



ONE WORLD OUR APPROVAL

# Test report

**391810-2TRFWL**

Date of issue: 2020-02-14

Applicant:

**MatiPay Srl**

**Via San Sabino, 21 – 70041 Mola di Bari (BA) – Italy**

Product:

**WI9250PM1 - MPYV2 SPAY**

Model:

**WI9250PM1 - MPYV2 SPAY**

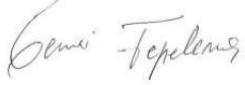
FCC ID:

**2AVPV-MPYV2SPAY**

Specifications:

**FCC 47 CFR Part 15.225**

Operation within the band 13.110–14.010 MHz


*This test report may not be partially reproduced, except with the prior written permission of Nemko SpA*

*The test report merely corresponds to the tested sample.*

*The phase of sampling / collection of equipment under test is carried out by the customer.*

## Test location

|              |                                                                        |
|--------------|------------------------------------------------------------------------|
| Company name | Nemko Spa                                                              |
| Address      | Via del Carroccio, 4                                                   |
| City         | Biassono                                                               |
| Province     | MB                                                                     |
| Postal code  | 20853                                                                  |
| Country      | Italy                                                                  |
| Telephone    | +39 039 220 12 01                                                      |
| Facsimile    | +39 039 220 12 21                                                      |
| Website      | <a href="http://www.nemko.com">www.nemko.com</a>                       |
| Site number  | FCC test site registration number: 682159 (10 m semi anechoic chamber) |

|                                               |                   |                   |                                                                                       |
|-----------------------------------------------|-------------------|-------------------|---------------------------------------------------------------------------------------|
| Tested by<br>(name, function and signature)   | G. Tepelena       | (project handler) |    |
| Reviewed by<br>(name, function and signature) | P. Barbieri       | (verifier)        |  |
| Date                                          | February 14, 2020 |                   |                                                                                       |

## Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Spa's ISO/IEC 17025 accreditation.

## Copyright notification

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

## Table of contents

|                                                                                       |           |
|---------------------------------------------------------------------------------------|-----------|
| <b>Table of contents .....</b>                                                        | <b>3</b>  |
| <b>Section 1. Report summary .....</b>                                                | <b>4</b>  |
| 1.1    Applicant and manufacturer .....                                               | 4         |
| 1.2    Test specifications .....                                                      | 4         |
| 1.3    Statement of compliance .....                                                  | 4         |
| 1.4    Exclusions .....                                                               | 4         |
| 1.5    Test report revision history .....                                             | 4         |
| <b>Section 2. Summary of test results.....</b>                                        | <b>5</b>  |
| 2.1    FCC Part 15 Subpart C, general requirements test results.....                  | 5         |
| 2.2    FCC Part 15 Subpart C, intentional radiators test results.....                 | 5         |
| <b>Section 3. Equipment under test (EUT) details .....</b>                            | <b>6</b>  |
| 3.1    Sample information.....                                                        | 6         |
| 3.2    EUT information .....                                                          | 6         |
| 3.3    Technical information .....                                                    | 6         |
| 3.4    Product description and theory of operation .....                              | 6         |
| 3.5    EUT exercise details.....                                                      | 6         |
| 3.6    EUT setup diagram .....                                                        | 7         |
| 3.7    EUT sub assemblies .....                                                       | 7         |
| <b>Section 4. Engineering considerations.....</b>                                     | <b>8</b>  |
| 4.1    Modifications incorporated in the EUT.....                                     | 8         |
| 4.2    Technical judgment .....                                                       | 8         |
| 4.3    Deviations from laboratory tests procedures.....                               | 8         |
| <b>Section 5. Test conditions.....</b>                                                | <b>9</b>  |
| 5.1    Atmospheric conditions .....                                                   | 9         |
| 5.2    Power supply range .....                                                       | 9         |
| <b>Section 6. Measurement uncertainty.....</b>                                        | <b>10</b> |
| 6.1    Uncertainty of measurement .....                                               | 10        |
| <b>Section 7. Test equipment .....</b>                                                | <b>11</b> |
| 7.1    Test equipment list.....                                                       | 11        |
| <b>Section 8. Testing data .....</b>                                                  | <b>12</b> |
| 8.1    FCC 15.207(a) AC power line conducted emissions limits .....                   | 12        |
| 8.2    FCC 15.215(c) Occupied (Emission) bandwidth .....                              | 15        |
| 8.3    FCC 15.225(a–c) Field strength within the 13.110–14.010 MHz band.....          | 18        |
| 8.4    FCC 15.225(d) Field strength of emissions outside 13.110–14.010 MHz band ..... | 20        |
| 8.5    FCC 15.225(e) Frequency tolerance of the carrier signal.....                   | 25        |
| <b>Section 9. Block diagrams of test set-ups .....</b>                                | <b>26</b> |
| 9.1    Radiated emissions set-up.....                                                 | 26        |
| 9.2    Conducted emissions set-up .....                                               | 27        |
| <b>Section 10. Photos.....</b>                                                        | <b>28</b> |
| 10.1    Photos of the test set-up .....                                               | 28        |
| 10.2    Photos of the EUT.....                                                        | 30        |

