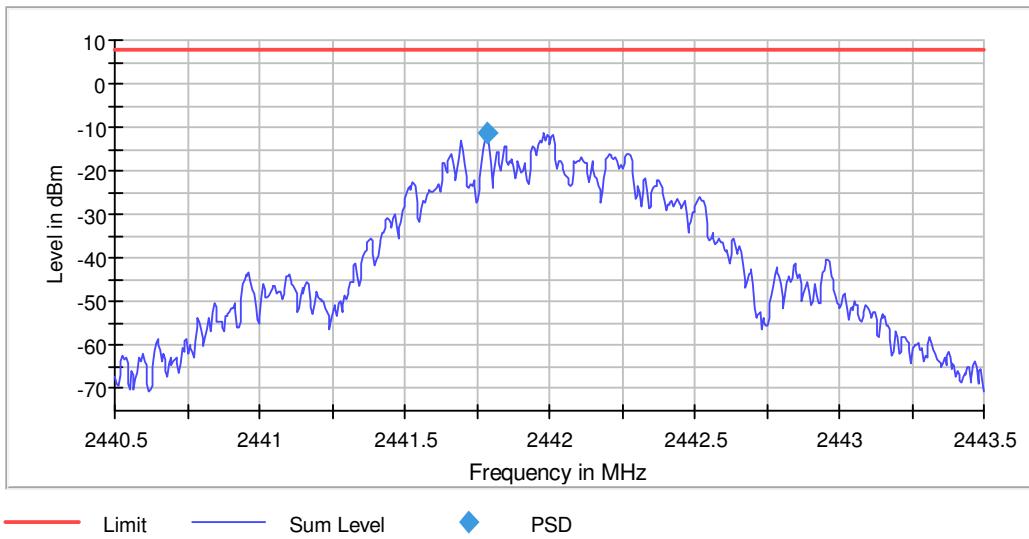
Measurement Setting:

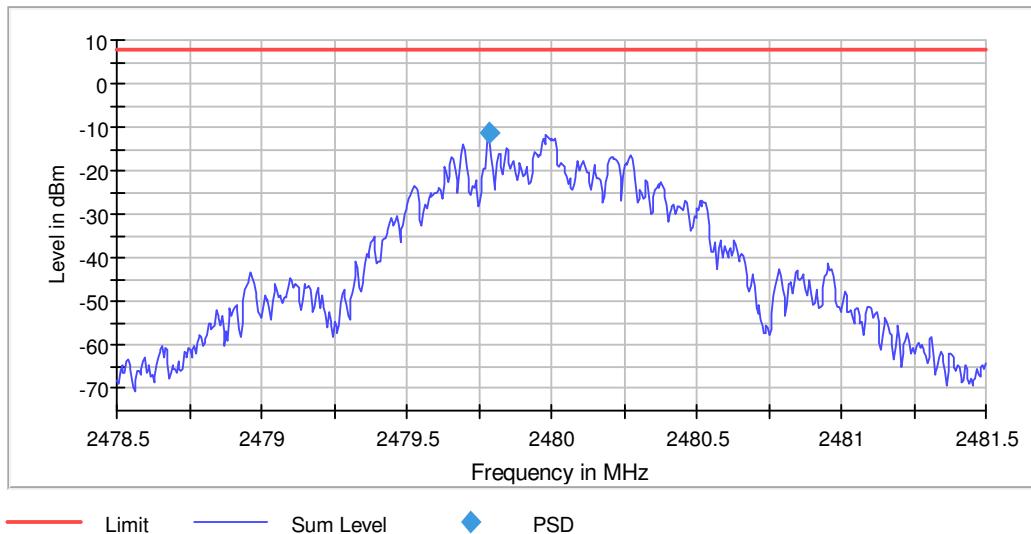


Setting	Instrument Value	Target Value
Span	4.000 MHz	4.000 MHz
RBW	100.000 kHz	~ 100.000 kHz
VBW	300.000 kHz	~ 300.000 kHz
SweepPoints	101	~ 80
Sweeptime	18.938 μs	AUTO
Reference Level	-10.000 dBm	-10.000 dBm
Attenuation	10.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	FFT	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	12 / max. 150	max. 150
Stable	5 / 5	5
Max Stable Difference	0.25 dB	0.50 dB


9.2 Conducted Peak Output Power

DUT Frequency (MHz)	Limit Max (dBm)	Gated Level (dBm)	Result
2402.000000	30.0	3.8	PASS
2442.000000	30.0	4.0	PASS
2480.000000	30.0	4.0	PASS

