

Global Product Certification
EMC-EMF Safety Approvals

Melbourne

176 Harrick Road
Keilor Park, Vic 3042
Tel: +61 3 9365 1000

Sydney

Unit 3/87 Station Road
Seven Hills, NSW 2147
Tel: +61 2 9624 2777

Email: emc-general@emctech.com.au
Web: www.emctech.com.au

RADIO TEST REPORT

REPORT NUMBER: M2005023-3

**TEST STANDARD: FCC PART 15 SUBPART E
SECTION 15.407
ISED RSS-247 SECTION 6**

CLIENT: MINETEC

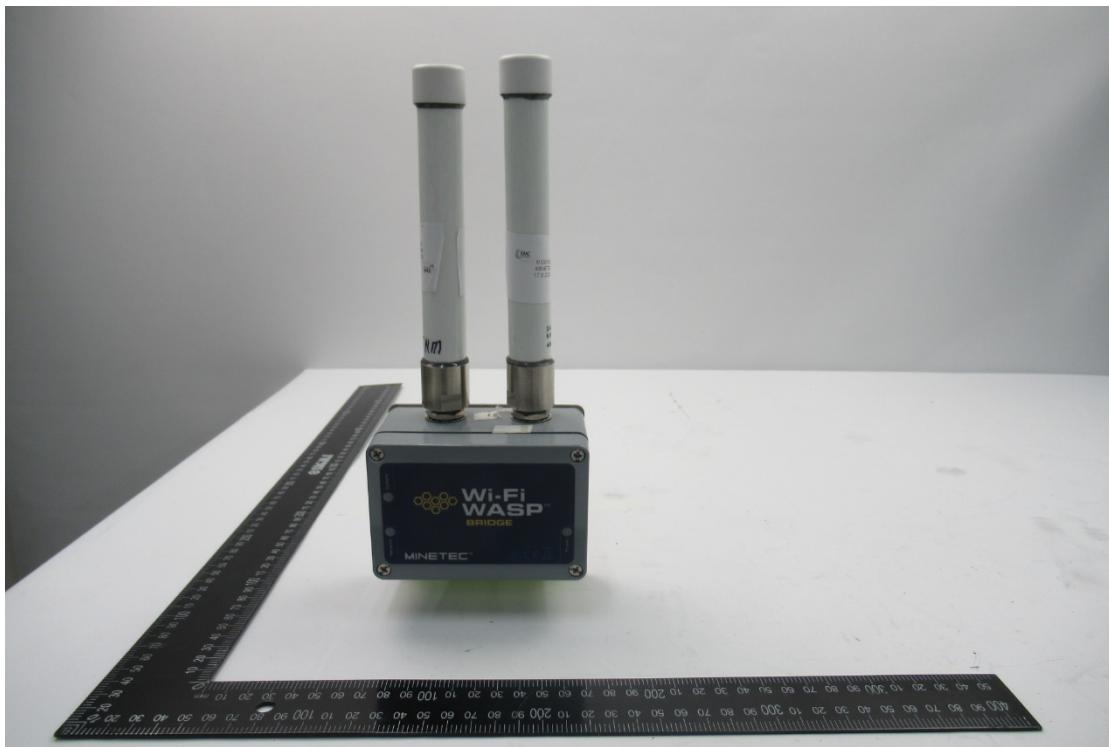
DEVICE: WIFI WASP BRIDGE

MODEL: M1011062

FCC ID: 2AVQP-M1011050

IC: 25823-M1011050

DATE OF ISSUE: 16 JANUARY 2021


EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

Accreditation No.5292

Accredited for compliance with ISO/IEC 17025 – Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

This document shall not be reproduced except in full.

Equipment Under Test (EUT): WiFi WASP Bridge

REVISION TABLE

Version	Sec/Para Changed	Change Made	Date
1		Initial issue of document	16/01/2021

CONTENTS

1	Test Summary	7
2	Test Facility	7
2.1	General	7
2.2	Test Laboratory/Accreditations	7
3	Test Equipment Calibration	8
4	Measurement Uncertainty	8
5	Device Details	9
5.1	EUT (Transmitter) Details	9
5.2	EUT (Host) Details	9
5.3	Test Configuration	9
5.4	Modifications	9
5.5	Deviations from the Standard	9
6	Results	10
6.1	§15.203 / §RSS-Gen 6.8 Antenna Requirement	10
6.2	§15.205 / §RSS-Gen 8.10 Restricted Bands of Operation	10
6.3	§15.209 / §RSS-Gen 8.9 Radiated emission limits; general requirements	10
6.4	§15.207 / §RSS-Gen 8.8 Conducted Limits	10
6.4.1	Test Procedure	10
6.4.2	Limits	10
6.4.3	Results	11
6.5	§15.407(e)/ §RSS-247 6.2.4.1 – 6 dB bandwidth	14
6.5.1	Test Procedure	14
6.5.2	Limits	14
6.5.3	Results	14
6.6	§15.407(a)(3) / §RSS-247 6.2.4.1 Maximum Conducted Output Power	16
6.6.1	Test Procedure	16
6.6.2	Limits	16
6.6.3	Results	16
6.7	§15.407(a)(3) / §RSS-247 6.2.4.1 Maximum Power Spectral Density	19
6.7.1	Test Procedure	19
6.7.2	Limits	19
6.7.3	Results	19
6.8	§15.407(b)(4) / §RSS-247 6.2.4.2 Band-Edge Emission Measurements	21
6.8.1	Test Procedure	21
6.8.2	Limits	21
6.8.3	Results	21
6.9	§15.407(b) / §RSS-247 6.2.4.2 Radiated Spurious Emissions	22
6.9.1	Test procedure	22
6.9.2	Limits	23
6.9.3	Transmitter Spurious Emissions: 9 kHz to 30 MHz	23

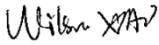
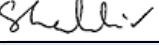
6.9.4	Transmitter Spurious Emissions: 30 - 1000 MHz	25
6.9.5	Transmitter Spurious Emissions: 1 - 18 GHz	28
6.9.6	Transmitter Spurious Emissions: 18 - 26 GHz	34
6.10	§15.407(f) / §RSS-102 Maximum Permissible Exposure	39
6.11	§15.215/ §RSS-Gen 6.7 Occupied Bandwidth – 99% power	39
6.11.1	Test procedure	39
6.11.2	Limits	39
6.11.3	Results	39

GRAPHS

Graph 6-1: AC Conducted Emissions, 150 kHz – 30 MHz, Low Channel.....	11
Graph 6-2: AC Conducted Emissions, 150 kHz – 30 MHz, Mid Channel.....	12
Graph 6-3: AC Conducted Emissions, 150 kHz – 30 MHz, High Channel.....	13
Graph 6-4: 6 dB bandwidth, 5734.375 MHz (Low channel)	14
Graph 6-5: 6 dB bandwidth, 5795.311 MHz (Mid Channel)	15
Graph 6-6: 6 dB bandwidth, 5841.013 MHz (High Channel).....	15
Graph 6-7: Duty Cycle	16
Graph 6-8: Measured Conducted Power, Low Channel	17
Graph 6-9: Measured Conducted Power, Mid Channel.....	18
Graph 6-10: Measured Conducted Power, High Channel.....	18
Graph 6-11: Measured Power Spectral Density, Low Channel.....	19
Graph 6-12: Measured Power Spectral Density, Mid Channel	20
Graph 6-13: Measured Power Spectral Density, High Channel.....	20
Graph 6-14: Band-Edge Emission, Lower edge	21
Graph 6-15: Band-Edge Emission, Upper edge	22
Graph 6-16: Transmitter Spurious Emissions, 9kHz – 30 MHz, Low Channel.....	23
Graph 6-17: Transmitter Spurious Emissions, 9kHz – 30 MHz, Mid Channel.....	24
Graph 6-18: Transmitter Spurious Emissions, 9kHz – 30 MHz, High Channel	24
Graph 6-19: Transmitter Spurious Emissions, 30 – 1000 MHz, Low Channel.....	25
Graph 6-20: Transmitter Spurious Emissions, 30 – 1000 MHz, Mid Channel.....	26
Graph 6-21: Transmitter Spurious Emissions, 30 – 1000 MHz, High Channel	27
Graph 6-22: Transmitter Spurious Emissions, 1 – 18 GHz, Low Channel, Peak.....	28
Graph 6-23: Transmitter Spurious Emissions, 1 – 18 GHz, Mid Channel, Peak.....	29
Graph 6-24: Transmitter Spurious Emissions, 1 – 18 GHz, High Channel, Peak	30
Graph 6-25: Transmitter Spurious Emissions, 1 – 18 GHz, Low Channel, Average.....	31
Graph 6-26: Transmitter Spurious Emissions, 1 – 18 GHz, Mid Channel, Average.....	32
Graph 6-27: Transmitter Spurious Emissions, 1 – 18 GHz, High Channel, Average	33
Graph 6-28: Transmitter Spurious Emissions, 18 – 40 GHz, Low Channel, Peak.....	34
Graph 6-29: Transmitter Spurious Emissions, 18 – 40 GHz, Mid Channel, Peak.....	34
Graph 6-30: Transmitter Spurious Emissions, 18 – 40 GHz, High Channel, Peak	35
Graph 6-31: Transmitter Spurious Emissions, 18 – 40 GHz, Low Channel, Average.....	36
Graph 6-32: Transmitter Spurious Emissions, 18 – 40 GHz, Mid Channel, Average.....	37
Graph 6-33: Transmitter Spurious Emissions, 18 – 40 GHz, High Channel, Average	38
Graph 6-34: Occupied bandwidth, Low Channel	39
Graph 6-35: Occupied bandwidth, Mid Channel.....	40
Graph 6-36: Occupied bandwidth, High Channel	40

TABLES

Table 6-1: AC Conducted Emissions, 150 kHz – 30 MHz, Low Channel.....	11
Table 6-2: AC Conducted Emissions, 150 kHz – 30 MHz, Mid Channel.....	12
Table 6-3: AC Conducted Emissions, 150 kHz – 30 MHz, High Channel.....	13
Table 6-4: 6dB Bandwidth	14
Table 6-5: Duty cycle Correction Factor	16
Table 6-6: Maximum Conducted Output Power.....	17
Table 6-7: Maximum Power Spectral Density.....	19
Table 6-8: Transmitter Spurious Emissions, 30 – 1000 MHz, Low Channel	25
Table 6-9: Transmitter Spurious Emissions, 30 – 1000 MHz, Mid Channel	26
Table 6-10: Transmitter Spurious Emissions, 30 – 1000 MHz, High Channel	27
Table 6-11: Transmitter Spurious Emissions, 1 – 18 GHz, Low Channel, Peak.....	28
Table 6-12: Transmitter Spurious Emissions, 1 – 18 GHz, High Channel, Peak	30
Table 6-13: Transmitter Spurious Emissions, 1 – 18 GHz, Low Channel, Average.....	31
Table 6-14: Transmitter Spurious Emissions, 1 – 18 GHz, Mid Channel, Average.....	32
Table 6-15: Transmitter Spurious Emissions, 1 – 18 GHz, High Channel, Average	33
Table 6-16: Transmitter Spurious Emissions, 18 – 40 GHz, Low Channel, Average	36
Table 6-17: Transmitter Spurious Emissions, 18 – 40 GHz, Mid Channel, Average	37
Table 6-18: Transmitter Spurious Emissions, 18 – 40 GHz, High Channel, Average	38
Table 6-19: Occupied Bandwidth.....	39

This document shall not be reproduced except in full.

Accreditation No.5292

RADIO TEST REPORT

CERTIFICATE OF COMPLIANCE

Device:	WiFi WASP Bridge
Model:	M1011062
MAC Address:	C493000FA332
Manufacturer:	Minetec
Radio Module:	5.8 GHz WASP
FCC ID:	FCC ID: 2AVQP-M1011050
IC ID:	IC: 25823-M1011050
Tested for:	Minetec
Address:	Unit 2, Wellard Street, Bibra Lake, WA 6163
Phone Number:	+61 8 92594955
Contact:	Craig Wroth
Email:	Craig.wroth@minetec.com.au
Standard:	FCC Part 15, Subpart E - Unlicensed National Information Infrastructure Devices, Section 15.407 General technical requirements
	ISED RSS-247, Issue 2, Section 6 Technical requirements for licence-exempt local network devices and digital transmission systems operating in the 5 GHz band
Result:	The WiFi WASP Bridge complied with the applicable requirements above standards. Refer to Report M2005023-3 for full details.
Test Date(s):	24 November – 4 December, 2020
Issue Date:	16 January 2021
Test Engineer(s):	 Wilson Xiao
	 Ian Ng
Attestation:	<i>I hereby certify that the device(s) described herein were tested as described in this report and that the data included is that which was obtained during such testing.</i>
Authorised Signatory:	 Shabbir Ahmed Lead Engineer – RF & Wireless
	Issued by: EMC Technologies Pty. Ltd., 176 Harrick Road, Keilor Park, VIC, 3042, Australia. Phone: +61 3 9365 1000 E-mail: emc-general@emctech.com.au Web: www.emctech.com.au

RADIO REPORT FOR CERTIFICATION

1 TEST SUMMARY

Section	Description	FCC	RSS	Result(s)
6.1	Antenna Requirement	§15.203	§RSS-Gen 6.8	Complied
6.2	Restricted Bands of Operation	§15.205	§RSS-Gen 8.10	Complied
6.3	Radiated emission limits; general requirements	§15.209	§RSS-Gen 8.9	Complied
6.4	Conducted Limits	§15.207	§RSS-Gen 8.8	Complied
6.5	6 dB Bandwidth	§15.407(e)	§RSS-247 6.2.4.1	Complied
6.6	Maximum Conducted Output Power	§15.407(a)(3)	§RSS-247 6.2.4.1	Complied
6.7	Power spectral density	§15.407(a)(3)	§RSS-247 6.2.4.1	Complied
6.8	Band-Edge Emission Measurements	§15.407(b)	§RSS-247 6.2.4.2	Complied
6.9	Spurious Emissions	§15.407(b)	§RSS-247 6.2.4.2	Complied
6.10	Maximum Permissible Exposure	§15.407(f)	§RSS-102	Complied
6.11	Occupied Bandwidth – 99% power	§15.215	§RSS-Gen 6.7	Complied

2 TEST FACILITY

2.1 General

EMC Technologies Pty Ltd is accredited by the FCC as a test laboratory able to perform compliance testing for the public. EMC Technologies Pty Ltd has also been designated as a Conformity Assessment Body (CAB) by Australian Communications and Media Authority (ACMA) under the APECTEL MRA and is designated to perform compliance testing on equipment subject to Declaration of Conformity (DoC) and Certification under Parts 15 and 18 of the FCC Commission's rules – **Registration Number 494713 & Designation number AU0001**.

