# WiBotic Inc.

#### **REVISED TEST REPORT TO 103494-35**

OC-251\*

(\*See Appendix A for Manufacturer Declaration)

**Tested to The Following Standards:** 

FCC Part 15 Subpart C Section(s)

15.249

Report No.: 103494-34A

Date of issue: July 13, 2020





Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 35 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.



## **TABLE OF CONTENTS**

| Administrative Information                    | 3  |
|-----------------------------------------------|----|
| Test Report Information                       |    |
| Revision History                              |    |
| Report Authorization                          |    |
| Test Facility Information                     |    |
| Software Versions                             |    |
| Site Registration & Accreditation Information |    |
| Summary of Results                            |    |
| Modifications During Testing                  |    |
| Conditions During Testing                     |    |
| Equipment Under Test                          | 6  |
| General Product Information                   | 6  |
| FCC Part 15 Subpart C                         | 9  |
| 15.215(c) Occupied Bandwidth (20dB BW)        |    |
| 15.249(a) Field Strength of Fundamental       |    |
| 15.249(a) Radiated Emissions and Band Edge    | 18 |
| Appendix A: Manufacturer Declaration          | 33 |
| Supplemental Information                      |    |
| Measurement Uncertainty                       | 34 |
| Emissions Test Details                        | 34 |

Page 2 of 35 Report No.: 103494-34A



# **ADMINISTRATIVE INFORMATION**

# **Test Report Information**

REPORT PREPARED FOR: REPORT PREPARED BY:

WiBotic Inc.

9706 - 4th Ave. NE

Seattle, WA 98115

CKC Laboratories, Inc.

5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Patrick Vilbrandt Project Number: 103494

Customer Reference Number: 1220 Rev 2

**DATE OF EQUIPMENT RECEIPT:** May 13, 2020

**DATE(S) OF TESTING:** May 13, 2020, June 3, 2020 and July 1, 2020

## **Revision History**

Original: Testing of the OC-251 to FCC Part 15 Subpart C Section(s) 15.249.

**Revision A:** To update General Product Information Table Nominal Input Voltage from 24V battery to 60V battery. Added Configuration 2, added statement in the test sections and Conditions During test for the testing with the 60V battery.

# **Report Authorization**

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services

Steve 27 Be

CKC Laboratories, Inc.

Page 3 of 35 Report No.: 103494-34A



# **Test Facility Information**



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Canyon Park, Bothell, WA 98021

## **Software Versions**

| CKC Laboratories Proprietary Software | Version |
|---------------------------------------|---------|
| EMITest Emissions                     | 5.03.12 |

# **Site Registration & Accreditation Information**

| Location                 | *NIST CB # | FCC    | Japan  |
|--------------------------|------------|--------|--------|
| Canyon Park, Bothell, WA | US0081     | US1022 | A-0136 |
| Brea, CA                 | US0060     | US1025 | A-0136 |
| Fremont, CA              | US0082     | US1023 | A-0136 |
| Mariposa, CA             | US0103     | US1024 | A-0136 |

<sup>\*</sup>CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 35 Report No.: 103494-34A



## **SUMMARY OF RESULTS**

Standard / Specification: FCC Part 15 Subpart C - 15.249

| Test Procedure | Description                      | Modifications | Results |
|----------------|----------------------------------|---------------|---------|
| 15.215(c)      | Occupied Bandwidth               | NA            |         |
| 15.249(a)      | Field Strength of Fundamental    | NA            |         |
| 15.249(a)      | Radiated Emissions and Band Edge | NA            |         |
| 15.207         | AC Conducted Emissions           | NA            | NA1     |

NA = Not Applicable

NA1 = The manufacturer declares the EUT is battery powered.

#### ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

# **Modifications During Testing**

This list is a summary of the modifications made to the equipment during testing.

## **Summary of Conditions**

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

# **Conditions During Testing**

This list is a summary of the conditions noted to the equipment during testing.

## **Summary of Conditions**

Testing was performed on July 1, 2020 with Configuration 2 with a 60V battery and no changes in TX power were observed.

Page 5 of 35 Report No.: 103494-34A



# **EQUIPMENT UNDER TEST (EUT)**

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

## **Configuration 1**

## **Equipment Tested:**

| Device       | Manufacturer | Model # | S/N |
|--------------|--------------|---------|-----|
| OC-251-12-ST | WiBotic Inc. | OC-251* | 001 |

<sup>\*</sup> See Appendix A for Manufacturer Declaration

#### Support Equipment:

| Device                     | Manufacturer  | Model #   | S/N |
|----------------------------|---------------|-----------|-----|
| 24V Lithium Iron Phosphate | Bioenno Power | BLF-2440A | NA  |
| Battery                    |               |           |     |
| RC-100-AP-ST               | WiBotic Inc.  | RC-100    | NA  |

## **Configuration 2**

## **Equipment Tested:**

| Device       | Manufacturer | Model # | S/N |
|--------------|--------------|---------|-----|
| OC-251-12-ST | WiBotic Inc. | OC-251* | 001 |

<sup>\*</sup> See Appendix A for Manufacturer Declaration

### Support Equipment:

| Device                 | Manufacturer  | Model #   | S/N |
|------------------------|---------------|-----------|-----|
| Lithium Iron Phosphate | Bioenno Power | BLF-4810W | NA  |
| Battery                |               |           |     |
| RC-100-AP-ST           | WiBotic Inc.  | RC-100    | NA  |

## **General Product Information:**

| Product Information                | Manufacturer-Provided Details |
|------------------------------------|-------------------------------|
| Equipment Type:                    | Radio Module                  |
| Modulation Type(s):                | GFSK 250kbps                  |
| Maximum Duty Cycle:                | 100%                          |
| Antenna Type(s) and Gain:          | Chip antenna 1dBi             |
| Antenna Connection Type:           | Integral                      |
| Nominal Input Voltage:             | 60V battery                   |
| Firmware / Software used for Test: | V11.1                         |

