



Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277

E-mail: mail@hermonlabs.com

# **TEST REPORT**

**ACCORDING TO:** 

FCC 47CFR part 15 subpart C § 15.247 (Hybrid) and subpart B, Class B

FOR:

Hoopo Systems Ltd.

hoopoSense

Model: 502B1000-1A

FCC ID: 2AVS8-S01

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: HOORAD\_FCC.35117\_Hybrid\_Sensor

Date of Issue: 14-Jun-20



# **Table of contents**

| 1   | Applicant information                                               | 3  |
|-----|---------------------------------------------------------------------|----|
| 2   | Equipment under test attributes                                     | 3  |
| 3   | Manufacturer information                                            | 3  |
| 4   | Test details                                                        | 3  |
| 5   | Tests summary                                                       | 4  |
| 6   | EUT description                                                     | 5  |
| 6.1 | General information                                                 | 5  |
| 6.2 | Test configuration                                                  | 5  |
| 6.3 | Changes made in EUT                                                 | 5  |
| 6.4 | Transmitter characteristics                                         | 6  |
| 7   | Transmitter tests according to 47CFR part 15 subpart C requirements | 7  |
| 7.1 | 20 dB bandwidth                                                     | 7  |
| 7.2 | Carrier frequency separation                                        | 11 |
| 7.3 | Number of hopping frequencies                                       | 13 |
| 7.4 | Average time of occupancy                                           | 15 |
| 7.5 | Peak output power                                                   | 18 |
| 7.6 | Peak spectral power density                                         | 25 |
| 7.7 | Field strength of spurious emissions                                | 30 |
| 7.8 | Band edge radiated emissions                                        | 43 |
| 7.9 | Antenna requirements                                                | 47 |
| 8   | Emission tests according to 47CFR part 15 subpart B requirements    | 48 |
| 8.1 | Radiated emission measurements                                      | 48 |
| 9   | APPENDIX A Test equipment and ancillaries used for tests            | 51 |
| 10  | APPENDIX B Test equipment correction factors                        | 52 |
| 11  | APPENDIX C Measurement uncertainties                                | 55 |
| 12  | APPENDIX D Test laboratory description                              | 56 |
| 13  | APPENDIX E Specification references                                 | 57 |
| 11  | ADDENDLY E Abbroviations and acronyms                               | 59 |

Report ID: HOORAD\_FCC.35117\_Hybrid\_Sensor Date of Issue: 14-Jun-20



## 1 Applicant information

Client name: Hoopo Systems Ltd.

Address: 5 Ayalon St., Ramat Hasharon, 4700225 Israel

**Telephone:** 052-5192244

E-mail: menachem@hoopo.tech
Contact name: Mr. Menachem Tipris

## 2 Equipment under test attributes

Product name: hoopoSense
Product type: loT Sensor
Model(s): 502B1000-1A

Serial number:24Hardware version:0.0Software release:1.3

Receipt date 22-Nov-19

### 3 Manufacturer information

Manufacturer name: Hoopo Systems Ltd.

Address: 5 Ayalon St., Ramat Hasharon, 4700225 Israel

**Telephone:** 052-5192244

E-Mail: menachem@hoopo.tech
Contact name: Mr. Menachem Tipris

### 4 Test details

Project ID: 35117

Primary: Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Location:

Satellite: Hermon Laboratories Ltd. Hefetz-Haim 10, Tel Aviv 6744124, Israel

Test started: 17-Dec-19
Test completed: 11-Feb-20

Test specification(s): FCC 47CFR part 15 subpart C § 15.247 (Hybrid) and subpart B, Class B



## 5 Tests summary

| Test                                                         | Status       |
|--------------------------------------------------------------|--------------|
| Transmitter characteristics                                  |              |
| Section 15.247(a)1, 20 dB bandwidth                          | Pass         |
| Section 15.247(a)1, Frequency separation                     | Pass         |
| Section 15.247(a)1, Number of hopping frequencies            | Pass         |
| Section 15.247(a)1, Average time of occupancy                | Pass         |
| Section 15.247(b), Peak output power                         | Pass         |
| Section 15.247(e), Peak spectral density                     | Pass         |
| Section 15.247(d), Radiated spurious emissions               | Pass         |
| Section 15.247(i), RF exposure                               | Pass*        |
| Section 15.247(d), Emissions at band edges                   | Pass         |
| Section 15.207(a), Conducted emission                        | Not required |
| Section 15.203, Antenna requirements                         | Pass         |
| Unintentional emissions                                      |              |
| Section 15.107, Class B, Conducted emission at AC power port | Not required |
| Section 15.109, Class B, Radiated emission                   | Pass         |

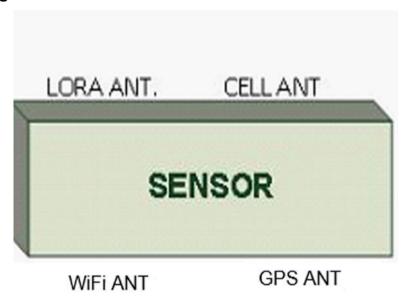
<sup>\* -</sup> Pass, the exhibit to the application of certification is provided.

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

|              | Name and Title                                                                                   | Date                  | Signature |
|--------------|--------------------------------------------------------------------------------------------------|-----------------------|-----------|
| Tested by:   | Mr. I. Zilberstein, test engineer,<br>EMC & Radio<br>Mrs. E. Pitt, test engineer,<br>EMC & Radio | 17-Dec-19 – 11-Feb-20 | BH        |
| Reviewed by: | Mrs. S. Peysahov Sheynin, test engineer, EMC & Radio                                             | 03-May-20             |           |
| Approved by: | Mr. S. Samokha, technical manager,<br>EMC & Radio                                                | 14-June-20            | Can       |




## 6 EUT description

Note: The following data in this clause is provided by the customer and represents his sole responsibility

## 6.1 General information

The EUT, a hoopoSense, is a low power device powered by four AA prime batteries. The device is equiped with a LoRa transceiver, an optional cellular modem, a WiFi receiver and a GPS device.

## 6.2 Test configuration



## 6.3 Changes made in EUT

No changes were implemented in the EUT during the testing.

Report ID: HOORAD\_FCC.35117\_Hybrid\_Sensor Date of Issue: 14-Jun-20



## 6.4 Transmitter characteristics

| 0.4                            |                                                                                                          | ei Cilai acteii    | 31103     | ,                                                              |          |          |               |              |              |              |      |           |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|-----------|----------------------------------------------------------------|----------|----------|---------------|--------------|--------------|--------------|------|-----------|--|
| Type o                         | of equipment                                                                                             |                    |           |                                                                |          |          |               |              |              |              |      |           |  |
| Χ                              | X Stand-alone (Equipment with or without its own control provisions)                                     |                    |           |                                                                |          |          |               |              |              |              |      |           |  |
|                                | Combined equipment (Equipment where the radio part is fully integrated within another type of equipment) |                    |           |                                                                |          |          |               |              |              |              |      |           |  |
|                                | Plug-in card (Equipment intended for a variety of host systems)                                          |                    |           |                                                                |          |          |               |              |              |              |      |           |  |
| Intend                         | nded use Condition of use                                                                                |                    |           |                                                                |          |          |               |              |              |              |      |           |  |
|                                | fixed                                                                                                    | Always at a d      |           |                                                                |          |          |               |              |              |              |      |           |  |
| Χ                              | mobile                                                                                                   | Always at a d      |           |                                                                |          |          |               |              |              |              |      |           |  |
|                                | portable                                                                                                 | May operate        | at a dist | tance                                                          | closer t | han 20   | cm to huma    | n body       | /            |              |      |           |  |
| Assign                         | ned frequency ran                                                                                        | ges                | 902 –     | 928 N                                                          | ЛHz      |          |               |              |              |              |      |           |  |
| Operat                         | ting frequencies                                                                                         |                    | 902.5     | - 927                                                          | '.5 MHz  | <u>'</u> |               |              |              |              |      |           |  |
|                                |                                                                                                          |                    | At trai   | nsmitt                                                         | er 50 Ω  | RF ou    | tput connecto | or           |              |              |      |           |  |
| waxim                          | um rated output p                                                                                        | oower              |           |                                                                | t power  |          | •             |              |              |              | 8.20 | ) dBm     |  |
|                                |                                                                                                          |                    |           | No                                                             | •        |          |               |              |              |              |      |           |  |
|                                |                                                                                                          |                    |           | . 10                                                           |          |          | continuous    | varia        | ble          |              |      |           |  |
| Is tran                        | smitter output pov                                                                                       | wer variable?      |           |                                                                | X        |          | stepped va    |              |              | ensize       |      | 1 dB      |  |
|                                | ompat po                                                                                                 |                    | Х         | Yes                                                            |          |          | n RF power    |              |              | 000.20       |      | -1.8dBm   |  |
|                                |                                                                                                          |                    |           |                                                                |          |          | m RF power    |              |              |              |      | +8.2 dBm  |  |
| Antoni                         | Antenna connection                                                                                       |                    |           |                                                                |          |          |               |              |              |              |      |           |  |
| Anten                          | ia confection                                                                                            |                    |           |                                                                |          | 1        |               | <u> </u>     | الم والمثنية | D            | F    |           |  |
|                                | unique coupling                                                                                          | sta                | ndard c   | ard connector X integral With temporary RF X without temporary |          |          | CONI          | PF connector |              |              |      |           |  |
| _                              |                                                                                                          |                    |           |                                                                |          |          |               | ^            | WILLIO       | ut temporary | KEU  | Johnector |  |
| Anteni                         | na/s technical cha                                                                                       |                    |           |                                                                |          |          |               |              |              |              |      |           |  |
| Type                           |                                                                                                          | Manufa             |           |                                                                |          |          |               |              |              |              |      |           |  |
| Interna                        | ıl                                                                                                       | Hoopo s            | systems   | 5                                                              |          | part of  | f PCB         |              |              | 2 dBi        |      |           |  |
| Transr                         | nitter aggregate d                                                                                       | ata rate/s         |           |                                                                | 980 b    | os/5470  | ) bps         |              |              |              |      |           |  |
| Туре с                         | of modulation                                                                                            |                    |           |                                                                | LoRa     |          |               |              |              |              |      |           |  |
| Modul                          | ating test signal (l                                                                                     | baseband)          |           |                                                                | PRBS     |          |               |              |              |              |      |           |  |
| Transr                         | nitter power source                                                                                      | ce                 |           |                                                                |          |          |               |              |              |              |      |           |  |
| Χ                              | Battery                                                                                                  | Nominal rated vol  | tage      |                                                                | 3 VDC    | )        | Bat           | tery ty      | ре           | L91 or L6    |      |           |  |
|                                | _                                                                                                        | Nominal rated vol  |           |                                                                |          |          | •             |              |              |              |      |           |  |
|                                | AC mains                                                                                                 | Nominal rated vol  | tage      |                                                                |          |          | Fre           | quenc        | :y           |              |      |           |  |
| Comm                           | on power source                                                                                          | for transmitter an | d receiv  | ver                                                            |          |          | Х             |              | /es          |              |      | no        |  |
|                                |                                                                                                          |                    | 7         |                                                                | Fre      | quenc    | y hopping (Fl | HSS)         |              |              |      |           |  |
| Spread spectrum technique used |                                                                                                          |                    | ļ.        | Digital transmission system (DTS)                              |          |          |               |              |              |              |      |           |  |
|                                |                                                                                                          |                    |           | Χ                                                              |          | brid     |               |              |              |              |      |           |  |
| Spread                         |                                                                                                          | eters for transmit | ters tes  |                                                                | er FCC   | 15.24    | 7 only        |              |              |              |      |           |  |
| <b>-</b> 1100                  |                                                                                                          | umber of hops      |           | 16                                                             |          |          |               |              |              |              |      |           |  |
| FHSS                           |                                                                                                          | idth per hop       | -         | 166.4<br>200 k                                                 | I56 kHz  | <u>'</u> |               |              |              |              |      |           |  |
| Max. separation of hops        |                                                                                                          |                    |           | ∠UU K                                                          | ιΠΖ      |          |               |              |              |              |      |           |  |



| Test specification: | Section 15.247(a)1, 20 dB bandwidth |                        |              |  |
|---------------------|-------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 7.8.7          |                        |              |  |
| Test mode:          | Compliance                          | Verdict: PASS          |              |  |
| Date(s):            | 19-Dec-19                           |                        |              |  |
| Temperature: 23 °C  | Relative Humidity: 38 %             | Air Pressure: 1008 hPa | Power: 3 VDC |  |
| Remarks:            | •                                   |                        |              |  |

## 7 Transmitter tests according to 47CFR part 15 subpart C requirements

## 7.1 20 dB bandwidth

### 7.1.1 General

This test was performed to measure 20 dB bandwidth of the transmitter hopping channel. Specification test limits are given in Table 7.1.1.

Table 7.1.1 The 20 dB bandwidth limits

| Assigned frequency, MHz | Maximum bandwidth, kHz | Modulation envelope reference points*, dBc |
|-------------------------|------------------------|--------------------------------------------|
| 902.0 – 928.0           | 250                    | 20                                         |

<sup>\* -</sup> Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

### 7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- **7.1.2.2** The EUT was set to transmit modulated carrier at maximum data rate.
- **7.1.2.3** The transmitter bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.1.2 and associated plot.
- **7.1.2.4** The test was repeated for each data rate and each modulation format.

