

FCC RADIO TEST REPORT

FCC ID : 2AVSJ-SWTPWMIT022
Equipment : Soiltech Wireless Sensor
Brand Name : Soiltech Wireless Inc.
Model Name : Soiltech Beacon v2
 Soiltech Beacon v2 Ext Ant
 Soiltech Beacon v2 CO2
Applicant : Soiltech Wireless Inc
 98a S 200 W, Rupert, ID 83350 USA
Manufacturer : Soiltech Wireless Inc
 98a S 200 W, Rupert, ID 83350 USA
Standard : FCC Part 15 Subpart C §15.247

The product was received on Jun. 27, 2023 and testing was performed from Sep. 21, 2023 to Oct. 09, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Sportun International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

History of this test report.....	3
Summary of Test Result.....	4
1 General Description.....	5
1.1 Product Feature of Equipment Under Test.....	5
1.2 Modification of EUT	5
1.3 Testing Location	6
1.4 Applicable Standards.....	6
2 Test Configuration of Equipment Under Test.....	7
2.1 Carrier Frequency Channel	7
2.2 Test Mode.....	8
2.3 Connection Diagram of Test System	9
2.4 Support Unit used in test configuration and system	9
2.5 EUT Operation Test Setup	9
3 Test Result.....	10
3.1 Output Power Measurement.....	10
3.2 Radiated Band Edges and Spurious Emission Measurement	11
3.3 AC Conducted Emission Measurement.....	15
3.4 Antenna Requirements	17
4 List of Measuring Equipment	18
5 Measurement Uncertainty	20
Appendix A. Conducted Test Results	
Appendix B. AC Conducted Emission Test Result	
Appendix C. Radiated Spurious Emission	
Appendix D. Radiated Spurious Emission Plots	
Appendix E. Duty Cycle Plots	
Appendix F. Setup Photographs	

History of this test report

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(2)	6dB Bandwidth	-	See Note
-	2.1049	99% Occupied Bandwidth	-	See Note
3.1	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
-	15.247(e)	Power Spectral Density	-	See Note
-	15.247(d)	Conducted Band Edges and Spurious Emission	-	See Note
3.2	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	0.14 dB under the limit at 4960.00 MHz
3.3	15.207	AC Conducted Emission	Pass	3.71 dB under the limit at 0.15 MHz
3.4	15.203	Antenna Requirement	Pass	-

Note:

1. For host device, Radiated Spurious Emission is verified and complies with the limit in this test report.
2. For host device, the Conducted Output Power is no difference after compared to module (Model: BM832)

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Danny Lee**Report Producer: Rachel Hsieh**

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature								
General Specs LTE and Bluetooth-LE								
Antenna Type WWAN : PCB Antenna Bluetooth: PCB Antenna								

Model Name	Configuration	WWAN Module	WWAN Antenna	Bluetooth Module	Bluetooth Antenna	CO2 Sensor	Top Cover	Bottom Cover
Soiltech Beacon v2	Configuration 1	Quectel BG96	Internal	BM832	Internal	Not mounted	Standard	Standard
Soiltech Beacon v2 Ext Ant	Configuration 2	Quectel BG96	External	BM832	Internal	Not mounted	Standard	Adjusted for CO2 sensor
Soiltech Beacon v2 CO2	Configuration 3	-	Internal	BM832	Internal	Mounted	Adjusted for CO2 sensor	Standard

Antenna information		
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	0.01

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sportun International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sportun Site No. CO05-HY (TAF Code: 1190)
Remark	The AC Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sportun International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sportun Site No. TH05-HY, 03CH12-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ FCC Part 15 Subpart C §15.247
- ♦ FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- ♦ FCC KDB 414788 D01 Radiated Test Site v01r01
- ♦ ANSI C63.10-2013

Remark:

1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
2. The TAF code is not including all the FCC KDB listed without accreditation.
3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

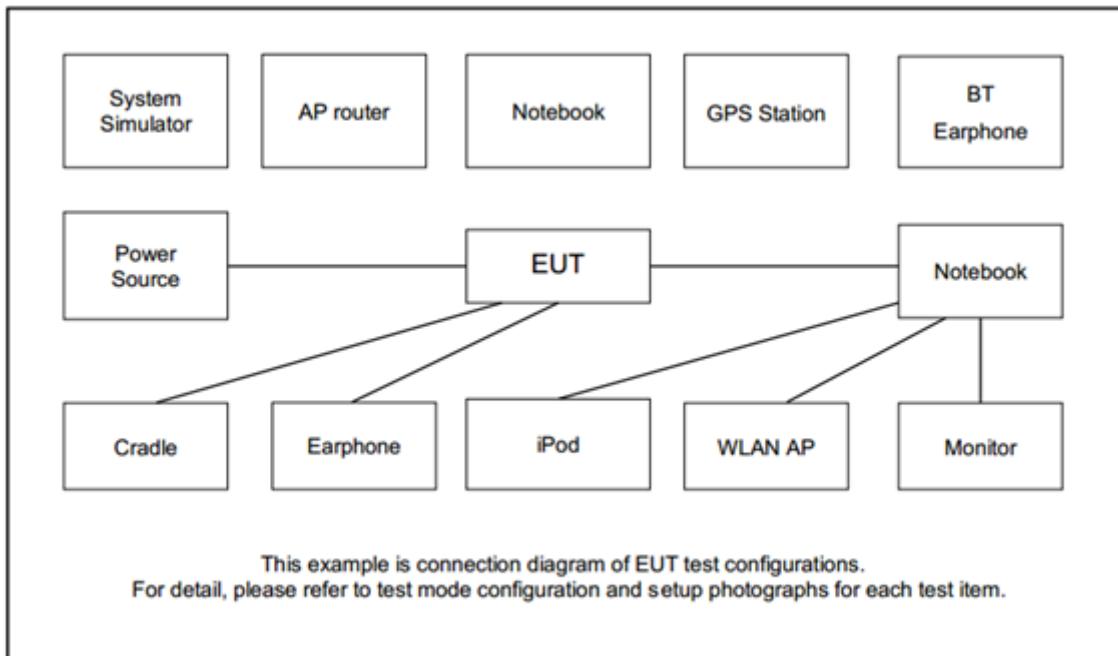
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
2400-2483.5 MHz	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases	
Test Item	Data Rate / Modulation
Conducted Test Cases	Bluetooth – LE / GFSK Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Radiated Test Cases	Mode 1: Bluetooth Tx CH39_2480 MHz_1Mbps
AC Conducted Emission	Mode 1: Bluetooth-LE TX + USB Cable (Charging from Notebook) for Configuration 1

Remark:

1. For Radiated Test Cases, the tests were performed with Configuration 1.
2. For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
2.	Notebook	DELL	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A

2.5 EUT Operation Test Setup

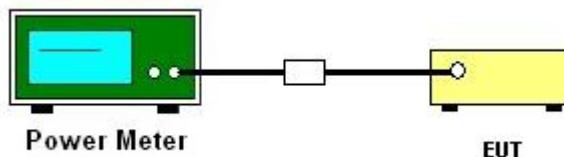
The RF test items, utility "KIR03 NRF BLE V1.2.20201126" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

