

TEST REPORT

Application No.:	SHEM2002001218CR
FCC ID:	2AVUP-SS00042
IC:	25913-SS00042
Applicant:	Chongqing Lihua Automatic Technology Co.,Ltd
Address of Applicant:	No.9 Yangliubei Road, Yubei District, Chongqing, China
Manufacturer:	Chongqing Lihua Automatic Technology Co.,Ltd
Address of Manufacturer:	No.9 Yangliubei Road, Yubei District, Chongqing, China
Factory:	Chongqing Lihua Automatic Technology Co.,Ltd
Address of Factory:	No.9 Yangliubei Road, Yubei District, Chongqing, China
Equipment Under Test (EUT):	
EUT Name:	433MHz wireless remote control
Model No.:	80085668
Standard(s) :	47 CFR Part 15, Subpart C 15.231 RSS-210 Issue 10 December 2019 RSS-Gen Issue 5, March 2019 Amendment 1
Date of Receipt:	2020-02-27
Date of Test:	2020-04-01 to 2020-04-11
Date of Issue:	2020-04-16

Test Result:	Pass*
---------------------	--------------

* In the configuration tested, the EUT complied with the standards specified above.

Parlam Zhan
E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Docment.aspx>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /Inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@sgs.com

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd.
Testing Center EMC Laboratory

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612
中国·上海·松江区金都西路588号

邮编: 201612

t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn
t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Revision Record			
Version	Description	Date	Remark
00	Original	2020-04-16	/

Authorized for issue by:			
		Bill Wu	
		Bill Wu / Project Engineer	
		Parlam Zhan	
		Parlam Zhan /Reviewer	

2 Test Summary

Radio Spectrum Technical Requirement				
Item	FCC Requirement	IC Requirement	Method	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.203	RSS-Gen Section 8.1.3	N/A	Pass

N/A: Not applicable

Radio Spectrum Matter Part				
Item	Requirement	IC Requirement	Method	Result
20dB Bandwidth	47 CFR Part 15, Subpart C 15.231	RSS-210 A1.3	ANSI C63.10 (2013) Section 6.9	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.231(a)	RSS-210 A1.1	ANSI C63.10 (2013) Section 7.8.4	Pass
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C 15.231(b)	RSS-210 A1.2	ANSI C63.10 (2013) Section 6.5	Pass
Radiated Emissions	47 CFR Part 15, Subpart C 15.231	RSS-210 A1.2	ANSI C63.10 (2013) Section 6.4&6.5&6.6	Pass
99% Bandwidth	N/A	RSS-210 A1.3	RSS-Gen Section 6.7	Pass
Frequency Stability	RSS-Gen March 2019	RSS-Gen Section 6.11	RSS-Gen Section 8.11	Note 1

Note: Frequency stability requested in RSS GEN S8.11 has been complied since the result of occupied bandwidth can demonstrate.

3 Contents

	Page
1 COVER PAGE.....	1
2 TEST SUMMARY	3
3 CONTENTS.....	4
4 GENERAL INFORMATION.....	5
4.1 DETAILS OF E.U.T.	5
4.2 DESCRIPTION OF SUPPORT UNITS	5
4.3 MEASUREMENT UNCERTAINTY.....	5
4.4 TEST LOCATION.....	6
4.5 TEST FACILITY.....	6
4.6 DEVIATION FROM STANDARDS	6
4.7 ABNORMALITIES FROM STANDARD CONDITIONS.....	6
5 EQUIPMENT LIST	7
6 RADIO SPECTRUM TECHNICAL REQUIREMENT.....	8
6.1 ANTENNA REQUIREMENT	8
7 RADIO SPECTRUM MATTER TEST RESULTS.....	9
7.1 20dB BANDWIDTH	9
7.2 DWELL TIME.....	11
7.3 FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.231(B)).....	13
7.4 RADIATED EMISSIONS	15
7.5 99% BANDWIDTH.....	22
8 TEST SETUP PHOTOGRAPHS	24
9 EUT CONSTRUCTIONAL DETAILS.....	24

4 General Information

4.1 Details of E.U.T.

Power supply: DC 6V By 2*CR 2016 Lithium Battery
Serial Number: ss0042
Firmware Version: N/A
Operation Frequency 433.92MHz
Modulation Technique: ASK
Antenna Type: PCB antenna
Number of Channel: 1

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	$\pm 8.4 \times 10^{-8}$
2	Timeout	$\pm 2s$
3	Duty cycle	$\pm 0.37\%$
4	Occupied Bandwidth	$\pm 3\%$
5	RF conducted power	$\pm 0.6\text{dB}$
6	RF power density	$\pm 2.84\text{dB}$
7	Conducted Spurious emissions	$\pm 0.75\text{dB}$
8	RF Radiated power	$\pm 4.6\text{dB}$ (Below 1GHz) $\pm 4.1\text{dB}$ (Above 1GHz)
9	Radiated Spurious emission test	$\pm 4.2\text{dB}$ (Below 30MHz)
		$\pm 4.4\text{dB}$ (30MHz-1GHz)
		$\pm 4.8\text{dB}$ (1GHz-18GHz)
		$\pm 5.2\text{dB}$ (Above 18GHz)
10	Temperature test	$\pm 1^\circ\text{C}$
11	Humidity test	$\pm 3\%$
12	Supply voltages	$\pm 1.5\%$
13	Time	$\pm 3\%$