Figure 7.1.1 The 20 dB bandwidth test setup





| Test specification: | Section 15.247(a)1, 20 dB bandwidth |                        |              |  |  |
|---------------------|-------------------------------------|------------------------|--------------|--|--|
| Test procedure:     | ANSI C63.10, section 7.8.7          |                        |              |  |  |
| Test mode:          | Compliance                          | Verdict: PASS          |              |  |  |
| Date(s):            | 19-Dec-19                           |                        |              |  |  |
| Temperature: 23 °C  | Relative Humidity: 38 %             | Air Pressure: 1008 hPa | Power: 3 VDC |  |  |
| Remarks:            |                                     |                        |              |  |  |

### Table 7.1.2 The 20 dB bandwidth test results

ASSIGNED FREQUENCY BAND: 902-928 MHz

DETECTOR USED:

SWEEP TIME:

VIDEO BANDWIDTH:

MODULATION ENVELOPE REFERENCE POINTS:

MODULATING SIGNAL:

FREQUENCY HOPPING:

Peak

Auto

20.0 dBc

PRBS

FREQUENCY HOPPING:

Disabled

|                           | 10.                |                   | Dioak                      |                         |               |                |         |
|---------------------------|--------------------|-------------------|----------------------------|-------------------------|---------------|----------------|---------|
| Carrier frequency,<br>MHz | Type of modulation | Data rate,<br>bps | Symbol rate,<br>Msymbols/s | 20 dB bandwidth,<br>kHz | Limit,<br>kHz | Margin,<br>kHz | Verdict |
| 902.5                     | LoRa               | 980               | NA                         | 166.456                 | 250           | -83.544        | Pass    |
| 902.5                     | Lora               | 5470              |                            | 162.128                 | 250           | -87.872        | Pass    |
| 915.0                     | LoRa               | 980               | NA                         | 165.023                 | 250           | -84.977        | Pass    |
| 915.0                     | Lora               | 5470              |                            | 161.883                 | 250           | -88.117        | Pass    |
| 927.5                     | LoRa               | 980               | NA                         | 164.969                 | 250           | -85.031        | Pass    |
| 927.5                     | Lora               | 5470              |                            | 162.154                 | 250           | -87.846        | Pass    |

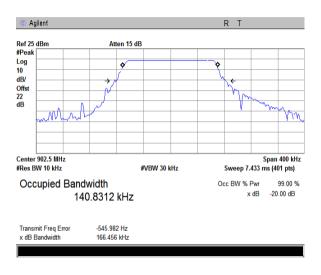
### Reference numbers of test equipment used

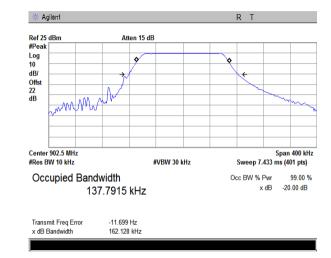
| _ |         |         |         |         |  |  |  |
|---|---------|---------|---------|---------|--|--|--|
|   | HL 2909 | HL 5111 | HL 5612 | HL 5606 |  |  |  |

Full description is given in Appendix A.



Test specification: Section 15.247(a)1, 20 dB bandwidth

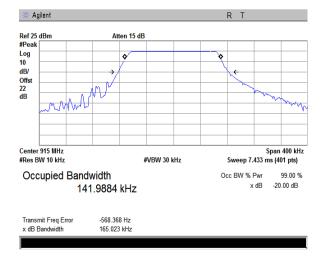

Test procedure: ANSI C63.10, section 7.8.7

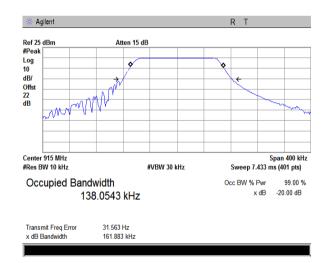

Test mode: Compliance Verdict: PASS

Temperature: 23 °C Relative Humidity: 38 % Air Pressure: 1008 hPa Power: 3 VDC

Remarks:

Plot 7.1.1 The 20 dB bandwidth test result at low frequency



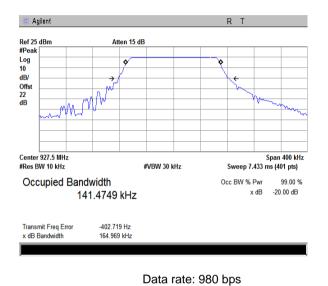



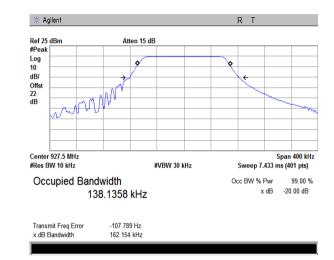

Data rate: 980 bps

Plot 7.1.2 The 20 dB bandwidth test result at mid frequency

Data rate: 5470 bps







Data rate: 980 bps Data rate: 5470 bps



| Test specification: | Section 15.247(a)1, 20 dB bandwidth |                        |              |  |
|---------------------|-------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 7.8.7          |                        |              |  |
| Test mode:          | Compliance                          | Verdict: PASS          |              |  |
| Date(s):            | 19-Dec-19                           |                        |              |  |
| Temperature: 23 °C  | Relative Humidity: 38 %             | Air Pressure: 1008 hPa | Power: 3 VDC |  |
| Remarks:            | •                                   |                        |              |  |

Plot 7.1.3 The 20 dB bandwidth test result at high frequency





Data rate: 5470 bps



| Test specification: | Section 15.247(a)1, Frequency separation |                        |                |  |
|---------------------|------------------------------------------|------------------------|----------------|--|
| Test procedure:     | ANSI C63.10, section 7.8.2               |                        |                |  |
| Test mode:          | Compliance                               | Verdict: PASS          |                |  |
| Date(s):            | 19-Dec-19                                | verdict.               | PASS           |  |
| Temperature: 23 °C  | Relative Humidity: 38 %                  | Air Pressure: 1008 hPa | Power: 3.2 VDC |  |
| Remarks:            | -                                        |                        |                |  |

## 7.2 Carrier frequency separation

### 7.2.1 General

This test was performed to measure frequency separation between the peaks of adjacent channels. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Carrier frequency separation limits

| Assigned frequency range, MHz | Carrier frequency separation                                           |
|-------------------------------|------------------------------------------------------------------------|
| 902.0 – 928.0                 | 25 kHz or 20 dB bandwidth of the hopping channel, whichever is greater |

### 7.2.2 Test procedure

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.2.2.2** The spectrum analyzer span was set to capture the carrier frequency and both of adjacent channels, the lower and the higher. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.2.2.3** The spectrum analyzer was set in max hold mode and allowed trace to stabilize.
- **7.2.2.4** The frequency separation between the peaks of adjacent channels was measured as provided in Table 7.2.2 and associated plots.

Figure 7.2.1 Carrier frequency separation test setup





Test specification: Section 15.247(a)1, Frequency separation

Test procedure: ANSI C63.10, section 7.8.2

Test mode: Compliance Verdict: PASS

Temperature: 23 °C Relative Humidity: 38 % Air Pressure: 1008 hPa Power: 3.2 VDC

Remarks:

Table 7.2.2 Carrier frequency separation test results

ASSIGNED FREQUENCY: 902-928 MHz

MODULATION: LoRa DETECTOR USED: Peak

RESOLUTION BANDWIDTH: ≥ 1% of the span

VIDEO BANDWIDTH:≥ RBWFREQUENCY HOPPING:Enabled20 dB BANDWIDTH:166.456 kHz

| Carrier frequency separation, kHz | Limit, kHz | Margin* | Verdict |
|-----------------------------------|------------|---------|---------|
| 200.0                             | 166.456    | 33.544  | Pass    |

<sup>\* -</sup> Margin = Carrier frequency separation – specification limit.

### Reference numbers of test equipment used

| HL 2909 | HL 5111 | HL 5612 | HL 5606 |  |  |
|---------|---------|---------|---------|--|--|

Full description is given in Appendix A.

### Plot 7.2.1 Carrier frequency separation





980 bps 5470 bps



| Test specification: | Section 15.247(a)1, Number of hopping frequencies |                        |                |  |  |  |
|---------------------|---------------------------------------------------|------------------------|----------------|--|--|--|
| Test procedure:     | ANSI C63.10, section 7.8.3                        |                        |                |  |  |  |
| Test mode:          | Compliance                                        | Verdict:               | PASS           |  |  |  |
| Date(s):            | 19-Dec-19                                         | verdict.               | PASS           |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 38 %                           | Air Pressure: 1008 hPa | Power: 3.2 VDC |  |  |  |
| Remarks:            | •                                                 | ·                      |                |  |  |  |

## 7.3 Number of hopping frequencies

### 7.3.1 General

This test was performed to calculate the number of hopping frequencies used by the EUT. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Minimum number of hopping frequencies

| Assigned frequency range, MHz | Number of hopping frequencies                    |  |  |
|-------------------------------|--------------------------------------------------|--|--|
| 902.0 – 928.0                 | 50 (if the 20 dB bandwidth is less than 250 kHz) |  |  |

### 7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.3.2.2** Initially the spectrum analyzer span was set equal to frequency band of operation and the resolution bandwidth was set wider than 1 % of the frequency span. If the separate hopping channels were not clearly resolved the frequency band of operation was broken to sections and the resolution bandwidth was set wider than 1 % of the frequency span of each section.
- 7.3.2.3 The spectrum analyzer was set in max hold mode and allowed trace to stabilize.
- **7.3.2.4** The number of frequency hopping channels was calculated as provided in Table 7.3.2 and associated plots.

Figure 7.3.1 Hopping frequencies test setup





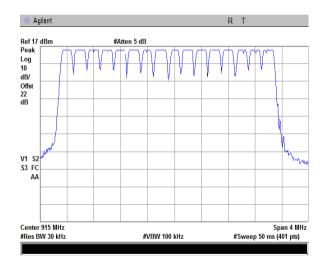
| Test specification: | Section 15.247(a)1, Number of hopping frequencies |                        |                |  |  |  |
|---------------------|---------------------------------------------------|------------------------|----------------|--|--|--|
| Test procedure:     | ANSI C63.10, section 7.8.3                        |                        |                |  |  |  |
| Test mode:          | Compliance                                        | Verdict:               | PASS           |  |  |  |
| Date(s):            | 19-Dec-19                                         | verdict.               | PASS           |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 38 %                           | Air Pressure: 1008 hPa | Power: 3.2 VDC |  |  |  |
| Remarks:            | •                                                 | ·                      |                |  |  |  |

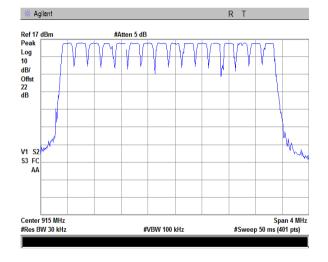
### Table 7.3.2 Hopping frequencies test results

ASSIGNED FREQUENCY: 902-928 MHz

MODULATION:LoRaDETECTOR USED:PeakVIDEO BANDWIDTH:≥ RBWFREQUENCY HOPPING:Enabled

| Number of hopping frequencies | Minimum number of hopping frequencies | Margin* | Verdict |
|-------------------------------|---------------------------------------|---------|---------|
| 16                            | NA for hybrid mode                    | NA      | Pass    |


<sup>\* -</sup> Margin = Number of hopping frequencies – Minimum number of hopping frequencies.


## Reference numbers of test equipment used

| HL 2909 | HL 5111 | HL 5612 | HL 5606 |  |  |
|---------|---------|---------|---------|--|--|

Full description is given in Appendix A.

## Plot 7.3.1 Number of hopping frequencies





980 bps 5470 bps



| Test specification: | Section 15.247(a)1, Average time of occupancy |                        |              |  |  |  |
|---------------------|-----------------------------------------------|------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, section 7.8.4                    |                        |              |  |  |  |
| Test mode:          | Compliance                                    | Verdict:               | PASS         |  |  |  |
| Date(s):            | 20-Dec-19                                     | verdict.               | PASS         |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %                       | Air Pressure: 1009 hPa | Power: 3 VDC |  |  |  |
| Remarks:            | -                                             |                        |              |  |  |  |

## 7.4 Average time of occupancy

### 7.4.1 General

This test was performed to calculate the average time of occupancy (dwell time) on any frequency channel of the EUT. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Average time of occupancy limits

| Assigned frequency range, MHz | Maximum average time of occupancy, s | Investigated period, s | Number of hopping<br>frequencies |  |
|-------------------------------|--------------------------------------|------------------------|----------------------------------|--|
| 902.0 – 928.0                 | 0.4                                  | 20.0                   | ≥ 50                             |  |
| 902.0 – 928.0                 | 0.4                                  | 10.0                   | < 50                             |  |
| 902.0 - 928.0                 | 0.4                                  | 0.4 × N                | N = 16                           |  |

#### 7.4.2 Test procedure

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.4.2.2** The spectrum analyzer span was set to zero centered on a hopping channel.
- **7.4.2.3** The single transmission duration and period were measured with oscilloscope.
- **7.4.2.4** The average time of occupancy was calculated as the single transmission time multiplied by the investigated period and divided by the single transmission period.
- 7.4.2.5 The test was repeated at each data rate and modulation type as provided in Table 7.4.2 and associated plots.

Figure 7.4.1 Average time of occupancy test setup





Test specification: Section 15.247(a)1, Average time of occupancy

Test procedure: ANSI C63.10, section 7.8.4

Test mode: Compliance Verdict: PASS

Date(s): 20-Dec-19

Temperature: 23 °C Relative Humidity: 40 % Air Pressure: 1009 hPa Power: 3 VDC

Remarks:

### Table 7.4.2 Average time of occupancy test results

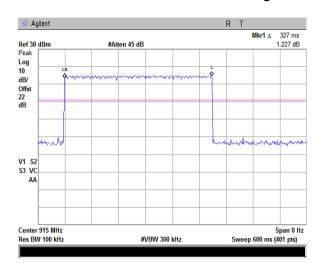
ASSIGNED FREQUENCY: 902-928 MHz

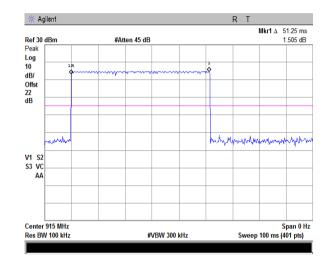
MODULATION: LoRa
DETECTOR USED: Peak
NUMBER OF HOPPING FREQUENCIES: 16
INVESTIGATED PERIOD: 6.4 s
FREQUENCY HOPPING: Enabled

| Carrier frequency,<br>MHz | Single transmission duration, ms | Single transmission period, s | Average time of occupancy*, s |      | Symbol rate,<br>Msymbol/s | Limit,<br>s | Margin,<br>s** | Verdict |
|---------------------------|----------------------------------|-------------------------------|-------------------------------|------|---------------------------|-------------|----------------|---------|
| 915                       | 327                              | > 6.4                         | 0.3270                        | 980  | NA                        | 0.4         | 0.0730         | Pass    |
| 915                       | 51.25                            | > 6.4                         | 0.0513                        | 5470 | NA                        | 0.4         | 0.3487         | Pass    |

<sup>\* -</sup> Average time of occupancy = the transmit time per hop x the number of hops in the investigated period.