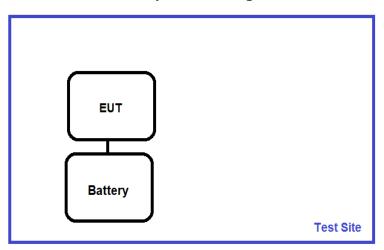
Page 6 of 35 Report No.: 103494-34A



# EUT Photo(s)



# **Support Equipment Photo(s)**




Page 7 of 35 Report No.: 103494-34A



# Block Diagram of Test Setup(s)

# Test Setup Block Diagram



Page 8 of 35 Report No.: 103494-34A



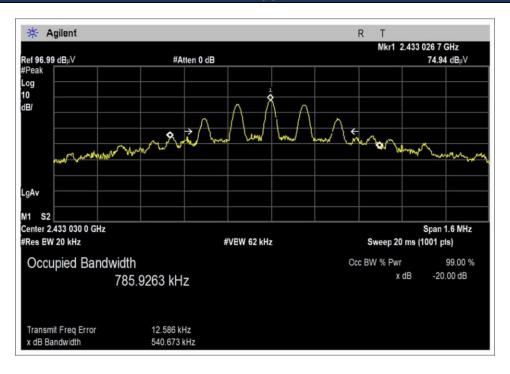
# **FCC Part 15 Subpart C**

# 15.215(c) Occupied Bandwidth (20dB BW)

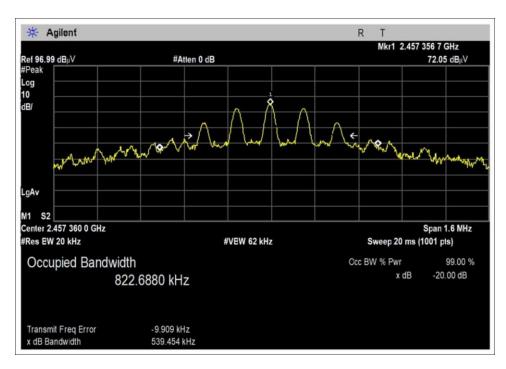
|                                                                                                                         | Test Setup/Conditions                                                                                                                                                                                                                                            |                |                        |  |  |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|--|--|
| Test Location:                                                                                                          | Bothell Lab C3                                                                                                                                                                                                                                                   | Test Engineer: | S. Pittsford           |  |  |
| Test Method:                                                                                                            | ANSI C63.10 (2013)                                                                                                                                                                                                                                               | Test Date(s):  | 5/13/2020 and 7/1/2020 |  |  |
| Configuration:                                                                                                          | 1                                                                                                                                                                                                                                                                |                |                        |  |  |
| Test Setup:                                                                                                             | est Setup:  Continuously transmitting all 0 Data  EUT is located on test bench 0.8m high <1GHz and 1.5m high >1GHz.  A laptop is temporarily connected to change transmitter settings and removed during test.  EUT is powered via a fully charged battery pack. |                |                        |  |  |
| Testing was performed on July 1, 2020 with Configuration 2 with a 60V battery and no changes in TX power were observed. |                                                                                                                                                                                                                                                                  |                |                        |  |  |

| Environmental Conditions                      |  |  |  |  |
|-----------------------------------------------|--|--|--|--|
| Temperature (°C) 24 Relative Humidity (%): 34 |  |  |  |  |

| Test Equipment |                   |              |                       |           |           |  |
|----------------|-------------------|--------------|-----------------------|-----------|-----------|--|
| Asset#         | Description       | Manufacturer | Model                 | Cal Date  | Cal Due   |  |
| 01467          | Horn Antenna      | EMCO         | 3115                  | 7/5/2019  | 7/5/2021  |  |
| 02673          | Spectrum Analyzer | Agilent      | E4446A                | 2/22/2019 | 2/22/2021 |  |
| P06515         | Cable             | Andrews      | Heliax                | 6/29/2018 | 6/29/2020 |  |
| P06540         | Cable             | Andrews      | Heliax                | 8/23/2019 | 8/23/2021 |  |
| 03540          | Preamp            | НР           | 83017A                | 5/13/2019 | 5/13/2021 |  |
| P07504         | Cable             | TMS          | CLU40-KMKM-<br>02.00F | 1/17/2019 | 1/17/2021 |  |

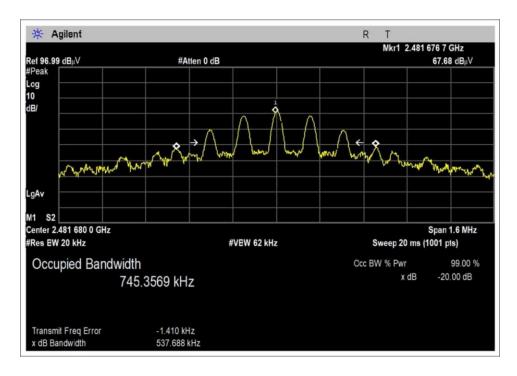

|                    | Test Data Summary |            |                   |                |         |  |  |  |  |  |  |  |
|--------------------|-------------------|------------|-------------------|----------------|---------|--|--|--|--|--|--|--|
| Frequency<br>(MHz) | Antenna<br>Port   | Modulation | Measured<br>(kHz) | Limit<br>(kHz) | Results |  |  |  |  |  |  |  |
| 2433.03            | 1                 | GSFK       | 540.7             | None           | NA      |  |  |  |  |  |  |  |
| 2457.36            | 1                 | GSFK       | 539.4             | None           | NA      |  |  |  |  |  |  |  |
| 2481.68            | 1                 | GSFK       | 537.7             | None           | NA      |  |  |  |  |  |  |  |

NA = Not applicable, because FCC 15.215 does not give any limits so there is no criteria for pass or fail.


Page 9 of 35 Report No.: 103494-34A



## Plot(s)




#### Low Channel



Middle Channel





High Channel

## Test Setup Photo(s)



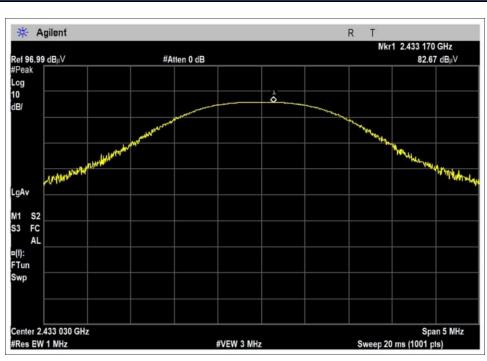
Page 11 of 35 Report No.: 103494-34A



# 15.249(a) Field Strength of Fundamental

## **Test Data Summary - Voltage Variations**

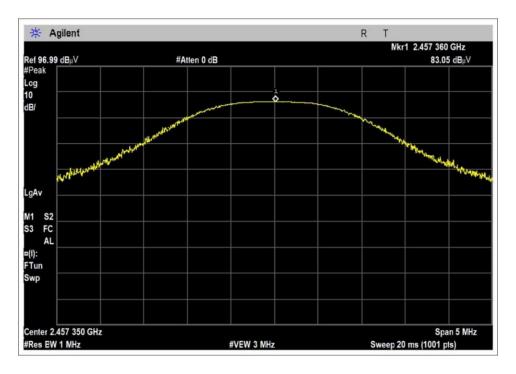
This equipment is battery powered. Power output tests were performed using a fresh battery.


Testing was performed on July 1, 2020 with Configuration 2 with a 60V battery and no changes in TX power were observed.

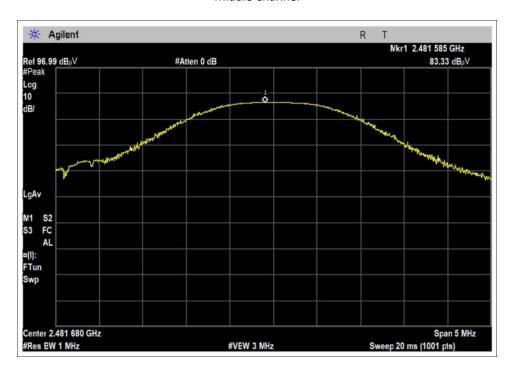
|                    | Test Data Summary – Radiated Field Strength Measurement |           |                           |                        |         |  |  |  |  |  |  |  |
|--------------------|---------------------------------------------------------|-----------|---------------------------|------------------------|---------|--|--|--|--|--|--|--|
| Frequency<br>(MHz) | Modulation                                              | Ant. Type | Measured<br>(dBuV/m @ 3m) | Limit<br>(dBuV/m @ 3m) | Results |  |  |  |  |  |  |  |
| 2433.03            | GFSK                                                    | Integral  | 79.5                      | ≤94                    | Pass    |  |  |  |  |  |  |  |
| 2457.36            | GFSK                                                    | Integral  | 80.0                      | ≤94                    | Pass    |  |  |  |  |  |  |  |
| 2481.68            | GFSK                                                    | Integral  | 80.3                      | ≤94                    | Pass    |  |  |  |  |  |  |  |

Plots shows raw reading please see datasheet for corrected readings.

50mV/m = 94dBuV/m


## Plot(s)




Low Channel

Page 12 of 35 Report No.: 103494-34A





Middle Channel



High Channel



### **Test Setup / Conditions / Data**

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE • Bothell, WA 98201 • 435-402-1717

Customer: WiBotic Inc.

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Work Order #: 103494 Date: 5/13/2020
Test Type: Maximized Emissions Time: 09:47:19
Tested By: Steven Pittsford Sequence#: 34

Software: EMITest 5.03.12

#### **Equipment Tested:**

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Support Equipment:

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Test Conditions / Notes:

Frequency Range: 2.433-2.4817GHz

Frequency tested: 2.433, 2457.4 & 2.4817GHz

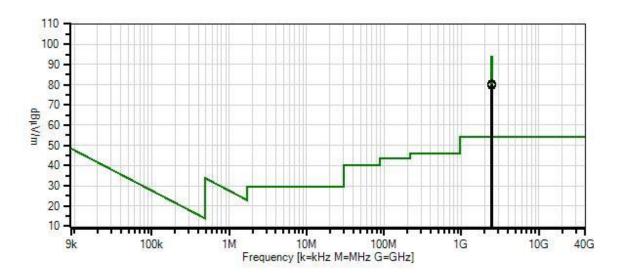
Firmware power setting: Max Power

Duty Cycle: 100%

Test Method: ANSI C63.10 (2013)

Test Mode: Continuously transmitting all 0 Data

Test Setup: EUT is located on test bench 0.8m high < 1GHz and 1.5m high > 1GHz. EUT is investigated in X, Y & Z axis Vertical and horizontal with worst case reported. A laptop is temporarily connected to change transmitter settings and removed during test.


EUT is powered via a fully charged battery pack.

3 x orthogonal axes investigated below 30MHz, Vertical and Horizontal axes investigated above 30MHz, worst case reported.

Page 14 of 35 Report No.: 103494-34A



WiBotic Inc. WO#: 103494 Sequence#: 34 Date: 5/13/2020 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vert



- O Peak Readings
- × QP Readings
- \* Average Readings
- Ambient

Software Version: 5.03.12

- 1 - 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

#### **Test Equipment:**

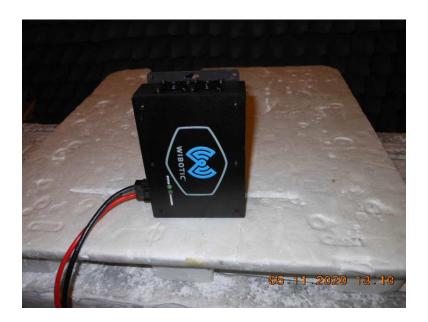
| ID | Asset #  | Description                         | Model             | <b>Calibration Date</b> | Cal Due Date |
|----|----------|-------------------------------------|-------------------|-------------------------|--------------|
| T1 | ANP06540 | Cable                               | Heliax            | 8/23/2019               | 8/23/2021    |
| T2 | AN03540  | Preamp                              | 83017A            | 5/13/2019               | 5/13/2021    |
| T3 | AN01467  | Horn Antenna-ANSI C63.5 Calibration | 3115              | 7/5/2019                | 7/5/2021     |
| T4 | ANP06515 | Cable                               | Heliax            | 6/29/2018               | 6/29/2020    |
| T5 | ANP07504 | Cable                               | CLU40-KMKM-02.00F | 1/17/2019               | 1/17/2021    |