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch
588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China

Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- CNAS (No. CNAS L0599)**

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

- NVLAP (LAB CODE: 201034-0)**

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

- FCC (Designation Number: CN5033)**

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

- ISED (CAB Identifier: CN0020)**

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. EMC Laboratory has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

- VCCI (Member No.: 3061)**

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

5 Equipment List

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Conducted Test					
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2019-12-20	2020-12-19
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2019-08-13	2020-08-12
Signal Generator	R&S	SMR20	SHEM006-1	2019-08-13	2020-08-12
Signal Generator	Agilent	N5182A	SHEM182-1	2019-08-13	2020-08-12
Communication Tester	R&S	CMW270	SHEM183-1	2019-08-13	2020-08-12
Switcher	Tonscend	JS0806	SHEM184-1	2019-08-13	2020-08-12
Power Sensor	Keysight	U2021XA * 4	SHEM184-1	2019-08-13	2020-08-12
Splitter	Anritsu	MA1612A	SHEM185-1	/	/
Coupler	e-meca	803-S-1	SHEM186-1	/	/
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2017-09-25	2020-09-24
AC Power Stabilizer	APC	KDF-31020T-V0-F0	SHEM216-1	2019-12-20	2020-12-19
DC Power Supply	MCH	MCH-303A	SHEM210-1	2019-12-20	2020-12-19
Conducted test Cable	/	RF01~RF04	/	2019-12-20	2020-12-19
RF Radiated Test					
EMI test Receiver	R&S	ESU40	SHEM051-1	2019-12-20	2020-12-19
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2019-12-20	2020-12-19
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2019-12-20	2020-12-19
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2019-10-14	2021-10-13
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM202-1	2019-04-30	2021-04-29
Horn Antenna (1-18GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2019-10-14	2021-10-13
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-10-31	2020-10-30
Pre-amplifier (9KHz-2GHz)	CLAVIIO	BDLNA-0001	SHEM164-1	2019-08-13	2020-08-12
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118	SHEM050-2	2019-08-13	2020-08-12
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2019-12-20	2020-12-19
Signal Generator	R&S	SMR40	SHEM058-1	2019-08-13	2020-08-12
Band Filter	LORCH	9BRX-875/X150	SHEM156-1	/	/
Band Filter	LORCH	13BRX-1950/X500	SHEM083-2	/	/
Band Filter	LORCH	5BRX-2400/X200	SHEM155-1	/	/
Band Filter	LORCH	5BRX-5500/X1000	SHEM157-2	/	/
High pass Filter	Wainwright	WHK3.0/18G	SHEM157-1	/	/
High pass Filter	Wainwright	WHKS1700	SHEM157-3	/	/
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21
RE test Cable	/	RE01, RE02, RE06	/	2019-12-20	2020-12-19

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is PCB antenna and no consideration of replacement.

Antenna location: Refer to Appendix(Internal Photos)

7 Radio Spectrum Matter Test Results

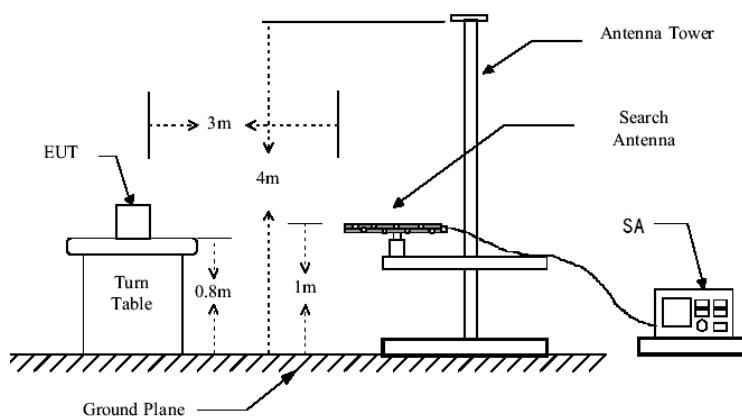
7.1 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.231(c)