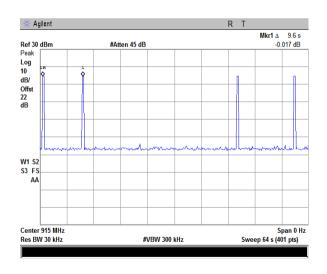
### Reference numbers of test equipment used

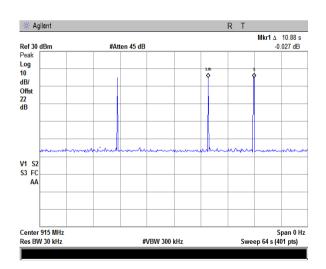

|         | <u>-</u> | -  |  |  |  |
|---------|----------|----|--|--|--|
| HL 2909 | HL       | HL |  |  |  |


Full description is given in Appendix A.



| Test specification: | Section 15.247(a)1, Average time of occupancy |                        |              |  |  |  |
|---------------------|-----------------------------------------------|------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, section 7.8.4                    |                        |              |  |  |  |
| Test mode:          | Compliance                                    | Verdict:               | PASS         |  |  |  |
| Date(s):            | 20-Dec-19                                     | verdict.               | PASS         |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %                       | Air Pressure: 1009 hPa | Power: 3 VDC |  |  |  |
| Remarks:            |                                               |                        |              |  |  |  |


Plot 7.4.1 Single transmission duration at mid frequency






980 bps 5470 bps

Plot 7.4.2 Single transmission period





980 bps 5470 bps



| Test specification: | Section 15.247(b), Peak output power |                        |              |  |
|---------------------|--------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.9.2.2.4      | 1                      |              |  |
| Test mode:          | Compliance                           | - Verdict: PASS        |              |  |
| Date(s):            | 18-Dec-19                            | Verdict:               | PASS         |  |
| Temperature: 23 °C  | Relative Humidity: 45 %              | Air Pressure: 1027 hPa | Power: 3 VDC |  |
| Remarks:            | •                                    |                        |              |  |

## 7.5 Peak output power

#### 7.5.1 General

This test was performed to measure the maximum peak output power radiated by transmitter. Specification test limits are given in Table 7.5.1.

Table 7.5.1 Peak output power limits

| Assigned Peak output power* |                             | Equivalent field strength limit | Maximum                      |                      |
|-----------------------------|-----------------------------|---------------------------------|------------------------------|----------------------|
| frequency range,<br>MHz     | w                           | dBm                             | @ 3m, dB(μV/m)*              | antenna gain,<br>dBi |
| 902.0 - 928.0               | 0.25 (<50 hopping channels) | 24.0(<50 hopping channels)      | 125.2 (<50 hopping channels) | 6.0*                 |

<sup>\*-</sup> Equivalent field strength limit was calculated from the peak output power as follows: E=sqrt(30×P×G)/r, where P is peak output power in Watts, r is antenna to EUT distance in meters and G is transmitter antenna gain in dBi.

- by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;
- without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band;
- by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

### 7.5.2 Test procedure

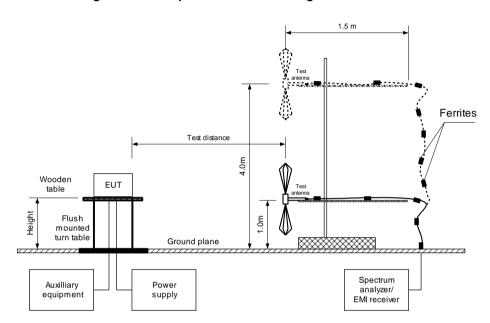
- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- **7.5.2.2** The EUT was adjusted to produce maximum available to end user RF output power.
- **7.5.2.3** The frequency span of spectrum analyzer was set approximately 5 times wider than 20 dB bandwidth of the EUT and the resolution bandwidth was set wider than 20 dB bandwidth of the EUT. To find maximum radiation the turntable was rotated 360° and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.5.2.4** The maximum field strength of the EUT carrier frequency was measured as provided in Table 7.5.2 and associated plots.
- **7.5.2.5** The maximum peak output power was calculated from the field strength of carrier as follows:

$$P = (E \times d)^2 / (30 \times G),$$

where P is the peak output power in W, E is the field strength in V/m, d is the test distance and G is the transmitter numeric antenna gain over an isotropic radiator.

The above equation was converted in logarithmic units for 3 m test distance:

Peak output power in dBm = Field strength in dB(μV/m) - Transmitter antenna gain in dBi – 95.2 dB


**7.5.2.6** The worst test results (the lowest margins) were recorded in Table 7.5.2.

<sup>\*\*-</sup> The limit is provided in terms of conducted RF power at the antenna connector. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:



| Test specification: | Section 15.247(b), Peak output power |                        |              |  |
|---------------------|--------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.9.2.2.4      |                        |              |  |
| Test mode:          | Compliance                           | Verdict: PASS          |              |  |
| Date(s):            | 18-Dec-19                            |                        |              |  |
| Temperature: 23 °C  | Relative Humidity: 45 %              | Air Pressure: 1027 hPa | Power: 3 VDC |  |
| Remarks:            |                                      |                        |              |  |

Figure 7.5.1 Setup for carrier field strength measurements





| Test specification: | Section 15.247(b), Peak output power |                        |              |  |  |
|---------------------|--------------------------------------|------------------------|--------------|--|--|
| Test procedure:     | ANSI C63.10, section 11.9.2.2.4      |                        |              |  |  |
| Test mode:          | Compliance                           | - Verdict: PASS        |              |  |  |
| Date(s):            | 18-Dec-19                            | verdict: PASS          |              |  |  |
| Temperature: 23 °C  | Relative Humidity: 45 %              | Air Pressure: 1027 hPa | Power: 3 VDC |  |  |
| Remarks:            |                                      |                        |              |  |  |

### Table 7.5.2 Peak output power test results

ASSIGNED FREQUENCY: 902.0 – 928.0 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber

EUT HEIGHT: 0.8 m DETECTOR USED: Peak

TEST ANTENNA TYPE: Biconilog (30 MHz – 1000 MHz)

Double ridged guide (above 1000 MHz)

MODULATION: LoRa MODULATING SIGNAL: PRBS

TRANSMITTER OUTPUT POWER SETTINGS: Maximum DETECTOR USED: Peak RESOLUTION BANDWIDTH: 1 MHz VIDEO BANDWIDTH: 10 MHz

BIT RATE: 980 bps

| Frequency,<br>MHz | Field strength,<br>dB(μV/m) | Antenna polarization | Antenna<br>height, m | Azimuth, degrees* | EUT antenna gain, dBi | Peak output power, dBm** | Limit,<br>dBm | Margin,<br>dB*** | Verdict |
|-------------------|-----------------------------|----------------------|----------------------|-------------------|-----------------------|--------------------------|---------------|------------------|---------|
| 902.5             | 105.40                      | Horizontal           | 1.40                 | 33                | 2.0                   | 8.20                     | 24.0          | -15.80           | Pass    |
| 915.0             | 103.15                      | Horizontal           | 1.40                 | 42                | 2.0                   | 5.95                     | 24.0          | -18.05           | Pass    |
| 927.5             | 99.70                       | Horizontal           | 1.40                 | 35                | 2.0                   | 2.50                     | 24.0          | -21.50           | Pass    |

BIT RATE: 5470 bps

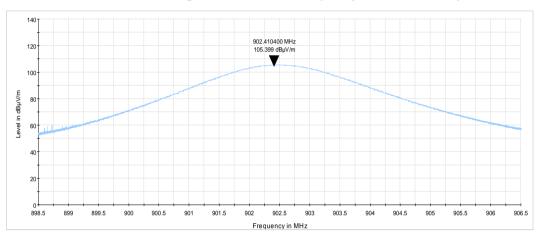
| Frequency,<br>MHz | Field strength,<br>dB(μV/m) | Antenna polarization | Antenna<br>height, m | Azimuth, degrees* | EUT antenna gain, dBi | Peak output power, dBm** | Limit,<br>dBm | Margin,<br>dB*** | Verdict |
|-------------------|-----------------------------|----------------------|----------------------|-------------------|-----------------------|--------------------------|---------------|------------------|---------|
| 902.5             | 105.06                      | Horizontal           | 1.40                 | 33                | 2.0                   | 7.86                     | 24.0          | -16.14           | Pass    |
| 915.0             | 102.22                      | Horizontal           | 1.40                 | 42                | 2.0                   | 5.02                     | 24.0          | -18.98           | Pass    |
| 927.5             | 98.99                       | Horizontal           | 1.40                 | 35                | 2.0                   | 1.79                     | 24.0          | -22.21           | Pass    |

<sup>\*-</sup> EUT front panel refer to 0 degrees position of turntable.

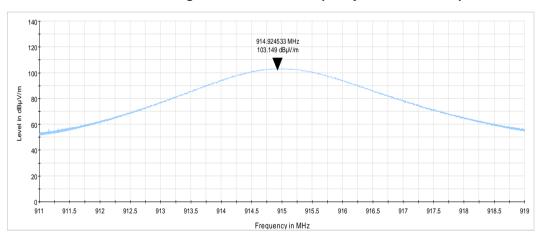
Note: Maximum peak output power was obtained at Unom (115%Unom, 85%Unom) input power voltage.

#### Reference numbers of test equipment used

| _ |         | •       | •       |         |  |  |
|---|---------|---------|---------|---------|--|--|
|   | HL 3903 | HL 4360 | HL 5288 | HL 5665 |  |  |


Full description is given in Appendix A.

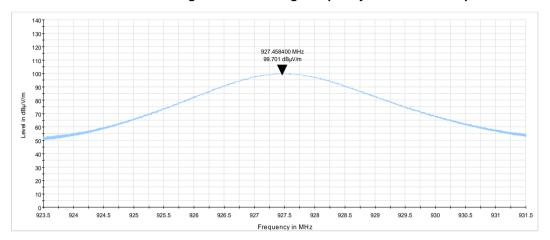
<sup>\*\*-</sup> Peak output power was calculated from the field strength of carrier as follows:  $P = (E \times d)^2 / (30 \times G)$ , where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: Peak output power in dBm = Field strength in  $dB(\mu V/m)$  - Transmitter antenna gain in dBi - 95.2 dB\*\*\*- Margin = Peak output power – specification limit.




| Test specification: | Section 15.247(b), Peak output power |                        |              |  |
|---------------------|--------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.9.2.2.4      |                        |              |  |
| Test mode:          | Compliance                           | Verdict:               | PASS         |  |
| Date(s):            | 18-Dec-19                            | verdict.               | FASS         |  |
| Temperature: 23 °C  | Relative Humidity: 45 %              | Air Pressure: 1027 hPa | Power: 3 VDC |  |
| Remarks:            |                                      |                        |              |  |

Plot 7.5.1 Field strength of carrier at low frequency and bitrate 980 bps



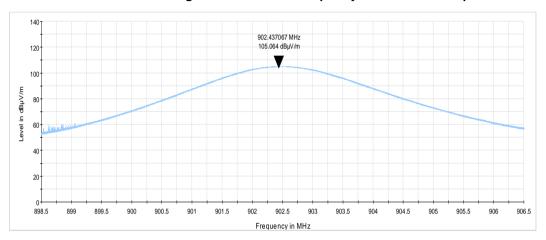

Plot 7.5.2 Field strength of carrier at mid frequency and bitrate 980 bps



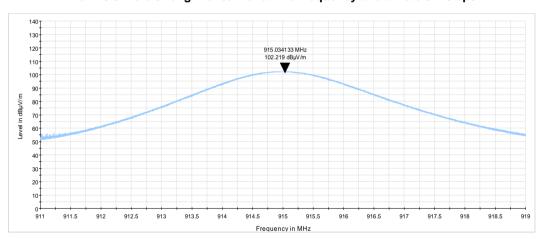


| Test specification: | Section 15.247(b), Peak output power |                        |              |  |
|---------------------|--------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.9.2.2.4      |                        |              |  |
| Test mode:          | Compliance                           | Verdict:               | PASS         |  |
| Date(s):            | 18-Dec-19                            | verdict.               | FASS         |  |
| Temperature: 23 °C  | Relative Humidity: 45 %              | Air Pressure: 1027 hPa | Power: 3 VDC |  |
| Remarks:            |                                      |                        |              |  |

Plot 7.5.3 Field strength of carrier at high frequency and bitrate 980 bps



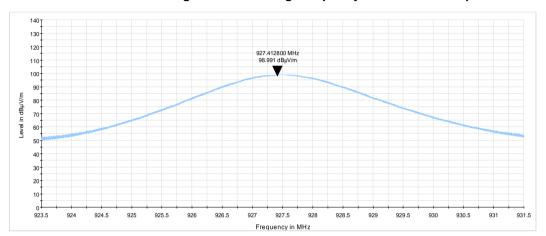



| Test specification: | Section 15.247(b), Peak output power |                        |              |  |
|---------------------|--------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.9.2.2.4      |                        |              |  |
| Test mode:          | Compliance                           | Verdict:               | PASS         |  |
| Date(s):            | 18-Dec-19                            | verdict.               | FASS         |  |
| Temperature: 23 °C  | Relative Humidity: 45 %              | Air Pressure: 1027 hPa | Power: 3 VDC |  |
| Remarks:            |                                      |                        |              |  |

Plot 7.5.4 Field strength of carrier at low frequency and bitrate 5470 bps




Plot 7.5.5 Field strength of carrier at mid frequency and bitrate 5470 bps





| Test specification: | Section 15.247(b), Peak output power |                        |              |  |
|---------------------|--------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.9.2.2.4      |                        |              |  |
| Test mode:          | Compliance                           | Verdict:               | PASS         |  |
| Date(s):            | 18-Dec-19                            | verdict: PASS          |              |  |
| Temperature: 23 °C  | Relative Humidity: 45 %              | Air Pressure: 1027 hPa | Power: 3 VDC |  |
| Remarks:            |                                      |                        |              |  |

Plot 7.5.6 Field strength of carrier at high frequency and bitrate 5470 bps







| Test specification: | Section 15.247(d), Peak power density |                        |              |  |
|---------------------|---------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.10.5          |                        |              |  |
| Test mode:          | Compliance                            | Verdict: PASS          |              |  |
| Date(s):            | 20-Dec-19                             | verdict.               | PASS         |  |
| Temperature: 23 °C  | Relative Humidity: 40 %               | Air Pressure: 1010 hPa | Power: 3 VDC |  |
| Remarks:            |                                       |                        |              |  |

## 7.6 Peak spectral power density

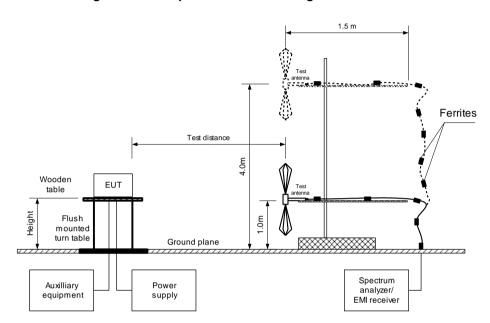
### 7.6.1 General

This test was performed to measure the peak spectral power density radiated by the transmitter RF antenna. Specification test limits are given in Table 7.6.1.

Table 7.6.1 Peak spectral power density limits

| Assigned frequency range, MHz | Measurement bandwidth, kHz | Peak spectral power density, dBm | Equivalent field strength limit @ 3m, dB(μV/m)* |
|-------------------------------|----------------------------|----------------------------------|-------------------------------------------------|
| 902.0 – 928.0                 | 3.0                        | 8.0                              | 103.2                                           |

<sup>\* -</sup> Equivalent field strength limit was calculated from the peak spectral power density as follows: E=sqrt(30×P)/r, where P is peak spectral power density and r is antenna to EUT distance in meters.


#### 7.6.2 Test procedure for field strength measurements

- 7.6.2.1 The EUT was set up as shown in Figure 7.6.1, energized and its proper operation was checked.
- 7.6.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.6.2.3** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360<sup>0</sup> and the measuring antenna height was swept in both vertical and horizontal polarizations.
- 7.6.2.4 The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in peak hold mode with resolution bandwidth set to 3.0 kHz, video bandwidth wider than resolution bandwidth, auto sweep time and sufficient number of sweeps was allowed for trace stabilization. The spectrum lines spacing was verified to be wider than 3 kHz. Otherwise the resolution bandwidth was reduced until individual spectrum lines were resolved and the power of individual spectrum lines was integrated over 3 kHz band.
- **7.6.2.5** The peak of emission was zoomed with span set just wide enough to capture the emission peak area and sweep time was set equal to span width divided by resolution bandwidth. Spectrum analyzer was set in peak hold mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 7.6.2 and associated plots.



| Test specification: | Section 15.247(d), Peak power density |                        |              |  |
|---------------------|---------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.10.5          |                        |              |  |
| Test mode:          | Compliance                            | Verdict:               | PASS         |  |
| Date(s):            | 20-Dec-19                             | verdict.               | PASS         |  |
| Temperature: 23 °C  | Relative Humidity: 40 %               | Air Pressure: 1010 hPa | Power: 3 VDC |  |
| Remarks:            |                                       |                        |              |  |

Figure 7.6.1 Setup for carrier field strength measurements





| Test specification: | Section 15.247(d), Peak power density |                        |              |  |
|---------------------|---------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.10.5          |                        |              |  |
| Test mode:          | Compliance                            | Verdict:               | PASS         |  |
| Date(s):            | 20-Dec-19                             | verdict.               | PASS         |  |
| Temperature: 23 °C  | Relative Humidity: 40 %               | Air Pressure: 1010 hPa | Power: 3 VDC |  |
| Remarks:            |                                       |                        |              |  |

### Table 7.6.2 Field strength measurement of peak spectral power density

ASSIGNED FREQUENCY: 902.0 – 928.0 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber

EUT HEIGHT: 0.8 m
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 3 kHz
VIDEO BANDWIDTH: 10 kHz

TEST ANTENNA TYPE: Biconilog (30 MHz – 1000 MHz)

MODULATION: LORA MODULATING SIGNAL: PRBS TRANSMITTER OUTPUT POWER SETTINGS: Maximum

BIT RATE:

980 bps

| Frequency,<br>MHz | Field strength,<br>dB(μV/m) | EUT antenna<br>gain, dBi | Limit,<br>dB(μV/m) | Margin,<br>dB* | Antenna polarization | Antenna<br>height, m | Turn-table position**,<br>degrees |
|-------------------|-----------------------------|--------------------------|--------------------|----------------|----------------------|----------------------|-----------------------------------|
| 902.5             | 104.53                      | 2.0                      | 8.0                | -0.67          | Horizontal           | 1.4                  | 33                                |
| 915.0             | 102.31                      | 2.0                      | 8.0                | -2.89          | Horizontal           | 1.4                  | 42                                |
| 927.5             | 98.63                       | 2.0                      | 8.0                | -6.57          | Horizontal           | 1.4                  | 35                                |

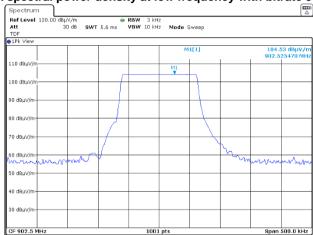
BIT RATE: 5470 bps

| Frequency,<br>MHz | Field strength,<br>dB(μV/m) | EUT antenna<br>gain, dBi | Limit,<br>dB(μV/m) | Margin,<br>dB* | Antenna polarization | Antenna<br>height, m | Turn-table position**,<br>degrees |
|-------------------|-----------------------------|--------------------------|--------------------|----------------|----------------------|----------------------|-----------------------------------|
| 902.5             | 102.23                      | 2.0                      | 8.0                | -2.97          | Horizontal           | 1.4                  | 33                                |
| 915.0             | 99.10                       | 2.0                      | 8.0                | -6.10          | Horizontal           | 1.4                  | 42                                |
| 927.5             | 95.33                       | 2.0                      | 8.0                | -9.87          | Horizontal           | 1.4                  | 35                                |

<sup>\*-</sup> Margin = Field strength - EUT antenna gain - calculated field strength limit.

#### Reference numbers of test equipment used

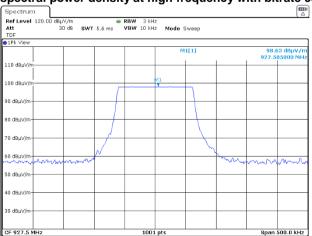
|         | •       | •       |         |  |  |
|---------|---------|---------|---------|--|--|
| HL 3903 | HL 4355 | HL 5288 | HL 5665 |  |  |


Full description is given in Appendix A.

<sup>\*\*-</sup> EUT front panel refer to 0 degrees position of turntable.



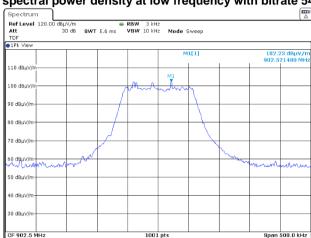

| Test specification: | Section 15.247(d), Peak power density |                        |              |  |
|---------------------|---------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.10.5          |                        |              |  |
| Test mode:          | Compliance                            | Verdict:               | PASS         |  |
| Date(s):            | 20-Dec-19                             | verdict.               | PASS         |  |
| Temperature: 23 °C  | Relative Humidity: 40 %               | Air Pressure: 1010 hPa | Power: 3 VDC |  |
| Remarks:            | •                                     |                        |              |  |


Plot 7.6.1 Peak spectral power density at low frequency with bitrate 980 bps

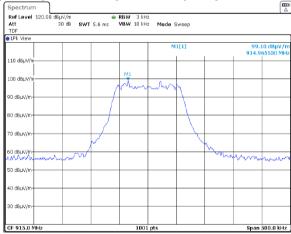


Plot 7.6.2 Peak spectral power density at mid frequency with bitrate 980 bps

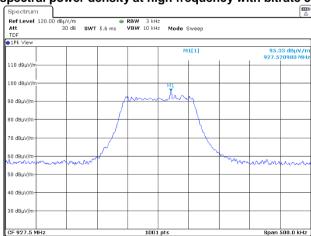



Plot 7.6.3 Peak spectral power density at high frequency with bitrate 980 bps






| Test specification: | Section 15.247(d), Peak power density |                        |              |  |
|---------------------|---------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, section 11.10.5          |                        |              |  |
| Test mode:          | Compliance                            | Verdict:               | PASS         |  |
| Date(s):            | 20-Dec-19                             | verdict.               | PASS         |  |
| Temperature: 23 °C  | Relative Humidity: 40 %               | Air Pressure: 1010 hPa | Power: 3 VDC |  |
| Remarks:            | •                                     |                        |              |  |


Plot 7.6.4 Peak spectral power density at low frequency with bitrate 5470 bps



Plot 7.6.5 Peak spectral power density at mid frequency with bitrate 5470 bps



Plot 7.6.6 Peak spectral power density at high frequency with bitrate 5470 bps







| Test specification: | Section 15.247(c), Radiated spurious emissions |                        |              |  |
|---------------------|------------------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6                 |                        |              |  |
| Test mode:          | Compliance                                     | Verdict: PASS          |              |  |
| Date(s):            | 20-Dec-19                                      | verdict.               | PASS         |  |
| Temperature: 23 °C  | Relative Humidity: 40 %                        | Air Pressure: 1010 hPa | Power: 3 VDC |  |
| Remarks:            |                                                |                        |              |  |

## 7.7 Field strength of spurious emissions

#### 7.7.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.7.1.

Table 7.7.1 Radiated spurious emissions limits

| Field strength at 3 m within restricted band dB(μV/m)* |               |                 |                 | Attenuation of field strength of spurious versus |  |
|--------------------------------------------------------|---------------|-----------------|-----------------|--------------------------------------------------|--|
| 1 roquency, mile                                       | Peak          | Quasi Peak      | Average         | carrier outside restricted<br>bands, dBc***      |  |
| 0.009 - 0.090                                          | 148.5 – 128.5 | NA              | 128.5 – 108.5** |                                                  |  |
| 0.090 - 0.110                                          | NA            | 108.5 – 106.8** | NA              |                                                  |  |
| 0.110 - 0.490                                          | 126.8 – 113.8 | NA              | 106.8 - 93.8**  |                                                  |  |
| 0.490 - 1.705                                          |               | 73.8 – 63.0**   |                 |                                                  |  |
| 1.705 - 30.0*                                          |               | 69.5            |                 | 20.0                                             |  |
| 30 – 88                                                | NΙΛ           | 40.0            | NA              | 20.0                                             |  |
| 88 – 216                                               | NA            | 43.5            |                 |                                                  |  |
| 216 – 960                                              |               | 46.0            |                 |                                                  |  |
| 960 - 1000                                             |               | 54.0            | 1               |                                                  |  |
| 1000 – 10 <sup>th</sup> harmonic                       | 74.0          | NA              | 54.0            |                                                  |  |

<sup>\*-</sup> The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows:  $\lim_{S_2} = \lim_{S_1} + 40 \log (S_1/S_2)$ .

where  $S_1$  and  $S_2$  – standard defined and test distance respectively in meters.

### 7.7.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.7.2.1 The EUT was set up as shown in Figure 7.7.1, energized and the performance check was conducted.
- **7.7.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated around its vertical axis.
- 7.7.2.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

### 7.7.3 Test procedure for spurious emission field strength measurements above 30 MHz

The EUT was set up as shown in Figure 7.7.2, Figure 7.7.3 energized and the performance check was conducted.

- **7.7.3.1** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.7.3.2 The worst test results (the lowest margins) were recorded and shown in the associated plots.

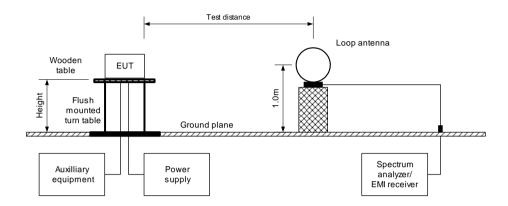
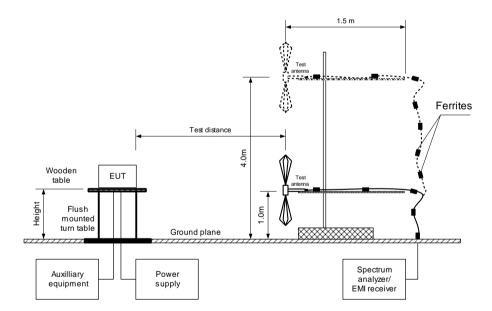
<sup>\*\*-</sup> The limit decreases linearly with the logarithm of frequency.

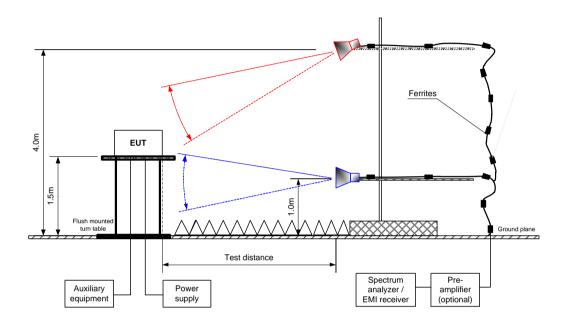
<sup>\*\*\* -</sup> The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.



| Test specification: | Section 15.247(c), Radiated spurious emissions |                        |              |  |
|---------------------|------------------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6                 |                        |              |  |
| Test mode:          | Compliance                                     | Verdict: PASS          |              |  |
| Date(s):            | 20-Dec-19                                      | verdict.               | PASS         |  |
| Temperature: 23 °C  | Relative Humidity: 40 %                        | Air Pressure: 1010 hPa | Power: 3 VDC |  |
| Remarks:            |                                                |                        |              |  |

Figure 7.7.1 Setup for spurious emission field strength measurements below 30 MHz



Figure 7.7.2 Setup for spurious emission field strength measurements in 30 - 1000 MHz





| Test specification: | Section 15.247(c), Radiated spurious emissions |                        |              |  |
|---------------------|------------------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6                 |                        |              |  |
| Test mode:          | Compliance                                     | Verdict: PASS          |              |  |
| Date(s):            | 20-Dec-19                                      | verdict: PASS          |              |  |
| Temperature: 23 °C  | Relative Humidity: 40 %                        | Air Pressure: 1010 hPa | Power: 3 VDC |  |
| Remarks:            |                                                |                        |              |  |

Figure 7.7.3 Setup for spurious emission field strength measurements above1000 MHz





| Test specification: | Section 15.247(c), Radiated spurious emissions |                        |              |  |  |  |
|---------------------|------------------------------------------------|------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6                 |                        |              |  |  |  |
| Test mode:          | Compliance                                     | Verdict: PASS          |              |  |  |  |
| Date(s):            | 20-Dec-19                                      | verdict.               | PASS         |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %                        | Air Pressure: 1010 hPa | Power: 3 VDC |  |  |  |
| Remarks:            |                                                |                        |              |  |  |  |

### Table 7.7.2 Field strength of emissions outside restricted bands

ASSIGNED FREQUENCY: 902.0 - 928.0 MHz INVESTIGATED FREQUENCY RANGE: 0.009 - 9500 MHz

TEST DISTANCE: 3 m **MODULATION:** LoRa MODULATING SIGNAL: **PRBS DUTY CYCLE:** 100 % TRANSMITTER OUTPUT POWER SETTINGS: Maximum **DETECTOR USED:** Peak **RESOLUTION BANDWIDTH:** 100 kHz VIDEO BANDWIDTH: 300 kHz

Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)
Double ridged guide (above 1000 MHz) **TEST ANTENNA TYPE:** 

| Bouble haged galde (above 1000 WHz) |                                      |                      |                      |                   |                                     |                                      |               |                 |         |
|-------------------------------------|--------------------------------------|----------------------|----------------------|-------------------|-------------------------------------|--------------------------------------|---------------|-----------------|---------|
| Frequency,<br>MHz                   | Field strength of spurious, dB(μV/m) | Antenna polarization | Antenna<br>height, m | Azimuth, degrees* | Field strength of carrier, dB(μV/m) | Attenuation<br>below carrier,<br>dBc | Limit,<br>dBc | Margin,<br>dB** | Verdict |
| Low carrier                         | frequency 902.5                      | 5 MHz                |                      |                   |                                     |                                      |               |                 |         |
| 1805.0                              | 45.6                                 | Horizontal           | 1.7                  | -130              |                                     | 59.39                                |               | 39.39           |         |
| 6317.5                              | 56.8                                 | Vertical             | 1.3                  | -90               | 104.99                              | 48.19                                | 20.0          | 28.19           | Pass    |
| 7220.0                              | 49.2                                 | Vertical             | 1.7                  | -44               |                                     | 55.79                                |               | 35.79           |         |
| Mid carrier f                       | requency 915.0                       | MHz                  |                      |                   |                                     |                                      |               |                 |         |
| 1830.0                              | 49.5                                 | Horizontal           | 1.8                  | -132              |                                     | 53.43                                |               | 33.43           |         |
| 5490.0                              | 49.4                                 | Vertical             | 1.3                  | -76               | 102.93                              | 53.53                                | 20.0          | 33.53           | Pass    |
| 6405.0                              | 51.2                                 | Vertical             | 1.8                  | -48               |                                     | 51.73                                |               | 31.73           |         |
| High carrier frequency 927.5 MHz    |                                      |                      |                      |                   |                                     |                                      |               |                 |         |
| 1855.0                              | 55.2                                 | Horizontal           | 1.8                  | -125              |                                     | 44.32                                |               | 24.32           |         |
| 5565.0                              | 49.8                                 | Vertical             | 1.3                  | -95               | 99.52                               | 49.72                                | 20.0          | 29.72           | Pass    |
| 6492.5                              | 52.6                                 | Vertical             | 1.7                  | -50               |                                     | 46.92                                |               | 26.92           |         |

<sup>\*-</sup> EUT front panel refers to 0 degrees position of turntable.

<sup>\*\*-</sup> Margin = Attenuation below carrier – specification limit.



| Test specification: | Section 15.247(c), Radiated spurious emissions |                        |              |  |  |  |  |
|---------------------|------------------------------------------------|------------------------|--------------|--|--|--|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6                 |                        |              |  |  |  |  |
| Test mode:          | Compliance                                     | Verdict: PASS          |              |  |  |  |  |
| Date(s):            | 20-Dec-19                                      | verdict.               | PASS         |  |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %                        | Air Pressure: 1010 hPa | Power: 3 VDC |  |  |  |  |
| Remarks:            |                                                |                        |              |  |  |  |  |

Table 7.7.3 Field strength of spurious emissions above 1 GHz within restricted bands

ASSIGNED FREQUENCY: 902.0 – 928.0 MHz INVESTIGATED FREQUENCY RANGE: 1000 - 9500 MHz

TEST DISTANCE: 3 m

MODULATION: LoRa

MODULATING SIGNAL: PRBS

DUTY CYCLE: 100 %

TRANSMITTER OUTPUT POWER SETTINGS: Maximum

DETECTOR USED: Peak

RESOLUTION BANDWIDTH: 1000 kHz

TEST ANTENNA TYPE: Double ridged guide

| ILOI / (IVI                      |              | •        |          | Double haged galde |            |          |                                   |             |          |         |         |
|----------------------------------|--------------|----------|----------|--------------------|------------|----------|-----------------------------------|-------------|----------|---------|---------|
| Fraguesa                         | Antenna      |          | Azimuth. | Peak field s       | trength(VB | W=3 MHz) | Average field strength(VBW=10 Hz) |             |          |         |         |
| Frequency,<br>MHz                | Polarization | Height,  | ,        | Measured,          | Limit,     | Margin,  | Measured,                         | Calculated, | Limit,   | Margin, | Verdict |
| IVITIZ                           | Polarization | m        | degrees* | dB(μV/m)           | dB(μV/m)   | dB**     | dB(μV/m)                          | dB(μV/m)    | dB(μV/m) | dB**    |         |
| Low carrier frequency 902.5 MHz  |              |          |          |                    |            |          |                                   |             |          |         |         |
| 2707.5                           | Horizontal   | 1.4      | 60       | 56.9               | 74         | -17.1    | 53.2                              | NA          | 54       | -0.8    |         |
| 3610.0                           | Vertical     | 1.5      | 102      | 49.1               | 74         | -24.9    | 44.5                              | NA          | 54       | -9.5    |         |
| 4512.5                           | Vertical     | 1.5      | -76      | 54.3               | 74         | -19.7    | 49.2                              | NA          | 54       | -4.8    | Pass    |
| 5415.0                           | Vertical     | 1.4      | -140     | 53.4               | 74         | -20.6    | 48.3                              | NA          | 54       | -5.7    | Fa55    |
| 8122.5                           | Horizontal   | 1.6      | -137     | 49.4               | 74         | -24.6    | 44.1                              | NA          | 54       | -9.9    |         |
| 9025.0                           | Horizontal   | 1.6      | -130     | 49.1               | 74         | -24.9    | 43.9                              | NA          | 54       | -10.1   |         |
| Mid carrier                      | frequency 91 | 15.0 MHz | 1        |                    |            |          |                                   |             |          |         |         |
| 2745.0                           | Horizontal   | 1.4      | 56       | 55.7               | 74         | -18.3    | 52.7                              | NA          | 54       | -1.3    |         |
| 3660.0                           | Vertical     | 1.5      | -100     | 46.5               | 74         | -27.5    | 41.0                              | NA          | 54       | -13     | Pass    |
| 4086.0                           | Vertical     | 1.5      | -76      | 48.7               | 74         | -25.3    | 43.5                              | NA          | 54       | -10.5   |         |
| High carrier frequency 927.5 MHz |              |          |          |                    |            |          |                                   |             |          |         |         |
| 2782.5                           | Horizontal   | 1.4      | 55       | 54.8               | 74         | -19.2    | 51.2                              | NA          | 54       | -2.8    |         |
| 3710.0                           | Vertical     | 1.5      | -98      | 40.7               | 74         | -33.3    | 35.3                              | NA          | 54       | -18.7   | Pass    |
| 4637.5                           | Vertical     | 1.5      | -80      | 49.8               | 74         | -24.2    | 43.7                              | NA          | 54       | -10.3   |         |

<sup>\*-</sup> EUT front panel refers to 0 degrees position of turntable.

<sup>\*\*-</sup> Margin = Measured field strength - specification limit.



Test specification: Section 15.247(c), Radiated spurious emissions

Test procedure: ANSI C63.10, sections 6.5, 6.6

Test mode: Compliance Verdict: PASS

Temperature: 23 °C Relative Humidity: 40 % Air Pressure: 1010 hPa Power: 3 VDC

Remarks:

Table 7.7.4 Field strength of spurious emissions below 1 GHz within restricted bands

ASSIGNED FREQUENCY: 902.0 MHz

INVESTIGATED FREQUENCY RANGE: 0.009 – 1000 MHz

TEST DISTANCE:

MODULATION:

LORa

MODULATING SIGNAL:

PRBS

BIT RATE:

3.9 kbps

DUTY CYCLE:

100 %

TRANSMITTER OUTPUT POWER SETTINGS:

Maximum

RESOLUTION BANDWIDTH: 0.2 kHz (9 kHz – 150 kHz) 9.0 kHz (150 kHz – 30 MHz)

120 kHz (130 kHz – 30 kHz) 120 kHz (30 MHz – 1000 MHz) > Resolution bandwidth

VIDEO BANDWIDTH: > Resolution bandwidth
TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)

| 2.00:1                                            |                                  |                    |               |                |              |            |             |         |  |
|---------------------------------------------------|----------------------------------|--------------------|---------------|----------------|--------------|------------|-------------|---------|--|
| Frequency,                                        | Peak                             |                    | si-peak       |                | Antenna      | Antenna    | Turn-table  |         |  |
| MHz                                               | emission,                        | Measured emission, | Limit,        | Margin, dB*    | polarization | height, m  | position**, | Verdict |  |
| IVITIZ                                            | dB(μV/m)                         | dB(μV/m)           | dB(μV/m)      | wargin, ub     | polarization | neignt, in | degrees     |         |  |
| Low carrier frequency 902.5 MHz                   |                                  |                    |               |                |              |            |             |         |  |
|                                                   |                                  | All emissions a    | are more than | 20 dB below th | e limit      |            |             | Pass    |  |
| Mid carrier                                       | Mid carrier frequency 915.0 MHz  |                    |               |                |              |            |             |         |  |
| All emissions are more than 20 dB below the limit |                                  |                    |               |                |              |            | Pass        |         |  |
| High carrier                                      | High carrier frequency 927.5 MHz |                    |               |                |              |            |             |         |  |
|                                                   |                                  | All emissions are  | more than 20  | dB below the I | imit limit   |            |             | Pass    |  |

<sup>\*-</sup> Margin = Measured emission - specification limit.

## **Table 7.7.5 Restricted bands**

| MHz               | MHz                 | MHz                   | MHz             | MHz           | GHz           |
|-------------------|---------------------|-----------------------|-----------------|---------------|---------------|
| 0.09 - 0.11       | 8.37625 - 8.38675   | 73 - 74.6             | 399.9 - 410     | 2690 - 2900   | 10.6 - 12.7   |
| 0.495 - 0.505     | 8.41425 - 8.41475   | 74.8 - 75.2           | 608 - 614       | 3260 - 3267   | 13.25 - 13.4  |
| 2.1735 - 2.1905   | 12.29 - 12.293      | 108 - 121.94          | 960 - 1240      | 3332 - 3339   | 14.47 - 14.5  |
| 4.125 - 4.128     | 12.51975 - 12.52025 | 123 - 138             | 1300 - 1427     | 3345.8 - 3358 | 15.35 - 16.2  |
| 4.17725 - 4.17775 | 12.57675 - 12.57725 | 149.9 - 150.05        | 1435 - 1626.5   | 3600 - 4400   | 17.7 - 21.4   |
| 4.20725 - 4.20775 | 13.36 - 13.41       | 156.52475 - 156.52525 | 1645.5 - 1646.5 | 4500 - 5150   | 22.01 - 23.12 |
| 6.215 - 6.218     | 16.42 - 16.423      | 156.7 - 156.9         | 1660 - 1710     | 5350 - 5460   | 23.6 - 24     |
| 6.26775 - 6.26825 | 16.69475 - 16.69525 | 162.0125 - 167.17     | 1718.8 - 1722.2 | 7250 - 7750   | 31.2 - 31.8   |
| 6.31175 - 6.31225 | 16.80425 - 16.80475 | 167.72 - 173.2        | 2200 - 2300     | 8025 - 8500   | 36.43 - 36.5  |
| 8.291 - 8.294     | 25.5 - 25.67        | 240 - 285             | 2310 - 2390     | 9000 - 9200   | Above 38.6    |
| 8.362 - 8.366     | 37.5 - 38.25        | 322 - 335.4           | 2483.5 - 2500   | 9300 - 9500   | Above 36.6    |

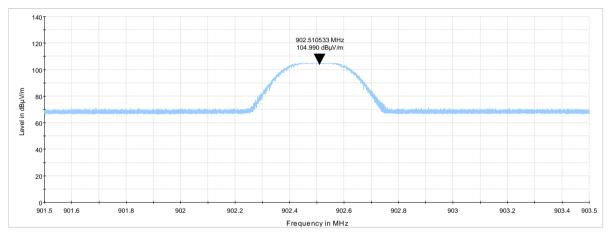
#### Reference numbers of test equipment used

| _ |         |         |         |         |         |        |         |         |
|---|---------|---------|---------|---------|---------|--------|---------|---------|
|   | HL 3903 | HL 4360 | HL 4933 | HL 5288 | HL 5665 | HL 446 | HL 5404 | HL 4338 |

Full description is given in Appendix A.

<sup>\*\*-</sup> EUT front panel refer to 0 degrees position of turntable.