## Section 1. Report summary

---

### 1.1 Applicant and manufacturer

---

|                 |                           |
|-----------------|---------------------------|
| Company name    | MatiPay S.r.l.            |
| Address         | Via San Sabino, 21 (Z.I.) |
| City            | Mola di Bari              |
| Province/State  | Bari                      |
| Postal/Zip code | 70042                     |
| Country         | Italy                     |

### 1.2 Test specifications

---

FCC 47 CFR Part 15, Subpart C, Clause 15.225  
ANSI C63.10-2013

Operation in the 13.110–14.010 MHz  
American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

### 1.3 Statement of compliance

---

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

### 1.4 Exclusions

---

None

### 1.5 Test report revision history

---

| Revision #    | Details of changes made to test report |
|---------------|----------------------------------------|
| 391810-2TRFWL | Original report issued                 |

## Section 2. Summary of test results

---

### 2.1 FCC Part 15 Subpart C, general requirements test results

---

| Part       | Test description          | Verdict           |
|------------|---------------------------|-------------------|
| §15.207(a) | Conducted limits          | Pass              |
| §15.31(e)  | Variation of power source | Pass <sup>1</sup> |
| §15.203    | Antenna requirement       | Pass <sup>2</sup> |
| §15.215(c) | 20 dB bandwidth           | Pass              |

Notes: <sup>1</sup> Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

<sup>2</sup> The Antennas are located within the enclosure of EUT and not user accessible.

### 2.2 FCC Part 15 Subpart C, intentional radiators test results

---

| Part       | Test description                                                    | Verdict |
|------------|---------------------------------------------------------------------|---------|
| §15.225(a) | Field strength within 13.553–13.567 MHz band                        | Pass    |
| §15.225(b) | Field strength within 13.410–13.553 MHz and 13.567–13.710 MHz bands | Pass    |
| §15.225(c) | Field strength within 13.110–13.410 MHz and 13.710–14.010 MHz bands | Pass    |
| §15.225(d) | Field strength outside 13.110–14.010 MHz band                       | Pass    |
| §15.225(e) | Frequency tolerance of carrier signal                               | Pass    |

Notes: None

## Section 3. Equipment under test (EUT) details

---

### 3.1 Sample information

---

|                        |                   |
|------------------------|-------------------|
| Receipt date           | February 14, 2020 |
| Nemko sample ID number | 391810-3/3        |

### 3.2 EUT information

---

|               |                        |
|---------------|------------------------|
| Product name  | WI9250PM1 - MPYV2 SPAY |
| Model         | WI9250PM1 - MPYV2 SPAY |
| Serial number | N/A                    |