Test Method: ANSI C63.10 (2013) Section 6.9

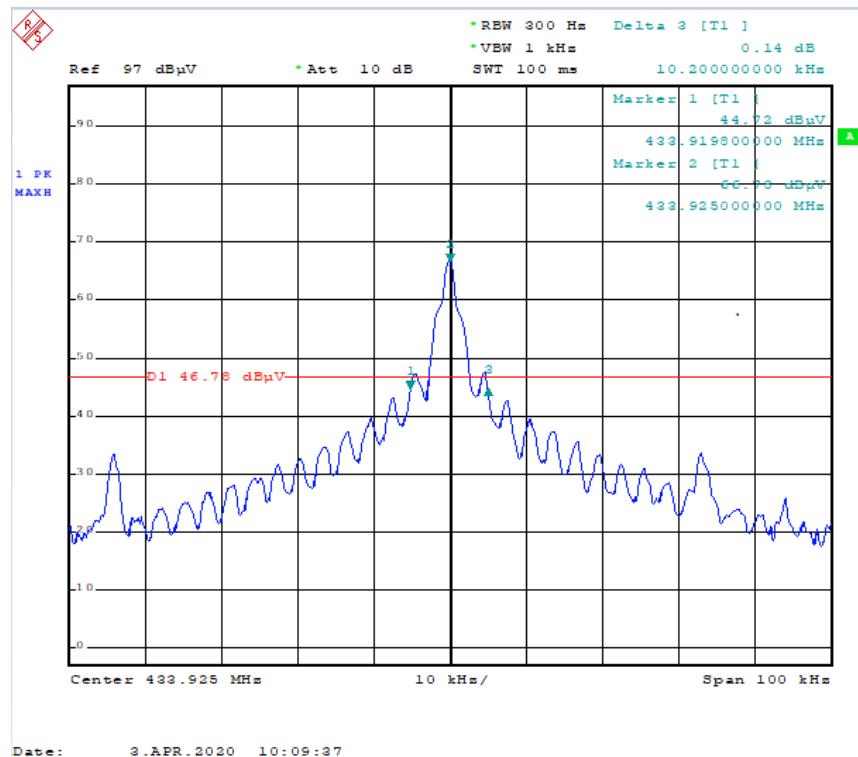
Limit:

Frequency range(MHz)	Limit
70-900	No wider than 0.25% of the center frequency
Above 900	No wider than 0.5% of the center frequency


7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar


Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.1.2 Test Setup Diagram

7.1.3 Measurement Procedure and Data

Frequency(MHz)	20dB bandwidth (kHz)	Limit (kHz)	Results
433.92	10.20	1084.80	Pass

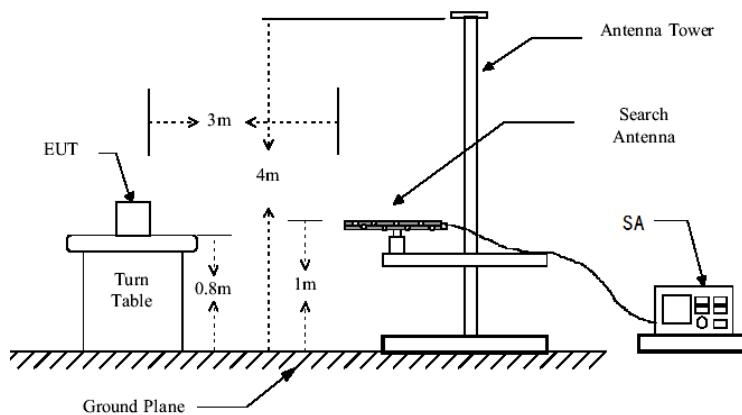
Test plot as follows:

7.2 Dwell Time

Test Requirement 47 CFR Part 15, Subpart C 15.231(a)

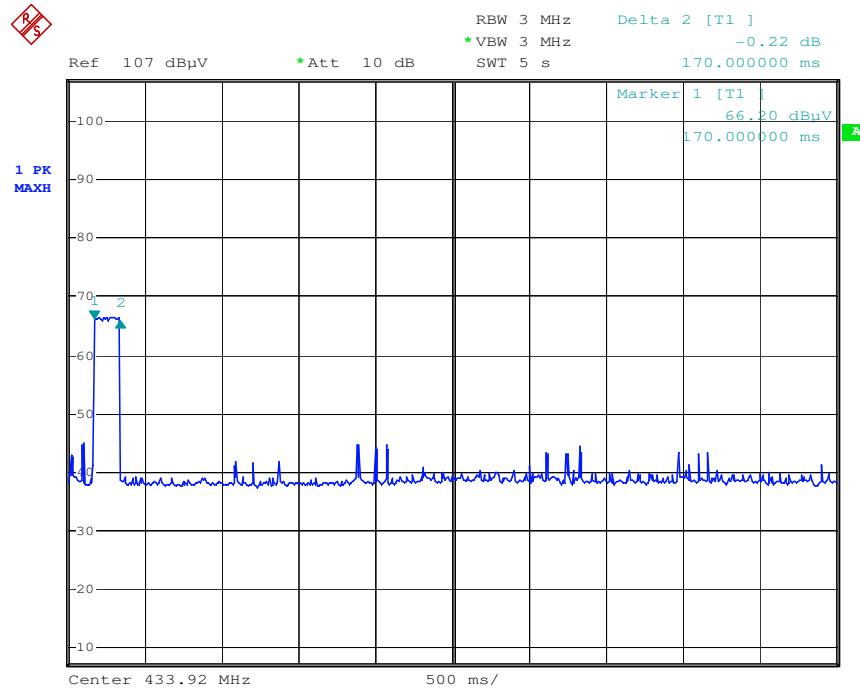
Test Method: ANSI C63.10 (2013) Section 7.8.4