EMC Technologies Pty Ltd is also an ISED Canada recognized testing laboratory – **ISED company number: 3569B** and **CAB identifier number: AU0001**.

2.2 Test Laboratory/Accreditations

NATA is the Australian National laboratory accreditation body and has accredited EMC Technologies to operate to the IEC/ISO17025 requirements. A major requirement for accreditation is the assessment of the company and its personnel as being technically competent in testing to the standards. This requires fully documented test procedures, continued calibration of all equipment to the National Standard at the National Measurements Institute (NMI) and an internal quality system similar to ISO 9002. NATA has mutual recognition agreements with the National Voluntary Laboratory Accreditation Program (NVLAP) and the American Association for Laboratory Accreditation (A²LA).

All testing in this report has been conducted in accordance with EMC Technologies' scope of NATA accreditation to ISO 17025 for both testing and calibration and ISO 17020 for Inspection – **Accreditation Number 5292**.

The current full scope of accreditation can be found on the NATA website: www.nata.com.au

3 TEST EQUIPMENT CALIBRATION

Measurement instrumentation and transducers were calibrated in accordance with the applicable standards by an independent NATA registered laboratory such as Keysight Technologies (Australia) Pty Ltd or the National Measurement Institute (NMI) or in-house. All equipment calibration is traceable to Australian national standards at the National Measurements Institute.

Equipment Type	Make/Model/Serial Number	Last Cal. dd/mm/yyyy	Due Date dd/mm/yyyy	Cal. Interval
Chamber	Frankonia SAC-3-2 (R-144)	10/08/2020	10/08/2023	3 Year ^{*1}
EMI Receiver	R&S ESW26 Sn: 101306 (R-143)	05/06/2020	05/06/2021	1 Year ^{*2}
	R&S ESU40 Sn: 100392 (R-140)	28/04/2020	28/04/2021	1 Year ^{*2}
Antennas	EMCO 6502 Active Loop Antenna Sn: 2021 (A-310)	31/08/2020	31/08/2022	2 Year ^{*2}
	SUNOL JB1 Sn. A061917 (A-425)	04/09/2019	04/09/2021	2 Year ^{*2}
	EMCO 3115 Horn Antenna Sn: 8908-3282 (A-004)	16/01/2019	16/01/2022	3 Year ^{*1}
	ETS-Lindgren Horn Antenna Sn:64179 (A-306)	12/06/2018	12/06/2021	3 Year ^{*2}
	ETS-Lindgren Horn Antenna Sn:66032 (A-307)	12/06/2018	12/06/2021	3 Year ^{*2}
Cables ^{*3}	Huber & Suhner Sucoflex 104A Sn: 503055 (C-457)	04/06/2020	04/06/2021	1 Year ^{*1}
	Huber & Suhner Sucoflex 104A Sn: 800448 (C-520)	04/06/2020	04/06/2021	1 Year ^{*1}
	Huber & Suhner Sucoflex 102DC Sn: 22538/2 (C-223)	03/01/2020	03/01/2021	1 Year ^{*1}

Note *1. Internal NATA calibration.

Note *2. External NATA / A2LA calibration.

Note *3. Cables are verified before measurements are taken.

4 MEASUREMENT UNCERTAINTY

EMC Technologies has evaluated the equipment and the methods used to perform the emissions testing. The estimated measurement uncertainties for emissions tests shown within this report are as follows:

Radiated Emissions:	9 kHz to 30 MHz	±4.1 dB
	30 MHz to 300 MHz	±5.1 dB
	300 MHz to 1000 MHz	±4.7 dB
	1 GHz to 18 GHz	±4.6 dB
	18 GHz to 40 GHz	±4.6 dB

Peak Output Power:	±1.5 dB
--------------------	---------

The above expanded uncertainties are based on standard uncertainties multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Application of measurement uncertainty for this report:

The referenced uncertainty standard specifies that determination of compliance shall be based on measurements without taking into account measurement instrumentation uncertainty. However, the measurement uncertainty shall appear in the test report.

Accreditation No.5292

This document shall not be reproduced except in full.

5 Device Details

(Information supplied by the Client)

The Minetec Bridge product is designed to perform 5.8 GHz proprietary WASP™ ranging to other WASP devices and to pass the ranging information over a conventional 2.4 GHz Wi-Fi network. The unit can be powered by DC (12-55V) or Power over Ethernet (PoE).

5.1 EUT (Transmitter) Details

Radio:	5.8 GHz WASP
Number of Channels:	8
Frequency Band:	5725 – 5850 MHz
	Channel 1: 5734.375 MHz (Low)
	Channel 2: 5749.609 MHz
	Channel 3: 5764.843 MHz
	Channel 4: 5780.077 MHz
Operating Frequencies:	Channel 5: 5795.311 MHz (Mid)
	Channel 6: 5810.545 MHz
	Channel 7: 5825.779 MHz
	Channel 8: 5841.013 MHz (High)
Nominal Bandwidth:	17 MHz (<i>declared by client</i>)
Modulation:	QPSK
Antenna:	Pulse Electronics Omnidirectional (Part No. RO8505NM) Connector: Type N Coaxial
Antenna Peak Gain:	6 dBi

5.2 EUT (Host) Details

Test Sample:	WiFi WASP Bridge
Model:	M1011062
MAC Address:	C493000FA332
Supply Rating:	12-55V DC via AC/DC adapter or Power over Ethernet (PoE)
Manufacturer:	Minetec

5.3 Test Configuration

Testing was performed with the transceiver set to transmit continuously (Maximum Duty Cycle) at Low channel (5734.375 MHz), Mid Channel (5795.311 MHz) and High Channel (5841.013 MHz).

5.4 Modifications

No modifications were required to achieve compliance.

5.5 Deviations from the Standard

Note any deviations to the standard

6 RESULTS

6.1 §15.203 / §RSS-Gen 6.8 Antenna Requirement

The WiFi WASP Bridge has a Type N antenna port and incorporates the following external antenna only:

Antenna Type: Pulse Larson R08505NM

Antenna gain: 6.0 dBi

Connector: Type N Male

Antenna port to antenna connection: Type N Female

The above antenna will be installed by professional installers who have been trained by Minetec. Such installation shall be accomplished using only antennas and installation materials provided by Minetec. Said installation will preclude any unauthorized switching of antennas.

6.2 §15.205 / §RSS-Gen 8.10 Restricted Bands of Operation

The provisions of the §15.205 restricted bands of operation and §15.209 radiated emissions limits have been met, refer to section 6.9.

6.3 §15.209 / §RSS-Gen 8.9 Radiated emission limits; general requirements

The provisions of the §15.205 restricted bands of operation and §15.209 radiated emissions limits have been met, refer to section 6.9.

6.4 §15.207 / §RSS-Gen 8.8 Conducted Limits

6.4.1 Test Procedure

The arrangement specified in ANSI C63.10: 2013 was adhered to for the conducted EMI measurements. The EUT was placed in the RF screened enclosure and a CISPR EMI Receiver as defined in ANSI C63.2: 2009 was used to perform the measurements.

The specified 0.15 MHz to 30 MHz frequency range was sub-divided into sub-ranges to ensure that all short duration peaks were captured. For each of the sub-ranges, the EMI receiver was set to continuous scan with the Peak detector set to Max-Hold mode. The Quasi-Peak detector and the Average detector were then invoked to measure the actual Quasi-Peak and Average level of the most significant peaks, which were detected.

6.4.2 Limits

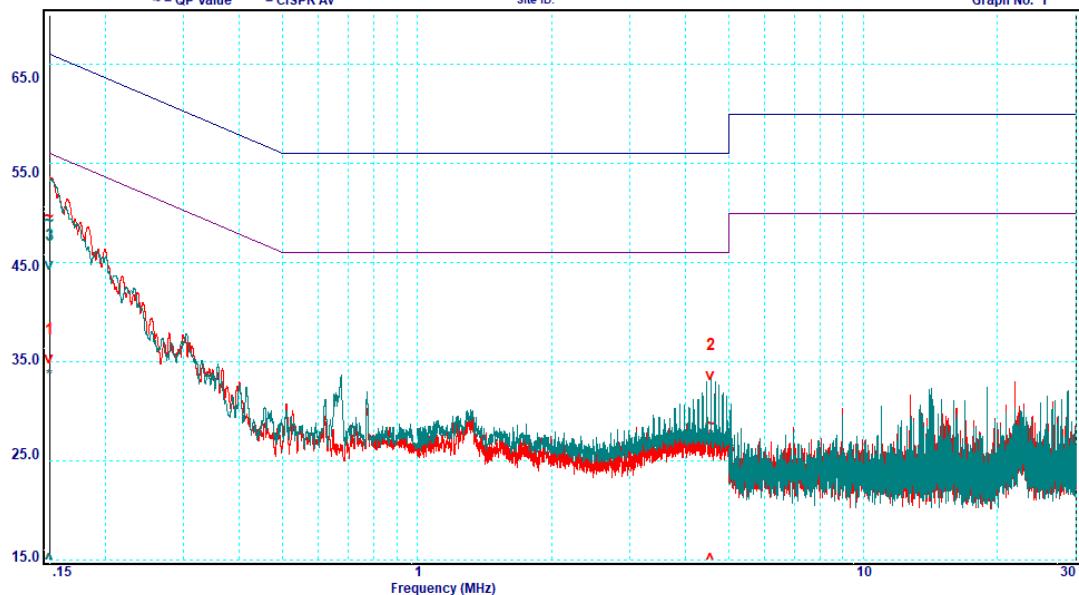
The limit applied was in accordance to the conducted limits defined in §15.207 / RSS-Gen 8.8.

6.4.3 Results

M2005023
Normal AC Adapter
120V 60Hz
Low Channel

Limit1: FCC207_QP
Limit2: FCC207_AV
FCC Part 15.207 Conducted Quasi-Peak Limit
FCC Part 15.207 Conducted Average Limit

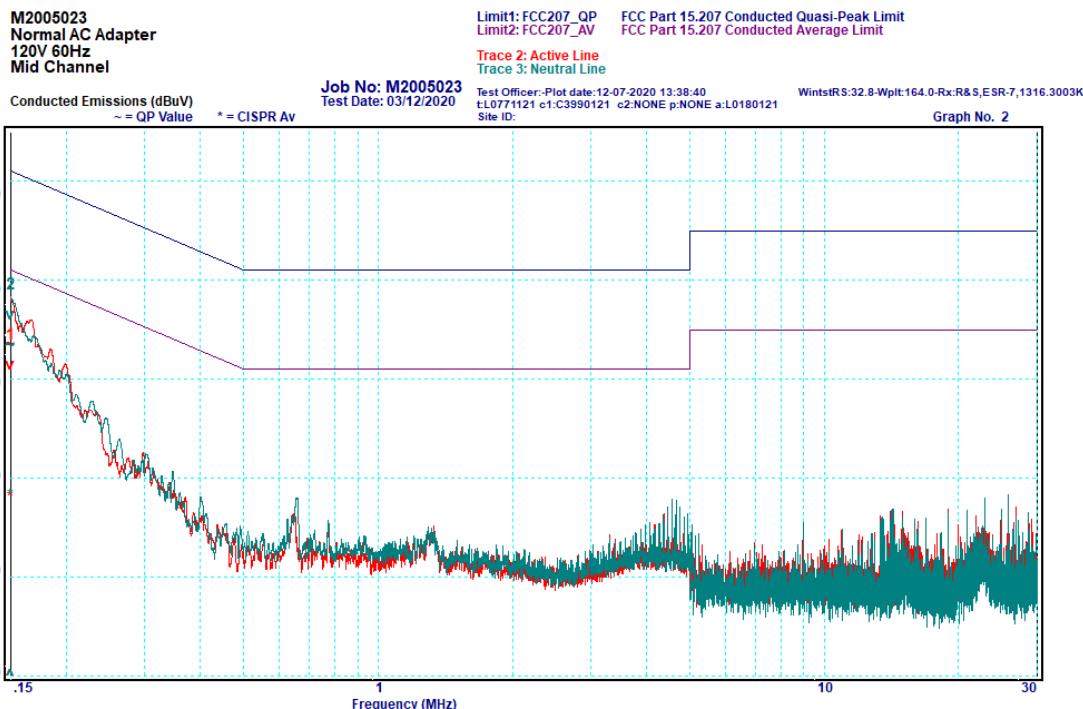
Trace 2: Active Line
Trace 3: Neutral Line