### 3.3 Technical information

---

|                                         |                                                                                             |
|-----------------------------------------|---------------------------------------------------------------------------------------------|
| Operating band                          | 13.553–13.567 MHz                                                                           |
| Operating frequency                     | 13.56 MHz                                                                                   |
| Equipment class                         | DXX - Part 15 Low Power Communication Device Transmitter                                    |
| Modulation type                         | ASK                                                                                         |
| Occupied bandwidth (99 %)               | 5.37 kHz                                                                                    |
| Power requirements                      | 24 V DC from power supply                                                                   |
| Field strength, dB $\mu$ V/m @30 m      | 26.3                                                                                        |
| Transmitter spurious, dB $\mu$ V/m @3 m | 34.7                                                                                        |
| Emission designator                     | 5K37A1D                                                                                     |
| Antenna information                     | The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator. |

### 3.4 Product description and theory of operation

---

RFID module 13.56 MHz

### 3.5 EUT exercise details

---

The EUT is normally in continuous transmission mode. Modulation is generated by approaching a card.

### 3.6 EUT setup diagram

---



**Figure 3.6-1: Setup diagram**

### 3.7 EUT sub assemblies

---

**Table 3.7-1: EUT sub assemblies**

| Description | Brand name | Model/Part number | Serial number |
|-------------|------------|-------------------|---------------|
| --          | --         | --                | --            |
| --          | --         | --                | --            |
| --          | --         | --                | --            |
| --          | --         | --                | --            |

The EUT is composed by a single unit

## Section 4. Engineering considerations

---

### 4.1 Modifications incorporated in the EUT

---

There were no modifications performed to the EUT during this assessment.

### 4.2 Technical judgment

---

None

### 4.3 Deviations from laboratory tests procedures

---

No deviations were made from laboratory procedures.

## Section 5. Test conditions

---

### 5.1 Atmospheric conditions

---

Unless different values are declared in the test case, following ambient conditions apply for the tests:

|                   |               |
|-------------------|---------------|
| Temperature       | 18–33 °C      |
| Relative humidity | 30–60 %       |
| Air pressure      | 980–1060 mbar |

Test equipment used for the monitoring of the environmental conditions

| Equipment                     | Manufacturer | Model no. | Asset no.    | Cal cycle | Next cal. |
|-------------------------------|--------------|-----------|--------------|-----------|-----------|
| Thermohygrometer data loggers | Testo        | 175-H2    | 20012380/305 | 2019-12   | 2020-12   |
| Thermohygrometer data loggers | Testo        | 175-H2    | 38203337/703 | 2019-12   | 2020-12   |
| Barometer                     | Castle       | GPB 3300  | 072015       | 2019-04   | 2020-04   |