1. For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.3 PKPM1.
2. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
3. The RF output of EUT is connected to the power meter by RF cable and attenuator.
4. The path loss is compensated to the results for each measurement.
5. Set the maximum power setting and enable the EUT to transmit continuously.
6. Measure the conducted output power and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

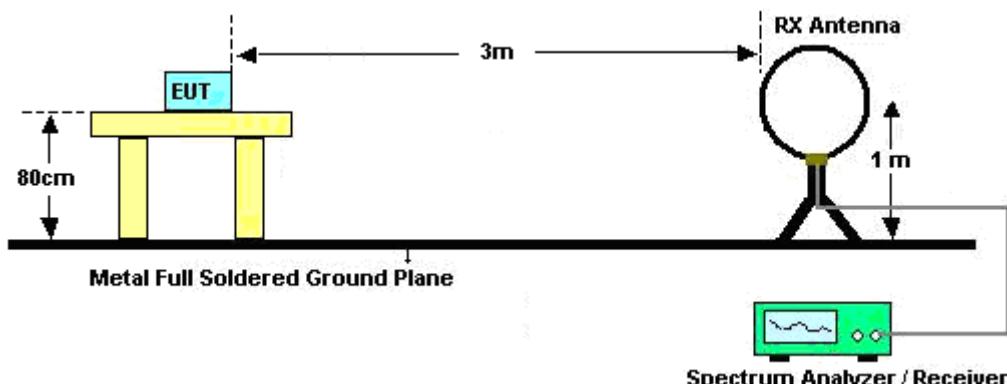
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

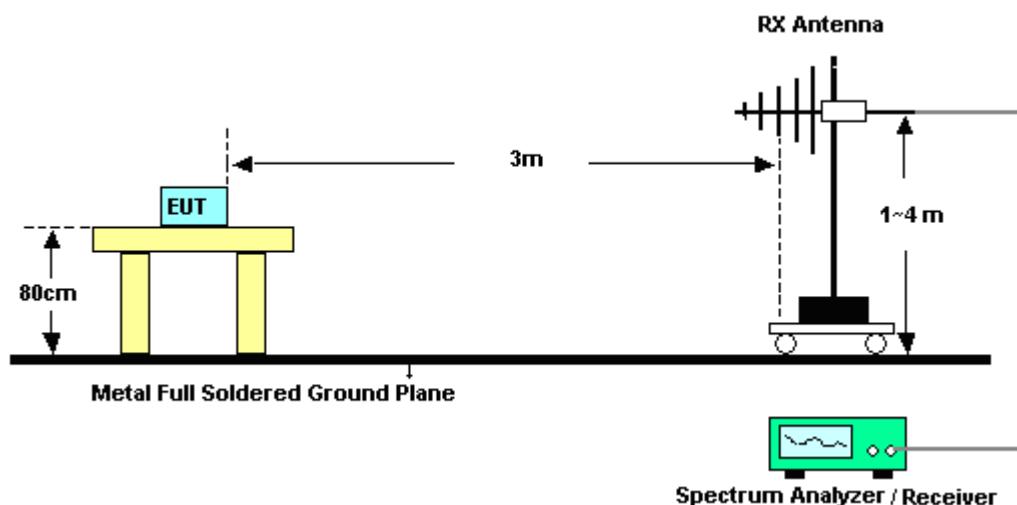
3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

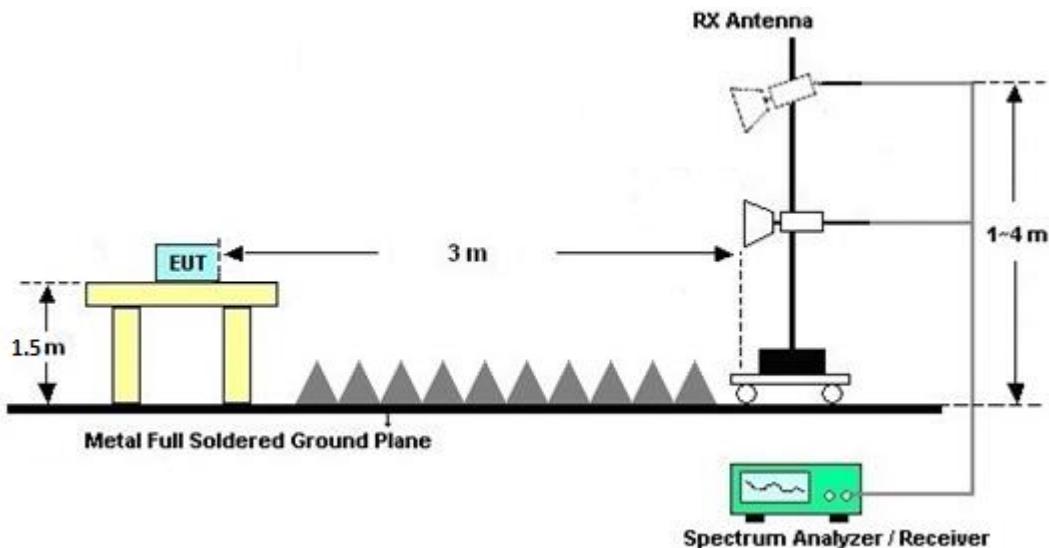
3.2.3 Test Procedures

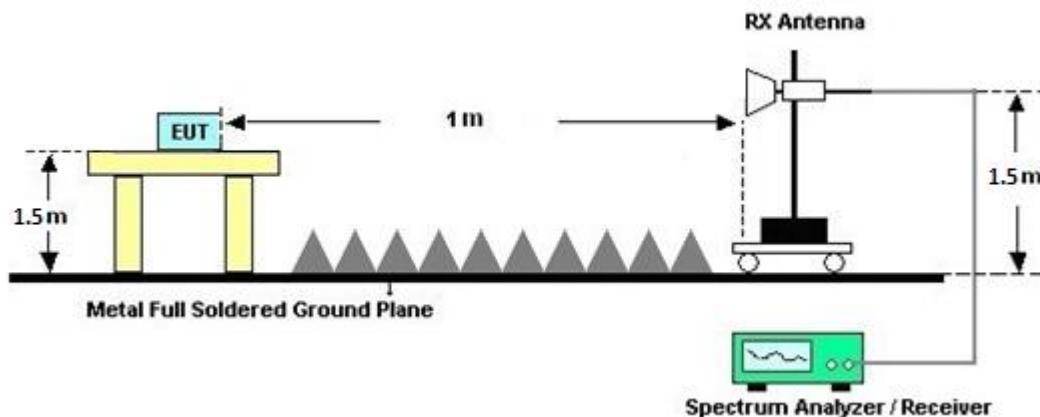

1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as “-”.
7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as “-”.
8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for $f < 1$ GHz; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for $f \geq 1$ GHz for peak measurement.

For average measurement:


 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.2.4 Test Setup


For radiated test below 30MHz


For radiated test from 30MHz to 1GHz

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.2.7 Duty Cycle

Please refer to Appendix E.