Limit: 15.231 (a): Not more than 5 seconds

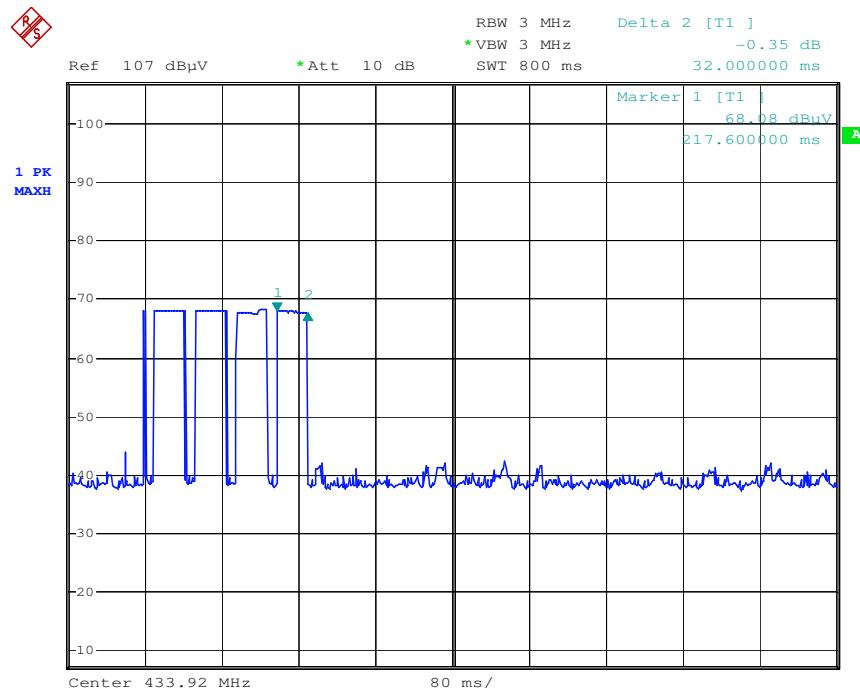

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar


Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.2.2 Test Setup Diagram



7.2.3 Measurement Procedure and Data

Test item	Limit (s)	Results
Transmission Duration	≤5s	Pass

Test plot as follows:

Date: 7.APR.2020 11:01:07

Date: 7.APR.2020 10:57:29

7.3 Field Strength of the Fundamental Signal (15.231(b))

Test Requirement 47 CFR Part 15, Subpart C 15.231(b)

Test Method: ANSI C63.10 (2013) Section 6.5

Limit:

Receiver Setup:

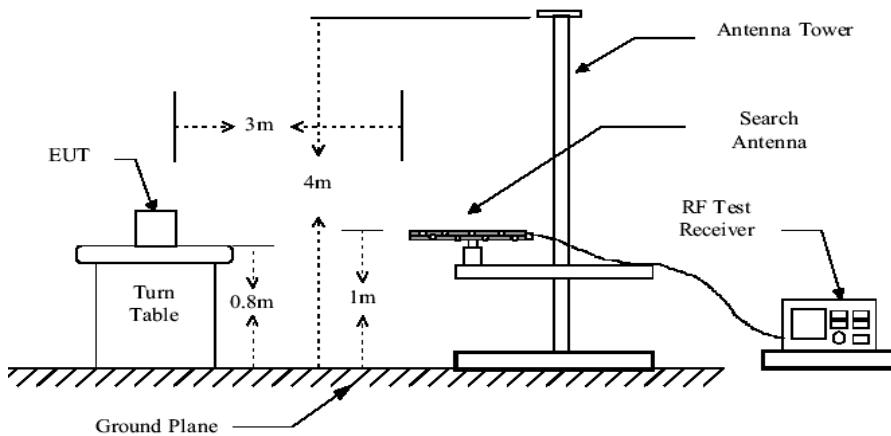
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.015MHz	Quasi-peak	200Hz	1KHz	Quasi-peak
0.015MHz-30MHz	Quasi-peak	9kHz	30KHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

**Limit:
(Spurious Emissions)**

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	Quasi-peak	300
0.490MHz-1.705MHz	24000/F(kHz)	-	Quasi-peak	30
1.705MHz-30MHz	30	-	Quasi-peak	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3
		74.0	Peak	3
Frequency	Limit (dBuV/m @3m)		Remark	
433.09 - 434.61MHz	80.83		Average Value	
	100.83		Peak Value	

**Limit:
(Field strength of the fundamental signal)**

Test Procedure:


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The radiation measurements are performed in X, Y, Z axis positioning. And found the Z axis positioning which it is worse case, only the test worst case mode is recorded in the report.

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar
Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

Figure1. 30MHz to 1GHz radiated emissions test configuration

7.3.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.