| N | 1easu | rement Data: | Re   | eading list | ted by ma | argin. |      | Τe    | est Distance | e: 3 Meters    |        |       |
|---|-------|--------------|------|-------------|-----------|--------|------|-------|--------------|----------------|--------|-------|
|   | #     | Freq         | Rdng | T1          | T2        | T3     | T4   | Dist  | Corr         | Spec           | Margin | Polar |
|   |       | -            | •    | T5          |           |        |      |       |              | -              | _      |       |
|   |       | MHz          | dΒμV | dB          | dB        | dB     | dB   | Table | $dB\muV/m$   | $dB\mu V/m \\$ | dB     | Ant   |
|   | 1     | 2481.585M    | 83.3 | +0.6        | -34.2     | +27.6  | +2.7 | +0.0  | 80.3         | 94.0           | -13.7  | Horiz |
|   |       |              |      | +0.3        |           |        |      | 9     |              | Z-Axis         |        | 144   |
|   | 2     | 2457.360M    | 83.1 | +0.6        | -34.3     | +27.6  | +2.7 | +0.0  | 80.0         | 94.0           | -14.0  | Horiz |
|   |       |              |      | +0.3        |           |        |      | 347   |              | Z-Axis         |        | 176   |
|   | 3     | 2433.175M    | 82.7 | +0.6        | -34.3     | +27.6  | +2.6 | +0.0  | 79.5         | 94.0           | -14.5  | Horiz |
|   |       |              |      | +0.3        |           |        |      |       |              | Z-Axis         |        | 130   |

Page 15 of 35 Report No.: 103494-34A



# Test Setup Photo(s)




Test Setup



X Axis





Y Axis



Z Axis



# 15.249(a) Radiated Emissions and Band Edge

#### **Additional Testing**

Testing was performed on July 1, 2020 with Configuration 2 with a 60V battery and no changes in TX power were observed.

## **Test Setup / Conditions / Data**

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE • Bothell, WA 98201 • 435-402-1717

Customer: WiBotic Inc.

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)
Work Order #: 103494 Date: 5/13/2020
Test Type: Maximized Emissions Time: 11:05:37
Tested By: Steven Pittsford Sequence#: 33

Software: EMITest 5.03.12

**Equipment Tested:** 

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

Support Equipment:

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Test Conditions / Notes:

Frequency Range: 9k-25GHz

Frequency tested: 2.433, 2457.4 & 2.4817GHz

Firmware power setting: Max Power

Duty Cycle: 100%

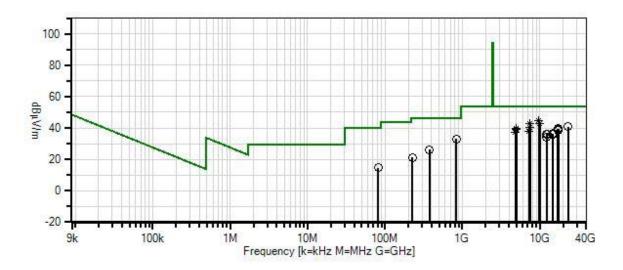
Test Method: ANSI C63.10 (2013)

Test Mode: Continuously transmitting all 0 Data

Test Setup: EUT is located on test bench 0.8m high <1GHz and 1.5m high >1GHz. EUT is investigated in X, Y & Z axis Vertical and horizontal with worst case reported. A laptop is temporarily connected to change transmitter settings and removed during test.

EUT is powered via a fully charged battery pack.

The manufacturer declares: All other ports are for maintenance only.


3 x orthogonal axes investigated below 30MHz, Vertical and Horizontal axes investigated above 30MHz, worst case reported.

Temperature (°C): 22-25 Relative Humidity (%): 30-35

> Page 18 of 35 Report No.: 103494-34A



WiBotic Inc. WO#: 103494 Sequence#: 33 Date: 5/13/2020 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter) Test Distance: 3 Meters Vert & Horz



- ---- Readings
- O Peak Readings
- × QP Readings
- \* Average Readings
- ▼ Ambient
  - Software Version: 5.03.12
- 1 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Page 19 of 35 Report No.: 103494-34A



## Test Equipment:

| ID  | Asset #    | Description             | Model                   | Cal Date   | Cal Due Date |
|-----|------------|-------------------------|-------------------------|------------|--------------|
| T1  | ANP06540   | Cable                   | Heliax                  | 8/23/2019  | 8/23/2021    |
| T2  | AN03540    | Preamp                  | 83017A                  | 5/13/2019  | 5/13/2021    |
| T3  | AN01467    | Horn Antenna-ANSI C63.5 | 3115                    | 7/5/2019   | 7/5/2021     |
|     |            | Calibration             |                         |            |              |
| T4  | ANP06515   | Cable                   | Heliax                  | 6/29/2018  | 6/29/2020    |
| T5  | ANP07504   | Cable                   | CLU40-KMKM-02.00F       | 1/17/2019  | 1/17/2021    |
| T6  | AN02741    | Active Horn Antenna     | AMFW-5F-12001800-20-10P | 4/26/2019  | 4/26/2021    |
| T7  | ANP06678   | Cable                   | 32026-29801-29801-144   | 2/20/2020  | 2/20/2022    |
| T8  | ANP07211   | Cable                   | 32026-29801-29801-18    | 8/7/2019   | 8/7/2021     |
| Т9  | ANP07212   | Cable                   | 32026-29801-29801-18    | 8/7/2019   | 8/7/2021     |
|     | AN02673    | Spectrum Analyzer       | E4446A                  | 2/22/2019  | 2/22/2021    |
| T10 | ANP05305   | Cable                   | ETSI-50T                | 9/6/2019   | 9/6/2021     |
| T11 | AN02307    | Preamp                  | 8447D                   | 1/10/2020  | 1/10/2022    |
| T12 | ANP05360   | Cable                   | RG214                   | 2/3/2020   | 2/3/2022     |
| T13 | ANP06123   | Attenuator              | 18N-6                   | 4/5/2019   | 4/5/2021     |
| T14 | AN03628    | Biconilog Antenna       | 3142E                   | 6/11/2019  | 6/11/2021    |
| T15 | AN02742    | Active Horn Antenna     | AMFW-5F-18002650-20-10P | 10/16/2018 | 10/16/2020   |
| T16 | AN02763-69 | Waveguide               | Multiple                | 4/28/2020  | 4/28/2022    |
| T17 | AN00052    | Loop Antenna            | 6502                    | 5/4/2020   | 5/4/2022     |