3.2.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

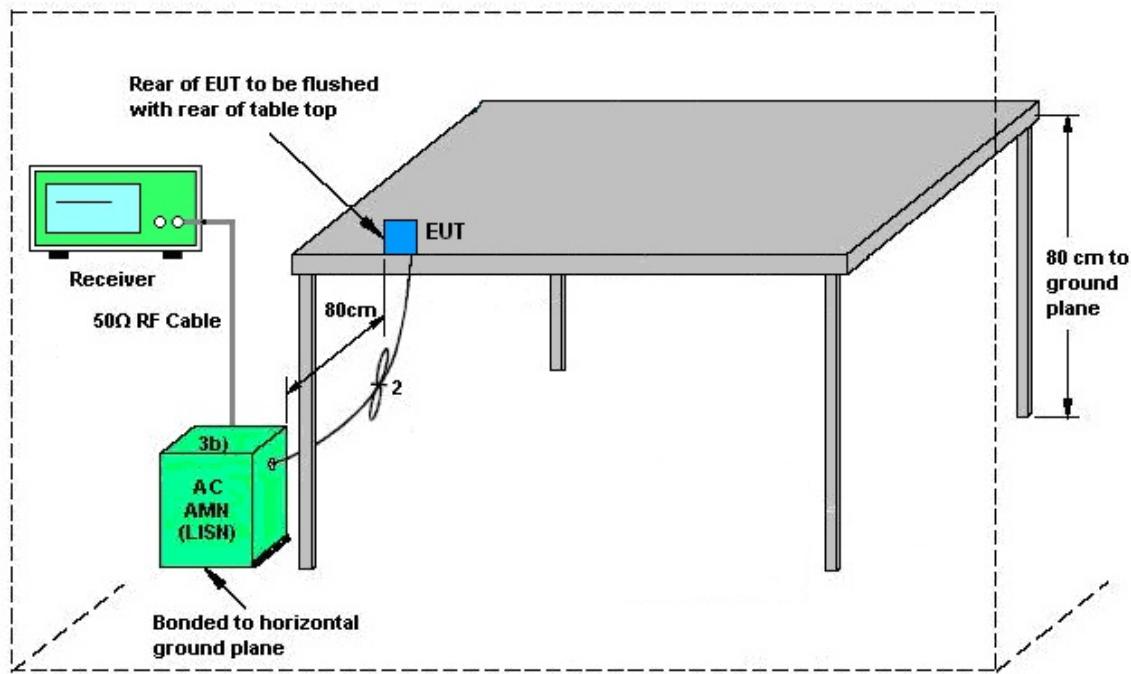
3.3 AC Conducted Emission Measurement

3.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
7. The frequency range from 150 kHz to 30 MHz is scanned.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.3.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.4 Antenna Requirements

3.4.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 12, 2023	Oct. 03, 2023	Sep. 11, 2024	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N-06	37059 & 01	30MHz~1GHz	Nov. 10, 2022	Oct. 03, 2023	Nov. 09, 2023	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-02114	1GHz~18GHz	Jul. 31, 2023	Oct. 03, 2023	Jul. 30, 2024	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA9170	00993	18GHz-40GHz	Nov. 24, 2022	Oct. 03, 2023	Nov. 23, 2023	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 21, 2023	Oct. 03, 2023	Mar. 20, 2024	Radiation (03CH12-HY)
Preamplifier	Agilent	8449B	3008A02375	1GHz~26.5GHz	May 23, 2023	Oct. 03, 2023	May 22, 2024	Radiation (03CH12-HY)
Preamplifier	E-INSTRUMENT TECH LTD.	ERA-100M-18G-56-01-A70	EC1900249	1GHz-18GHz	Dec. 21, 2022	Oct. 03, 2023	Dec. 20, 2023	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 07, 2022	Oct. 03, 2023	Dec. 06, 2023	Radiation (03CH12-HY)
Spectrum Analyzer	Agilent	N9010A	MY53470118	10Hz~44GHz	Jan. 10, 2023	Oct. 03, 2023	Jan. 09, 2024	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-12SS	SN2	1.2GHz Low Pass Filter	Mar. 13, 2023	Oct. 03, 2023	Mar. 12, 2024	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-2700-3000-18000-60ST	SN2	3GHz High Pass Filter	Mar. 13, 2023	Oct. 03, 2023	Mar. 12, 2024	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 15, 2023	Oct. 03, 2023	Mar. 14, 2024	Radiation (03CH12-HY)
RF Cable	TUYUE	RG142D-NmB Ncm-3000	H0620	9kHz~30MHz	Mar. 14, 2023	Oct. 03, 2023	Mar. 13, 2024	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30MHz~18GHz	Dec. 20, 2022	Oct. 03, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15539/4	30MHz~18GHz	Dec. 20, 2022	Oct. 03, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Dec. 20, 2022	Oct. 03, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803953/2	30MHz~40GHz	Dec. 20, 2022	Oct. 03, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Oct. 03, 2023	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Oct. 03, 2023	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-000989	N/A	N/A	Oct. 03, 2023	N/A	Radiation (03CH12-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Oct. 09, 2023	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2022	Oct. 09, 2023	Nov. 30, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 01, 2022	Oct. 09, 2023	Nov. 30, 2023	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 17, 2022	Oct. 09, 2023	Nov. 16, 2023	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Oct. 09, 2023	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBECK	VTSD 9561-F N	00691	9kHz-200MHz	Jul. 28, 2023	Oct. 09, 2023	Jul. 27, 2024	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 29, 2022	Oct. 09, 2023	Dec. 28, 2023	Conduction (CO05-HY)
Power Sensor	DARE	RPR3006W	13I00054SNO32 (NO.43)	10MHz~6GHz	Dec. 09, 2022	Sep. 21, 2023	Dec. 08, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV3044	101104	10Hz - 40GHz(amp)	Feb. 21, 2023	Sep. 21, 2023	Feb. 20, 2024	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	0932001	N/A	Sep. 08, 2023	Sep. 21, 2023	Sep. 07, 2024	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	0846202	300MHz~40GHz	Sep. 08, 2023	Sep. 21, 2023	Sep. 07, 2024	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	3.5 dB
---	--------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	6.4 dB
---	--------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	4.4 dB
---	--------