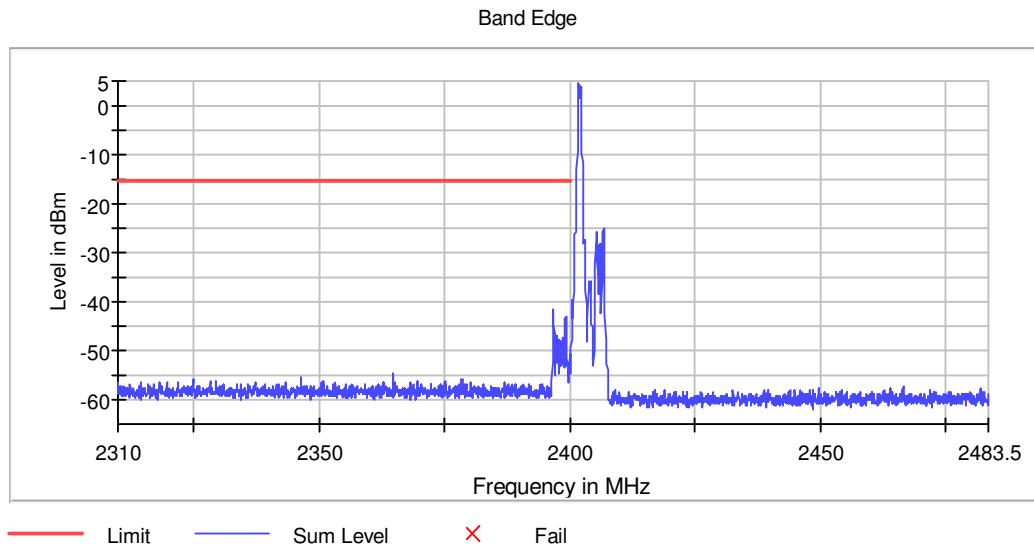
Remark: Antenna gain: 0.5dBi


Test Plot:



9.3 Power Spectral Density

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
2402.000000	2401.782500	-10.160	8.0	PASS
2442.000000	2441.787500	-11.271	8.0	PASS
2480.000000	2479.782500	-11.332	8.0	PASS

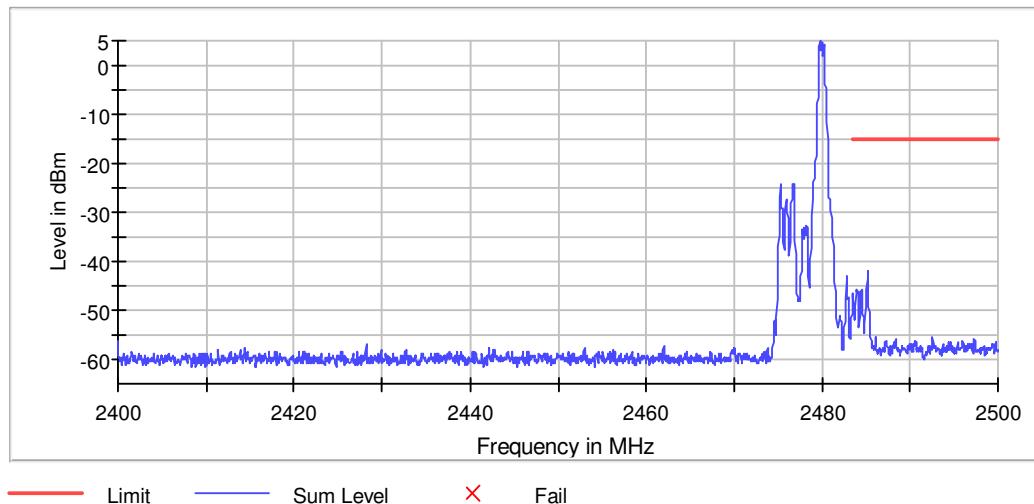


Measurement Setting:

Setting	Instrument Value	Target Value
Span	3.000 MHz	3.000 MHz
RBW	10.000 kHz	<= 10.000 kHz
VBW	30.000 kHz	>= 30.000 kHz
SweepPoints	600	~ 600
Sweeptime	12.000 ms	12.000 ms
Reference Level	-10.000 dBm	-10.000 dBm
Attenuation	10.000 dB	AUTO
Detector	RMS	RMS
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	Sweep
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	37 / max. 150	max. 150
Stable	3 / 3	3
Max Stable Difference	0.14 dB	0.50 dB

9.4 Conducted Band Edges Measurement

Band Edge Low



Inband Peak

Frequency (MHz)	Level (dBm)
2401.775000	4.5

Measurements

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2396.825000	-41.4	26.0	-15.5	PASS
2396.775000	-42.2	26.7	-15.5	PASS
2396.875000	-42.9	27.4	-15.5	PASS
2399.225000	-43.1	27.7	-15.5	PASS
2399.175000	-43.3	27.9	-15.5	PASS
2396.925000	-44.5	29.1	-15.5	PASS

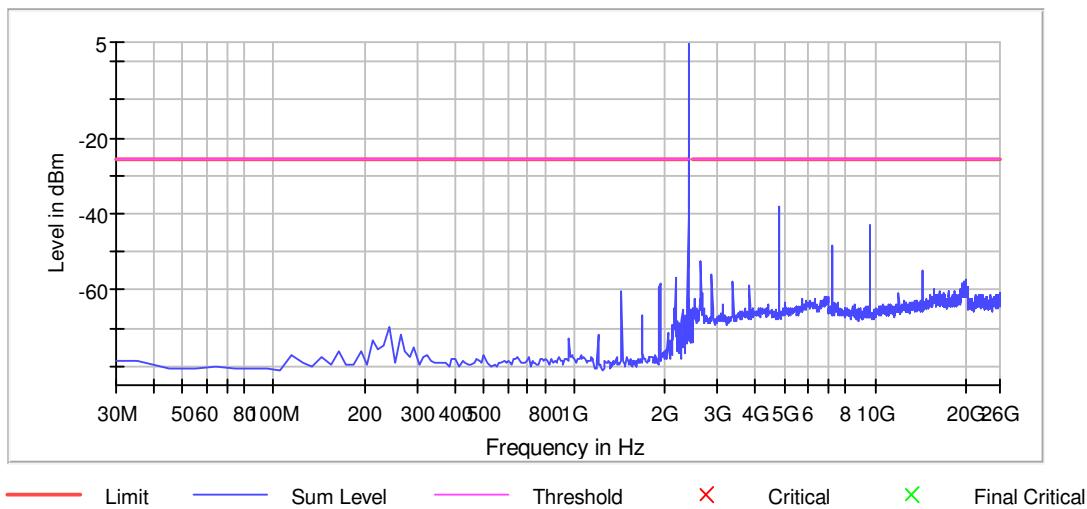
Band Edge High**Band Edge****Inband Peak**

Frequency (MHz)	Level (dBm)
2479.775000	4.9

Measurements

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2485.175000	-41.8	26.7	-15.1	PASS
2485.225000	-42.0	26.9	-15.1	PASS
2485.125000	-43.6	28.5	-15.1	PASS
2485.275000	-44.5	29.4	-15.1	PASS
2483.925000	-45.6	30.5	-15.1	PASS
2485.075000	-45.6	30.5	-15.1	PASS

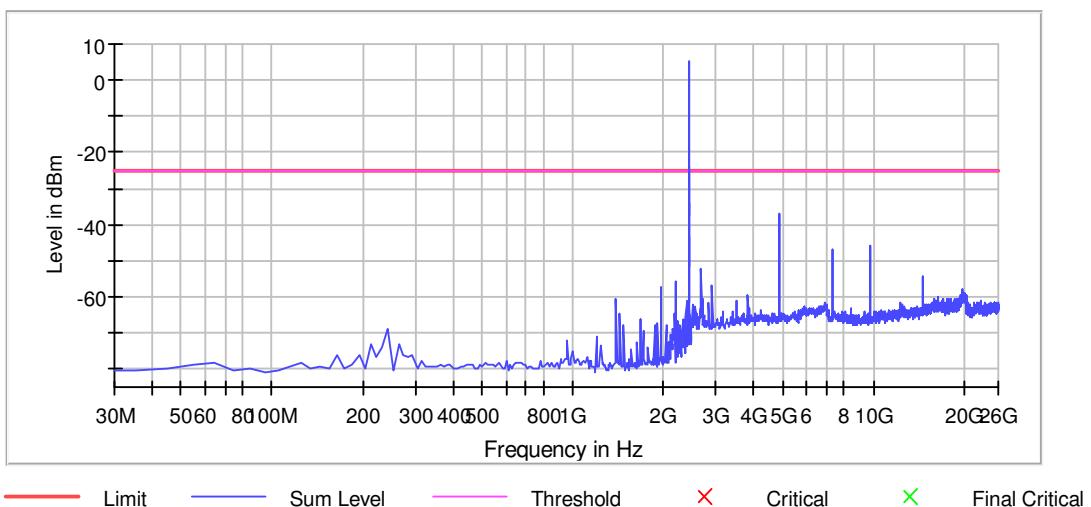
Measurement Setting:


Setting	Instrument Value	Target Value
Span	83.500 MHz	83.500 MHz
RBW	100,000 kHz	<= 100,000 kHz
VBW	300,000 kHz	>= 300,000 kHz
SweepPoints	1670	~ 1670
Sweeptime	1.670 ms	AUTO
Reference Level	-10.000 dBm	-10.000 dBm
Attenuation	10.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	8 / max. 150	max. 150
Stable	3 / 3	3
Max Stable Difference	0.04 dB	0.50 dB

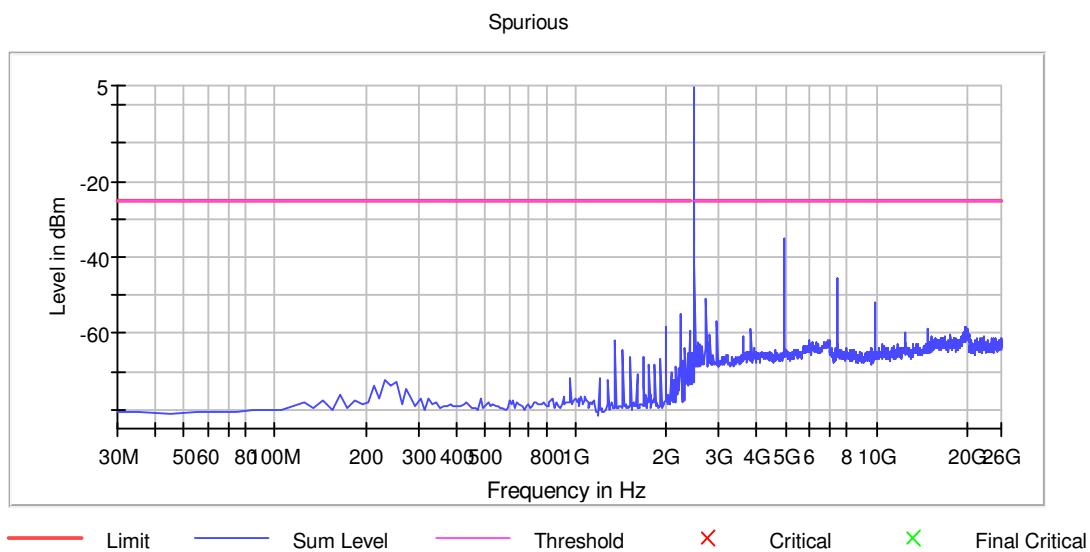
9.5 Conducted Spurious Emissions

Lowest Channel:

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)
4807.166065	-38.1	12.6	-25.5
2395.021008	-41.7	16.2	-25.5
9614.406396	-42.9	17.4	-25.5
7205.789099	-48.5	23.0	-25.5
2638.411071	-52.6	27.1	-25.5
14411.652465	-54.7	29.2	-25.5


Spurious

Middle Channel


Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)
4887.120166	-37.0	12.1	-24.9
9774.314598	-46.0	21.2	-24.9
7325.720251	-46.8	21.9	-24.9
2678.388122	-52.4	27.5	-24.9
14651.514768	-54.4	29.6	-24.9
2205.819328	-55.8	31.0	-24.9

Spurious

Highest Channel

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)
4957.080004	-35.2	9.9	-25.3
2488.497131	-41.9	16.6	-25.3
7435.657140	-45.6	20.3	-25.3
2718.365172	-50.9	25.6	-25.3
9914.234275	-51.7	26.4	-25.3
2235.693277	-55.0	29.7	-25.3

Measurement Setting:

Setting	Instrument Value	Target Value
RBW	100.000 kHz	<= 100.000 kHz
VBW	300.000 kHz	>= 300.000 kHz
SweepPoints	238	~ 238
Sweptime	23.700 ms	AUTO
Reference Level	-20.000 dBm	-30.000 dBm
Attenuation	10.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	3	3
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	4 / max. 40	max. 40
Stable	3 / 3	3
Max Stable Difference	0.00 dB	0.50 dB

9.6 Radiated Emissions which fall in the restricted bands

Lowest Channel:

Frequency (MHz)	Antenna Polarization	Emission Level (dB μ V/m)		Limit (dB μ V/m)		Remark
		Peak	Average	Peak	Average	
2389.750	V	59.5	40.2	74.0	54.0	Pass
2487.750	V	62.4	43.7	74.0	54.0	Pass

Middle Channel:

Frequency (MHz)	Antenna Polarization	Emission Level (dB μ V/m)		Limit (dB μ V/m)		Remark
		Peak	Average	Peak	Average	
2389.750	V	59.8	41.2	74.0	54.0	Pass
2483.500	V	61.3	42.9	74.0	54.0	Pass

Highest Channel:

Frequency (MHz)	Antenna Polarization	Emission Level (dB μ V/m)		Limit (dB μ V/m)		Remark
		Peak	Average	Peak	Average	
2389.750	V	64.9	41.7	74.0	54.0	Pass
2484.250	V	66.1	46.5	74.0	54.0	Pass

- End of the Report -