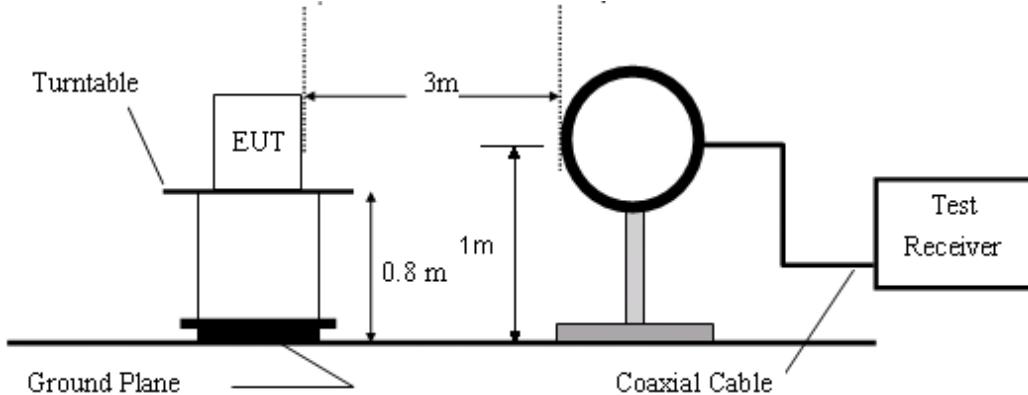
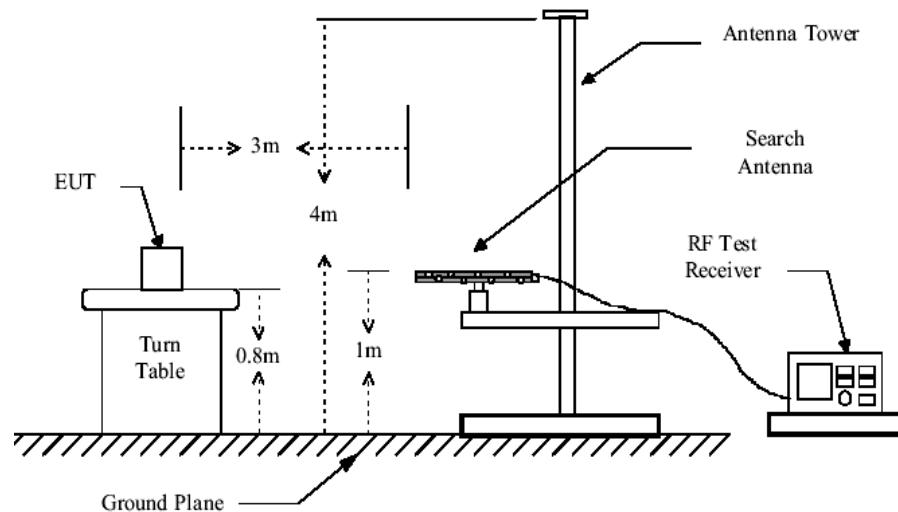
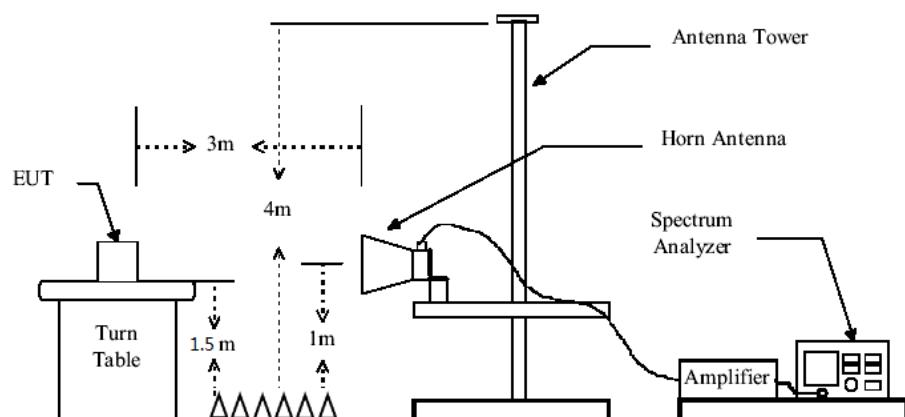
Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Test channel	Freq. (MHz)	Result Level (dB μ V/m)	AV Limit Line (dB μ V/m)	Over Limit (dB)	Detector	Polarization
Channel 1	433.92	44.33	80.83	-35.67	Peak	Vertical
		55.73	80.83	-25.10	Peak	Horizontal

Remark: If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

7.4 Radiated Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.231(b)
Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6
Limit:




Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

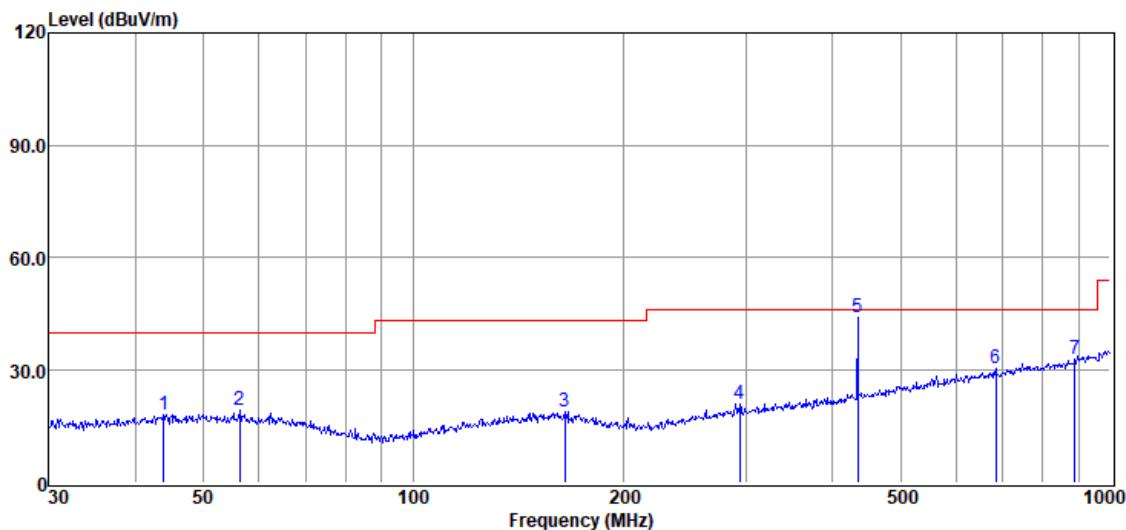
7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar
Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

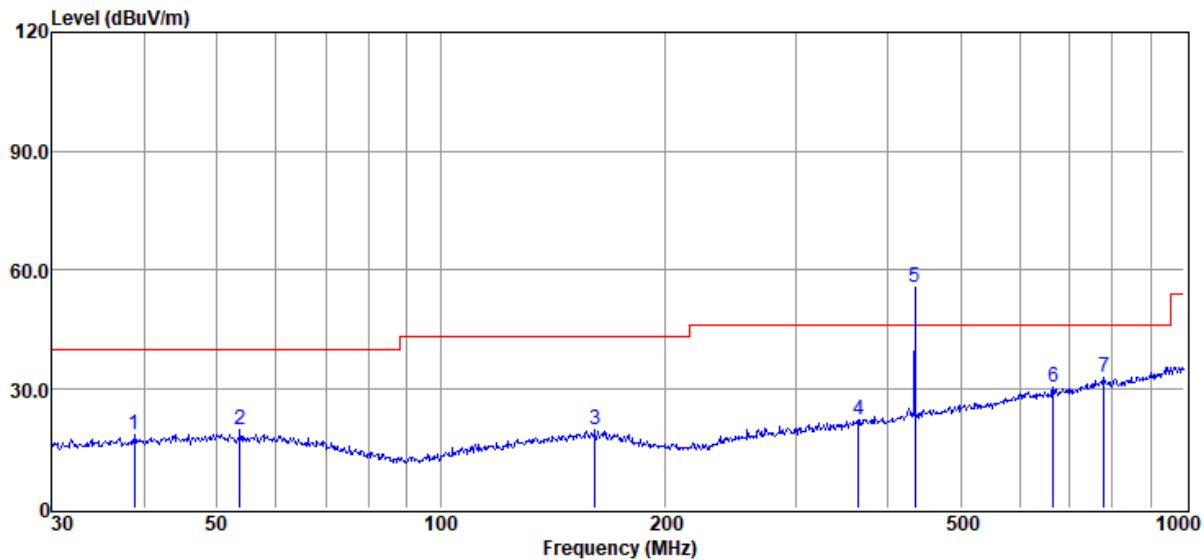
7.4.2 Test Setup Diagram**Figure1. Blow 30MHz radiated emissions test configuration****Figure2. 30MHz to 1GHz radiated emissions test configuration****Figure3. Above 1GHz radiated emissions test configuration**