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	4.6 dB
---	--------

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

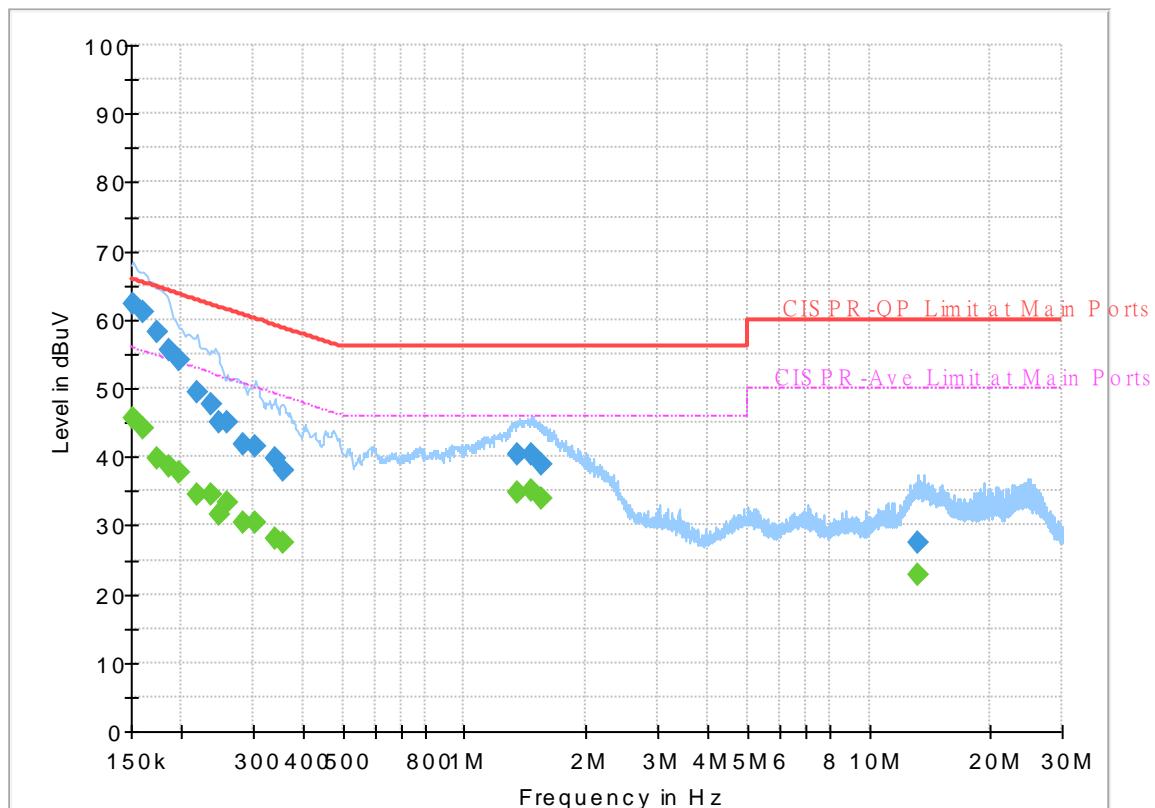
Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	5.2 dB
---	--------

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Leon Huang	Temperature:	21~25	°C
Test Date:	2023/9/21	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u>										
<u>Peak Power Table</u>										
Mod.	Data Rate	N _{Tx}	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	3.80	30.00	0.01	3.81	36.00	Pass
BLE	1Mbps	1	19	2440	3.90	30.00	0.01	3.91	36.00	Pass
BLE	1Mbps	1	39	2480	3.81	30.00	0.01	3.82	36.00	Pass

<u>TEST RESULTS DATA</u>										
<u>Average Power Table</u>										
<u>(Reporting Only)</u>										
Mod.	Data Rate	N _{Tx}	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	3.33	30.00	0.01	3.34	36.00	Pass
BLE	1Mbps	1	19	2440	3.33	30.00	0.01	3.34	36.00	Pass
BLE	1Mbps	1	39	2480	3.33	30.00	0.01	3.34	36.00	Pass


Appendix B. AC Conducted Emission Test Results

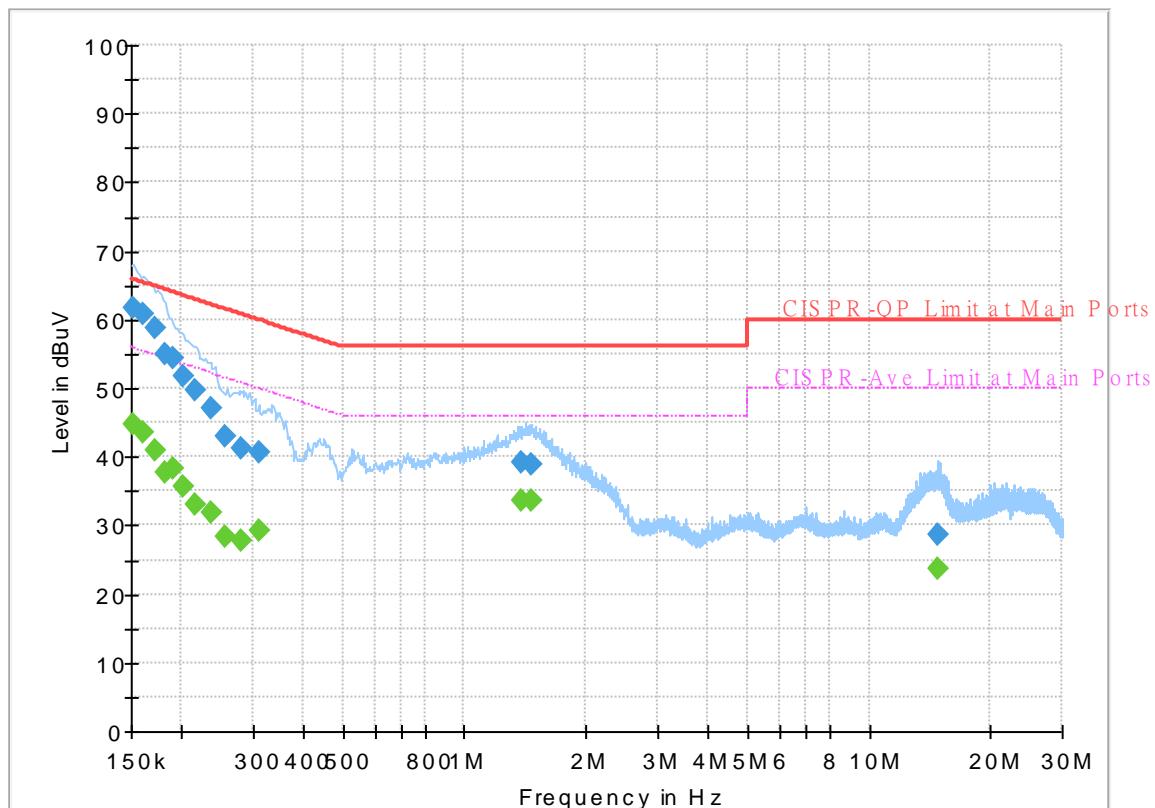
Test Engineer :	Calvin Wang	Temperature :	23~26°C
		Relative Humidity :	45~55%

EUT Information

Report NO : 361402
 Test Mode : Mode 1
 Test Voltage : Power From System
 Phase : Line