Job No: M2005023

Conducted Emissions (dBuV)
~ = QP Value * = CISPR Av

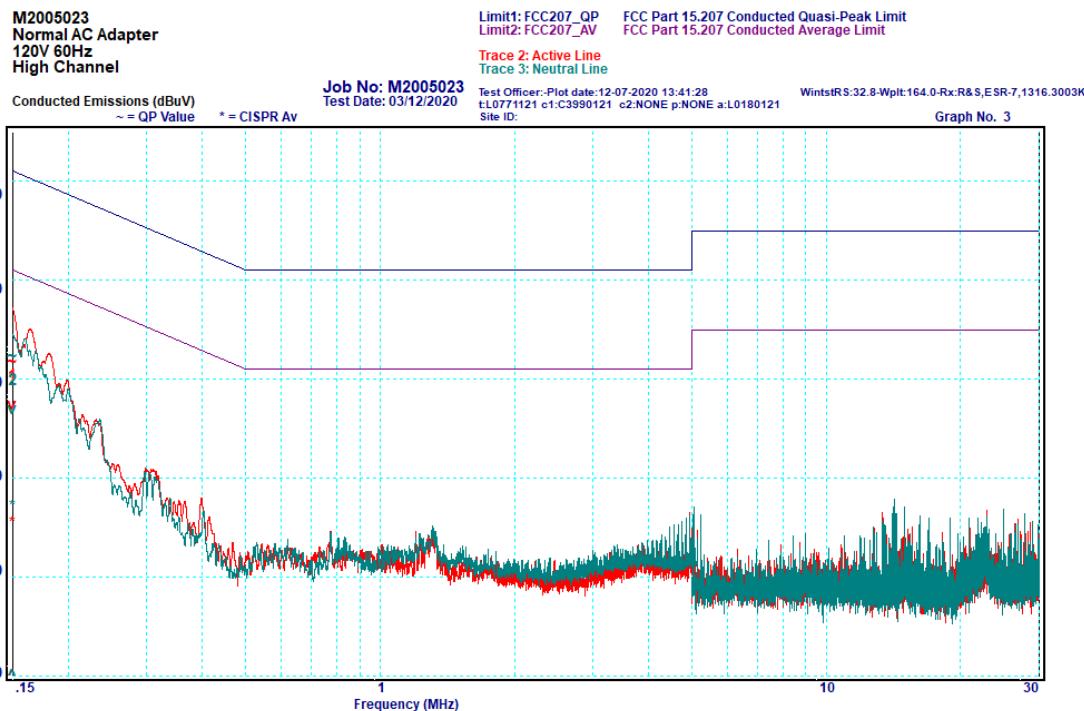
Test Date: 03/12/2020
Test Officer: Plot date: 12-07-2020 13:33:13
t.0771121 c1:C3990121 c2:NONE p:NONE a:L0180121

WinstRS:32.8-Wplt:164.0-Rx:R&S,ESR-7,1316.3003K


Graph No. 1

Graph 6-1: AC Conducted Emissions, 150 kHz – 30 MHz, Low Channel

Table 6-1: AC Conducted Emissions, 150 kHz – 30 MHz, Low Channel


Peak	Frequency [MHz]	Line	Quasi-Peak			Average		
			Level [dB μ V]	Limit [dB μ V]	Δ Limit [\pm dB]	Level [dB μ V]	Limit [dB μ V]	Δ Limit [\pm dB]
1	0.15	Active	49.6	66	-16.4	33.5	56	-22.5
2	4.557	Active	28.6	56	-27.4	27.4	46	-18.6
3	0.15	Neutral	49.1	66	-16.9	33.5	56	-22.5

Graph 6-2: AC Conducted Emissions, 150 kHz – 30 MHz, Mid Channel

Table 6-2: AC Conducted Emissions, 150 kHz – 30 MHz, Mid Channel

Peak	Frequency [MHz]	Line	Quasi-Peak			Average		
			Level [dB μ V]	Limit [dB μ V]	Δ Limit [\pm dB]	Level [dB μ V]	Limit [dB μ V]	Δ Limit [\pm dB]
1	0.15	Active	48.4	66	-17.6	33	56	-23
2	0.15	Neutral	48.4	66	-17.6	33.2	56	-22.8

Graph 6-3: AC Conducted Emissions, 150 kHz – 30 MHz, High Channel

Table 6-3: AC Conducted Emissions, 150 kHz – 30 MHz, High Channel

Peak	Frequency [MHz]	Line	Quasi-Peak			Average		
			Level [dB μ V]	Limit [dB μ V]	Δ Limit [\pm dB]	Level [dB μ V]	Limit [dB μ V]	Δ Limit [\pm dB]
1	0.15	Active	46.7	66	-19.3	30.4	56	-25.6
2	0.15	Neutral	47.3	66	-18.7	32	56	-24

Accreditation No.5292

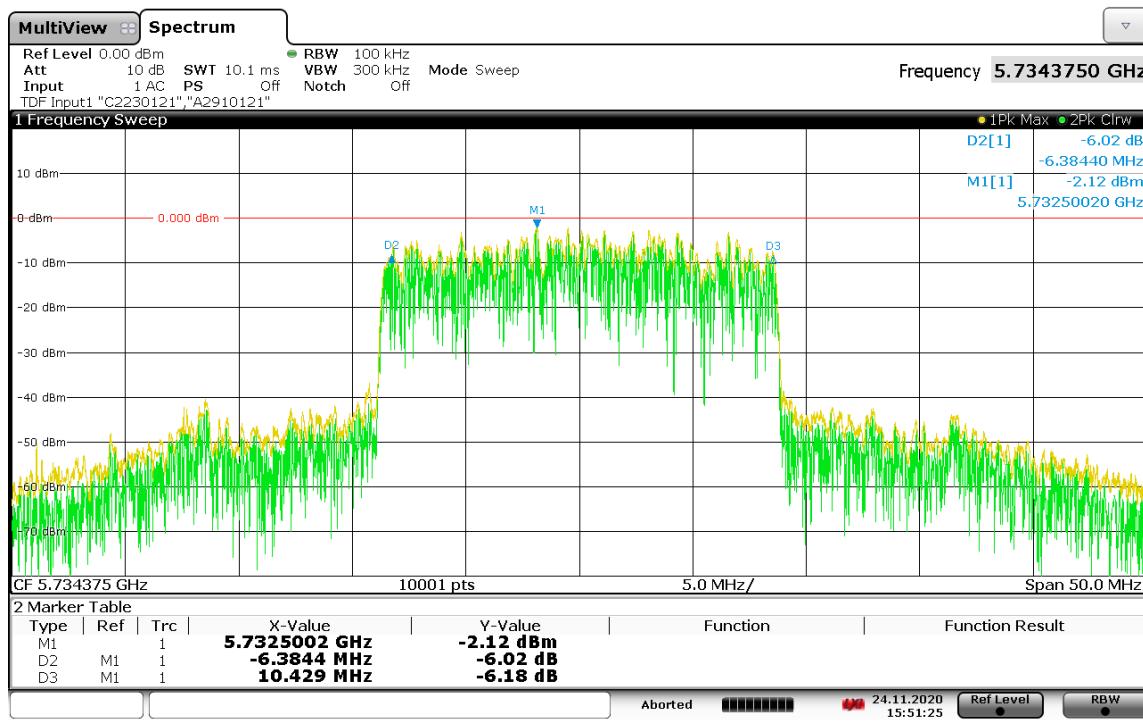
This document shall not be reproduced except in full.

6.5 §15.407(e)/ §RSS-247 6.2.4.1 – 6 dB bandwidth

6.5.1 Test Procedure

The tests were performed in accordance with KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section C Bandwidth Measurement.

The 6 dB bandwidth was measured while the device was transmitting with typical modulation applied. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were utilised when measuring the bandwidth.


6.5.2 Limits

Within the 5.725 – 5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

6.5.3 Results

Table 6-4: 6dB Bandwidth

Freq. [MHz]	6 dB Bandwidth [kHz]	Limit [kHz]	Results
5734.375	16800	>= 500	Complied
5795.311	16800	>= 500	Complied
5841.013	16790	>= 500	Complied

Graph 6-4: 6 dB bandwidth, 5734.375 MHz (Low channel)

Graph 6-5: 6 dB bandwidth, 5795.311 MHz (Mid Channel)

Graph 6-6: 6 dB bandwidth, 5841.013 MHz (High Channel)

6.6 §15.407(a)(3) / §RSS-247 6.2.4.1 Maximum Conducted Output Power

6.6.1 Test Procedure

The tests were performed in accordance with KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section E Maximum Conducted Output Power – Method SA-2

Duty cycle and 26 dB Emission Bandwidth were measured to performed the maximum Conducted Output Power.

6.6.2 Limits

The maximum conducted output power at 5725 – 5850 MHz shall not exceed 1W.

6.6.3 Results

Table 6-5: Duty cycle Correction Factor


Freq. [MHz]	Single Pulse [ms]	Period [ms]	Duty Cycle	Correction Factor
58410.13	100.6	1000.8	10%	10

Graph 6-7: Duty Cycle

Table 6-6: Maximum Conducted Output Power

Freq. [MHz]	Measured Conducted Power (dBm)	Correction Factor	Maximum Conducted Output Power		Limit (W)	Results
			(dBm)	(W)		
5734.375	0.97	10	10.97	0.0125	1	Complied
5795.311	-0.33	10	9.67	0.0092	1	Complied
5841.013	0.52	10	10.52	0.0112	1	Complied

10:29:50 25.11.2020

Graph 6-8: Measured Conducted Power, Low Channel

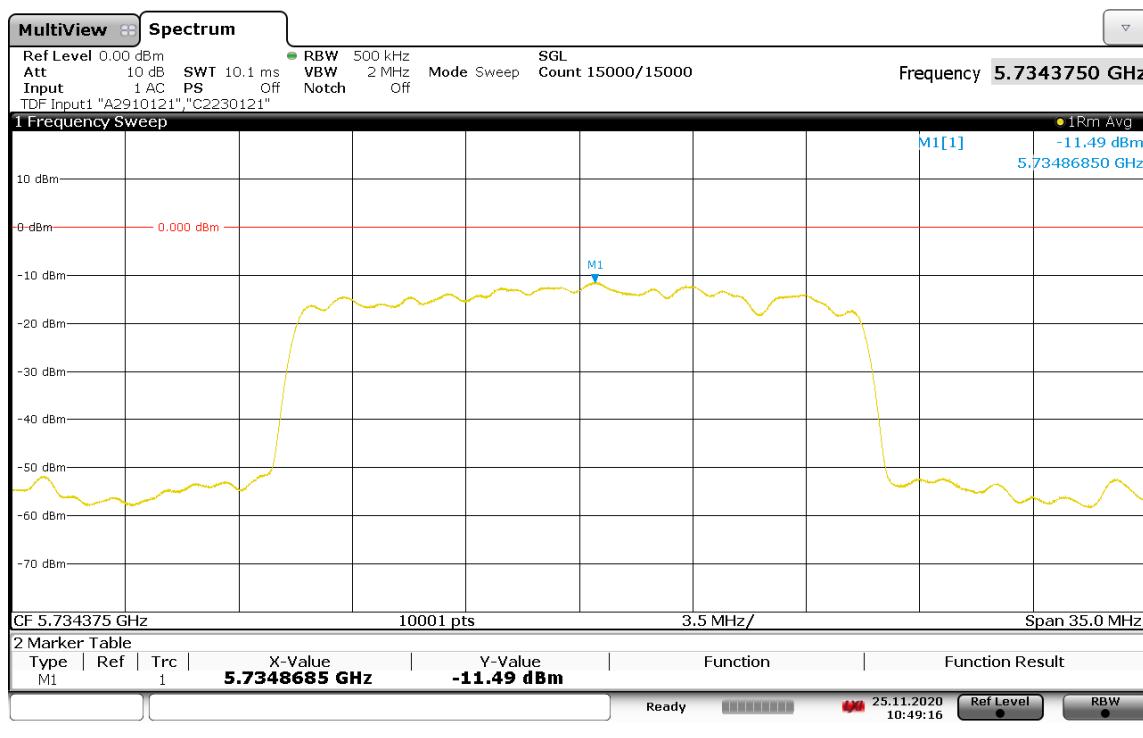
Graph 6-9: Measured Conducted Power, Mid Channel