7.4.3 Measurement Procedure and Data


- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

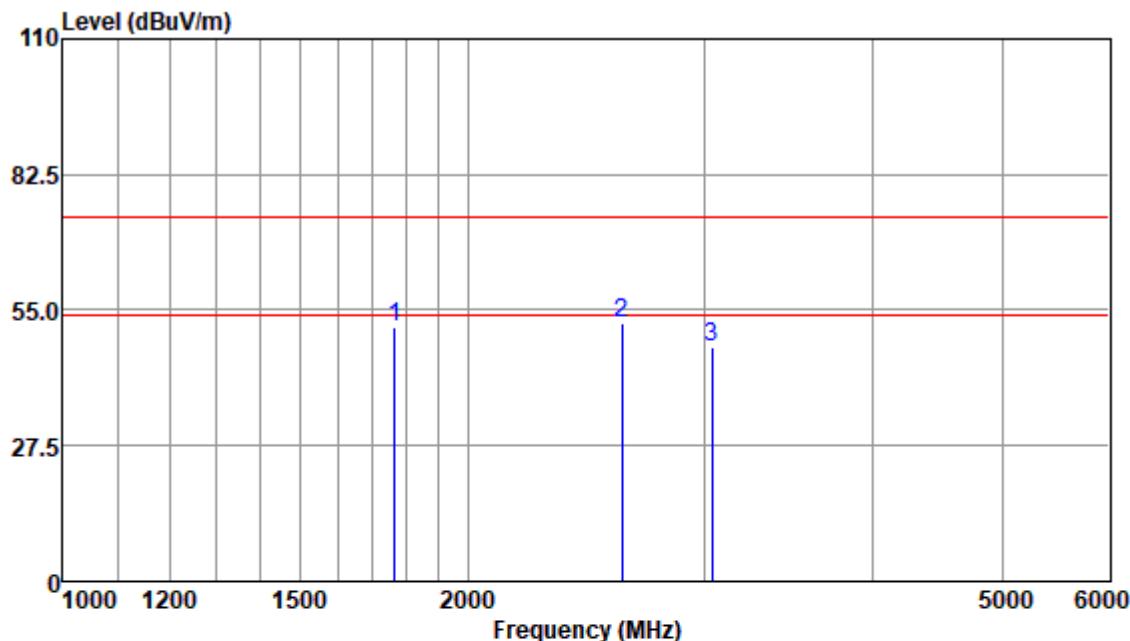
Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor
- 3) Scan from 9kHz to 6GHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown


30MHz-1GHz

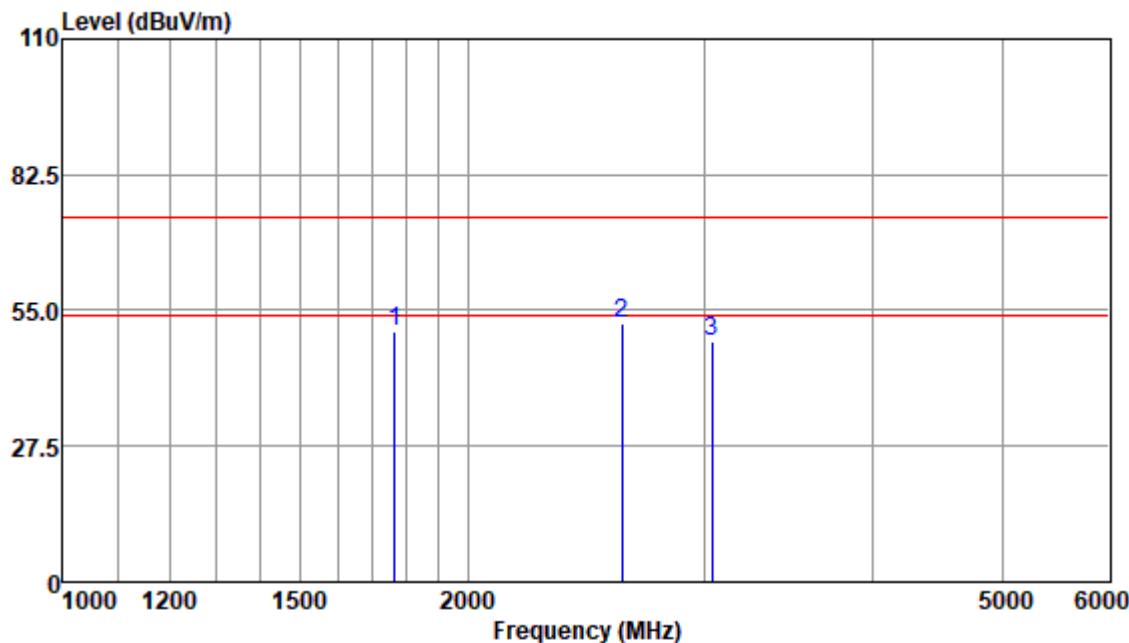
Vertical

Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dB μ V)	(dB/m)	(dB)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)	
1	43.812	46.17	13.43	42.33	0.99	18.26	40.00	-21.74	QP
2	56.395	47.17	13.31	42.33	1.09	19.24	40.00	-20.76	QP
3	164.907	46.23	13.00	42.21	1.81	18.83	43.50	-24.67	QP
4	294.114	47.67	13.16	42.12	2.37	21.08	46.00	-24.92	QP
5	434.065	66.87	16.52	41.81	2.75	44.33	Fundamental signal		
6	684.745	48.07	20.66	41.76	3.45	30.42	46.00	-15.58	QP
7	890.728	47.67	23.25	41.69	3.90	33.13	46.00	-12.87	QP


Horizontal

Item	Freq.	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector
(Mark)	(MHz)	(dB μ V)	(dB/m)	(dB)	(dB)	(dB μ V/m)	(dBuV/m)	(dB)	
1	38.752	46.83	13.01	42.34	0.94	18.44	40.00	-21.56	QP
2	53.693	47.65	13.47	42.33	1.07	19.86	40.00	-20.14	QP
3	161.474	47.14	13.13	42.22	1.78	19.83	43.50	-23.67	QP
4	364.260	46.72	14.71	41.93	2.58	22.08	46.00	-23.92	QP
5	434.065	78.27	16.52	41.81	2.75	55.73	Fundamental signal		
6	665.803	48.30	20.47	41.73	3.39	30.43	46.00	-15.57	QP
7	779.607	49.28	22.22	41.99	3.67	33.18	46.00	-12.82	QP