Full Spectrum

Final Result


Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250	---	45.63	55.88	10.25	L1	OFF	19.8
0.152250	62.17	---	65.88	3.71	L1	OFF	19.8
0.161250	---	44.03	55.40	11.37	L1	OFF	19.8
0.161250	61.20	---	65.40	4.20	L1	OFF	19.8
0.174750	---	39.86	54.73	14.87	L1	OFF	19.8
0.174750	58.08	---	64.73	6.65	L1	OFF	19.8
0.186000	---	38.73	54.21	15.48	L1	OFF	19.8
0.186000	55.51	---	64.21	8.70	L1	OFF	19.8
0.197250	---	37.69	53.73	16.04	L1	OFF	19.8
0.197250	54.12	---	63.73	9.61	L1	OFF	19.8
0.217500	---	34.41	52.91	18.50	L1	OFF	19.8
0.217500	49.40	---	62.91	13.51	L1	OFF	19.8
0.235500	---	34.43	52.25	17.82	L1	OFF	19.8
0.235500	47.75	---	62.25	14.50	L1	OFF	19.8
0.246750	---	31.72	51.87	20.15	L1	OFF	19.8
0.246750	45.07	---	61.87	16.80	L1	OFF	19.8
0.260250	---	33.20	51.42	18.22	L1	OFF	19.8
0.260250	45.12	---	61.42	16.30	L1	OFF	19.8
0.282750	---	30.41	50.74	20.33	L1	OFF	19.8
0.282750	41.81	---	60.74	18.93	L1	OFF	19.8
0.305250	---	30.50	50.10	19.60	L1	OFF	19.8

0.305250	41.38	---	60.10	18.72	L1	OFF	19.8
0.341250	---	28.09	49.17	21.08	L1	OFF	19.8
0.341250	39.64	---	59.17	19.53	L1	OFF	19.8
0.357000	---	27.38	48.80	21.42	L1	OFF	19.8
0.357000	38.05	---	58.80	20.75	L1	OFF	19.8
1.358250	---	34.84	46.00	11.16	L1	OFF	19.8
1.358250	40.27	---	56.00	15.73	L1	OFF	19.8
1.461750	---	35.02	46.00	10.98	L1	OFF	19.9
1.461750	40.28	---	56.00	15.72	L1	OFF	19.9
1.556250	---	33.83	46.00	12.17	L1	OFF	19.9
1.556250	39.00	---	56.00	17.00	L1	OFF	19.9
13.267500	---	22.84	50.00	27.16	L1	OFF	19.9
13.267500	27.34	---	60.00	32.66	L1	OFF	19.9

EUT Information

Report NO : 361402
 Test Mode : Mode 1
 Test Voltage : Power From System
 Phase : Neutral

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250	---	44.86	55.88	11.02	N	OFF	19.8
0.152250	61.58	---	65.88	4.30	N	OFF	19.8
0.161250	---	43.68	55.40	11.72	N	OFF	19.8
0.161250	60.68	---	65.40	4.72	N	OFF	19.8
0.172500	---	41.01	54.84	13.83	N	OFF	19.8
0.172500	58.70	---	64.84	6.14	N	OFF	19.8
0.181500	---	37.86	54.42	16.56	N	OFF	19.8
0.181500	55.04	---	64.42	9.38	N	OFF	19.8
0.190500	---	38.44	54.02	15.58	N	OFF	19.8
0.190500	54.50	---	64.02	9.52	N	OFF	19.8
0.201750	---	35.55	53.54	17.99	N	OFF	19.8
0.201750	51.89	---	63.54	11.65	N	OFF	19.8
0.215250	---	33.06	53.00	19.94	N	OFF	19.8
0.215250	49.61	---	63.00	13.39	N	OFF	19.8
0.235500	---	31.88	52.25	20.37	N	OFF	19.8
0.235500	47.04	---	62.25	15.21	N	OFF	19.8
0.255750	---	28.48	51.57	23.09	N	OFF	19.8
0.255750	42.99	---	61.57	18.58	N	OFF	19.8
0.280500	---	27.89	50.80	22.91	N	OFF	19.8
0.280500	41.35	---	60.80	19.45	N	OFF	19.8
0.309750	---	29.14	49.98	20.84	N	OFF	19.8

0.309750	40.61	---	59.98	19.37	N	OFF	19.8
1.380750	---	33.77	46.00	12.23	N	OFF	19.8
1.380750	39.07	---	56.00	16.93	N	OFF	19.8
1.468500	---	33.68	46.00	12.32	N	OFF	19.8
1.468500	38.80	---	56.00	17.20	N	OFF	19.8
14.797500	---	23.70	50.00	26.30	N	OFF	20.0
14.797500	28.72	---	60.00	31.28	N	OFF	20.0

Appendix C. Radiated Spurious Emission

Test Engineer :	Wilson Wu	Temperature :		20~25°C
		Relative Humidity :		50~60%

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE CH 39 2480MHz	*	2480	93.67	-	-	82.51	27.9	16.92	33.66	293	36	P	H
	*	2480	92.85	-	-	81.69	27.9	16.92	33.66	293	36	A	H
		2494.68	55.49	-18.51	74	44.2	28	16.95	33.66	293	36	P	H
		2487.92	45.94	-8.06	54	34.69	27.98	16.93	33.66	293	36	A	H
													H
													H
	*	2480	90.72	-	-	79.56	27.9	16.92	33.66	100	52	P	V
	*	2480	90.07	-	-	78.91	27.9	16.92	33.66	100	52	A	V
		2490.28	56.08	-17.92	74	44.8	28	16.94	33.66	100	52	P	V
		2488.2	45.9	-8.1	54	34.65	27.98	16.93	33.66	100	52	A	V
													V
													V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Line	Level	Factor	Loss	Factor	Pos	Pos		Avg.	
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
2.4GHz BLE SHF		24660	38.22	-35.78	74	39.01	39.02	13.19	53	-	-	P	H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
													H
Remark	1.	No other spurious found.											
	2.	All results are PASS against limit line.											
	3.	The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.											

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Line	Level	Factor	Loss	Factor	Pos	Pos		Avg.	
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
2.4GHz BLE LF		45.52	18.3	-21.7	40	30.15	16.99	0.97	29.81	-	-	P	H
		91.11	19.52	-23.98	43.5	32.91	15.02	1.32	29.73	-	-	P	H
		557.68	29.95	-16.05	46	29.13	26.46	3.53	29.17	-	-	P	H
		714.82	32.61	-13.39	46	30.3	26.99	3.93	28.61	-	-	P	H
		904.94	36.59	-9.41	46	31.14	29.3	4.61	28.46	-	-	P	H
		955.38	37.1	-8.9	46	29.47	31.2	4.67	28.24	-	-	P	H
													H
													H
													H
													H
													H
													H
													H
													V
		71.71	22.83	-17.17	40	38.63	12.84	1.14	29.78	-	-	P	V
		80.44	27.48	-12.52	40	42.47	13.46	1.27	29.72	-	-	P	V
		88.2	26.87	-16.63	43.5	40.65	14.64	1.3	29.72	-	-	P	V
		621.7	30.8	-15.2	46	29.92	26.2	3.65	28.97	-	-	P	V
		839.95	35.18	-10.82	46	30.37	29.1	4.29	28.58	-	-	P	V
		953.44	36.06	-9.94	46	28.47	31.17	4.66	28.24	-	-	P	V
													V
													V
													V
													V
													V
	1. No other spurious found. 2. All results are PASS against limit line. 3. The emission position marked as “-” means no suspected emission found and/or emission level has at least 6dB margin against limit or noise floor only.												

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE CH 39 2480MHz		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	P	H
		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	H

1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)

2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Margin (dB) = Level(dB μ V/m) - Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

1. Level(dB μ V/m)

= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

= 32.22(dB/m) + 4.58(dB) + 54.51(dB μ V) - 35.86 (dB)

= 55.45 (dB μ V/m)

2. Margin (dB)

= Level(dB μ V/m) - Limit Line(dB μ V/m)

= 55.45(dB μ V/m) - 74(dB μ V/m)

= -18.55(dB)

For Average Limit @ 2390MHz:

1. Level(dB μ V/m)

= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

= 32.22(dB/m) + 4.58(dB) + 42.6(dB μ V) - 35.86 (dB)

= 43.54 (dB μ V/m)

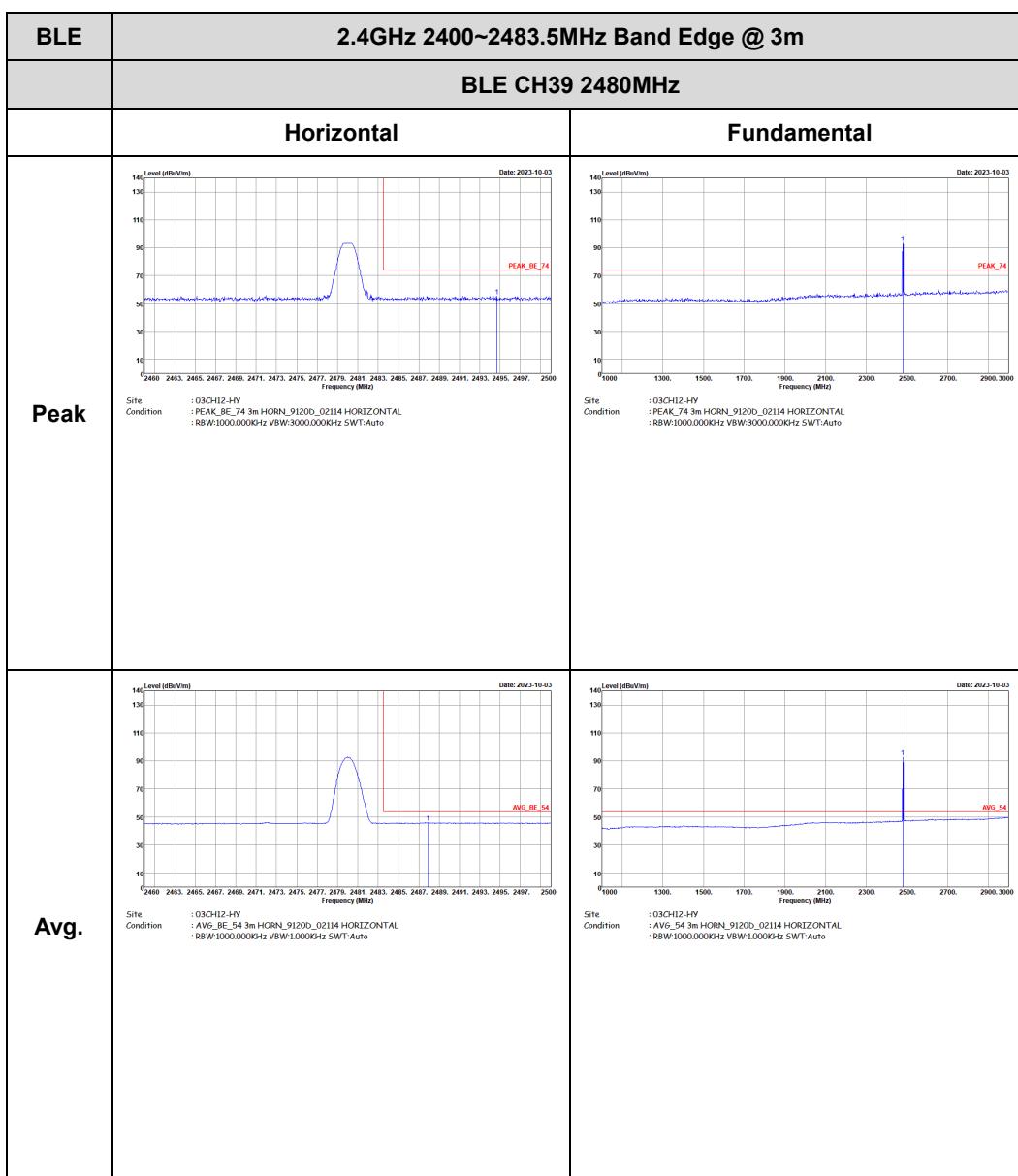
2. Margin (dB)

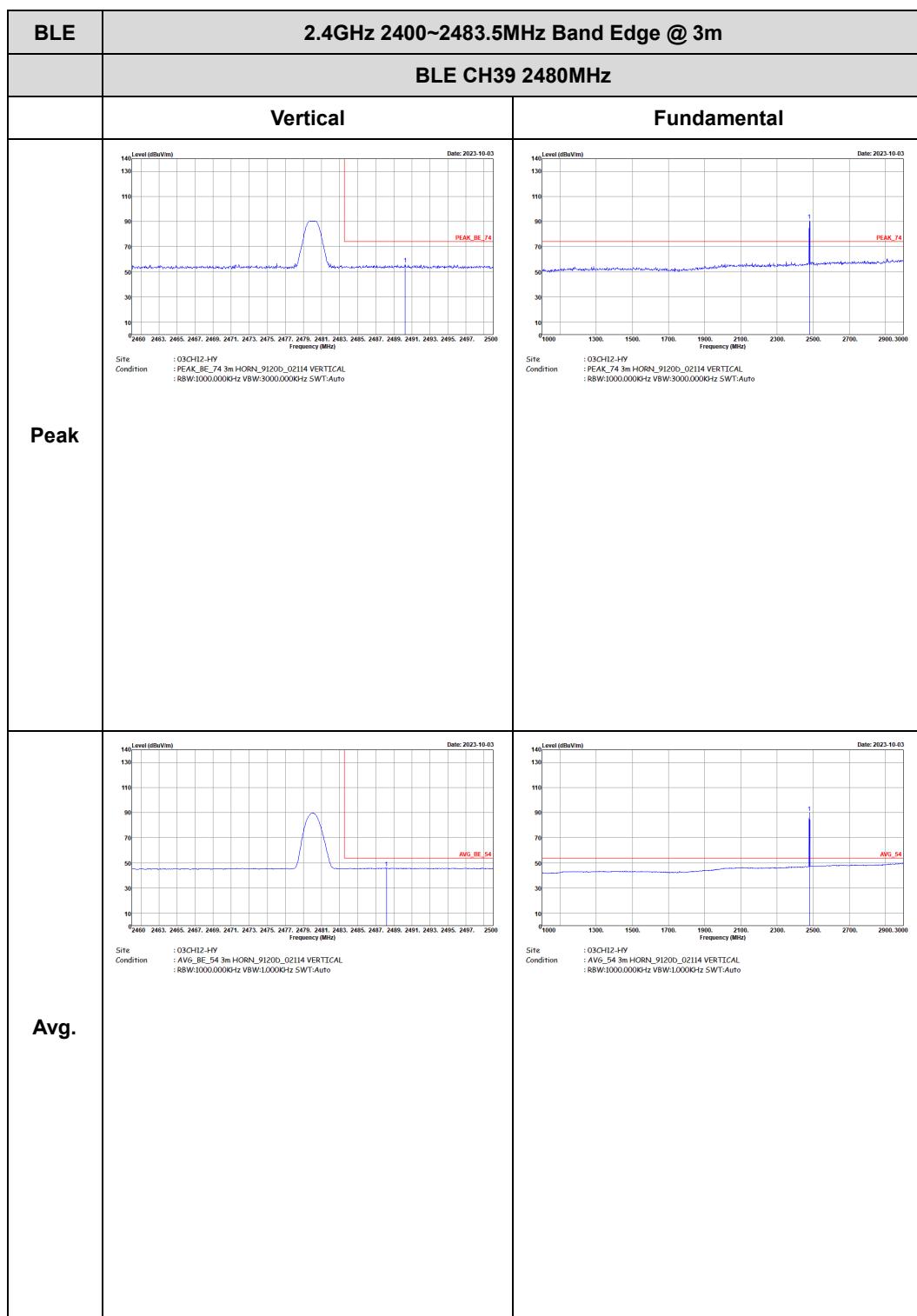
= Level(dB μ V/m) - Limit Line(dB μ V/m)

= 43.54(dB μ V/m) - 54(dB μ V/m)

= -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

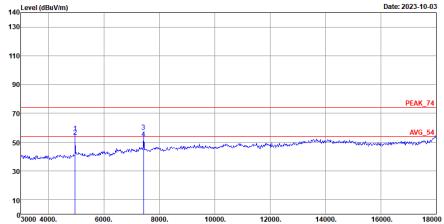
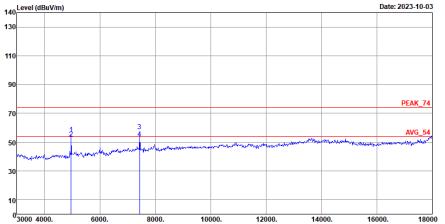


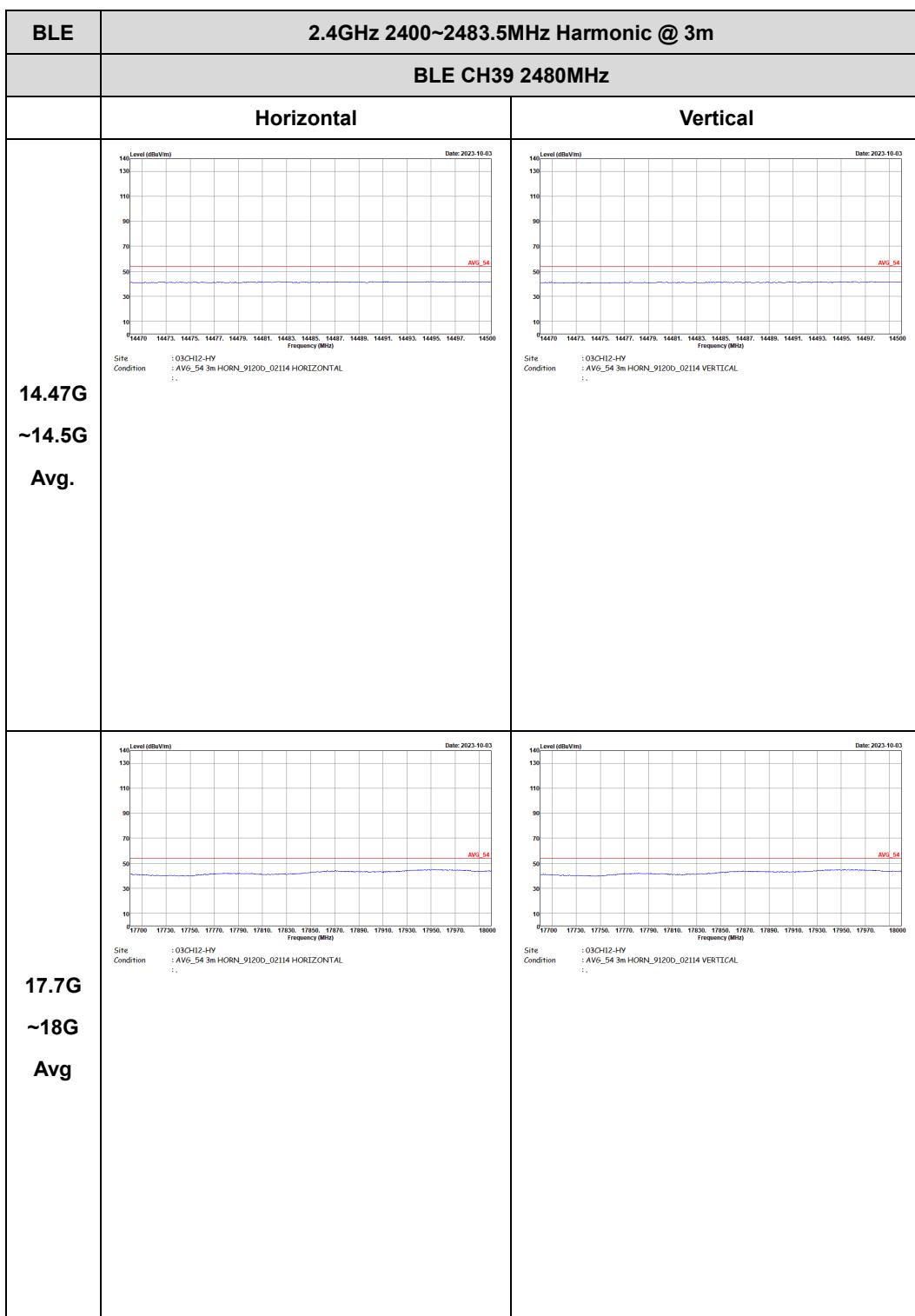

Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Wilson Wu	Temperature :	20~25°C
		Relative Humidity :	50~60%

2.4GHz 2400~2483.5MHz

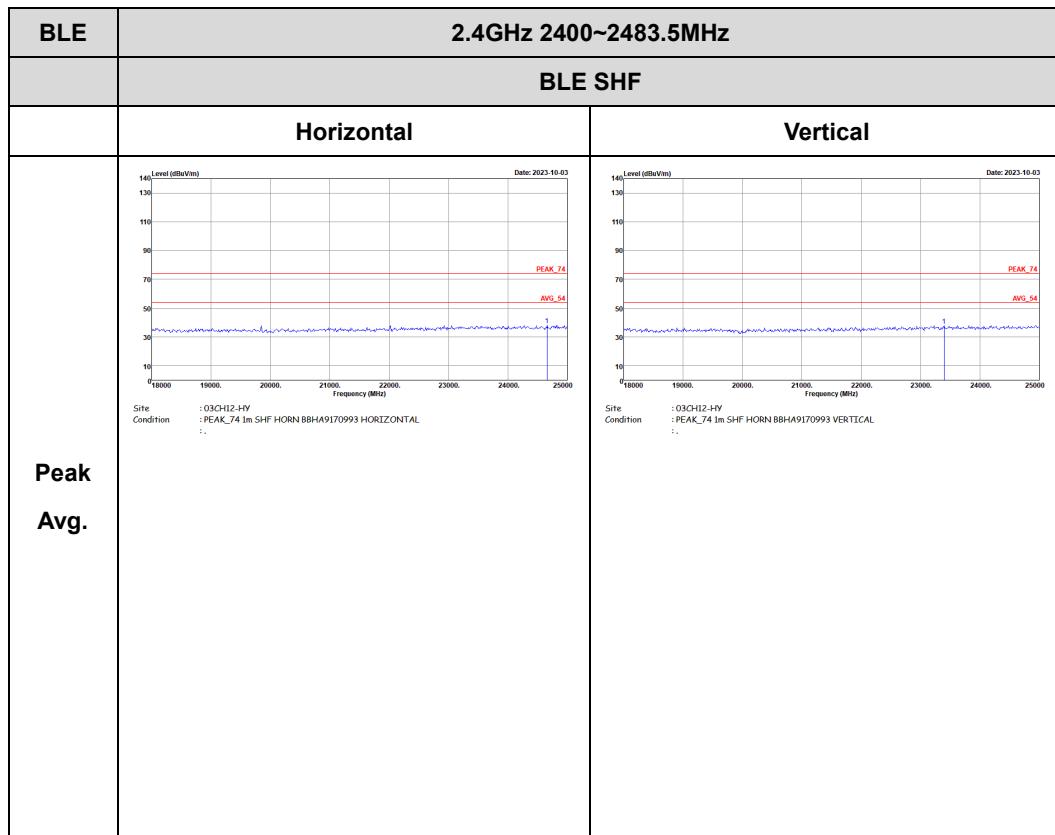
BLE (Band Edge @ 3m)

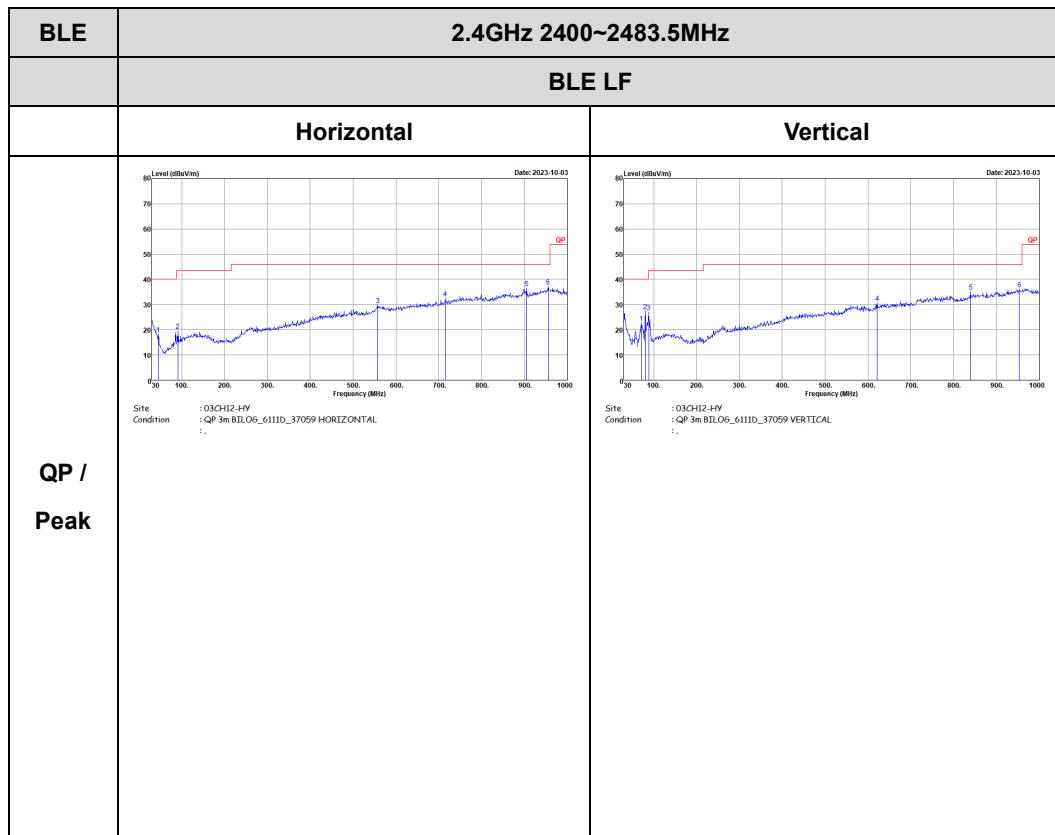


2.4GHz 2400~2483.5MHz

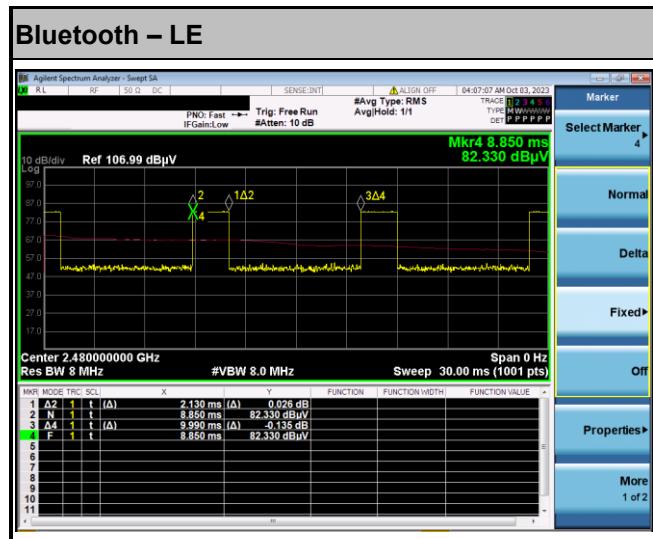
BLE (Harmonic @ 3m)


BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m	
	BLE CH39 2480MHz	
	Horizontal	Vertical
Peak	<p>Level (dBmV/m)</p> <p>Date: 2023-10-03</p> <p>PEAK_74</p> <p>AVG_54</p> <p>3000 4000 6000 8000 10000 12000 14000 16000 18000 Frequency (MHz)</p> <p>Site : 03CH12-HY Condition : PEAK_74 3m HORN_91200_02114 HORIZONTAL ...</p>	<p>Level (dBmV/m)</p> <p>Date: 2023-10-03</p> <p>PEAK_74</p> <p>AVG_54</p> <p>3000 4000 6000 8000 10000 12000 14000 16000 18000 Frequency (MHz)</p> <p>Site : 03CH12-HY Condition : PEAK_74 3m HORN_91200_02114 VERTICAL ...</p>

Emission above 18GHz


2.4GHz BLE (SHF @ 1m)

Emission below 1GHz


2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth -LE	21.32	2130	0.47	1 kHz