| Meast | urement Data: | R    | eading lis | ted by ma | argin. |      | Τe    | est Distanc | e: 3 Meters |        |       |
|-------|---------------|------|------------|-----------|--------|------|-------|-------------|-------------|--------|-------|
| #     | Freq          | Rdng | T1         | T2        | Т3     | T4   | Dist  | Corr        | Spec        | Margin | Polar |
|       |               |      | T5         | T6        | T7     | T8   |       |             |             |        |       |
|       |               |      | T9         | T10       | T11    | T12  |       |             |             |        |       |
|       |               |      | T13        | T14       | T15    | T16  |       |             |             |        |       |
|       |               |      | T17        |           |        |      |       |             |             |        |       |
|       | MHz           | dΒμV | dB         | dB        | dB     | dB   | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| 1     | 9730.330M     | 32.9 | +1.3       | -33.9     | +37.6  | +6.2 | +0.0  | 44.5        | 54.0        | -9.5   | Vert  |
|       | Ave           |      | +0.4       | +0.0      | +0.0   | +0.0 |       |             | Low         |        | 123   |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       |           |        |      |       |             |             |        |       |
| ^     | 9730.330M     | 38.5 | +1.3       | -33.9     | +37.6  | +6.2 | +0.0  | 50.1        | 54.0        | -3.9   | Vert  |
|       |               |      | +0.4       | +0.0      | +0.0   | +0.0 |       |             | Low         |        | 143   |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       |           |        |      |       |             |             |        |       |
| 3     | 9927.040M     | 31.3 | +1.3       | -33.9     | +37.5  | +6.3 | +0.0  | 43.0        | 54.0        | -11.0  | Vert  |
|       | Ave           |      | +0.5       | +0.0      | +0.0   | +0.0 |       |             | High        |        | 123   |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       |           |        |      |       |             |             |        |       |
| ^     | 9927.040M     | 42.9 | +1.3       | -33.9     | +37.5  | +6.3 | +0.0  | 54.6        | 54.0        | +0.6   | Vert  |
|       |               |      | +0.5       | +0.0      | +0.0   | +0.0 |       |             | High        |        | 152   |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       | +0.0      | +0.0   | +0.0 |       |             |             |        |       |
|       |               |      | +0.0       |           |        |      |       |             |             |        |       |

Page 20 of 35 Report No.: 103494-34A



| 5 7445.280M  | 33.0 | +1.6 | -34.7 | +37.2 | +5.5 | +0.0 | 42.9 | 54.0 | -11.1 | Vert  |
|--------------|------|------|-------|-------|------|------|------|------|-------|-------|
| Ave          |      | +0.3 | +0.0  | +0.0  | +0.0 |      |      | High |       | 123   |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| ^ 7445.280M  | 42.7 | +1.6 | -34.7 | +37.2 | +5.5 | +0.0 | 52.6 | 54.0 | -1.4  | Vert  |
|              |      | +0.3 | +0.0  | +0.0  | +0.0 |      |      | High |       | 152   |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| 7 9831.745M  | 31.1 | +1.3 | -33.9 | +37.5 | +6.3 | +0.0 | 42.7 | 54.0 | -11.3 | Vert  |
| Ave          |      | +0.4 | +0.0  | +0.0  | +0.0 |      |      | Mid  |       | 123   |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| ^ 9831.745M  | 42.1 | +1.3 | -33.9 | +37.5 | +6.3 | +0.0 | 53.7 | 54.0 | -0.3  | Vert  |
|              |      | +0.4 | +0.0  | +0.0  | +0.0 |      |      | Mid  |       | 152   |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| 9 834.100M   | 27.5 | +0.3 | +0.0  | +0.0  | +0.0 | +0.0 | 33.1 | 46.0 | -12.9 | Vert  |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 | 360  |      |      |       | 99    |
|              |      | +0.0 | +1.4  | -27.6 | +2.0 |      |      |      |       |       |
|              |      | +5.8 | +23.7 | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| 10 23250.000 | 42.4 | +0.0 | +0.0  | +0.0  | +0.0 | +0.0 | 40.8 | 54.0 | -13.2 | Vert  |
| M            |      | +0.0 | +0.0  | +9.6  | +0.9 |      |      |      |       |       |
|              |      | +1.2 | +0.0  | +0.0  | +0.0 | 360  |      |      |       | 143   |
|              |      | +0.0 | +0.0  | -15.2 | +1.9 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| 11 7374.600M | 30.8 | +1.4 | -34.6 | +37.0 | +5.4 | +0.0 | 40.4 | 54.0 | -13.6 | Vert  |
| Ave          |      | +0.4 | +0.0  | +0.0  | +0.0 |      |      | Mid  |       | 123   |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| ^ 7374.600M  | 42.6 | +1.4 | -34.6 | +37.0 | +5.4 | +0.0 | 52.2 | 54.0 | -1.8  | Vert  |
|              |      | +0.4 | +0.0  | +0.0  | +0.0 |      |      | Mid  |       | 152   |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| 13 4963.520M | 35.2 | +0.9 | -33.6 | +32.6 | +4.2 | +0.0 | 39.7 | 54.0 | -14.3 | Horiz |
| Ave          |      | +0.4 | +0.0  | +0.0  | +0.0 | 360  |      | High |       | 152   |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| ^ 4963.520M  | 44.4 | +0.9 | -33.6 | +32.6 | +4.2 | +0.0 | 48.9 | 54.0 | -5.1  | Horiz |
|              |      | +0.4 | +0.0  | +0.0  | +0.0 |      |      | High |       | 152   |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      | -    |       |       |
|              |      | +0.0 | +0.0  | +0.0  | +0.0 |      |      |      |       |       |
|              |      | +0.0 |       |       |      |      |      |      |       |       |
| L            |      |      |       |       |      |      |      |      |       |       |

Page 21 of 35 Report No.: 103494-34A



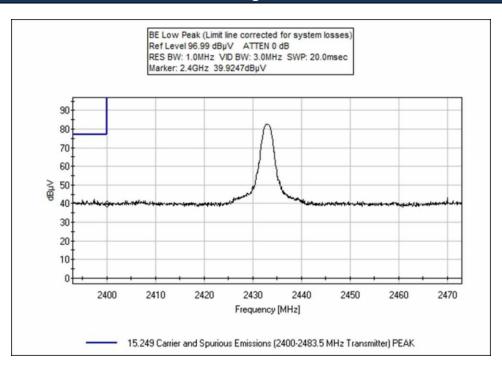
| 15 17029.185  | 39.5 | +2.1           | +0.0          | +0.0             | +9.1             | +0.0        | 39.4 | 54.0        | -14.6 | Vert         |
|---------------|------|----------------|---------------|------------------|------------------|-------------|------|-------------|-------|--------------|
| M             |      | +0.0           | -11.3         | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      | Low         |       | 143          |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           |               |                  |                  |             |      |             |       |              |
| 16 17373.775  | 40.0 | +1.8           | +0.0          | +0.0             | +8.6             | +0.0        | 39.2 | 54.0        | -14.8 | Vert         |
| M             |      | +0.0           | -11.2         | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      | High        |       | 143          |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           |               |                  |                  |             |      |             |       |              |
| 17 4914.933M  | 34.2 | +0.9           | -33.6         | +32.6            | +4.2             | +0.0        | 38.8 | 54.0        | -15.2 | Horiz        |
| Ave           |      | +0.5           | +0.0          | +0.0             | +0.0             | 360         |      | Mid         |       | 152          |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           |               |                  |                  |             |      |             |       |              |
| ^ 4915.030M   | 43.6 | +0.9           | -33.6         | +32.6            | +4.2             | +0.0        | 48.2 | 54.0        | -5.8  | Horiz        |
|               |      | +0.5           | +0.0          | +0.0             | +0.0             |             |      | Mid         |       | 152          |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           |               |                  |                  |             |      |             |       |              |
| 19 17199.810  | 39.6 | +1.9           | +0.0          | +0.0             | +8.8             | +0.0        | 38.7 | 54.0        | -15.3 | Vert         |
| M             |      | +0.0           | -11.6         | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      | Mid         |       | 143          |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           |               |                  |                  |             |      |             |       |              |
| 20 7299.295M  | 28.7 | +1.2           | -34.6         | +36.7            | +5.4             | +0.0        | 37.9 | 54.0        | -16.1 | Vert         |
| Ave           |      | +0.5           | +0.0          | +0.0             | +0.0             |             |      | Low         |       | 123          |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
| 4 7200 2053 6 | 20.0 | +0.0           | 24.6          | 267              |                  | 0.0         | 40.1 | 740         |       | <b>T</b> 7 . |
| ^ 7299.295M   | 38.9 | +1.2           | -34.6         | +36.7            | +5.4             | +0.0        | 48.1 | 54.0        | -5.9  | Vert         |
|               |      | +0.5           | +0.0          | +0.0             | +0.0             |             |      | Low         |       | 143          |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
| 22 4966 17014 | 22.6 | +0.0           | 22.6          | 122.5            | , 4 1            | +0.0        | 27.0 | 540         | 17.0  | IIo::'-      |
| 22 4866.170M  | 32.6 | +0.9           | -33.6         | +32.5            | +4.1             | +0.0        | 37.0 | 54.0        | -17.0 | Horiz        |
| Ave           |      | +0.5           | +0.0          | +0.0             | +0.0             | 28          |      | Low         |       | 141          |
|               |      | $+0.0 \\ +0.0$ | +0.0 +0.0     | $^{+0.0}_{+0.0}$ | $+0.0 \\ +0.0$   |             |      |             |       |              |
|               |      | +0.0 +0.0      | +0.0          | +0.0             | +0.0             |             |      |             |       |              |
| ^ 4866.170M   | 43.4 |                | 22 6          | 122.5            | <sub>+</sub> A 1 | +0.0        | 47.8 | 54.0        | -6.2  | Цота         |
| 4000.170101   | 43.4 | +0.9<br>+0.5   | -33.6<br>+0.0 | $+32.5 \\ +0.0$  | +4.1<br>+0.0     | +0.0<br>376 | 47.8 | 54.0<br>Low | -0.2  | Horiz<br>141 |
|               |      | +0.0           | +0.0 +0.0     | +0.0             | +0.0 +0.0        | 370         |      | LOW         |       | 141          |
|               |      | +0.0 +0.0      | +0.0 +0.0     | +0.0             | +0.0 +0.0        |             |      |             |       |              |
|               |      | +0.0 +0.0      | ±0.0          | ±0.0             | +0.0             |             |      |             |       |              |
| 24 14892.345  | 40.6 | +1.7           | +0.0          | +0.0             | +8.5             | +0.0        | 36.4 | 54.0        | -17.6 | Vert         |
| M M           | 40.0 | +0.0           | +0.0<br>-14.4 | +0.0             | +0.0             | +0.0        | 30.4 | 34.0        | -17.0 | v CI t       |
| 171           |      | +0.0 +0.0      | +0.0          | +0.0             | +0.0 +0.0        |             |      | High        |       | 143          |
|               |      | +0.0           | +0.0          | +0.0             | +0.0             |             |      | 111811      |       | 173          |
|               |      | +0.0           | 10.0          | 10.0             | 10.0             |             |      |             |       |              |
| I             |      | 70.0           |               |                  |                  |             |      |             |       |              |

Page 22 of 35 Report No.: 103494-34A



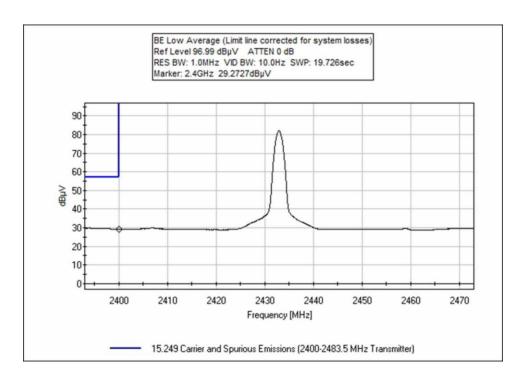
| 25 | 14745.815 | 40.9 | +1.6 | +0.0  | +0.0  | +8.3 | +0.0  | 36.3  | 54.0 | -17.7 | Vert  |
|----|-----------|------|------|-------|-------|------|-------|-------|------|-------|-------|
|    | M         |      | +0.0 | -14.5 | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       | Mid  |       | 143   |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 |       |       |      |       |       |      |       |       |
| 26 | 14598.875 | 41.2 | +1.4 | +0.0  | +0.0  | +8.2 | +0.0  | 36.1  | 54.0 | -17.9 | Vert  |
|    | M         |      | +0.0 | -14.7 | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       | Low  |       | 143   |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 |       |       |      |       |       |      |       |       |
| 27 | 12411.205 | 40.6 | +1.5 | +0.0  | +0.0  | +7.0 | +0.0  | 36.1  | 54.0 | -17.9 | Vert  |
|    | M         |      | +0.0 | -13.0 | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       | High |       | 143   |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 |       |       |      |       |       |      |       |       |
| 28 | 12284.615 | 40.4 | +1.4 | +0.0  | +0.0  | +6.9 | +0.0  | 35.8  | 54.0 | -18.2 | Vert  |
|    | M         |      | +0.0 | -12.9 | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       | Mid  |       | 143   |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 |       |       |      |       |       |      |       |       |
| 29 | 12163.300 | 38.7 | +1.4 | +0.0  | +0.0  | +6.9 | +0.0  | 34.1  | 54.0 | -19.9 | Vert  |
|    | M         |      | +0.0 | -12.9 | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       | Low  |       | 143   |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 |       |       |      |       |       |      |       |       |
| 30 | 377.300M  | 28.7 | +0.2 | +0.0  | +0.0  | +0.0 | +0.0  | 26.1  | 46.0 | -19.9 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 | 360   |       |      |       | 99    |
|    |           |      | +0.0 | +1.0  | -27.5 | +1.3 |       |       |      |       |       |
|    |           |      | +5.8 | +16.6 | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 |       |       |      |       |       |      |       |       |
| 31 | 226.900M  | 29.6 | +0.2 | +0.0  | +0.0  | +0.0 | +0.0  | 21.3  | 46.0 | -24.7 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       |      |       | 99    |
|    |           |      | +0.0 | +0.7  | -27.1 | +0.9 |       |       |      |       |       |
|    |           |      | +5.8 | +11.2 | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 |       |       |      |       |       |      |       |       |
| 32 | 81.400M   | 28.9 | +0.1 | +0.0  | +0.0  | +0.0 | +0.0  | 14.7  | 40.0 | -25.3 | Vert  |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 | 360   |       |      |       | 99    |
|    |           |      | +0.0 | +0.4  | -27.8 | +0.5 |       |       |      |       |       |
|    |           |      | +5.8 | +6.8  | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 |       |       |      |       |       |      |       |       |
| 33 | 20.673M   | 11.1 | +0.0 | +0.0  | +0.0  | +0.0 | -40.0 | -21.2 | 29.5 | -50.7 | Para, |
|    |           |      | +0.0 | +0.0  | +0.5  | +0.0 | 360   |       |      |       | 123   |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +0.0 | +0.0  | +0.0  | +0.0 |       |       |      |       |       |
|    |           |      | +7.2 |       |       |      |       |       |      |       |       |
|    |           |      |      |       |       |      |       |       |      |       |       |

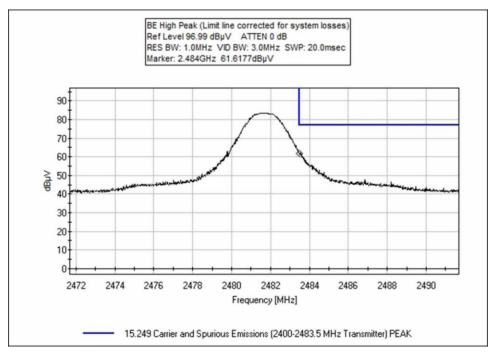
Page 23 of 35 Report No.: 103494-34A




## **Band Edge**

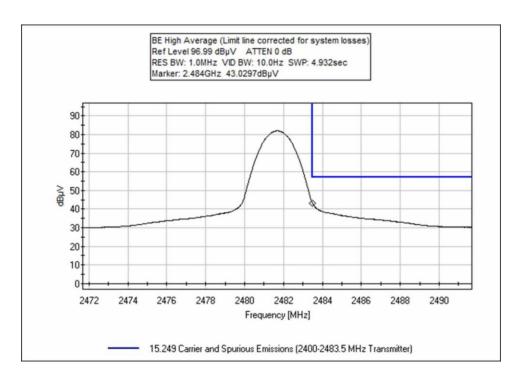
|                                                                                       | Band Edge Summary |          |      |     |      |  |  |
|---------------------------------------------------------------------------------------|-------------------|----------|------|-----|------|--|--|
| Frequency (MHz) Modulation Ant. Type Field Strength (dBuV/m @3m) (dBuV/m @3m) Results |                   |          |      |     |      |  |  |
| 2400                                                                                  | GFSK              | Integral | 26.2 | <54 | Pass |  |  |
| 2483.5                                                                                | GFSK              | Integral | 40.0 | <54 | Pass |  |  |


Test performed using operational mode with the highest output power, representing worst case.


## **Band Edge Plots**



Page 24 of 35 Report No.: 103494-34A








Page 25 of 35 Report No.: 103494-34A





Page 26 of 35 Report No.: 103494-34A



### **Test Setup / Conditions / Data**

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE • Bothell, WA 98201 • 435-402-1717

Customer: WiBotic Inc.

Specification: 15.249 Carrier and Spurious Emissions (2400-2483.5 MHz Transmitter)

Work Order #: 103494 Date: 5/13/2020
Test Type: Maximized Emissions Time: 09:35:04
Tested By: Steven Pittsford Sequence#: 34

Software: EMITest 5.03.12

#### **Equipment Tested:**

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Support Equipment:

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

#### Test Conditions / Notes:

Frequency Range: 2.3-2.5GHz

Frequency tested: 2.433 & 2.4817GHz Firmware power setting: Max Power

Duty Cycle: 100%

Test Method: ANSI C63.10 (2013)

Test Mode: Continuously transmitting all 0 Data

Test Setup: EUT is located on test bench 0.8m high <1GHz and 1.5m high >1GHz. EUT is investigated in X, Y & Z axis Vertical and horizontal with worst case reported. A laptop is temporarily connected to change transmitter settings and removed during test.