Above 1GHz


Horizontal

Antenna Polarity :HORIZONTAL

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Emission Limit	Over Line	Over Limit	Remark
1764.71	61.70	24.45	2.56	37.08	51.63	74.00	-22.37		Peak
2603.35	60.46	26.51	3.21	37.66	52.52	74.00	-21.48		Peak
3037.06	54.19	27.68	3.50	37.93	47.44	74.00	-26.56		Peak

Note: Emission Level=Read Level+Antenna Factor+Cable loss+Preamp Factor

Vertical

Antenna Polarity :VERTICAL

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limit	Over Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB		
1764.71	60.65	24.45	2.56	37.08	50.58	74.00	-23.42	Peak	
2603.35	60.32	26.51	3.21	37.66	52.38	74.00	-21.62	Peak	
3037.06	55.47	27.68	3.50	37.93	48.72	74.00	-25.28	Peak	

Note: Emission Level=Read Level+Antenna Factor+Cable loss+Preamp Factor

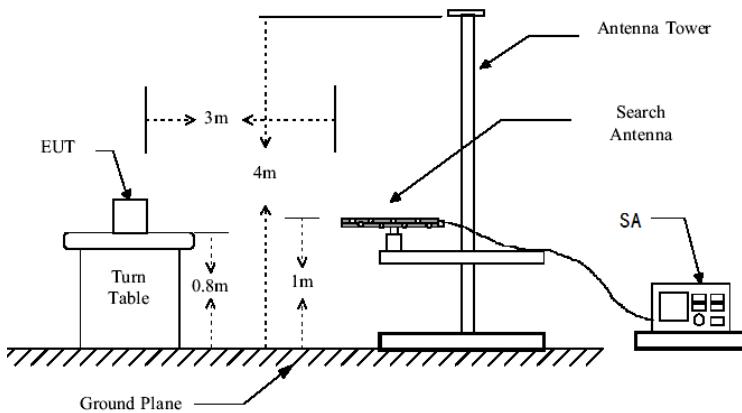
Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
Final Test Level = Receiver Reading Level + Factor
Factor = Antenna Factor + Cable Factor - Preamplifier Factor
- 2) No any other emissions level which are attenuated less than 20dB below the limit. According to 15.31(o), the amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part. Hence there no other emissions have been reported.

7.5 99% Bandwidth

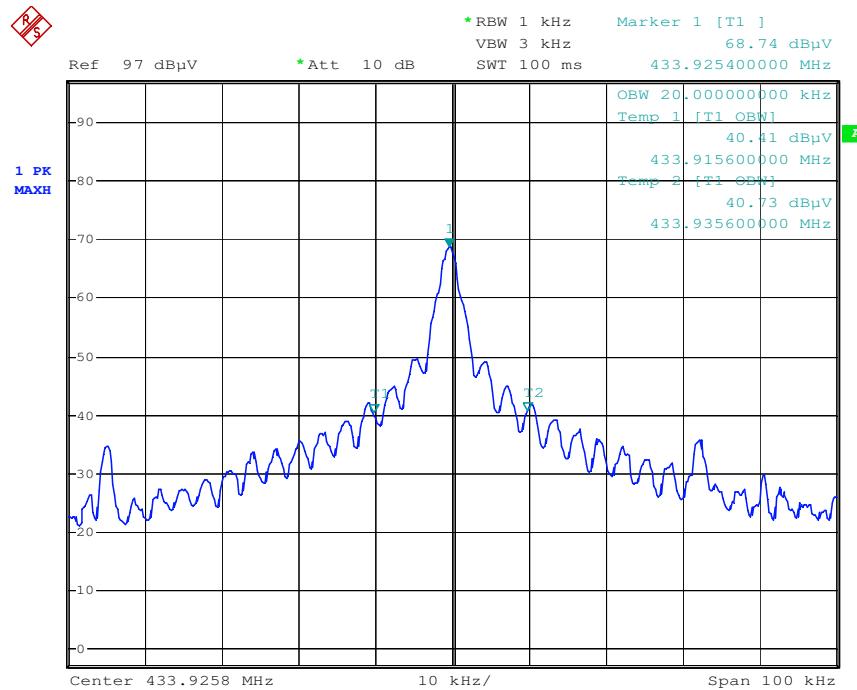
Test Requirement RSS-210 A1.3

Test Method: RSS-Gen Section 6.7


7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 20 °C Humidity: 50 % RH Atmospheric Pressure: 1010 mbar


Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.5.2 Test Setup Diagram

7.5.3 Measurement Procedure and Data

Frequency (MHz)	Bandwidth (MHz)	Limit(MHz)	Result
433.92	0.02	1.085	PASS

Date: 3.APR.2020 10:05:51

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -