

FCC TEST REPORT
For
Liquipel Protection LLC
3 in 1 WIRELESS CHARGING STAND
Test Model: 827072

FCC TEST REPORT
FCC CFR 47 PART 15C

Report Reference No. : LCSC08125004EA

Date Of Issue..... : September 03, 2025

Testing Laboratory Name..... : Guangzhou LCS Compliance Testing Laboratory Ltd.

Address..... : No.44-1, Qianfeng North Road, Shiqi, Panyu District, Guangzhou, Guangdong, China

Testing Location/ Procedure..... : Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method

Applicant's Name..... : Liquipel Protection LLC

Address..... : 19800 MacArthur Blvd. Suite 300, Irvine

Test Specification

Standard..... : FCC CFR 47 PART 15C

Test Report Form No..... : TRF-4-E-168 A/0

TRF Originator..... : Guangzhou LCS Compliance Testing Laboratory Ltd.

Master TRF..... : Dated 2011-03

Guangzhou LCS Compliance Testing Laboratory Ltd. All rights reserved.

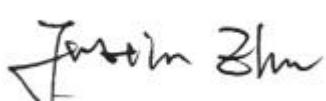
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Guangzhou LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Guangzhou LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description..... : 3 in 1 WIRELESS CHARGING STAND

Trade Mark..... : Simple

Test Model..... : 827072

Ratings..... : Please Refer to Page 6


Result : **PASS**

Compiled by:

Lifeng Le/ File administrators

Supervised by:

Justin Zhu/ Technique Director

Approved by:

Gavin Liang/ Manager

FCC TEST REPORT

Test Report No. :	LCSC08125004EA	<u>September 03, 2025</u>
		Date of issue

Test Model.....	: 827072
EUT.....	: 3 in 1 WIRELESS CHARGING STAND
Applicant	: Liquipel Protection LLC
Address.....	: 19800 MacArthur Blvd. Suite 300, Irvine
Telephone.....	: /
Fax.....	: /
Manufacturer	: XYCOSMOS HOLDING CO.,Ltd.
Address.....	: NO.12, Donghuan 2nd Road, Huangjiang Town, Dongguan City, Guangdong, China
Telephone.....	: /
Fax.....	: /
Factory	: XYCOSMOS HOLDING CO.,Ltd.
Address.....	: NO.12, Donghuan 2nd Road, Huangjiang Town, Dongguan City, Guangdong, China
Telephone.....	: /
Fax.....	: /

Test Result	PASS
--------------------	-------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Report Version	Issue Date	Revision Content	Revised By
000	September 03, 2025	Initial Issue	--

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1 Description of Device (EUT)	6
1.2 Support equipment List	6
1.3 External I/O Cable	6
1.4 Description of Test Facility	7
1.5 Statement of the Measurement Uncertainty	7
1.6 Measurement Uncertainty	7
1.7 Description of Test Modes	8
2. TEST METHODOLOGY	9
2.1 EUT Configuration	9
2.2 EUT Exercise	9
2.3 General Test Procedures	9
2.3.1 Conducted Emissions	9
2.3.2 Radiated Emissions	9
2.4. Test Sample	9
3. SYSTEM TEST CONFIGURATION	10
3.1 Justification	10
3.2 EUT Exercise Software	10
3.3 Special Accessories	10
3.4 Block Diagram/Schematics	10
3.5 Equipment Modifications	10
3.6 Test Setup	10
4. SUMMARY OF TEST EQUIPMENT	11
5. SUMMARY OF TEST RESULT	12
6. POWER LINE CONDUCTED MEASUREMENT	13
7. RADIATED EMISSION MEASUREMENT	16
7.1. Block Diagram of Test Setup	16
7.2. Radiated Emission Limit	17
7.3. EUT Configuration on Measurement	17
7.4. Field Strength Calculation	18
7.5. Operating Condition of EUT	18
7.6. Measuring Setting	18
7.7. Test Procedure	18
7.8. Test Results	19
8.1. Block Diagram of Test Setup	23
8.2. Test Procedure	23
8.3. Test Results	24
9. PHOTOGRAPHS OF TEST SETUP	26
10. EXTERNAL PHOTOGRAPHS OF THE EUT	26
11. INTERNAL PHOTOGRAPHS OF THE EUT	26

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT	: 3 in 1 WIRELESS CHARGING STAND
Test Model	: 827072
Ratings	: INPUT 9V==3A PHONE OUTPUT 5W, 7.5W, 10W, 15W Max EARBUD OUTPUT 5W Max SMART WATCH OUTPUT 3W Max MAX OUTPUT 23W For Adapter: INPUT 100-240V~ 50/60Hz 0.8A Max OUTPUT 5V==3A, 9V==3A PPS:3.3-11V==3A 15V==2A, 20V==1.5A 3.3-16V==2A (30W Max)
Hardware Version	: /
Software Version	: /
Wireless Charging	: [REDACTED]
Operating Frequency	: Airpods coil: 110.3~205.0kHz Mobile Phone coil: 110.3~205.0kHz Apple Watch coil: 327.7kHz
Modulation Type	: ASK
Antenna Type	: Coil Antenna

Note: For a more detailed antenna description, please refer to the antenna specifications or the antenna report provided by the customer.

1.2 Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
---	WALL CHARGER	827072	---	FCC
Apple	Mobile Phone	iphone16	---	FCC
Apple	Apple watch	---	---	FCC
Apple	AirPods	---	---	FCC

Note: The Mobile Phone, Apple watch and AirPods is supplied by lab and only use tested.

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
Type-C USB Port	1	N/A

1.4 Description of Test Facility

Site Description

EMC Lab. : CNAS Registration Number is L11555
 EMC Lab. : A2LA Certificate Number: 5099.01
 EMC Lab. : FCC Designation Number is CN1379
 EMC Lab. : Test Firm Registration Number: 729882

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 “Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements” and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
Radiation Uncertainty	9KHz~30MHz	3.10dB	(1)
	30MHz~200MHz	2.96dB	(1)
	200MHz~1000MHz	3.10dB	(1)
	1GHz~26.5GHz	3.80dB	(1)
	26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	150kHz~30MHz	1.63dB	(1)
Power disturbance	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description of Test Modes

Equipment under test was operated during the measurement under the following conditions:

- Charging and communication mode

Modulation Type: (ASK)

Test Modes		
Mode 1	AC/DC Adapter(9V/3A) + EUT + Phone + Apple Watch + AirPods (Battery Status: <1%)	Record
Mode 2	AC/DC Adapter (9V/3A)+ EUT + Phone + Apple Watch + AirPods (Battery Status: <50%)	Record
Mode 3	AC/DC Adapter (9V/3A) + EUT + Phone + Apple Watch + AirPods (Battery Status: 100%)	Record
Mode 4	AC/DC Adapter(9V/3A) + EUT + Phone (Battery Status: <1%)	Pre-tested
Mode 5	AC/DC Adapter (9V/3A)+ EUT + Phone (Battery Status: <50%)	Pre-tested
Mode 6	AC/DC Adapter (9V/3A) + EUT + Phone (Battery Status: 100%)	Pre-tested
Mode 7	AC/DC Adapter(9V/3A) + EUT + Apple Watch (Battery Status: <1%)	Pre-tested
Mode 8	AC/DC Adapter (9V/3A)+ EUT + Apple Watch (Battery Status: <50%)	Pre-tested
Mode 9	AC/DC Adapter (9V/3A) + EUT + Apple Watch (Battery Status: 100%)	Pre-tested
Mode 10	AC/DC Adapter(9V/3A) + EUT + AirPods (Battery Status: <1%)	Pre-tested
Mode 11	AC/DC Adapter (9V/3A)+ EUT + AirPods (Battery Status: <50%)	Pre-tested
Mode 12	AC/DC Adapter (9V/3A) + EUT + AirPods (Battery Status: 100%)	Pre-tested

Note: All test modes were pre-tested, but we only recorded the worst case in this report.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the normal operating mode and a continuous transmits mode for other tests.

According to its specifications, the EUT must comply with the requirements of the Section 15.207 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz and 1.5 m above ground plane above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

2.4. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 1(C250902002-1)	Engineer sample – continuous transmit
Sample 2(C250902002-2)	Normal sample – Intermittent transmit

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a normal condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
/	/	/	/	/	/	/	/

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

Guangzhou LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

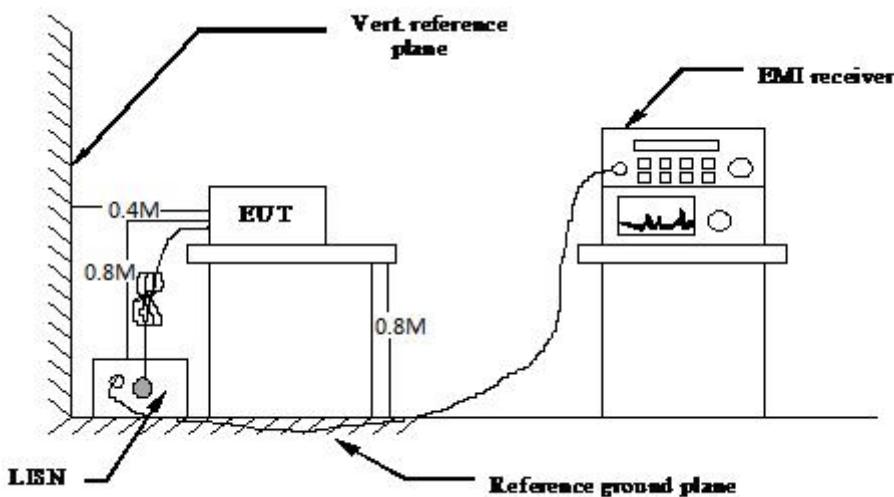
3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Equipment No.	Cal Date	Due Date
1	MXA Signal Analyzer	Agilent	N9020A	GLCS-E-346	2025-07-15	2026-07-14
2	DC Power Supply	Manson	HCS-3604	GLCS-E-126	2025-04-10	2026-04-09
3	EMI Test Software	Farad	EZ-EMC(Ver.FA-03A2 RE+)	GLCS-E-012	N/A	N/A
4	Semi Anechoic Chamber#1	Maorui	966	GLCS-E-001	2024-04-21	2027-04-20
5	Positioning Controller	Max-Full	MF-7802	GLCS-E-015	N/A	N/A
6	Active Loop Antenna	TESEQ	HLA 6121	GLCS-E-155	2024-07-28	2025-07-27
7	By-log Antenna	SCHWARZBECK	VULB9163	GLCS-E-352	2024-07-13	2027-07-12
8	Horn Antenna	SCHWARZBECK	BBHA 9120D	GLCS-E-060	2025-07-19	2026-07-18
9	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	GLCS-E-347	2025-07-15	2026-07-14
10	Broadband Preamplifier	SCHWARZBECK	BBV9719	GLCS-E-348	2025-07-15	2026-07-14
11	EMI Test Receiver	R&S	ESR 7	GLCS-E-192	2025-04-10	2026-04-09
12	RS SPECTRUM ANALYZER	R&S	FSP40	GLCS-E-349	2025-07-15	2026-07-14
13	Low-frequency amplifier	Sonoma	310N	GLCS-E-036	2025-04-10	2026-04-09
14	High-frequency amplifier	SKET	LNPA_30M06G-40	GLCS-E-286	2025-04-11	2026-04-10
15	6dB Attenuator	/	100W/6dB	GLCS-E-350	2025-07-15	2026-07-14
16	3dB Attenuator	/	2N-3dB	GLCS-E-351	2025-07-15	2026-07-14
17	EMI Test Receiver	ROHDE & SCHWARZ	ESR7	GLCS-E-158	2025-04-10	2026-04-09
18	Artificial Mains Network	ROHDE & SCHWARZ	ESH2-Z5	GLCS-E-011	2025-04-10	2026-04-09
19	EMI Test Software	Farad	EZ-EMC(Ver.FA-03A2 RE+)	GLCS-E-017	N/A	N/A
20	Antenna Mast	Maorui	BK-4AT-BS	GLCS-E-249	N/A	N/A
21	Pulse Limiter	SCHWARZBECK	VTSD 9561-F	GLCS-E-052	2025-04-10	2026-04-09

5. SUMMARY OF TEST RESULT


FCC Rules	Description of Test	Test Sample	Result
§15.207(a)	AC Conducted Emissions	Sample 1	Compliant
§15.209	Radiated Spurious Emissions	Sample 1	Compliant
§15.215	20 dB Bandwidth	Sample 1	Compliant

Remark: The measurement uncertainty is not included in the test result.

N/A – Not Applicable!!!

6. POWER LINE CONDUCTED MEASUREMENT

6.1. Block Diagram of Test Setup

6.2. Standard Applicable

According to §15.207: For all the consumer devices which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

* Decreasing linearly with the logarithm of the frequency

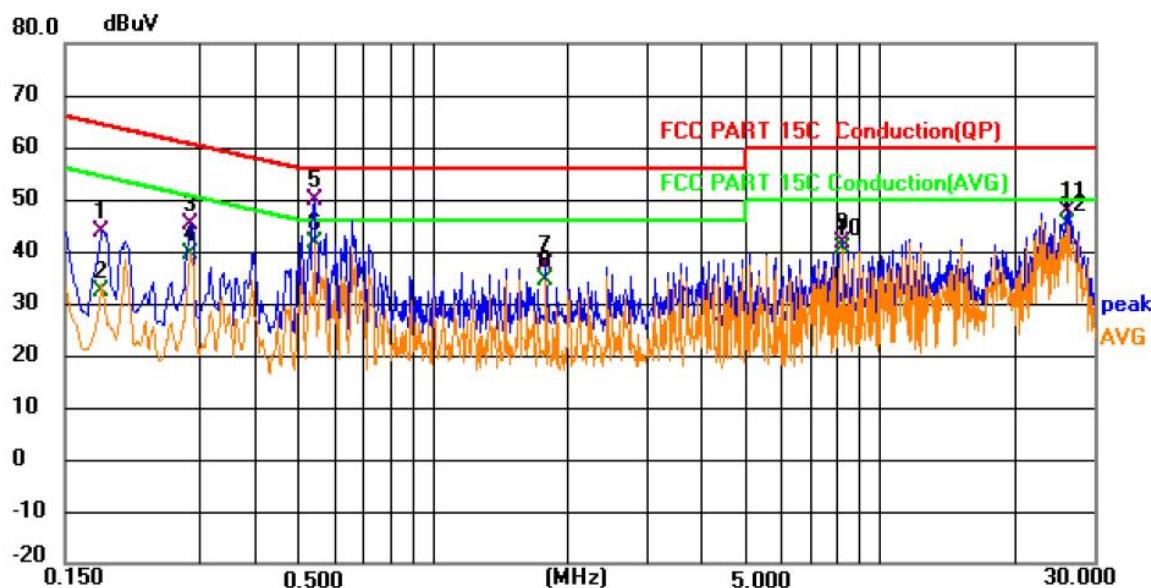
6.3 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS (\text{dBuV/m}) = RA (\text{dBuV}) + AF (\text{dB/m}) + CL (\text{dB}) - AG (\text{dB})$$

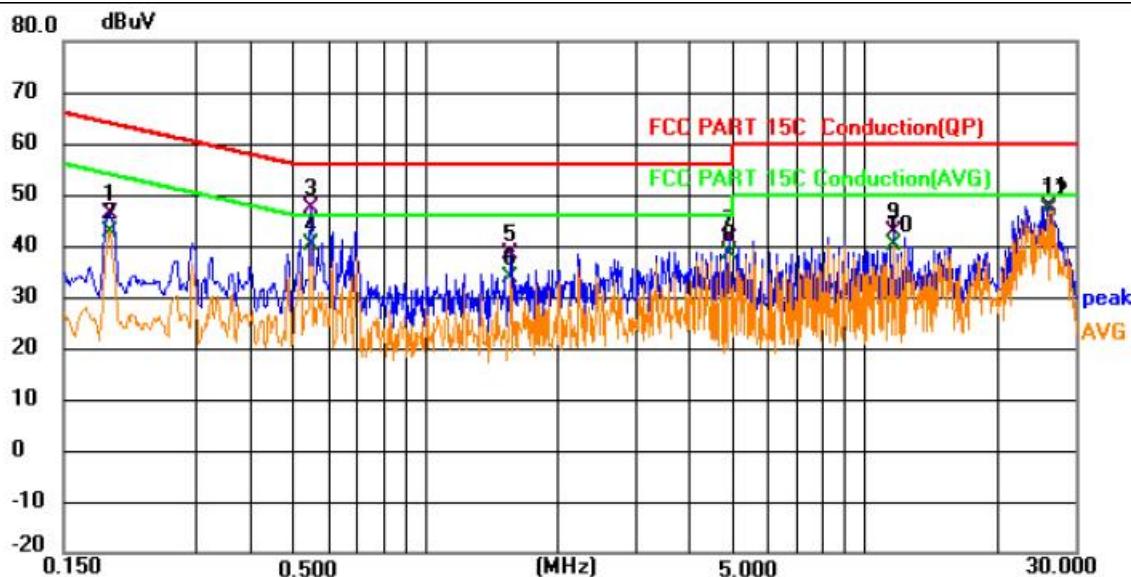
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

6.4 Test Results


PASS

The test data please refer to following page:

Temperature	22.5°C	Humidity	53.7%
Test Engineer	Jone Lee	Configurations	Transmit

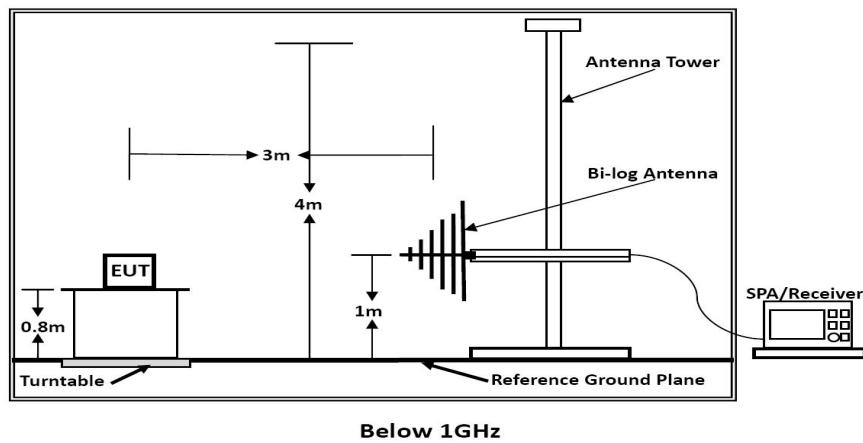
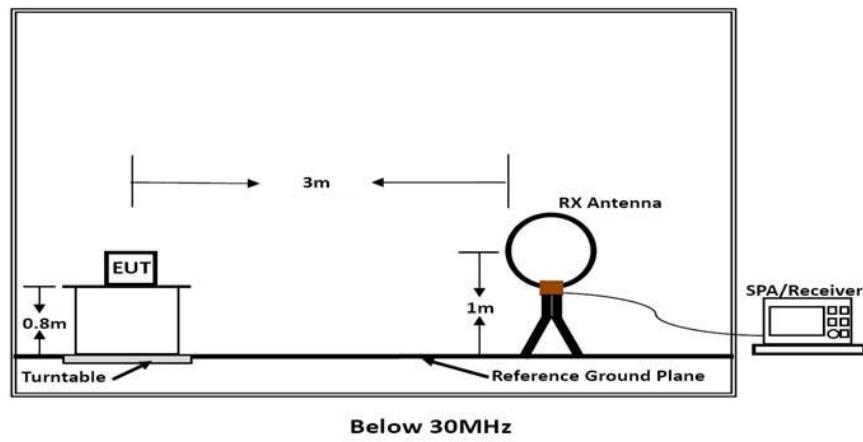

AC Power Line Conducted Emission (Power input to adapter @ AC 120V/60Hz (Worst Case))

Line

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.181	24.16	19.74	43.90	64.44	-20.54	QP
2		0.181	12.48	19.74	32.22	54.44	-22.22	AVG
3		0.285	25.26	19.79	45.05	60.67	-15.62	QP
4		0.285	19.60	19.79	39.39	50.67	-11.28	AVG
5		0.541	30.07	19.71	49.78	56.00	-6.22	QP
6	*	0.541	22.01	19.71	41.72	46.00	-4.28	AVG
7		1.788	18.47	18.99	37.46	56.00	-18.54	QP
8		1.788	15.59	18.99	34.58	46.00	-11.42	AVG
9		8.259	22.03	19.69	41.72	60.00	-18.28	QP
10		8.259	21.00	19.69	40.69	50.00	-9.31	AVG
11		26.119	28.90	18.81	47.71	60.00	-12.29	QP
12		26.119	26.38	18.81	45.19	50.00	-4.81	AVG

Neutral

No.	Mk.	Freq. MHz	Reading	Correct	Measure-	Limit dB	Margin dB
			Level dBuV	Factor dB	ment dBuV		
1		0.191	26.48	19.69	46.17	63.99	-17.82
2		0.191	23.03	19.69	42.72	53.99	-11.27
3		0.550	27.60	19.68	47.28	56.00	-8.72
4		0.550	20.35	19.68	40.03	46.00	-5.97
5		1.567	19.54	19.03	38.57	56.00	-17.43
6		1.567	14.65	19.03	33.68	46.00	-12.32
7		4.915	22.37	18.96	41.33	56.00	-14.67
8		4.915	19.50	18.96	38.46	46.00	-7.54
9		11.620	22.96	19.60	42.56	60.00	-17.44
10		11.620	20.55	19.60	40.15	50.00	-9.85
11		26.146	29.03	18.81	47.84	60.00	-12.16
12	*	26.146	28.03	18.81	46.84	50.00	-3.16



***Note: Pre-scan all modes and recorded the worst case results in this report.

Margin=Reading level + Correct - Limit;

Correct Factor=Lisn Factor+Cable Factor+Insertion loss of Pulse Limitter

7. RADIATED EMISSION MEASUREMENT

7.1. Block Diagram of Test Setup

7.2. Radiated Emission Limit

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	TF1560B-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

7.3. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\mathbf{FS \text{ (dBuV/m)} = RA \text{ (dBuV)} + AF \text{ (dB/m)} + CL \text{ (dB)} - AG \text{ (dB)}}$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

7.5. Operating Condition of EUT

(1) Setup the EUT as shown in Section 7.1.

7.6. Measuring Setting

The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/Average
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/Average
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

7.7. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premereasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.0 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- Identified emissions during the premeasurement the software maximizes by rotating the turntable

position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premereasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter.

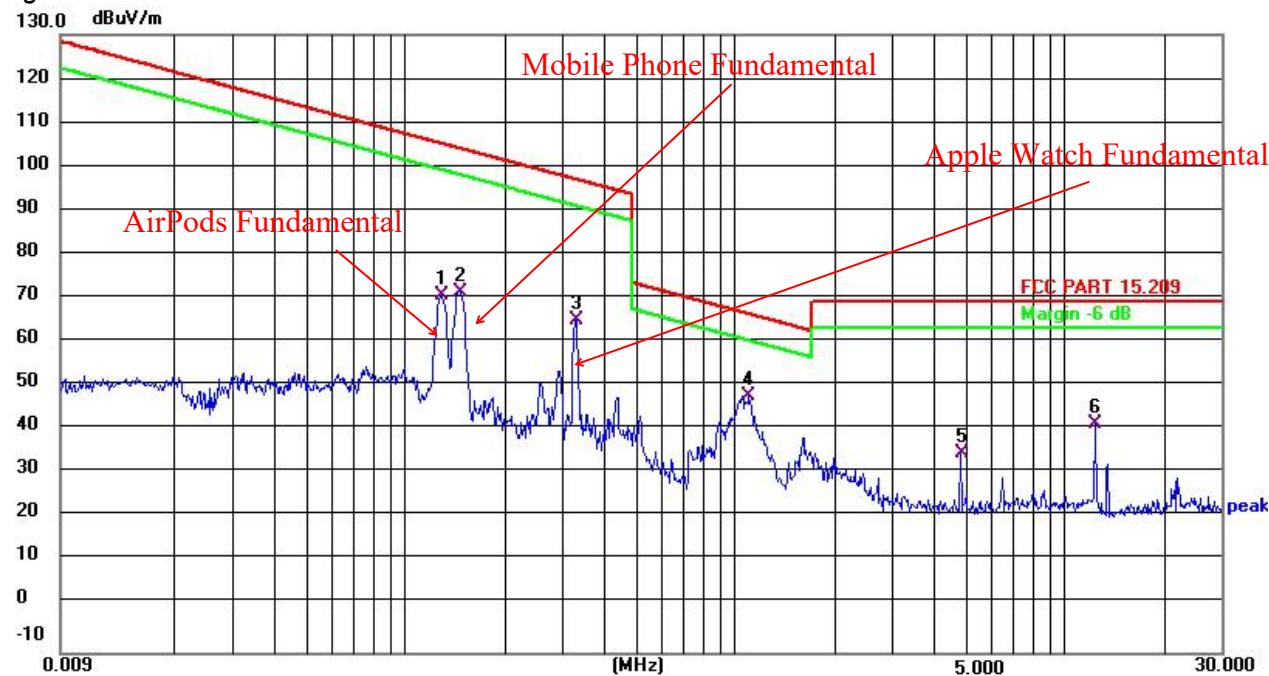
--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

7.8. Test Results

PASS.

Both AC and DC modes were tested, only AC mode was recorded

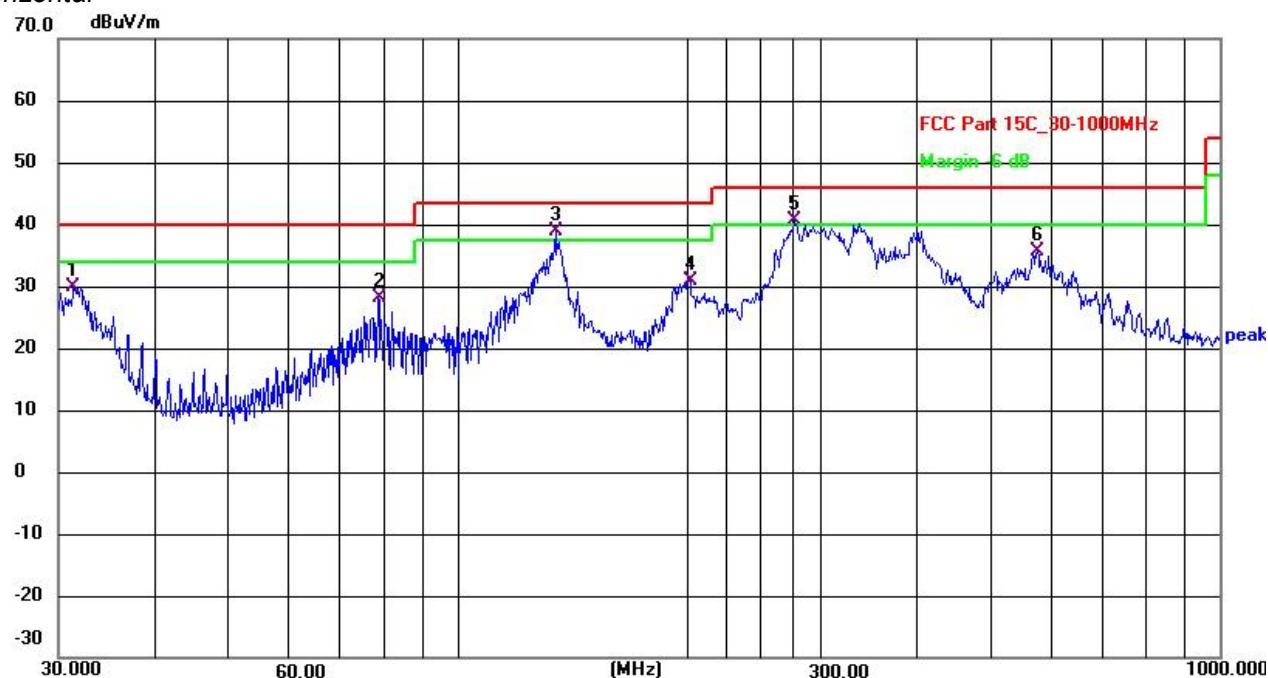

Only report the worst test data (Mode 1) in test report;

The test data please refer to following page:

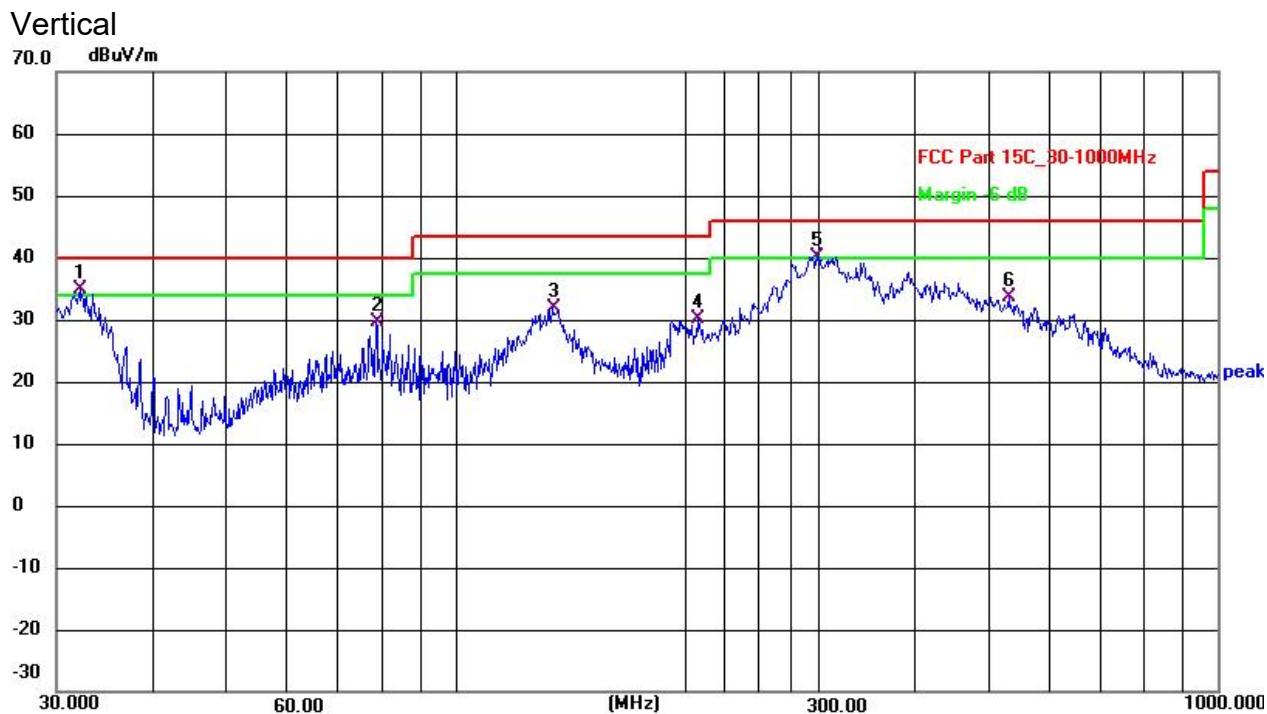
Temperature	23.6°C	Humidity	52.2%
Test Engineer	Jone Lee	Configurations	Transmit

0.009 MHz – 30 MHz

0 degree



No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin
			Level	Factor	ment		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB
1		0.1287	81.31	-10.39	70.92	105.35	-34.43
2		0.1465	82.26	-10.37	71.89	104.23	-32.34
3		0.3300	75.77	-10.33	65.44	97.21	-31.77
4	*	1.1048	58.36	-10.04	48.32	66.74	-18.42
5		4.8358	45.11	-9.90	35.21	69.54	-34.33
6		12.3916	51.48	-9.59	41.89	69.54	-27.65


Remark: 1). Measured at antenna position 0 degree and 90 degree, recorded worst case at 0 degree.

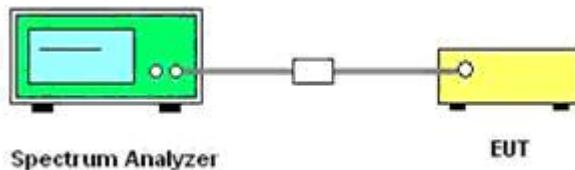
2). Margin=Reading level + Factor- Limit

Temperature	23.8°C	Humidity	52.1%
Test Engineer	Jone Lee	Configurations	Transmit

Below 1GHz*Horizontal*

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Margin	Detector
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1		31.3992	48.20	-18.34	29.86	40.00	-10.14	QP
2		78.6887	47.91	-19.86	28.05	40.00	-11.95	QP
3	*	134.5591	58.66	-19.88	38.78	43.50	-4.72	QP
4		202.1004	49.27	-18.43	30.84	43.50	-12.66	QP
5	!	277.0935	56.82	-16.30	40.52	46.00	-5.48	QP
6		576.6443	46.41	-10.80	35.61	46.00	-10.39	QP

No.	Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB/m	Measure- ment dBuV/m	Limit dBuV/m	Margin dB	Detector
1	*	32.1794	53.00	-18.16	34.84	40.00	-5.16	QP
2		78.6887	49.47	-19.83	29.64	40.00	-10.36	QP
3		134.0881	52.46	-20.70	31.76	43.50	-11.74	QP
4		207.8501	47.43	-17.19	30.24	43.50	-13.26	QP
5	!	298.2681	55.81	-15.61	40.20	46.00	-5.80	QP
6		531.9634	46.17	-12.46	33.71	46.00	-12.29	QP


1). Emission level (dBuV/m) = 20 log Emission level (uV/m).

2). Margin=Reading level + Factor- Limit.

Correct Factor=Antenna Factor+Cable Factor- Pre-amplifier Factor

8. 20 dB Bandwidth Measurement

8.1. Block Diagram of Test Setup

8.2. Test Procedure

Use the following spectrum analyzer settings:

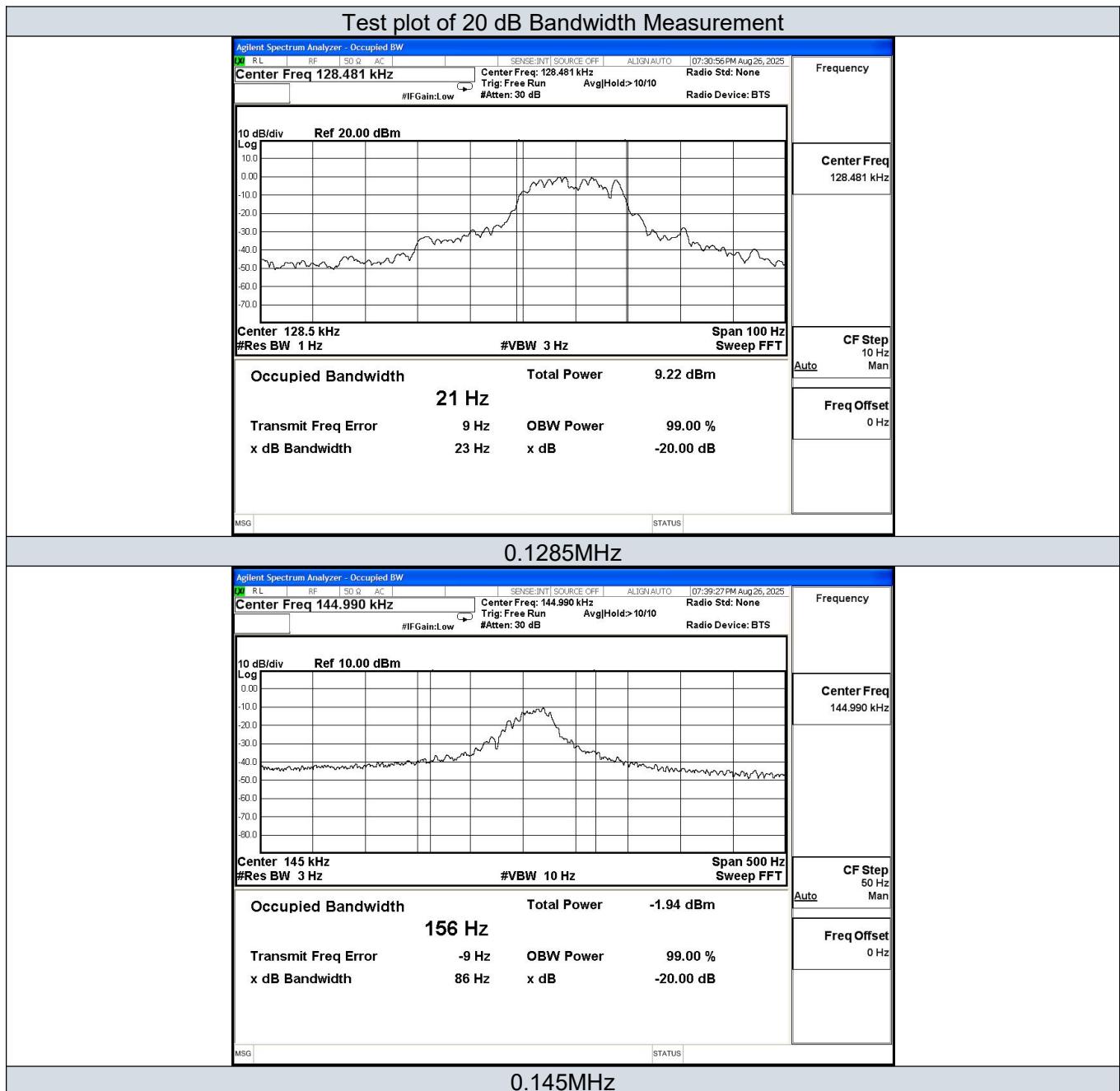
RBW = 1~5% of the XdB Bandwidth

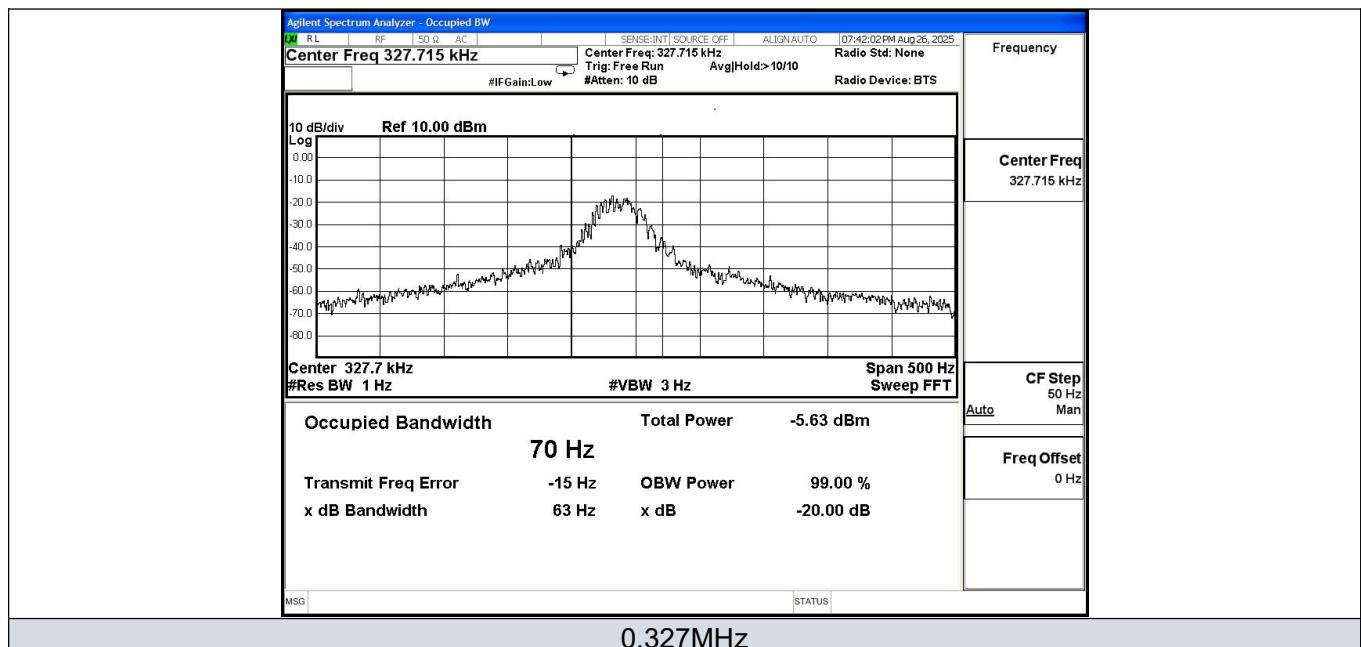
VBW = RBW*3

Sweep = auto

Detector function = peak

Trace = max hold


The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).


8.3. Test Results

Test Result Of 20dB Bandwidth Measurement			
Test Mode	Test Frequency (MHz)	20dB Bandwidth (kHz)	Limit (kHz)
Mode 10	0.1285	0.023	Non-Specified
Mode 4	0.1450	0.086	Non-Specified
Mode 7	0.3277	0.063	Non-Specified

Result: Pass

Please refer to the following page for test plot.

9. PHOTOGRAPHS OF TEST SETUP

Please refer to separated files for Test Setup Photos of the EUT.

10. EXTERNAL PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

11. INTERNAL PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----