Graph 6-10: Measured Conducted Power, High Channel

6.7 §15.407(a)(3) / §RSS-247 6.2.4.1 Maximum Power Spectral Density

6.7.1 Test Procedure

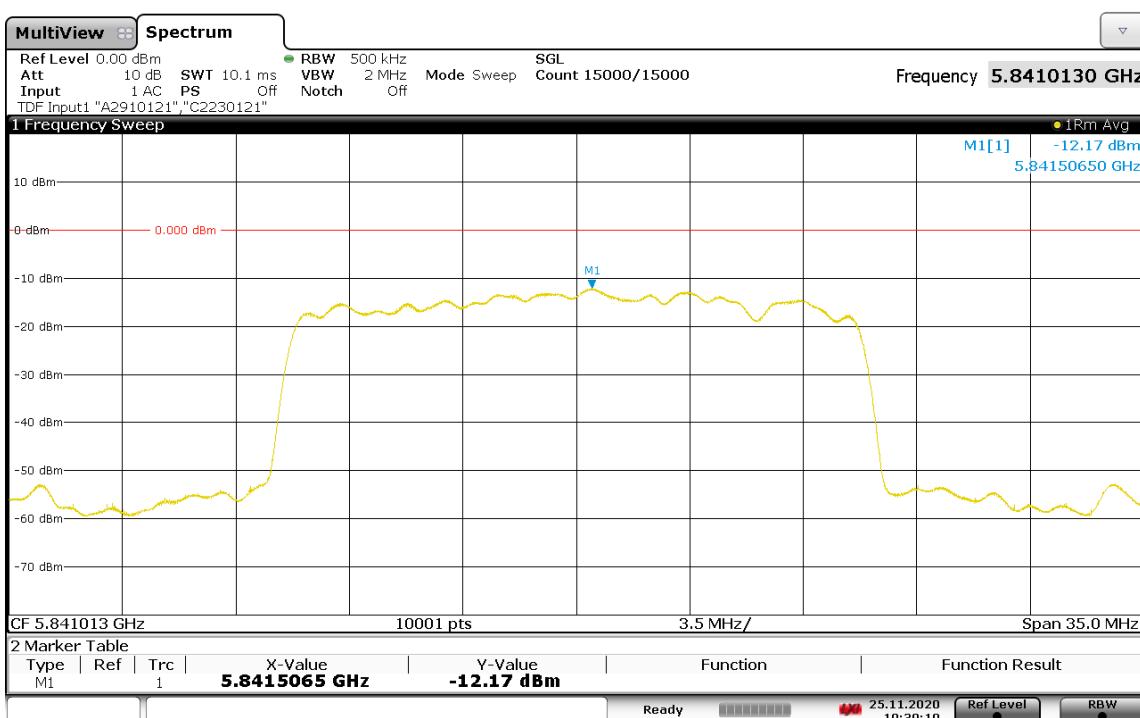
The tests were performed in accordance with KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section F Maximum Power Spectral Density.


6.7.2 Limits

Within the 5.725 – 5.85 GHz band, the maximum power spectral density shall not exceed 30 dBm.

6.7.3 Results

Table 6-7: Maximum Power Spectral Density


Freq. [MHz]	Measured Power Spectral Density (dBm)	Correction Factor	Maximum Power Spectral Density (dBm)	Limit (dBm)	Results
5734.375	-11.49	10	-1.49	30	Complied
5795.311	-12.84	10	-2.84	30	Complied
5841.013	-12.17	10	-2.17	30	Complied

Graph 6-11: Measured Power Spectral Density, Low Channel

Graph 6-12: Measured Power Spectral Density, Mid Channel

Graph 6-13: Measured Power Spectral Density, High Channel

6.8 §15.407(b) / §RSS-247 6.2.4.2 Band-Edge Emission Measurements

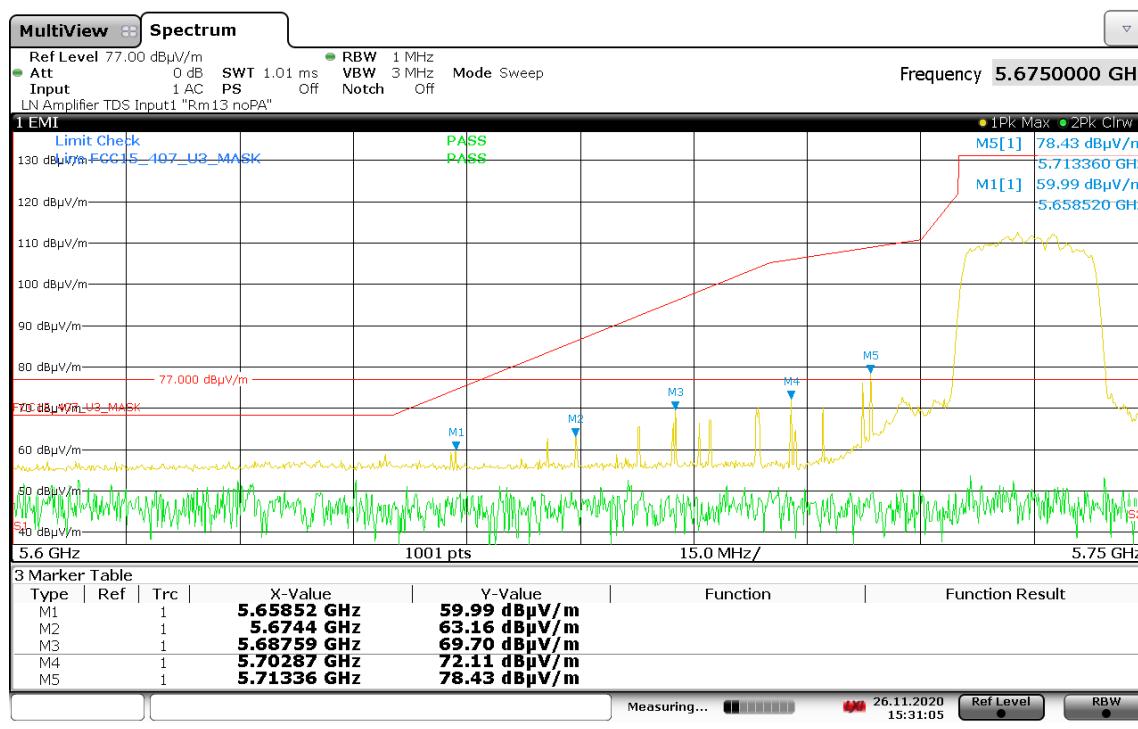
6.8.1 Test Procedure

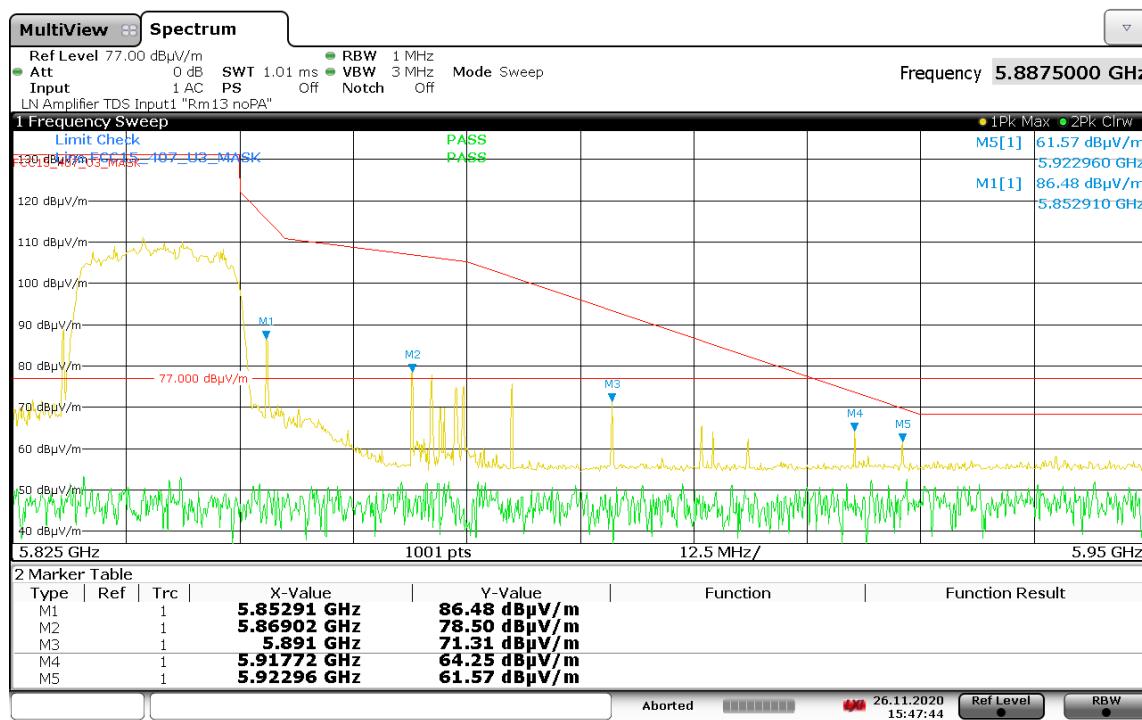
The tests were performed in accordance with KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section G Unwanted Emission Measurement.

EUT was investigated on all three axes (x, y, and z). Measurements on the worst axis (x-axis) are presented below.

EUT was set at a height of 1.5 m above the ground for measurement and measurement distance was 3 meters.

6.8.2 Limits


The limit applied is in accordance with the emissions limit defined in §15.407(b)(4)(i).


All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

E.I.R.P	
[dBm]	Equivalent to field strength @3m [dB μ V/m]
-27	68.23
10	105.23
15.6	110.83
27	122.23

6.8.3 Results

All emissions measured complied with the Band-Edge requirements of the standard.

Graph 6-15: Band-Edge Emission, Upper edge

6.9 §15.407(b) / §RSS-247 6.2.4.2 Radiated Spurious Emissions

6.9.1 Test procedure

Radiated out-of-band/spurious emissions measurements were performed in a semi-anechoic chamber compliant with ANSI C63.4: 2014.

The test frequency range was sub-divided into smaller bands with the defined resolution bandwidths to permit reliable display and identification of emissions.

Frequency range [MHz]	Measurement Bandwidth [kHz]	Measurement Distance [m]	Antenna
0.009 to 0.150	0.2	3	
0.150 to 30	9	3	0.6 metre loop antenna
30 to 1000	120	3	Biconilog hybrid
1000 to 18 000	1000	3	Standard gain or broadband horn
18 000 to 40 000	1000	1	

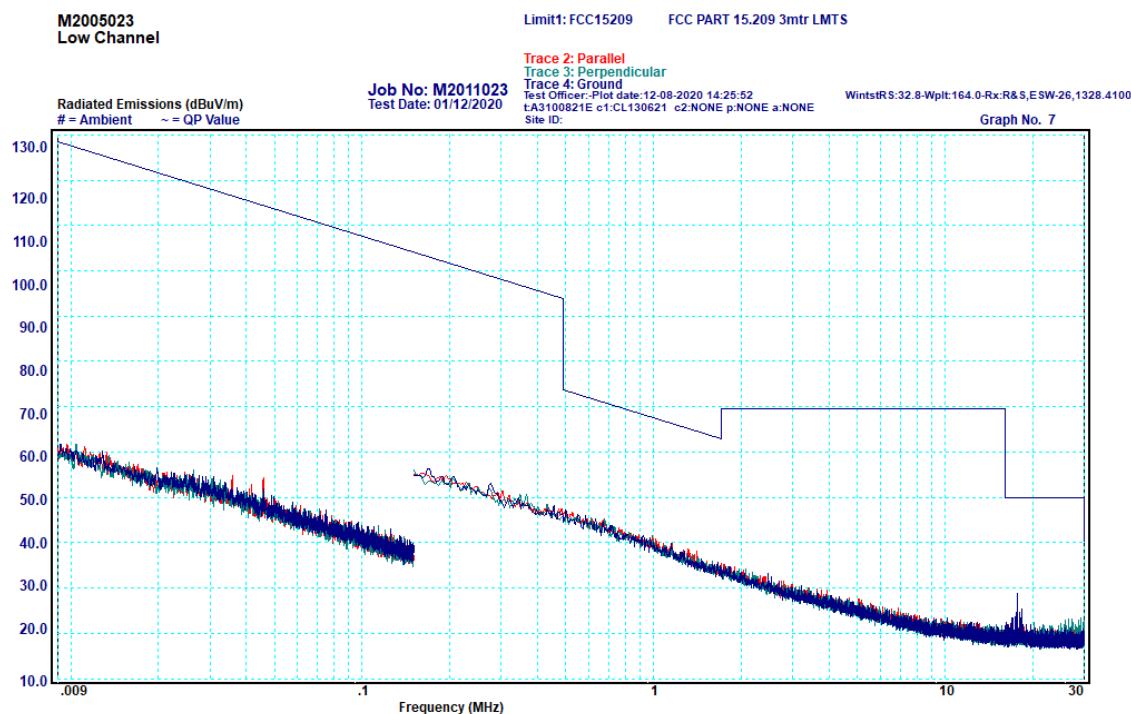
EUT was set at a height of 0.8 m for measurements below 1000 MHz and set at a height of 1.5 m for measurements above 1000 MHz.

The sample was slowly rotated with the spectrum analyser set to Max-Hold. This was performed for at least two antenna heights. When an emission was located, it was positively identified and its maximum level found by rotating the automated turntable and by varying the antenna height. For below 1000 MHz the emissions were measured with a Quasi-Peak detector, and for above 1000 MHz the emissions were measured with Peak and Average detectors.