EUT is powered via a fully charged battery pack.

3 x orthogonal axes investigated below 30MHz, Vertical and Horizontal axes investigated above 30MHz, worst case reported.

Temperature (°C): 22-25 Relative Humidity (%): 30-35

#### Test Equipment:

| ID | Asset #  | Description                         | Model             | <b>Calibration Date</b> | Cal Due Date |
|----|----------|-------------------------------------|-------------------|-------------------------|--------------|
| T1 | ANP06540 | Cable                               | Heliax            | 8/23/2019               | 8/23/2021    |
| T2 | AN03540  | Preamp                              | 83017A            | 5/13/2019               | 5/13/2021    |
| T3 | AN01467  | Horn Antenna-ANSI C63.5 Calibration | 3115              | 7/5/2019                | 7/5/2021     |
| T4 | ANP06515 | Cable                               | Heliax            | 6/29/2018               | 6/29/2020    |
| T5 | ANP07504 | Cable                               | CLU40-KMKM-02.00F | 1/17/2019               | 1/17/2021    |

Page 27 of 35 Report No.: 103494-34A



| Mea | surement Data: | Re   | eading lis | ted by ma | argin. |      | Τe    | est Distance | e: 3 Meters |        |       |
|-----|----------------|------|------------|-----------|--------|------|-------|--------------|-------------|--------|-------|
| #   | Freq           | Rdng | T1         | T2        | T3     | T4   | Dist  | Corr         | Spec        | Margin | Polar |
|     |                |      | T5         |           |        |      |       |              |             |        |       |
|     | MHz            | dΒμV | dB         | dB        | dB     | dB   | Table | $dB\muV/m$   | $dB\mu V/m$ | dB     | Ant   |
|     | 1 2483.500M    | 43.0 | +0.6       | -34.2     | +27.6  | +2.7 | +0.0  | 40.0         | 54.0        | -14.0  | Vert  |
|     | Ave            |      | +0.3       |           |        |      | 9     |              |             |        | 144   |
|     | ^ 2483.500M    | 60.8 | +0.6       | -34.2     | +27.6  | +2.7 | +0.0  | 57.8         | 54.0        | +3.8   | Vert  |
|     |                |      | +0.3       |           |        |      | 9     |              |             |        | 144   |
|     | 3 2400.000M    | 39.9 | +0.6       | -34.3     | +27.7  | +2.6 | +0.0  | 36.8         | 54.0        | -17.2  | Vert  |
|     |                |      | +0.3       |           |        |      | 336   |              |             |        | 158   |
|     | 4 2400.000M    | 29.3 | +0.6       | -34.3     | +27.7  | +2.6 | +0.0  | 26.2         | 54.0        | -27.8  | Vert  |
|     |                |      | +0.3       |           |        |      | 336   |              |             |        | 158   |

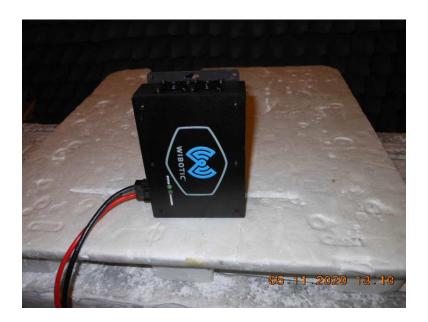
# Test Setup Photo(s)



Below 1GHz

Page 28 of 35 Report No.: 103494-34A






Above 1GHz



X Axis





Y Axis



Z Axis





Below 1GHz with Antenna Port Filled



Below 1GHz with Antenna Port Filled

Page 31 of 35 Report No.: 103494-34A





Above 1GHz with Antenna Port Filled



Above 1GHz with Antenna Port Filled

Page 32 of 35 Report No.: 103494-34A



# **Appendix A: Manufacturer Declaration**

The following models have been tested by CKC Laboratories:

#### OC-251-12-ST

Since the time of testing, the manufacturer has chosen to use the following model names in its place. The manufacturer declares that any differences between the names does not affect their EMC characteristics and therefore meets the level of testing equivalent to the tested model name:

OC-251

Page 33 of 35 Report No.: 103494-34A



# SUPPLEMENTAL INFORMATION

## **Measurement Uncertainty**

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

## **Emissions Test Details**

#### **TESTING PARAMETERS**

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

| SAMPLE CALCULATIONS |                      |          |  |  |  |  |  |  |
|---------------------|----------------------|----------|--|--|--|--|--|--|
|                     | Meter reading (dBμV) |          |  |  |  |  |  |  |
| +                   | Antenna Factor       | (dB/m)   |  |  |  |  |  |  |
| +                   | Cable Loss           | (dB)     |  |  |  |  |  |  |
| -                   | Distance Correction  | (dB)     |  |  |  |  |  |  |
| -                   | Preamplifier Gain    | (dB)     |  |  |  |  |  |  |
| =                   | Corrected Reading    | (dBμV/m) |  |  |  |  |  |  |

Page 34 of 35

Report No.: 103494-34A



#### **TEST INSTRUMENTATION AND ANALYZER SETTINGS**

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |                     |                  |                   |  |  |  |
|------------------------------------------------------------|---------------------|------------------|-------------------|--|--|--|
| TEST                                                       | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |  |  |  |
| CONDUCTED EMISSIONS                                        | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |
| RADIATED EMISSIONS                                         | 9 kHz               | 150 kHz          | 200 Hz            |  |  |  |
| RADIATED EMISSIONS                                         | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |
| RADIATED EMISSIONS                                         | 30 MHz              | 1000 MHz         | 120 kHz           |  |  |  |
| RADIATED EMISSIONS                                         | 1000 MHz            | >1 GHz           | 1 MHz             |  |  |  |

#### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

#### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

#### **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

#### **Average**

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 35 of 35 Report No.: 103494-34A