### 5.2 Power supply range

---

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

## Section 6. Measurement uncertainty

### 6.1 Uncertainty of measurement

| EUT         | Type | Test                                                                                    | Range and Setup features | Measurement Uncertainty | Notes |
|-------------|------|-----------------------------------------------------------------------------------------|--------------------------|-------------------------|-------|
|             |      | Frequency error                                                                         | 0.001 MHz ÷ 40 GHz       | 0.08 ppm                | (1)   |
|             |      | Carrier power                                                                           | 10 kHz ÷ 30 MHz          | 1.0 dB                  | (1)   |
|             |      | RF Output Power                                                                         | 30 MHz ÷ 18 GHz          | 1.5 dB                  | (1)   |
|             |      |                                                                                         | 18 MHz ÷ 40 GHz          | 3.0 dB                  | (1)   |
|             |      | Adjacent channel power                                                                  | 1 MHz ÷ 18 GHz           | 1.6 dB                  | (1)   |
|             |      | Conducted spurious emissions                                                            | 10 kHz ÷ 26 GHz          | 3.0 dB                  | (1)   |
|             |      |                                                                                         | 26 GHz ÷ 40 GHz          | 4.5 dB                  | (1)   |
|             |      | Intermodulation attenuation                                                             | 1 MHz ÷ 18 GHz           | 2.2 dB                  | (1)   |
|             |      | Attack time – frequency behaviour                                                       | 1 MHz ÷ 18 GHz           | 2.0 ms                  | (1)   |
|             |      | Attack time – power behaviour                                                           | 1 MHz ÷ 18 GHz           | 2.5 ms                  | (1)   |
|             |      | Release time – frequency behaviour                                                      | 1 MHz ÷ 18 GHz           | 2.0 ms                  | (1)   |
| Conducted   |      | Release time – power behaviour                                                          | 1 MHz ÷ 18 GHz           | 2.5 ms                  | (1)   |
| Transmitter |      | Transient behaviour of the transmitter – Transient frequency behaviour                  | 1 MHz ÷ 18 GHz           | 0.2 kHz                 | (1)   |
|             |      | Transient behaviour of the transmitter – Power level slope                              | 1 MHz ÷ 18 GHz           | 9%                      | (1)   |
|             |      | Frequency deviation - Maximum permissible frequency deviation                           | 0.001 MHz ÷ 18 GHz       | 1.3%                    | (1)   |
|             |      | Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz | 0.001 MHz ÷ 18 GHz       | 0.5 dB                  | (1)   |
|             |      | Dwell time                                                                              | -                        | 3%                      | (1)   |
|             |      | Hopping Frequency Separation                                                            | 0.01 MHz ÷ 18 GHz        | 1%                      | (1)   |
|             |      | Occupied Channel Bandwidth                                                              | 0.01 MHz ÷ 18 GHz        | 2%                      | (1)   |
|             |      | Modulation Bandwidth                                                                    | 0.01 MHz ÷ 18 GHz        | 2%                      | (1)   |
| Radiated    |      | Radiated spurious emissions                                                             | 10 kHz ÷ 26.5 GHz        | 6.0 dB                  | (1)   |
|             |      |                                                                                         | 26.5 GHz ÷ 40 GHz        | 8.0 dB                  | (1)   |
|             |      | Effective radiated power transmitter                                                    | 10 kHz ÷ 26.5 GHz        | 6.0 dB                  | (1)   |
|             |      |                                                                                         | 26.5 GHz ÷ 40 GHz        | 8.0 dB                  | (1)   |
| Radiated    |      | Radiated spurious emissions                                                             | 10 kHz ÷ 26.5 GHz        | 6.0 dB                  | (1)   |
|             |      |                                                                                         | 26.5 GHz ÷ 40 GHz        | 8.0 dB                  | (1)   |
| Receiver    |      | Sensitivity measurement                                                                 | 1 MHz ÷ 18 GHz           | 6.0 dB                  | (1)   |
| Conducted   |      | Conducted spurious emissions                                                            | 10 kHz ÷ 26 GHz          | 3.0 dB                  | (1)   |
|             |      |                                                                                         | 26 GHz ÷ 40 GHz          | 4.5 dB                  | (1)   |

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor  $k = 2$  which has been derived from the assumed normal probability distribution with infinite degrees of freedom and for a coverage probability of 95 %

## Section 7. Test equipment

---

### 7.1 Test equipment list

---

*Table 7.1-1: Equipment list*

| Equipment                    | Manufacturer | Model no.                 | Asset no.   | Cal cycle | Next cal. |
|------------------------------|--------------|---------------------------|-------------|-----------|-----------|
| EMI receiver (20 Hz ÷ 8 GHz) | R&S          | ESU8                      | 100202      | 2019-10   | 2020-10   |
| Trilog Broadband Antenna     | Schwarzbeck  | VULB 9162                 | 9162-025    | 2018-07   | 2021-07   |
| Loop antenna                 | R&S          | HFH2-Z2                   | 831 247/011 | 2017-10   | 2020-10   |
| Antenna mast                 | R&S          | HCM                       | 836 529/05  | NCR       | NCR       |
| Controller                   | R&S          | HCC                       | 836 620/7   | NCR       | NCR       |
| Hydraulic revolving platform | Nemko        | RTPL 01                   | 4.233       | NCR       | NCR       |
| Semi-anechoic chamber        | Nemko        | 10m semi-anechoic chamber | 530         | 2018-09   | 2021-09   |
| Shielded room                | Siemens      | 10m control room          | 1947        | NCR       | NCR       |
| Climatic chamber             | Angelantoni  | CST 320/2T                | 4056        | 2019-09   | 2021-09   |

Note: NCR - no calibration required, VOU - verify on use

## Section 8. Testing data

### 8.1 FCC 15.207(a) AC power line conducted emissions limits

#### 8.1.1 Definitions and limits

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50  $\Omega$  line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

For a device with a permanent or detachable antenna operating at or below 30 MHz, the FCC will accept measurements performed with a suitable dummy load in lieu of the antenna under the following conditions: (1) perform the AC power-line conducted tests with the antenna connected to determine compliance with Section 15.207 limits outside the transmitter's fundamental emission band; (2) retest with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network which simulates the antenna in the fundamental frequency band. A suitable dummy load is a radio frequency termination used in place of the antenna, which has the same electrical properties as the intended antenna without radiated emissions. A device with a suitable dummy load must supply identical signals to the dummy load, as it would if an antenna were connected.

**Table 8.1-1: Conducted emissions limit**

| Frequency of emission,<br>MHz | Quasi-peak | Conducted limit, dB $\mu$ V | Average** |
|-------------------------------|------------|-----------------------------|-----------|
| 0.15–0.5                      | 66 to 56*  | 56 to 46*                   |           |
| 0.5–5                         | 56         | 46                          |           |
| 5–30                          | 60         | 50                          |           |

Note: \* - The level decreases linearly with the logarithm of the frequency.

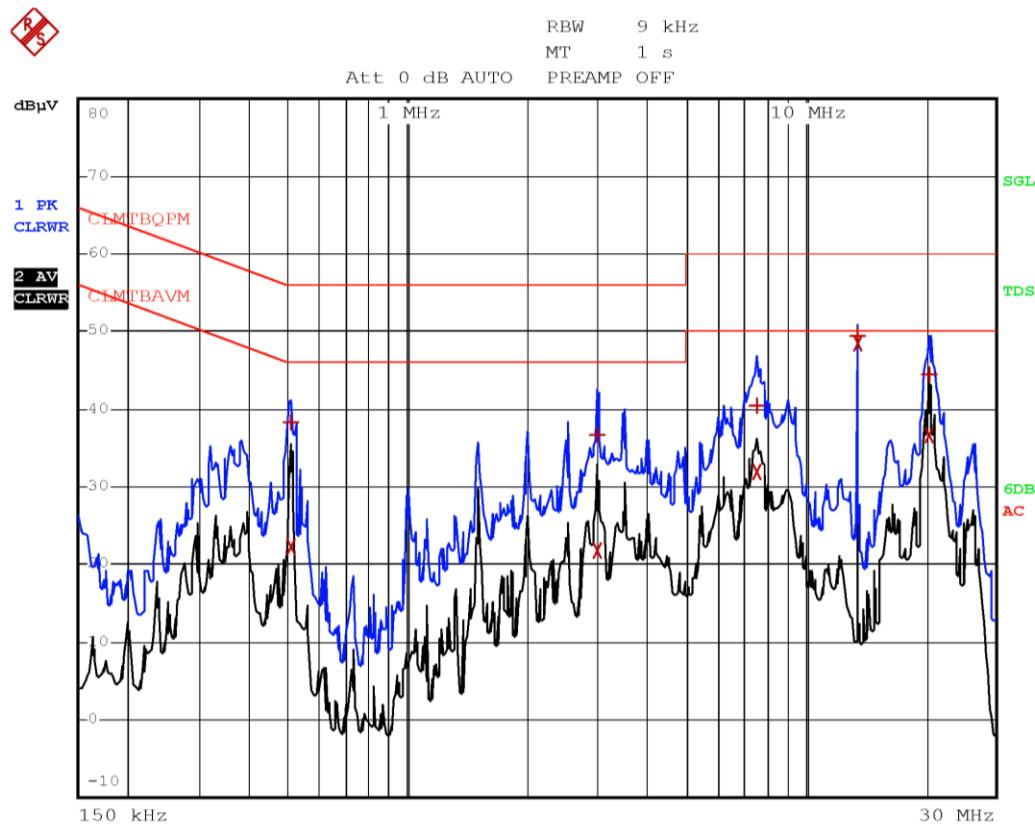
\*\* - A linear average detector is required.