The measurement data for each frequency range was corrected for cable losses, antenna factors and preamplifier gain. This process was performed for both horizontal and vertical polarisations of the measurement antenna.

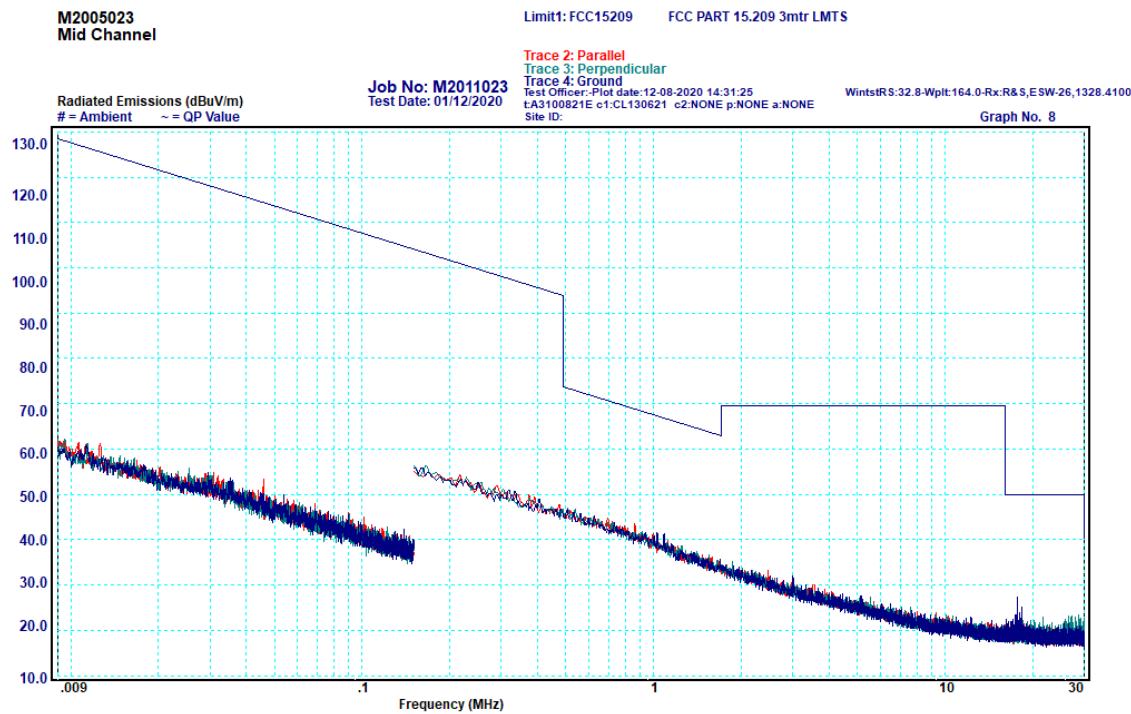
EUT was investigated on all three axes (x, y, and z). Measurements on the worst axis (x-axis) are presented below.

6.9.2 Limits

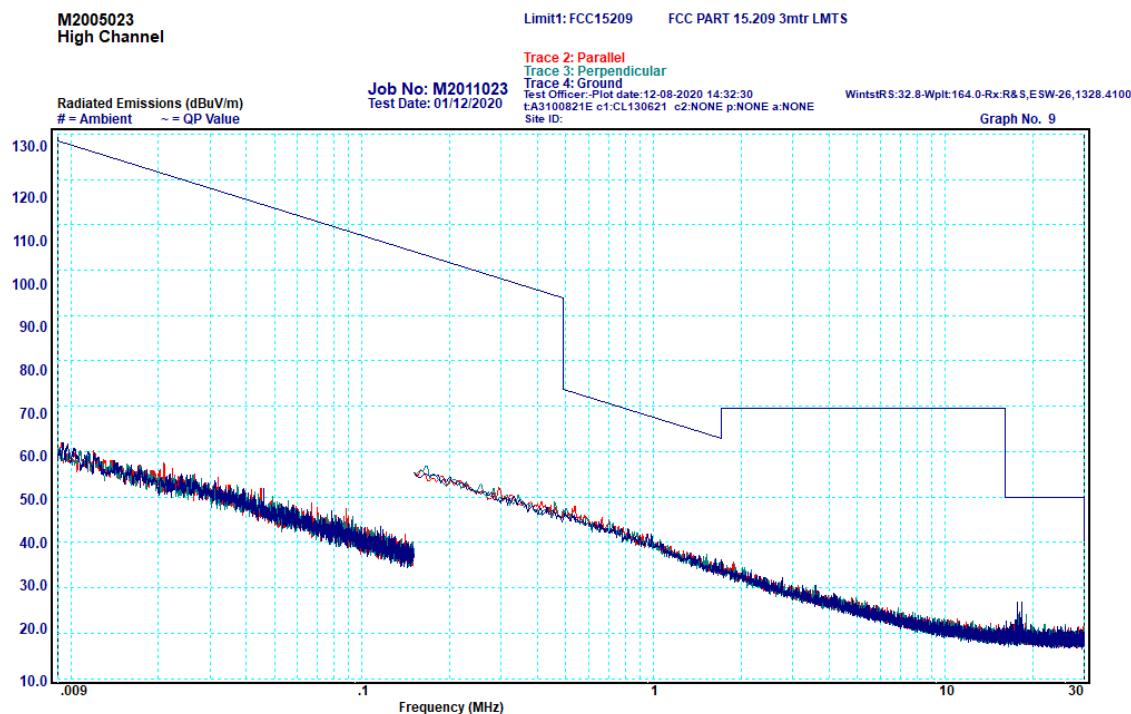

The limit applied is in accordance with the emissions limit defined in §15.407(b)(4).

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

The general limits of §15.209 applies for unwanted emissions below 1 GHz and the provision of §15.205 also applies under this section.


6.9.3 Transmitter Spurious Emissions: 9 kHz to 30 MHz

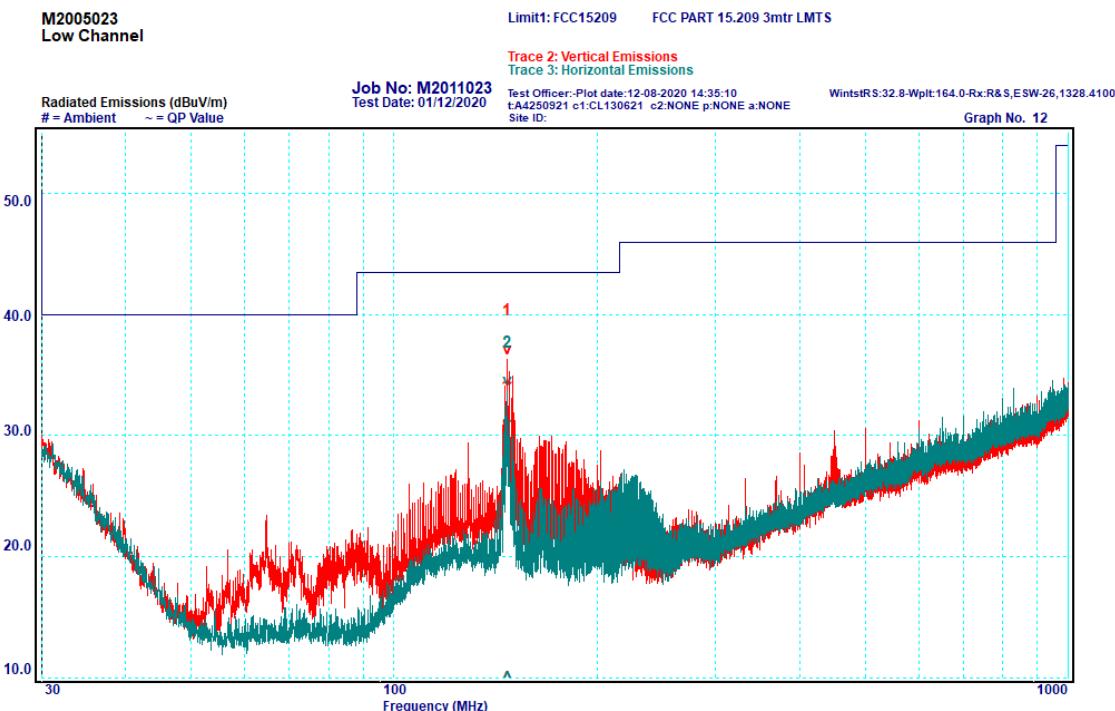
All emissions measured in the frequency band 9kHz - 30MHz complied with the requirements of the standard.


Graph 6-16: Transmitter Spurious Emissions, 9kHz – 30 MHz, Low Channel

No peaks were measured within 10 dB of the limit.

Graph 6-17: Transmitter Spurious Emissions, 9kHz – 30 MHz, Mid Channel

No peaks were measured within 10 dB of the limit.



Graph 6-18: Transmitter Spurious Emissions, 9kHz – 30 MHz, High Channel

No peaks were measured within 10 dB of the limit.

6.9.4 Transmitter Spurious Emissions: 30 - 1000 MHz

All emissions measured in the frequency band 30 – 1000 MHz complied with the requirements of the standard.

Graph 6-19: Transmitter Spurious Emissions, 30 – 1000 MHz, Low Channel

Table 6-8: Transmitter Spurious Emissions, 30 – 1000 MHz, Low Channel

Peak	Frequency [MHz]	Polarisation	Peak		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1	147.31	Vertical	34.3	43.5	-9.2
2	147.3	Horizontal	31.2	43.5	-12.3

M2005023
Mid Channel

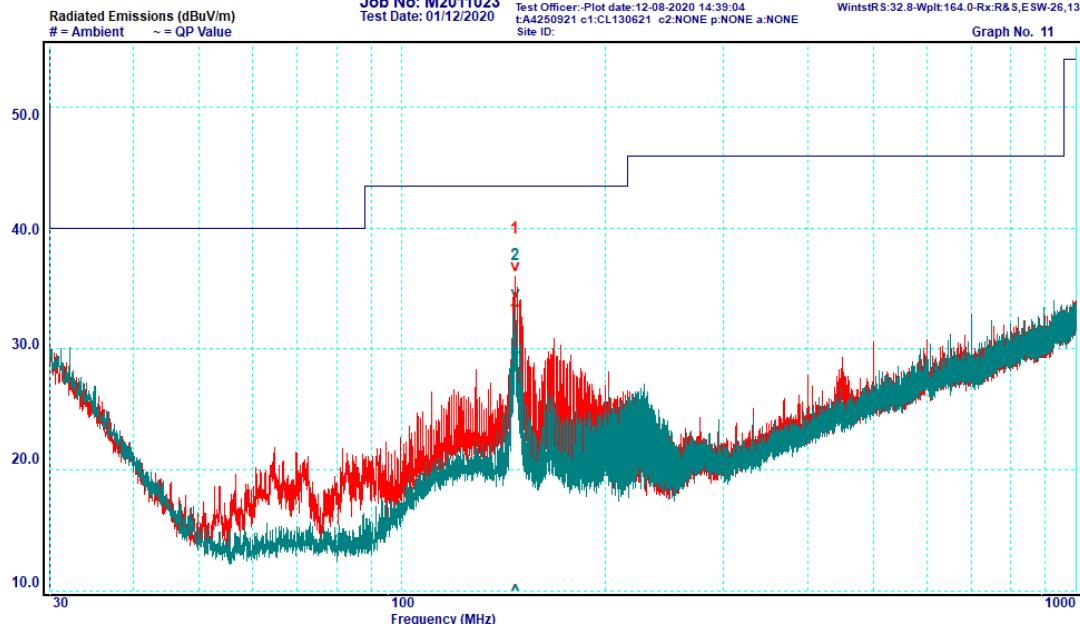
Limit1: FCC15209 FCC PART 15.209 3mtr LMTS

Trace 2: Vertical Emissions

Trace 3: Horizontal Emissions

Job No: M2011023

Test Date: 01/12/2020


Test Officer: Plot date: 12-08-2020 14:39:04

t4250921 c1:CL130621 c2:NONE p:NONE a:NONE

WinstRS:32.8-Wplt:164.0-Rx:R&S,ESW-26,1328.4100

Site ID:

Graph No. 11

Graph 6-20: Transmitter Spurious Emissions, 30 – 1000 MHz, Mid Channel

Table 6-9: Transmitter Spurious Emissions, 30 – 1000 MHz, Mid Channel

Peak	Frequency [MHz]	Polarisation	Peak		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1	147.26	Vertical	33.6	43.5	-9.9
2	147.23	Horizontal	29.7	43.5	-13.8

Accreditation No.5292

This document shall not be reproduced except in full.

M2005023
High Channel

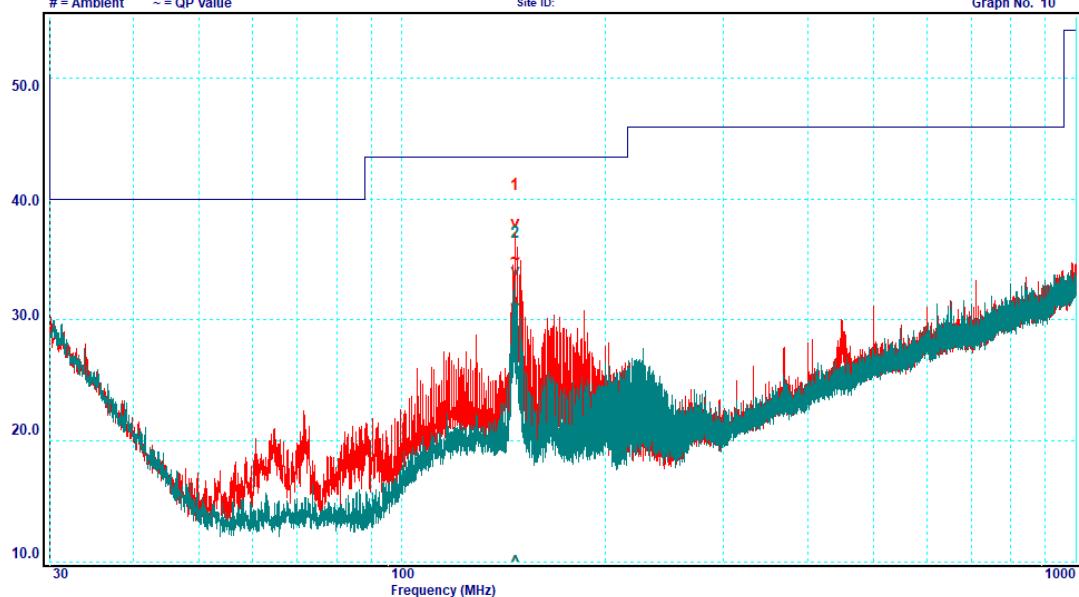
Limit1: FCC15209 FCC PART 15.209 3mtr LMTS

Trace 2: Vertical Emissions

Trace 3: Horizontal Emissions

Job No: M2011023

Test Date: 01/12/2020


Test Officer: Plot date: 12-08-2020 14:41:10

t4250921 c1:CL130621 c2:NONE p:NONE a:NONE

WinstRS:32.8-Wpt:164.0-Rx:R&S,ESW-26,1328.4100

Site ID:

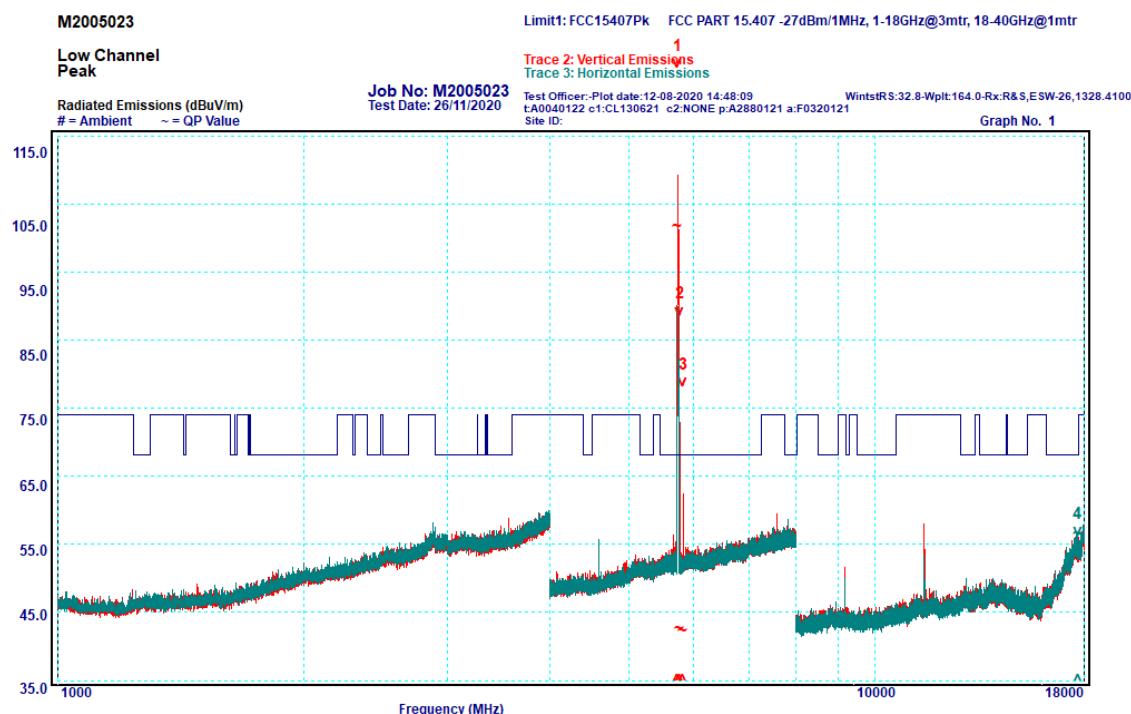
Graph No. 10

Graph 6-21: Transmitter Spurious Emissions, 30 – 1000 MHz, High Channel

Table 6-10: Transmitter Spurious Emissions, 30 – 1000 MHz, High Channel

Peak	Frequency [MHz]	Polarisation	Peak		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1	147.32	Vertical	35	43.5	-8.5
2	147.29	Horizontal	31.2	43.5	-12.3

This document shall not be reproduced except in full.

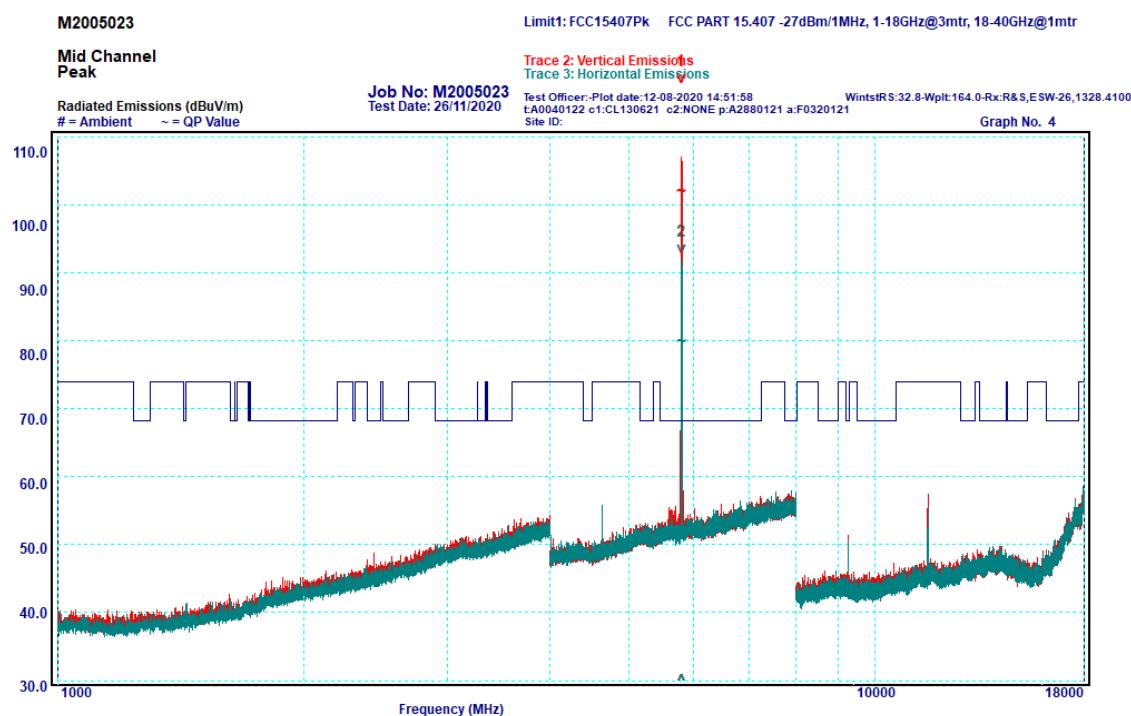


Accreditation No.5292

6.9.5 Transmitter Spurious Emissions: 1 - 18 GHz

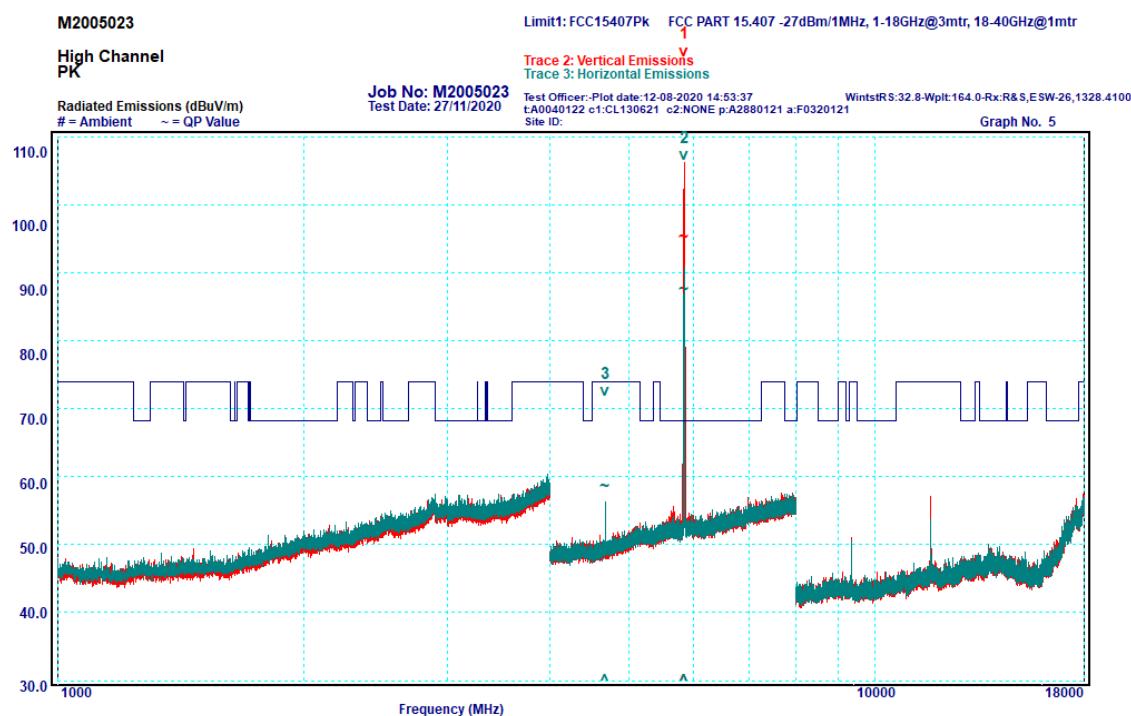
All emissions measured in the frequency band 1 – 18 GHz complied with the requirements of the standard.

Peak Measurements:



Graph 6-22: Transmitter Spurious Emissions, 1 – 18 GHz, Low Channel, Peak

Table 6-11: Transmitter Spurious Emissions, 1 – 18 GHz, Low Channel, Peak


Peak	Frequency [MHz]	Polarisation	Peak		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1*	5734	Vertical	N/A	N/A	N/A
2*	5766.35	Vertical	N/A	N/A	N/A
3*	5816.36	Vertical	N/A	N/A	N/A
4	17674.62	Horizontal	56.5	68.2	-11.7

*Peaks 1, 2 and 3 are measurements on the fundamental transmission and are not subject to the spurious emissions limit of the standard.

Graph 6-23: Transmitter Spurious Emissions, 1 – 18 GHz, Mid Channel, Peak

*Peak above the limit is the fundamental transmission and is not subject to the spurious emissions limit of the standard.