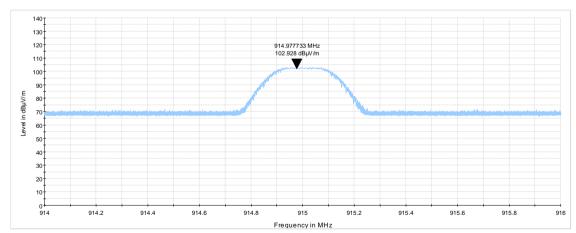



| Test specification: | Section 15.247(c), Radiated spurious emissions |                                |              |  |  |  |  |
|---------------------|------------------------------------------------|--------------------------------|--------------|--|--|--|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6                 | ANSI C63.10, sections 6.5, 6.6 |              |  |  |  |  |
| Test mode:          | Compliance                                     | Verdict: PASS                  |              |  |  |  |  |
| Date(s):            | 20-Dec-19                                      |                                |              |  |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %                        | Air Pressure: 1010 hPa         | Power: 3 VDC |  |  |  |  |
| Remarks:            | -                                              |                                |              |  |  |  |  |

Plot 7.7.1 Radiated emission measurements at the low carrier frequency

TEST SITE: Semi anechoic chamber
TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and horizontal




Plot 7.7.2 Radiated emission measurements at the mid carrier frequency

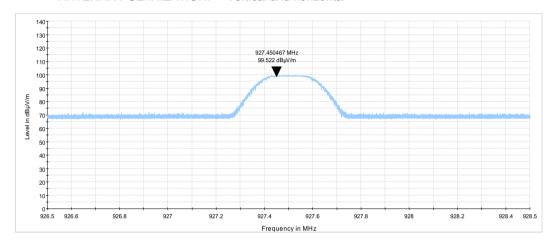
TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and horizontal







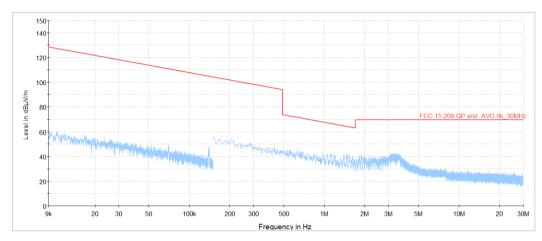

| Test specification: | Section 15.247(c), Radiated    | Section 15.247(c), Radiated spurious emissions |              |  |  |  |
|---------------------|--------------------------------|------------------------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6 | ANSI C63.10, sections 6.5, 6.6                 |              |  |  |  |
| Test mode:          | Compliance                     | Verdict: PASS                                  |              |  |  |  |
| Date(s):            | 20-Dec-19                      | verdict: PASS                                  |              |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %        | Air Pressure: 1010 hPa                         | Power: 3 VDC |  |  |  |
| Remarks:            | -                              |                                                |              |  |  |  |

# Plot 7.7.3 Radiated emission measurements at the high carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m

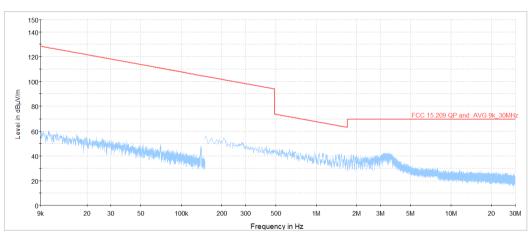





| Test specification: | Section 15.247(c), Radiated    | Section 15.247(c), Radiated spurious emissions |              |  |  |  |
|---------------------|--------------------------------|------------------------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6 | ANSI C63.10, sections 6.5, 6.6                 |              |  |  |  |
| Test mode:          | Compliance                     | Verdict: PASS                                  |              |  |  |  |
| Date(s):            | 20-Dec-19                      | verdict: PASS                                  |              |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %        | Air Pressure: 1010 hPa                         | Power: 3 VDC |  |  |  |
| Remarks:            | -                              |                                                |              |  |  |  |

Plot 7.7.4 Radiated emission measurements from 9 kHz to 30 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber


TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

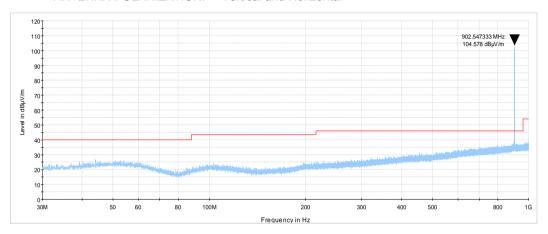


Plot 7.7.5 Radiated emission measurements from 9 kHz to 30 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

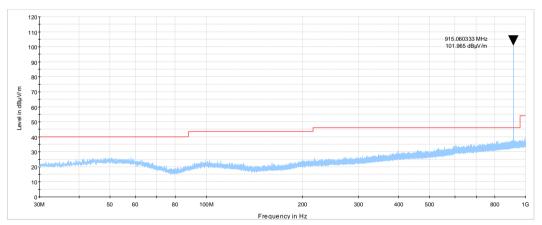





| Test specification: | Section 15.247(c), Radiated    | Section 15.247(c), Radiated spurious emissions |              |  |  |  |
|---------------------|--------------------------------|------------------------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6 | ANSI C63.10, sections 6.5, 6.6                 |              |  |  |  |
| Test mode:          | Compliance                     | Verdict: PASS                                  |              |  |  |  |
| Date(s):            | 20-Dec-19                      | verdict: PASS                                  |              |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %        | Air Pressure: 1010 hPa                         | Power: 3 VDC |  |  |  |
| Remarks:            | -                              |                                                |              |  |  |  |

Plot 7.7.6 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal

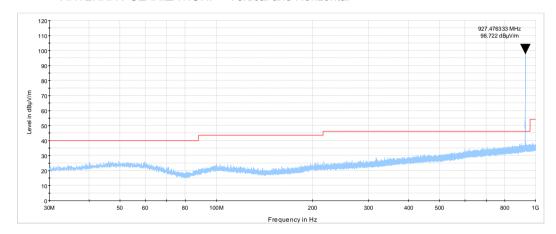


Plot 7.7.7 Radiated emission measurements from 30 to 1000 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m





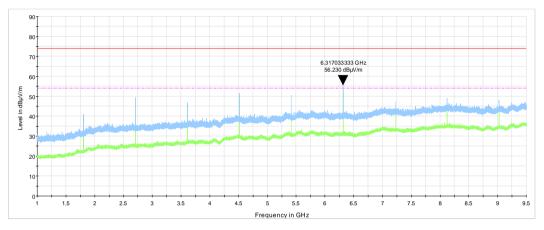



| Test specification: | Section 15.247(c), Radiated    | Section 15.247(c), Radiated spurious emissions |              |  |  |  |
|---------------------|--------------------------------|------------------------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6 | , , ,                                          |              |  |  |  |
| Test mode:          | Compliance Verdict: PASS       |                                                |              |  |  |  |
| Date(s):            | 20-Dec-19                      | verdict: PASS                                  |              |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %        | Air Pressure: 1010 hPa                         | Power: 3 VDC |  |  |  |
| Remarks:            |                                |                                                |              |  |  |  |

Plot 7.7.8 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m

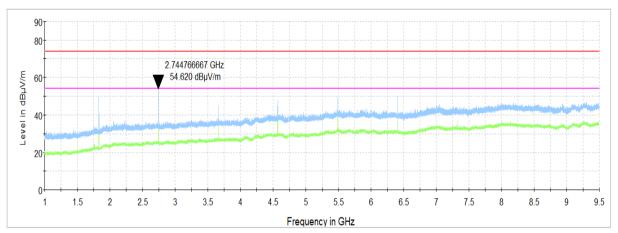





| Test specification: | Section 15.247(c), Radiated    | Section 15.247(c), Radiated spurious emissions |              |  |  |  |
|---------------------|--------------------------------|------------------------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6 | ANSI C63.10, sections 6.5, 6.6                 |              |  |  |  |
| Test mode:          | Compliance                     | Verdict: PASS                                  |              |  |  |  |
| Date(s):            | 20-Dec-19                      | verdict: PASS                                  |              |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %        | Air Pressure: 1010 hPa                         | Power: 3 VDC |  |  |  |
| Remarks:            | -                              |                                                |              |  |  |  |

Plot 7.7.9 Radiated emission measurements from 1000 to 9500 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m


ANTENNA POLARIZATION: Vertical and Horizontal



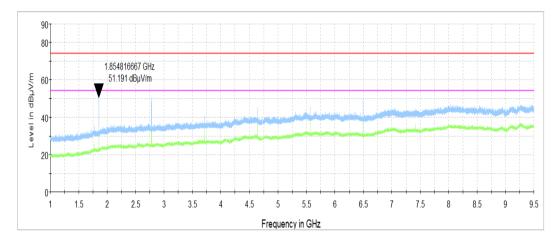
Plot 7.7.10 Radiated emission measurements from 1000 to 9500 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m








| Test specification: | Section 15.247(c), Radiated    | Section 15.247(c), Radiated spurious emissions |              |  |  |  |
|---------------------|--------------------------------|------------------------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, sections 6.5, 6.6 |                                                |              |  |  |  |
| Test mode:          | Compliance                     | Verdict: PASS                                  |              |  |  |  |
| Date(s):            | 20-Dec-19                      | verdict.                                       | FASS         |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 40 %        | Air Pressure: 1010 hPa                         | Power: 3 VDC |  |  |  |
| Remarks:            |                                |                                                |              |  |  |  |

Plot 7.7.11 Radiated emission measurements from 1000 to 9500 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m





| Test specification: | Section 15.247(d), Emissio | Section 15.247(d), Emissions at band edges |              |  |  |  |
|---------------------|----------------------------|--------------------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, Section 6.10  |                                            |              |  |  |  |
| Test mode:          | Compliance Verdict: PASS   |                                            |              |  |  |  |
| Date(s):            | 26-Dec-19                  | verdict: PASS                              |              |  |  |  |
| Temperature: 23 °C  | Relative Humidity: 45 %    | Air Pressure: 1008 hPa                     | Power: 3 VDC |  |  |  |
| Remarks:            |                            |                                            |              |  |  |  |

# 7.8 Band edge radiated emissions

### 7.8.1 General

This test was performed to measure emissions, radiated from the EUT at the assigned frequency band edges. Specification test limits are given in Table 7.8.1.

Table 7.8.1 Band edge emission limits

| Assigned frequency, | Attenuation below | Field strength at 3 m within restricted bands, dB(μV.  Peak Average |         |  |  |
|---------------------|-------------------|---------------------------------------------------------------------|---------|--|--|
| MHz                 | carrier*, dBc     | Peak                                                                | Average |  |  |
| 902.0 – 928.0       | 20.0              | 74.0                                                                | 54.0    |  |  |

<sup>\* -</sup> Band edge emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth.

#### 7.8.2 Test procedure

- **7.8.2.1** The EUT was set up as shown in Figure 7.8.1, energized normally modulated at the maximum data rate with its hopping function disabled and its proper operation was checked.
- **7.8.2.2** The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.
- **7.8.2.3** The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.8.2.4** The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.
- **7.8.2.5** The maximum band edge emission and modulation product outside of the band were measured as provided in Table 7.8.2 and associated plots and referenced to the highest emission level measured within the authorized band.
- **7.8.2.6** The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the highest carrier frequency.
- 7.8.2.7 The above procedure was repeated with the frequency hopping function enabled.

Figure 7.8.1 Band edge emission test setup





| Test specification: |                           |                        |              |  |  |
|---------------------|---------------------------|------------------------|--------------|--|--|
| Test procedure:     | ANSI C63.10, Section 6.10 |                        |              |  |  |
| Test mode:          | Compliance                | Verdict: PASS          |              |  |  |
| Date(s):            | 26-Dec-19                 | verdict: PASS          |              |  |  |
| Temperature: 23 °C  | Relative Humidity: 45 %   | Air Pressure: 1008 hPa | Power: 3 VDC |  |  |
| Remarks:            |                           |                        |              |  |  |

## Table 7.8.2 Band edge emission test results

ASSIGNED FREQUENCY RANGE: 902-928 MHz

DETECTOR USED:

MODULATION:

RESOLUTION BANDWIDTH:

VIDEO BANDWIDTH:

Peak

LoRa

100 kHz

300 kHz

BIT RATE: 980bps

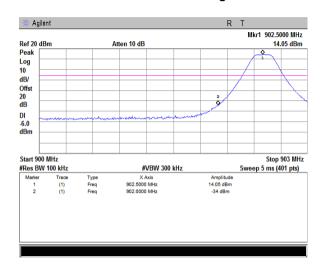
| DII 10 (1 L.                           |               | σσουρ                                                   | 0     |               |                |         |
|----------------------------------------|---------------|---------------------------------------------------------|-------|---------------|----------------|---------|
| Frequency, Band edge emission, MHz dBm |               | Emission at carrier, dBm Attenuation below carrier, dBc |       | Limit,<br>dBc | Margin,<br>dB* | Verdict |
| Frequency hop                          | ping disabled |                                                         |       |               |                |         |
| 902                                    | -34.00        | 14.05                                                   | 48.05 | 20.0          | 28.05          | Pass    |
| 928                                    | -27.41        | 13.94                                                   | 41.38 | 20.0          | 21.38          |         |
| Frequency hop                          | ping enabled  |                                                         |       |               |                |         |
| 902                                    | -34.04        | 13.98                                                   | 48.02 | 20.0          | 28.02          | Pass    |
| 928                                    | -26.92        | 13.96                                                   | 40.88 | 20.0          | 20.88          | F 455   |

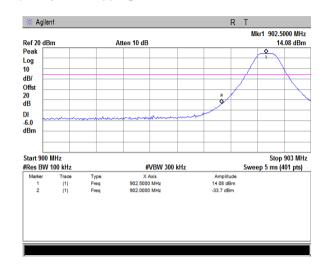
BIT RATE: 5470 bps

| Frequency,<br>MHz         | Band edge emission,<br>dBm | Emission at carrier,<br>dBm | Attenuation below carrier, dBc | Limit,<br>dBc | Margin,<br>dB* | Verdict |
|---------------------------|----------------------------|-----------------------------|--------------------------------|---------------|----------------|---------|
| Frequency ho              | pping disabled             |                             |                                |               |                |         |
| 902                       | -33.70                     | 14.08                       | 47.78                          | 20.0          | 27.78          | Pass    |
| 928                       | -26.97                     | 14.03 41.00                 |                                | 20.0          | 21.00          | F a 5 5 |
| Frequency hopping enabled |                            |                             |                                |               |                |         |
| 902                       | -34.86                     | 13.81                       | 47.87                          | 20.0          | 27.87          | Pass    |
| 928                       | -28.63                     | 13.95                       | 42.58                          | 20.0          | 22.58          | F d55   |

<sup>\*-</sup> Margin = Attenuation below carrier – specification limit.

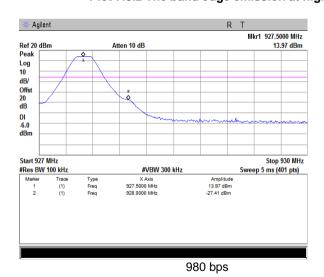
## Reference numbers of test equipment used

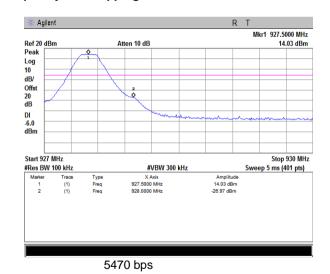

| _ |         |         |         |  |  |  |
|---|---------|---------|---------|--|--|--|
| Ī | HL 2909 | HL 5606 | HL 5612 |  |  |  |


Full description is given in Appendix A.



| Test specification: | Section 15.247(d), Emissions at band edges |                        |              |  |  |
|---------------------|--------------------------------------------|------------------------|--------------|--|--|
| Test procedure:     | ANSI C63.10, Section 6.10                  |                        |              |  |  |
| Test mode:          | Compliance                                 | Verdict:               | PASS         |  |  |
| Date(s):            | 26-Dec-19                                  | verdict: PASS          |              |  |  |
| Temperature: 23 °C  | Relative Humidity: 45 %                    | Air Pressure: 1008 hPa | Power: 3 VDC |  |  |
| Remarks:            |                                            |                        |              |  |  |

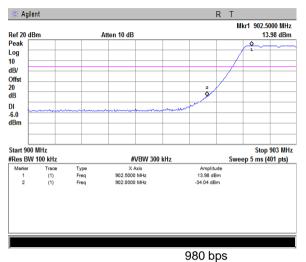

Plot 7.8.1 The band edge emission at low carrier frequency with hopping function disabled

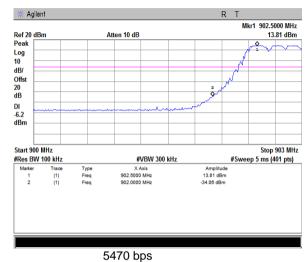


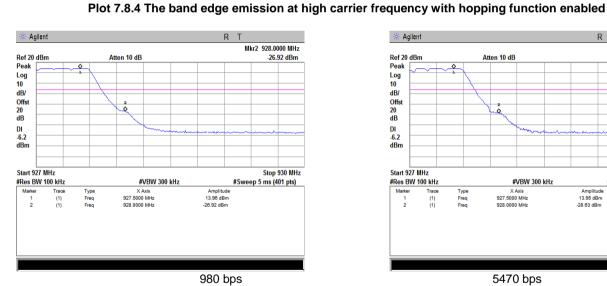


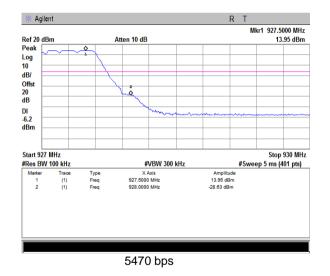

980 bps 5470 bps

Plot 7.8.2 The band edge emission at high carrier frequency with hopping function disabled





| Test specification: | Section 15.247(d), Emissions at band edges |                        |              |  |  |
|---------------------|--------------------------------------------|------------------------|--------------|--|--|
| Test procedure:     | ANSI C63.10, Section 6.10                  |                        |              |  |  |
| Test mode:          | Compliance                                 | Verdict:               | PASS         |  |  |
| Date(s):            | 26-Dec-19                                  | verdict: PASS          |              |  |  |
| Temperature: 23 °C  | Relative Humidity: 45 %                    | Air Pressure: 1008 hPa | Power: 3 VDC |  |  |
| Remarks:            |                                            |                        |              |  |  |

Plot 7.8.3 The band edge emission at low carrier frequency with hopping function enabled











| Test specification: | Section 15.203, Antenna requirements |                        |              |  |
|---------------------|--------------------------------------|------------------------|--------------|--|
| Test procedure:     | Visual inspection                    |                        |              |  |
| Test mode:          | Compliance                           | Verdict:               | PASS         |  |
| Date(s):            | 26-Dec-19                            | verdict.               | PASS         |  |
| Temperature: 23 °C  | Relative Humidity: 45 %              | Air Pressure: 1008 hPa | Power: 3 VDC |  |
| Remarks:            |                                      |                        |              |  |

# 7.9 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.9.1.

**Table 7.9.1 Antenna requirements** 

| Requirement                                        | Rationale         | Verdict |
|----------------------------------------------------|-------------------|---------|
| The transmitter antenna is permanently attached    | Visual inspection |         |
| The transmitter employs a unique antenna connector | NA                | Comply  |
| The transmitter requires professional installation | NA                |         |

Report ID: HOORAD\_FCC.35117\_Hybrid\_Sensor Date of Issue: 14-Jun-20



| Test specification: | Section 15.109, Radiated emission    |                        |              |  |
|---------------------|--------------------------------------|------------------------|--------------|--|
| Test procedure:     | ANSI C63.4, Sections 11.6 and 12.1.4 |                        |              |  |
| Test mode:          | Compliance                           | Verdict:               | PASS         |  |
| Date(s):            | 17-Dec-19                            | verdict.               | PASS         |  |
| Temperature: 22 °C  | Relative Humidity: 47 %              | Air Pressure: 1020 hPa | Power: 3 VDC |  |
| Remarks:            |                                      |                        |              |  |

## 8 Emission tests according to 47CFR part 15 subpart B requirements

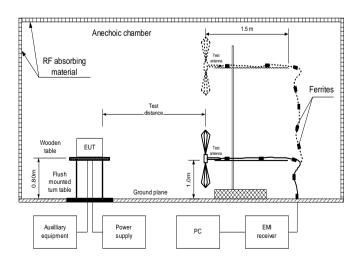
#### 8.1 Radiated emission measurements

#### 8.1.1 General

This test was performed to measure radiated emissions from the EUT enclosure. Specification test limits are given in Table 8.1.1.

Table 8.1.1 Radiated emission test limits

| Frequency, | Class B lim   | it, dB(μV/m) | Class A limit, dB(μV/m) |              |  |
|------------|---------------|--------------|-------------------------|--------------|--|
| MHz        | 10 m distance | 3 m distance | 10 m distance           | 3 m distance |  |
| 30 - 88    | 29.5*         | 40.0         | 39.0                    | 49.5*        |  |
| 88 - 216   | 33.0*         | 43.5         | 43.5                    | 54.0*        |  |
| 216 - 960  | 35.5*         | 46.0         | 46.4                    | 56.9*        |  |
| Above 960  | 43.5*         | 54.0         | 49.5                    | 60.0*        |  |


<sup>\*</sup> The limit for test distance other than specified was calculated using the inverse linear distance extrapolation factor as follows:  $Lim_{S2} = Lim_{S1} + 20 log (S_1/S_2)$ ,

where S<sub>1</sub> and S<sub>2</sub> – standard defined and test distance respectively in meters.

## 8.1.2 Test procedure for measurements in semi-anechoic chamber

- **8.1.2.1** The EUT was set up as shown in Figure 8.1.1 and associated photograph/s, energized and the performance check was conducted.
- **8.1.2.2** The specified frequency range was investigated with biconilog antenna connected to EMI receiver. To find maximum radiation the turntable was rotated 360<sup>0</sup>, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal and the EUT cables position was varied.
- **8.1.2.3** The worst test results (the lowest margins) were recorded in Table 8.1.2 and shown in the associated plots.

Figure 8.1.1 Setup for radiated emission measurements in anechoic chamber, table-top equipment





Test specification: Section 15.109, Radiated emission

Test procedure: ANSI C63.4, Sections 11.6 and 12.1.4

Test mode: Compliance Verdict: PASS

Temperature: 22 °C Relative Humidity: 47 % Air Pressure: 1020 hPa Power: 3 VDC

Remarks:

#### Table 8.1.2 Radiated emission test results

EUT SET UP: TABLE-TOP LIMIT: Class B

EUT OPERATING MODE: Receive
TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3 m

DETECTORS USED:

PEAK / QUASI-PEAK
FREQUENCY RANGE:

30 MHz – 1000 MHz

RESOLUTION BANDWIDTH: 120 kHz

|                                                   | Peak                  |                                   | Quasi-peak         |                |                         | Antonno                 | Turn table                     |         |
|---------------------------------------------------|-----------------------|-----------------------------------|--------------------|----------------|-------------------------|-------------------------|--------------------------------|---------|
| Frequency,<br>MHz                                 | emission,<br>dB(μV/m) | Measured<br>emission,<br>dB(μV/m) | Limit,<br>dB(μV/m) | Margin,<br>dB* | Antenna<br>polarization | Antenna<br>height,<br>m | Turn-table position**, degrees | Verdict |
| All emissions are more than 20 dB below the limit |                       |                                   |                    |                |                         | Pass                    |                                |         |

TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3 m

DETECTORS USED: PEAK / AVERAGE FREQUENCY RANGE: 1000 MHz – 5000 MHz

RESOLUTION BANDWIDTH: 1000 kHz

| Fraguenay                                         |           | Peak     |         |           | Average  |         |              | Antonno | Turn-table  |         |
|---------------------------------------------------|-----------|----------|---------|-----------|----------|---------|--------------|---------|-------------|---------|
| Frequency,                                        | Measured  | Limit,   | Margin, | Measured  | Limit,   | Margin, | Antenna      |         | position**, |         |
| MHz                                               | emission, |          |         | emission, |          |         | polarization | O ,     | . '         | veruici |
| IVITIZ                                            | dB(μV/m)  | dB(μV/m) | dB*     | dB(μV/m)  | dB(μV/m) | dB*     |              | m       | degrees     |         |
| All emissions are more than 20 dB below the limit |           |          |         |           |          |         | Pass         |         |             |         |

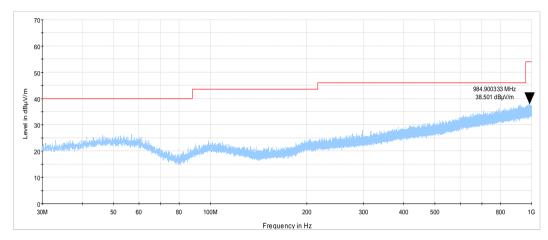
<sup>\*-</sup> Margin = Measured emission - specification limit.

#### Reference numbers of test equipment used

|         | <del>-</del> | =       |         |         |  |  |
|---------|--------------|---------|---------|---------|--|--|
| HL 3903 | HL 4360      | HL 4933 | HL 5288 | HL 5665 |  |  |

Full description is given in Appendix A.

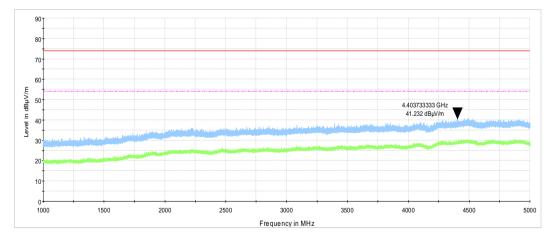
<sup>\*\*-</sup> EUT front panel refer to 0 degrees position of turntable.




| Test specification: | Section 15.109, Radiated emission    |                        |              |  |  |
|---------------------|--------------------------------------|------------------------|--------------|--|--|
| Test procedure:     | ANSI C63.4, Sections 11.6 and 12.1.4 |                        |              |  |  |
| Test mode:          | Compliance                           | Verdict:               | PASS         |  |  |
| Date(s):            | 17-Dec-19                            | verdict.               | PASS         |  |  |
| Temperature: 22 °C  | Relative Humidity: 47 %              | Air Pressure: 1020 hPa | Power: 3 VDC |  |  |
| Remarks:            | •                                    |                        |              |  |  |

Plot 8.1.1 Radiated emission measurements in 30 - 1000 MHz range, vertical and horizontal antenna polarization

TEST SITE: Semi anechoic chamber


LIMIT: Class B
TEST DISTANCE: 3 m
EUT OPERATING MODE: Receive



Plot 8.1.2 Radiated emission measurements above 1000 MHz, vertical and horizontal antenna polarization

TEST SITE: Semi anechoic chamber

LIMIT: Class B
TEST DISTANCE: 3 m
EUT OPERATING MODE: Receive





# 9 APPENDIX A Test equipment and ancillaries used for tests

| HL<br>No | Description                                                                | Manufacturer                 | Model                                | Ser. No.       | Last Cal./<br>Check | Due Cal./<br>Check |
|----------|----------------------------------------------------------------------------|------------------------------|--------------------------------------|----------------|---------------------|--------------------|
| 0446     | Antenna, Loop, Active, 10 (9) kHz - 30 MHz                                 | EMCO                         | 6502                                 | 2857           | 24-Feb-20           | 24-Feb-21          |
| 2909     | Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz                               | Agilent<br>Technologies      | E4407B                               | MY414447<br>62 | 04-Apr-19           | 04-Apr-20          |
| 3903     | Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA                         | Huber-Suhner                 | SUCOFL<br>EX 102A                    | 1226/2A        | 07-Apr-19           | 07-Apr-20          |
| 4338     | Reject Band Filter, 50 Ohm, 0 to 2170 and 3000 to 18000 MHz,SMA-FM / SMA-M | Micro-Tronics                | BRM<br>50702-02                      | 023            | 05-Jun-19           | 05-Jun-20          |
| 4355     | Signal and Spectrum Analyzer, 9 kHz to 7 GHz                               | Rohde &<br>Schwarz           | FSV 7                                | 101630         | 04-Aug-19           | 04-Aug-20          |
| 4360     | EMI Test Receiver, 20 Hz to 40 GHz.                                        | Rohde &<br>Schwarz           | ESU40                                | 100322         | 20-Jan-20           | 20-Jan-21          |
| 4933     | Active Horn Antenna, 1 GHz to 18 GHz                                       | COM-POWER<br>CORPORATI<br>ON | AHA-118                              | 701046         | 06-Jan-20           | 06-Jan-21          |
| 5111     | RF cable, 40 GHz, 5.5 m, K-type                                            | Huber-Suhner                 | SF102EA/<br>11SK/11S<br>K/5500M<br>M | 502493/2E<br>A | 14-Aug-19           | 14-Aug-20          |
| 5288     | Trilog Antenna, 25 MHz - 8 GHz, 100W                                       | Frankonia                    | ALX-<br>8000E                        | 00809          | 08-Feb-19           | 08-Feb-22          |
| 5404     | RF cable, 18 GHz, N-N, 6 m                                                 | Huber-Suhner                 | SF118/11<br>N(x2)                    | 500024/18      | 11-Aug-19           | 11-Aug-20          |
| 5606     | Precision Fixed Attenuator, 50 Ohm, 5 W, 10 dB, DC to 18000 MHz            | Mini Circuits                | BW-<br>N10W5+                        | NA             | 24-Sep-19           | 24-Sep-20          |
| 5612     | Precision Fixed Attenuator, 50 Ohm, 5 W, 10 dB, DC to 18 GHz               | Mini Circuits                | BW-<br>S10W5+                        | NA             | 24-Sep-19           | 24-Sep-20          |
| 5665     | Cable SF118/11N(x2)/6M, 18 GHz, 11N/11N                                    | Huber-Suhner                 | SF118                                | 501644/11<br>8 | 23-Oct-19           | 23-Oct-20          |



# 10 APPENDIX B Test equipment correction factors

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

| Frequency, | Measured antenna factor, dBS/m | Measurement uncertainty, dB |
|------------|--------------------------------|-----------------------------|
| 10         | -33.4                          | ±1.0                        |
| 20         | -37.8                          | ±1.0                        |
| 50         | -40.5                          | ±1.0                        |
| 75         | -41.0                          | ±1.0                        |
| 100        | -41.2                          | ±1.0                        |
| 150        | -41.2                          | ±1.0                        |
| 250        | -41.1                          | ±1.0                        |
| 500        | -41.2                          | ±1.0                        |
| 750        | -41.3                          | ±1.0                        |
| 1000       | -41.3                          | ±1.0                        |

| Frequency, | Measured antenna factor, dBS/m | Measurement uncertainty, dB |
|------------|--------------------------------|-----------------------------|
| 2000       | -41.4                          | ±1.0                        |
| 3000       | -41.4                          | ±1.0                        |
| 4000       | -41.5                          | ±1.0                        |
| 5000       | -41.5                          | ±1.0                        |
| 10000      | -41.7                          | ±1.0                        |
| 15000      | -42.1                          | ±1.0                        |
| 20000      | -42.7                          | ±1.0                        |
| 25000      | -44.2                          | ±1.0                        |
| 30000      | -45.8                          | ±1.0                        |

The antenna factor shall be added to receiver reading in  $dB_{\mu}V$  to obtain field strength in  $dB_{\mu}A/m$ .

HL 4933: Active Horn Antenna COM-POWER CORPORATION, model: AHA-118, s/n 701046

| <u>-                                      </u> | COM CONTENT CONTROL                               |
|------------------------------------------------|---------------------------------------------------|
| Frequency, MHz                                 | Measured antenna factor (with preamplifier), dB/m |
| 1000                                           | -16.1                                             |
| 1500                                           | -15.1                                             |
| 2000                                           | -10.9                                             |
| 2500                                           | -11.9                                             |
| 3000                                           | -11.1                                             |
| 3500                                           | -10.6                                             |
| 4000                                           | -8.6                                              |
| 4500                                           | -8.3                                              |
| 5000                                           | -5.9                                              |
| 5500                                           | -5.7                                              |
| 6000                                           | -3.3                                              |
| 6500                                           | -4.0                                              |
| 7000                                           | -2.2                                              |
| 7500                                           | -1.7                                              |
| 8000                                           | 1.1                                               |
| 8500                                           | -0.8                                              |
| 9000                                           | -1.5                                              |
| 9500                                           | -0.2                                              |

| Frequency, MHz | Measured antenna factor (with preamplifier), dB/m |
|----------------|---------------------------------------------------|
| 10000          | 1.8                                               |
| 10500          | 1.0                                               |
| 11000          | 0.3                                               |
| 11500          | -0.5                                              |
| 12000          | 3.1                                               |
| 12500          | 1.4                                               |
| 13000          | -0.3                                              |
| 13500          | -0.4                                              |
| 14000          | 2.5                                               |
| 14500          | 2.2                                               |
| 15000          | 1.9                                               |
| 15500          | 0.5                                               |
| 16000          | 2.1                                               |
| 16500          | 1.2                                               |
| 17000          | 0.6                                               |
| 17500          | 3.1                                               |
| 18000          | 4.2                                               |

The antenna factor shall be added to receiver reading in  $dB_{\mu}V$  to obtain field strength in  $dB_{\mu}V/m$ .



HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

|                | 30-1                 |
|----------------|----------------------|
| Frequency, MHz | Antenna factor, dB/m |
| 30             | 14.96                |
| 35             | 15.33                |
| 40             | 16.37                |
| 45             | 17.56                |
| 50             | 17.95                |
| 60             | 16.87                |
| 70             | 13.22                |
| 80             | 10.56                |
| 90             | 13.61                |
| 100            | 15.46                |
| 120            | 14.03                |
| 1/10           | 12.23                |

| Frequency, MHz | Antenna factor, dB/m |
|----------------|----------------------|
| 160            | 12.67                |
| 180            | 13.34                |
| 200            | 15.40                |
| 250            | 16.42                |
| 300            | 17.28                |
| 400            | 19.98                |
| 500            | 21.11                |
| 600            | 22.90                |
| 700            | 24.13                |
| 800            | 25.25                |
| 900            | 26.35                |
| 1000           | 27.18                |

The antenna factor shall be added to receiver reading in  $dB_{\mu}V$  to obtain field strength in  $dB_{\mu}V/m$ . **above 1000 MHz** 

| Frequency, MHz | Antenna factor, dB/m |
|----------------|----------------------|
| 1000           | 26.9                 |
| 1100           | 28.1                 |
| 1200           | 28.4                 |
| 1300           | 29.6                 |
| 1400           | 29.1                 |
| 1500           | 30.4                 |
| 1600           | 30.7                 |
| 1700           | 31.5                 |
| 1800           | 32.3                 |
| 1900           | 32.6                 |
| 2000           | 32.5                 |
| 2100           | 32.9                 |
| 2200           | 33.5                 |
| 2300           | 33.2                 |
| 2400           | 33.7                 |
| 2500           | 34.6                 |
| 2600           | 34.7                 |
| 2700           | 34.6                 |
| 2800           | 35.0                 |
| 2900           | 35.5                 |
| 3000           | 36.2                 |
| 3100           | 36.8                 |
| 3200           | 36.8                 |
| 3300           | 37.0                 |
| 3400           | 37.5                 |
| 3500           | 38.2                 |

| Frequency, MHz | Antenna factor, dB/m |
|----------------|----------------------|
| 3600           | 38.9                 |
| 3700           | 39.4                 |
| 3800           | 39.4                 |
| 3900           | 39.6                 |
| 4000           | 39.7                 |
| 4100           | 39.8                 |
| 4200           | 40.5                 |
| 4300           | 40.9                 |
| 4400           | 41.1                 |
| 4500           | 41.4                 |
| 4600           | 41.3                 |
| 4700           | 41.6                 |
| 4800           | 41.9                 |
| 4900           | 42.3                 |
| 5000           | 42.7                 |
| 5100           | 43.0                 |
| 5200           | 42.9                 |
| 5300           | 43.5                 |
| 5400           | 43.6                 |
| 5500           | 44.3                 |
| 5600           | 44.7                 |
| 5700           | 45.0                 |
| 5800           | 45.0                 |
| 5900           | 45.3                 |
| 6000           | 45.9                 |
|                |                      |

The antenna factor shall be added to receiver reading in dB $\mu$ V to obtain field strength in dB $\mu$ V/m.



HL 5111: RF cable

# Huber-Suhner, SF102EA/11SK/11SK/5500MM, s/n 502493/2EA

| Set / Applied,<br>MHz | Measured,<br>dB | Uncertainty,<br>dB |
|-----------------------|-----------------|--------------------|
| 100                   | 0.70            | ±0.07              |
| 200                   | 0.99            | ±0.08              |
| 300                   | 1.21            | ±0.08              |
| 500                   | 1.56            | ±0.08              |
| 1000                  | 2.20            | ±0.08              |
| 1500                  | 2.69            | ±0.08              |
| 2000                  | 3.11            | ±0.08              |
| 2500                  | 3.50            | ±0.10              |
| 3000                  | 3.85            | ±0.10              |
| 3500                  | 4.16            | ±0.10              |
| 4000                  | 4.47            | ±0.10              |
| 4500                  | 4.74            | ±0.10              |
| 5000                  | 5.03            | ±0.10              |
| 5500                  | 5.30            | ±0.10              |
| 6000                  | 5.57            | ±0.10              |
| 6500                  | 5.76            | ±0.10              |
| 7000                  | 6.00            | ±0.10              |
| 7500                  | 6.20            | ±0.10              |
| 8000                  | 6.44            | ±0.10              |
| 8500                  | 6.67            | ±0.10              |
| 9000                  | 6.82            | ±0.10              |
| 9500                  | 7.04            | ±0.10              |
| 10000                 | 7.18            | ±0.10              |
| 10500                 | 7.36            | ±0.10              |
| 11000                 | 7.55            | ±0.10              |
| 11500                 | 7.75            | ±0.10              |
| 12000                 | 7.90            | ±0.10              |
| 12500                 | 8.08            | ±0.13              |
| 13000                 | 8.19            | ±0.13              |
| 13500                 | 8.39            | ±0.13              |
| 14000                 | 8.58            | ±0.13              |
| 14500                 | 8.76            | ±0.18              |
| 15000                 | 8.92            | ±0.18              |
| 15500                 | 9.03            | ±0.18              |
| 16000                 | 9.18            | ±0.18              |
| 16500                 | 9.34            | ±0.18              |
| 17000                 | 9.51            | ±0.18              |
| 17500                 | 9.66            | ±0.18              |
| 18000                 | 9.80            | ±0.18              |
| 18500                 | 9.94            | ±0.23              |
| 19000                 | 10.05           | ±0.23              |
| 19500                 | 10.22           | ±0.23              |

| Set / Applied, | Measured, | Uncertainty, |
|----------------|-----------|--------------|
| MHz            | dB        | dB           |
| 20000          | 10.32     | ±0.23        |
| 20500          | 10.48     | ±0.23        |
| 21000          | 10.60     | ±0.23        |
| 21500          | 10.73     | ±0.23        |
| 22000          | 10.87     | ±0.23        |
| 22500          | 10.97     | ±0.29        |
| 23000          | 11.09     | ±0.29        |
| 23500          | 11.26     | ±0.29        |
| 24000          | 11.37     | ±0.29        |
| 24500          | 11.50     | ±0.29        |
| 25000          | 11.61     | ±0.23        |
| 25500          | 11.72     | ±0.23        |
| 26000          | 11.87     | ±0.23        |
| 26500          | 11.99     | ±0.23        |
| 27000          | 12.09     | ±0.33        |
| 27500          | 12.24     | ±0.33        |
| 28000          | 12.34     | ±0.40        |
| 28500          | 12.47     | ±0.40        |
| 29000          | 12.61     | ±0.40        |
| 29500          | 12.70     | ±0.40        |
| 30000          | 12.86     | ±0.40        |
| 30500          | 12.92     | ±0.33        |
| 31000          | 13.09     | ±0.33        |
| 31500          | 13.16     | ±0.33        |
| 32000          | 13.33     | ±0.33        |
| 32500          | 13.40     | ±0.33        |
| 33000          | 13.62     | ±0.33        |
| 33500          | 13.70     | ±0.33        |
| 34000          | 13.88     | ±0.33        |
| 34500          | 13.97     | ±0.40        |
| 35000          | 14.05     | ±0.40        |
| 35500          | 14.23     | ±0.40        |
| 36000          | 14.25     | ±0.40        |
| 36500          | 14.46     | ±0.40        |
| 37000          | 14.49     | ±0.33        |
| 37500          | 14.72     | ±0.33        |
| 38000          | 14.77     | ±0.33        |
| 38500          | 14.97     | ±0.33        |
| 39000          | 15.04     | ±0.33        |
| 39500          | 15.22     | ±0.33        |
| 40000          | 15.63     | ±0.47        |



## 11 APPENDIX C Measurement uncertainties

## Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

| Test description                                                 | Expanded uncertainty                 |
|------------------------------------------------------------------|--------------------------------------|
| Conducted carrier power at RF antenna connector                  | Below 12.4 GHz: ± 1.7 dB             |
|                                                                  | 12.4 GHz to 40 GHz: ± 2.3 dB         |
| Conducted emissions at RF antenna connector                      | 9 kHz to 2.9 GHz: ± 2.6 dB           |
|                                                                  | 2.9 GHz to 6.46 GHz: ± 3.5 dB        |
|                                                                  | 6.46 GHz to 13.2 GHz: ± 4.3 dB       |
|                                                                  | 13.2 GHz to 22.0 GHz: ± 5.0 dB       |
|                                                                  | 22.0 GHz to 26.8 GHz: ± 5.5 dB       |
|                                                                  | 26.8 GHz to 40.0 GHz: ± 4.8 dB       |
| Occupied bandwidth                                               | ± 8.0 %                              |
| Duty cycle, timing (Tx ON / OFF) and average factor measurements | ± 1.0 %                              |
| Conducted emissions with LISN                                    | 9 kHz to 150 kHz: ± 3.9 dB           |
|                                                                  | 150 kHz to 30 MHz: ± 3.8 dB          |
| Radiated emissions at 3 m measuring distance                     |                                      |
| Horizontal polarization                                          | Biconilog antenna: ± 5.3 dB          |
|                                                                  | Biconical antenna: ± 5.0 dB          |
|                                                                  | Log periodic antenna: ± 5.3 dB       |
| We have                                                          | Double ridged horn antenna: ± 5.3 dB |
| Vertical polarization                                            | Biconilog antenna: ± 6.0 dB          |
|                                                                  | Biconical antenna: ± 5.7 dB          |
|                                                                  | Log periodic antenna: ± 6.0 dB       |
|                                                                  | Double ridged horn antenna: ± 6.0 dB |

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.





## 12 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for 1, 2, 15, 18 parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; registered by Industry Canada for electromagnetic emissions, file number IC 2186A-1 for OATS, certified by VCCI, Japan (the registration numbers are R-10808 for OATS, R-1082 for anechoic chamber, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address: P.O. Box 23, Binyamina 3055001, Israel

Telephone: +972 4628 8001 Fax: +972 4628 8277

e-mail: <u>mail@hermonlabs.com</u> website: <u>www.hermonlabs.com</u>

Person for contact: Mr. Michael Nikishin, EMC and radio group manager





## 13 APPENDIX E

# **Specification references**

FCC 47CFR part 15:2019 ANSI C63.4:2014

ANSI C63.10:2013

Radio Frequency Devices.

American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices



# 14 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
A/m ampere per meter
AM amplitude modulation
AVRG average (detector)

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$ 

 $dB(\mu V/m)$  decibel referred to one microvolt per meter

 $dB(\mu A)$  decibel referred to one microampere

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz kilo k kHz kilohertz LO local oscillator m meter MHz megahertz min minute millimeter  $\mathsf{mm}$ millisecond ms microsecond μS NA not applicable NΒ narrow band

 $\Omega \qquad \qquad \mathsf{Ohm}$ 

OATS

PM pulse modulation PS power supply

ppm part per million (10<sup>-6</sup>)

open area test site

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive s second T temperature Tx transmit V volt WB wideband

# **END OF DOCUMENT**