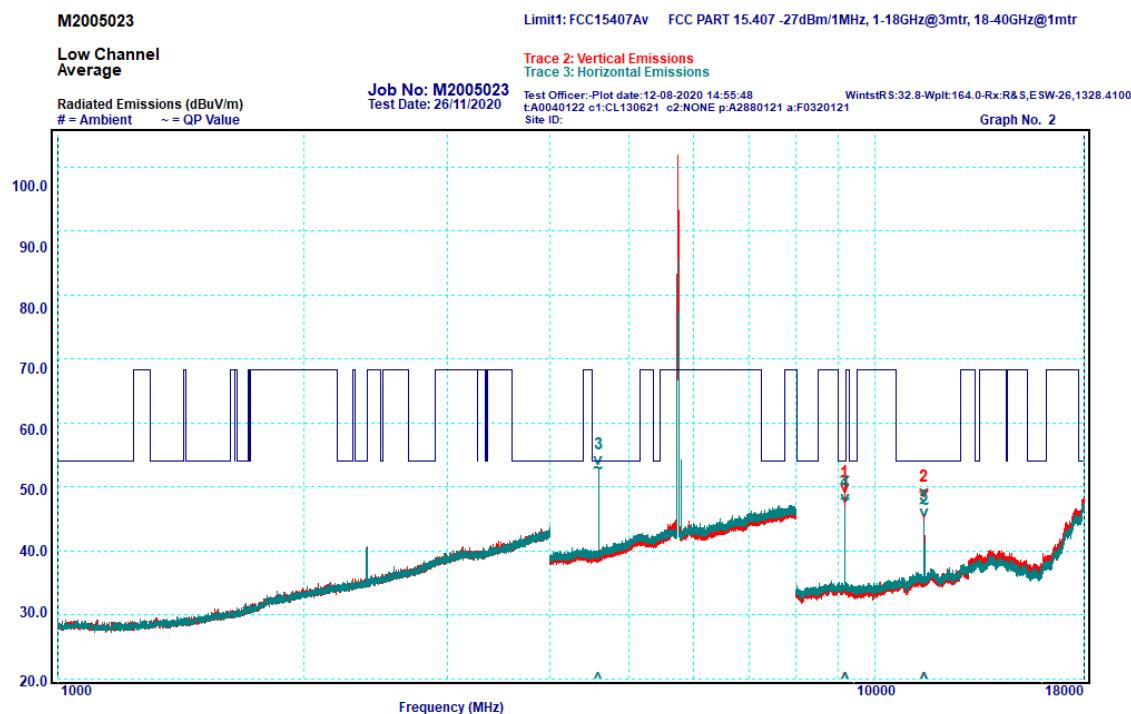
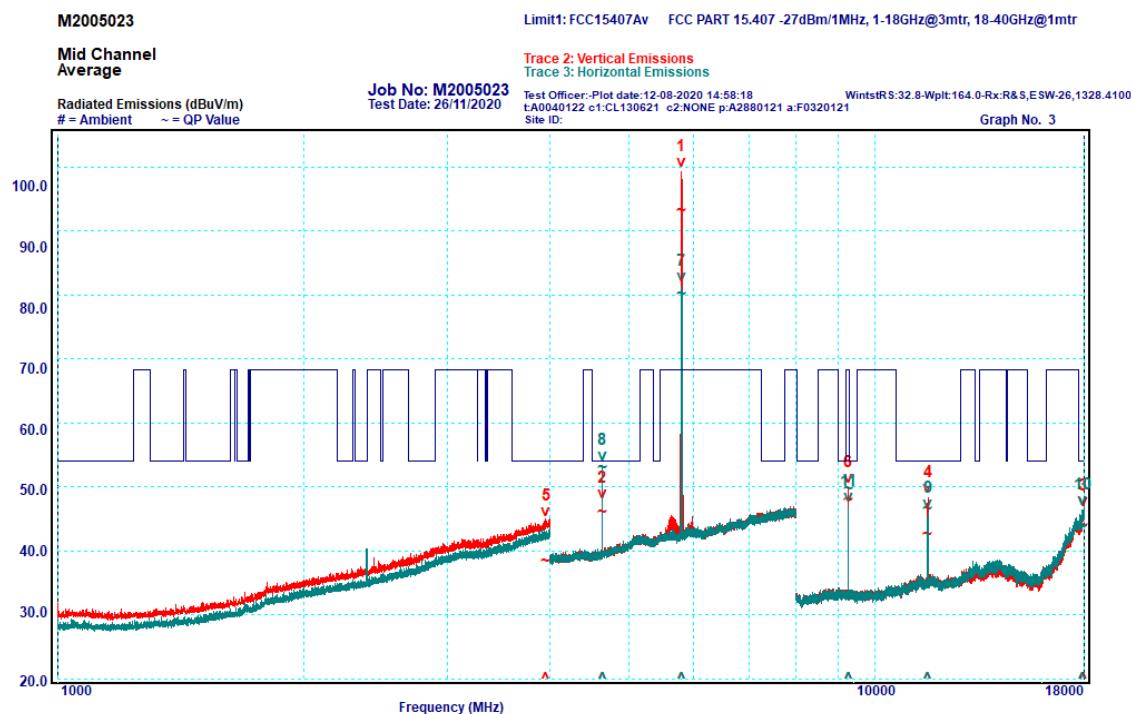

Graph 6-24: Transmitter Spurious Emissions, 1 – 18 GHz, High Channel, Peak

Table 6-12: Transmitter Spurious Emissions, 1 – 18 GHz, High Channel, Peak

Peak	Frequency [MHz]	Polarisation	Peak		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1*	5841.53	Vertical	N/A	N/A	N/A
2*	5842.3	Vertical	N/A	N/A	N/A
3	4672.77	Horizontal	58.5	74	-15.5

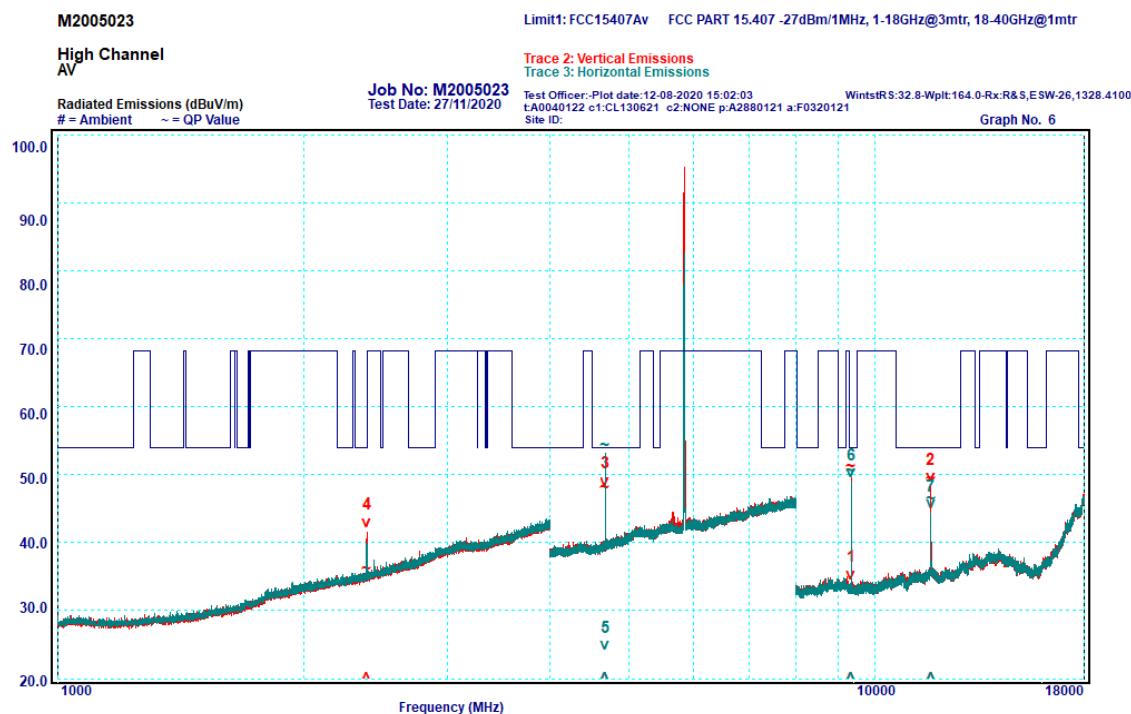
*Peaks 1 and 2 are measurements on the fundamental transmission and are not subject to the spurious emissions limit of the standard.


Average Measurements:

Graph 6-25: Transmitter Spurious Emissions, 1 – 18 GHz, Low Channel, Average

Table 6-13: Transmitter Spurious Emissions, 1 – 18 GHz, Low Channel, Average

Peak	Frequency [MHz]	Polarisation	Avg		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1	9175	Vertical	51.5	54	-2.5
2	11472.11	Vertical	49.1	54	-4.9
3	4587.49	Horizontal	52.8	54	-1.2
4	9175.01	Horizontal	48	54	-6
5	11472	Horizontal	47.3	54	-6.7



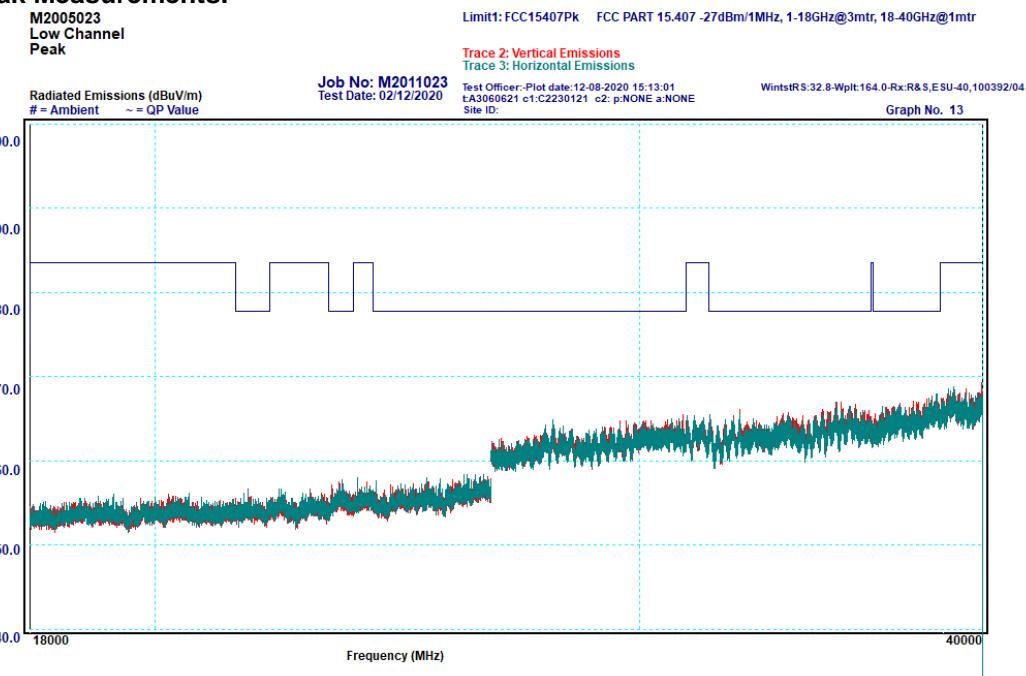
Graph 6-26: Transmitter Spurious Emissions, 1 – 18 GHz, Mid Channel, Average

Table 6-14: Transmitter Spurious Emissions, 1 – 18 GHz, Mid Channel, Average

Peak	Frequency [MHz]	Polarisation	Avg		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1*	5794.63	Vertical	N/A	N/A	N/A
2	4636.17	Vertical	46	54	-8
3	17950.94	Vertical	43.9	54	-10.1
4	11594.16	Vertical	42.5	54	-11.5
5	3957.75	Vertical	38.4	54	-15.6
6	9272.51	Vertical	47.9	68.2	-20.3
7*	5794.69	Horizontal	N/A	N/A	N/A
8	4636.26	Horizontal	52.9	54	-1.1
9	11593.15	Horizontal	46.6	54	-7.4
10	17928.28	Horizontal	43.7	54	-10.3
11	9272.49	Horizontal	49.6	68.2	-18.6

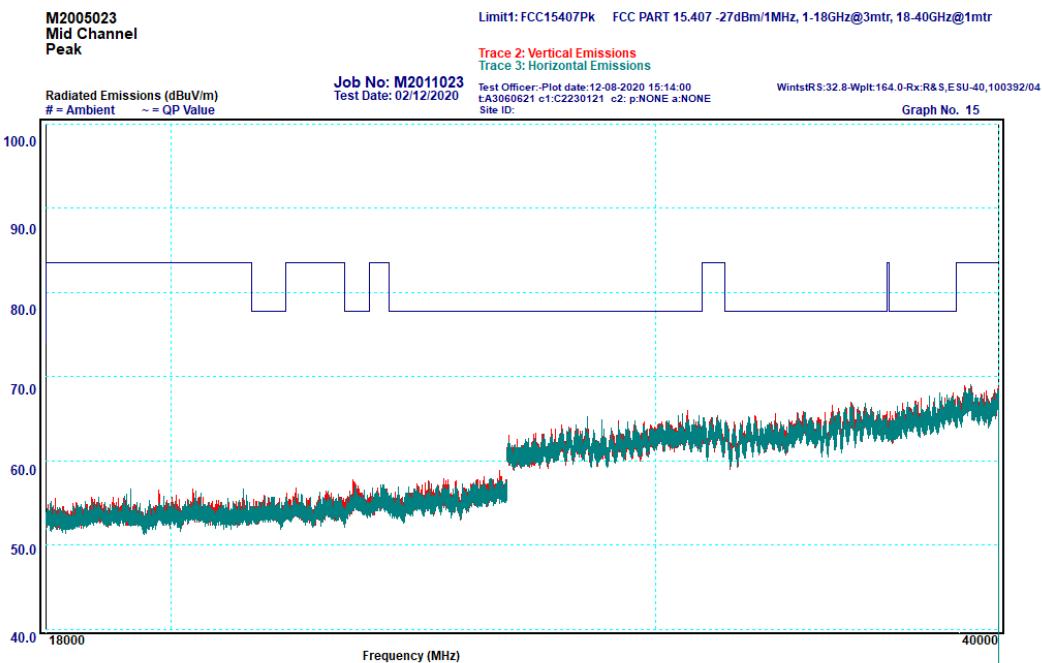
*Peaks 1 and 7 are the fundamental transmissions and are not subject to the spurious emissions limit of the standard.

Graph 6-27: Transmitter Spurious Emissions, 1 – 18 GHz, High Channel, Average

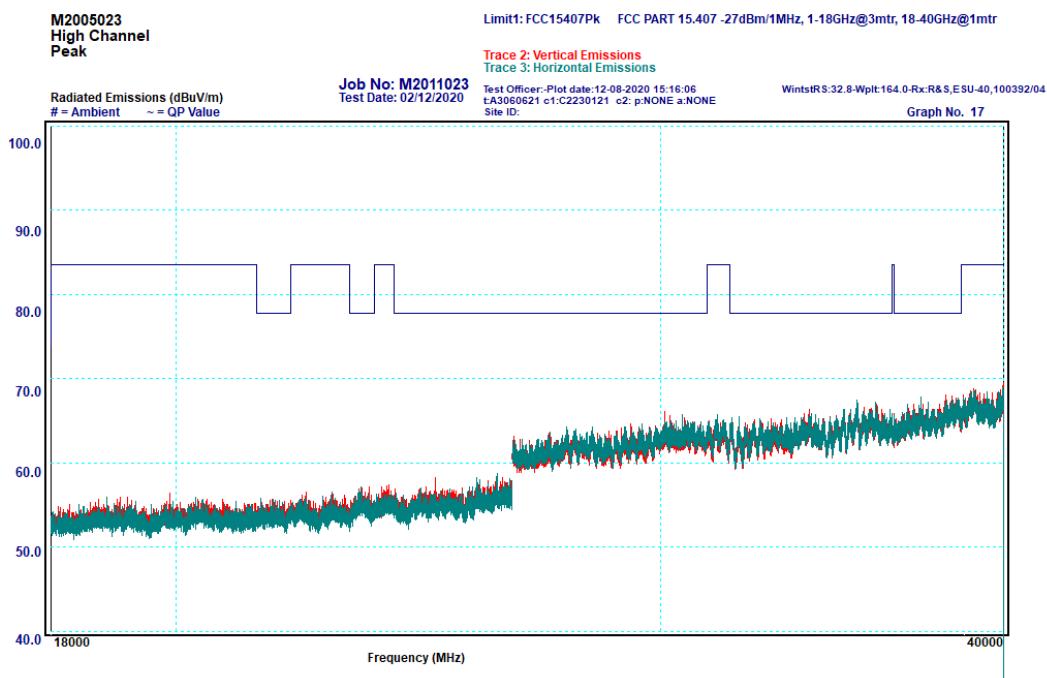

Table 6-15: Transmitter Spurious Emissions, 1 – 18 GHz, High Channel, Average

Peak	Frequency [MHz]	Polarisation	Avg		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1	9345.63	Vertical	51.2	54	-2.8
2	11684.51	Vertical	49.5	54	-4.5
3	4672.82	Vertical	48	54	-6
4	2390.71	Vertical	36.1	68.2	-32.1
5	4672.82	Horizontal	53.7	54	-0.3
6	9345.64	Horizontal	50.5	54	-3.5
7	11684.29	Horizontal	46.4	54	-7.6

6.9.6 Transmitter Spurious Emissions: 18 - 26 GHz

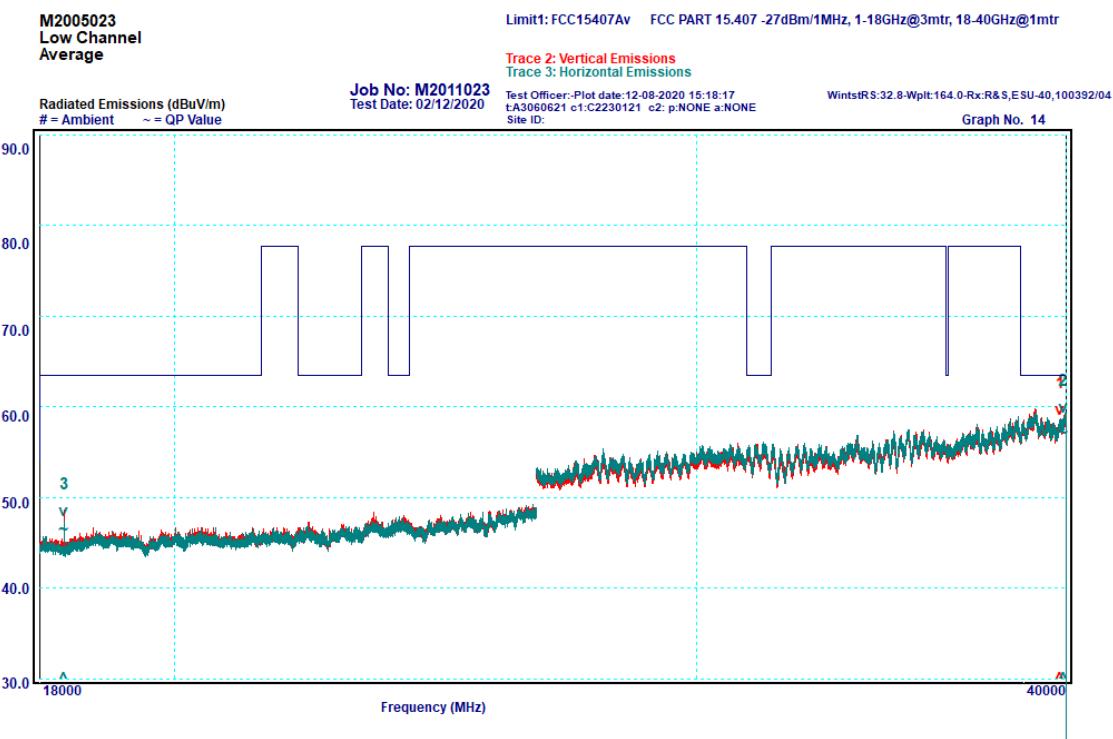

All emissions measured in the frequency band 18 – 26 GHz complied with the requirements of the standard.

Peak Measurements:


Graph 6-28: Transmitter Spurious Emissions, 18 – 40 GHz, Low Channel, Peak

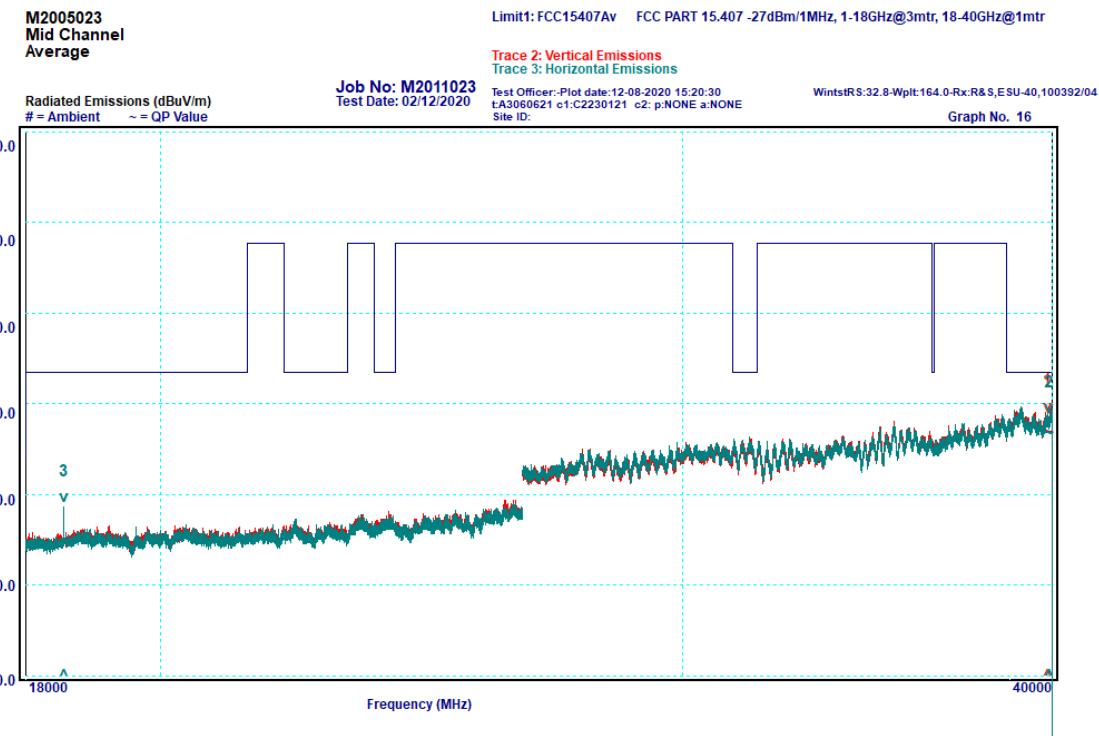
No peaks were measured within 10 dB of the limit.

Graph 6-29: Transmitter Spurious Emissions, 18 – 40 GHz, Mid Channel, Peak


No peaks were measured within 10 dB of the limit.

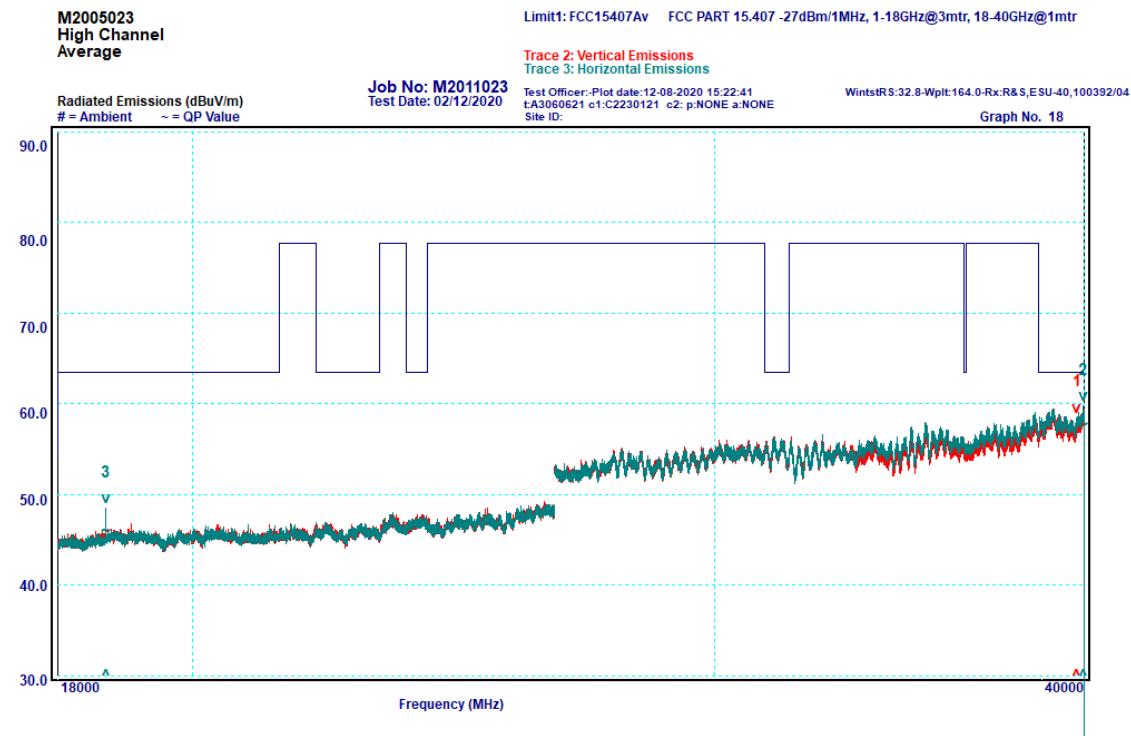
Graph 6-30: Transmitter Spurious Emissions, 18 – 40 GHz, High Channel, Peak

No peaks were measured within 10 dB of the limit.


Average Measurements:

Graph 6-31: Transmitter Spurious Emissions, 18 – 40 GHz, Low Channel, Average

Table 6-16: Transmitter Spurious Emissions, 18 – 40 GHz, Low Channel, Average


Peak	Frequency [MHz]	Polarisation	Avg		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1	39809.51	Vertical	57.4	63.5	-6.1
2	39909.92	Horizontal	57.1	63.5	-6.4
3	18350.09	Horizontal	46.4	63.5	-17.1

Graph 6-32: Transmitter Spurious Emissions, 18 – 40 GHz, Mid Channel, Average

Table 6-17: Transmitter Spurious Emissions, 18 – 40 GHz, Mid Channel, Average

Peak	Frequency [MHz]	Polarisation	Avg		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1	39875.91	Vertical	56.8	63.5	-6.7
2	39900	Horizontal	56.8	63.5	-6.7
3	18545.13	Horizontal	44.7	63.5	-18.8

Graph 6-33: Transmitter Spurious Emissions, 18 – 40 GHz, High Channel, Average

Table 6-18: Transmitter Spurious Emissions, 18 – 40 GHz, High Channel, Average

Peak	Frequency [MHz]	Polarisation	Avg		
			Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
1	39774.59	Vertical	56.8	63.5	-6.7
2	39962.7	Horizontal	57.7	63.5	-5.8
3	18691.28	Horizontal	45.9	63.5	-17.6

6.10 §15.407(f) / §RSS-102 Maximum Permissible Exposure

The EUT complied with the applicable maximum permissible exposure levels. Refer to EMC Technologies report M2005023-5 & M2005023-6.

6.11 §15.215/ §RSS-Gen 6.7 Occupied Bandwidth – 99% power

6.11.1 Test procedure

The bandwidth containing 99% power of the transmitted signal was measured using the procedure from ANSI C63.10 section 6.9.

6.11.2 Limits

The 99% power should be contained within the frequency band 5725 – 5825 MHz.

6.11.3 Results

Table 6-19: Occupied Bandwidth

Freq. [MHz]	99% Bandwidth [MHz]	Low Frequency [MHz]	High Frequency [MHz]	Result
5734.375	17.10	5725.83	5742.93	Complied
5795.311	17.11	5786.77	5803.88	Complied
5841.013	17.10	5832.47	5849.58	Complied

Graph 6-34: Occupied bandwidth, Low Channel

Graph 6-35: Occupied bandwidth, Mid Channel

Graph 6-36: Occupied bandwidth, High Channel

END OF REPORT