#### 8.1.2 Test summary

|               |                   |                   |           |
|---------------|-------------------|-------------------|-----------|
| Test date     | February 14, 2020 | Temperature       | 21 °C     |
| Test engineer | G. Tepelena       | Air pressure      | 1025 mbar |
| Verdict       | Pass              | Relative humidity | 46 %      |

#### 8.1.3 Observations, settings and special notes

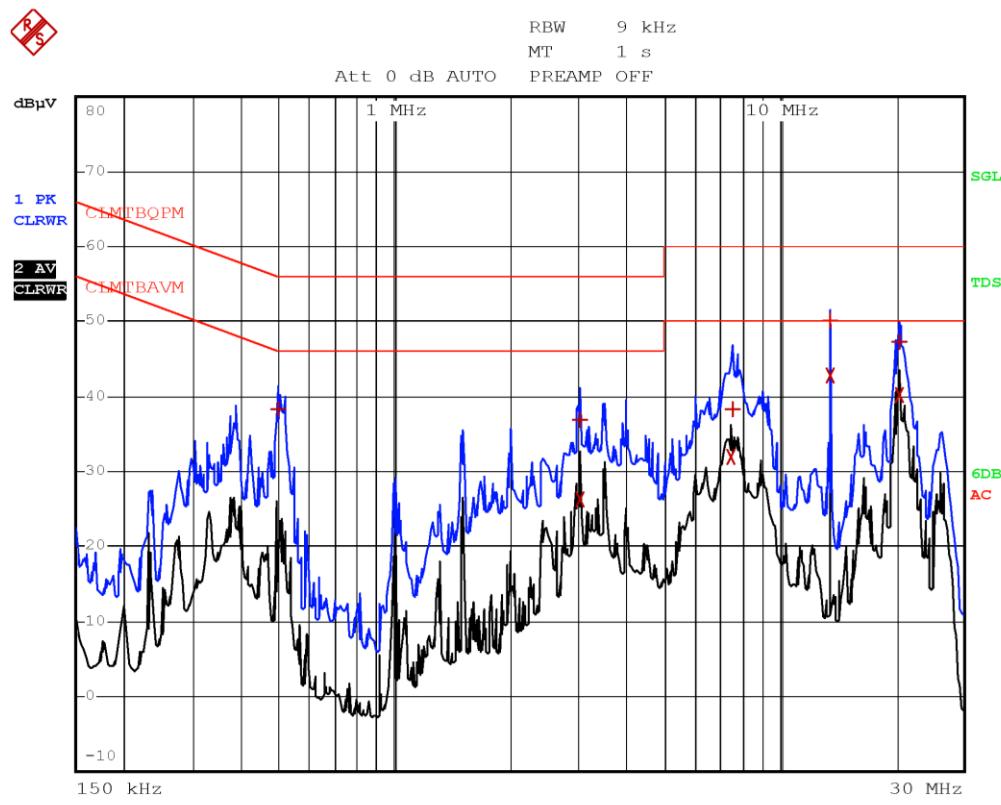
The EUT was set up as tabletop configuration. A commercial AC/DC adapter (not under test) has been used during the test.


The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Test receiver settings:

|                      |                                                                  |
|----------------------|------------------------------------------------------------------|
| Frequency span       | 150 kHz to 30 MHz                                                |
| Detector mode        | Peak and Average (preview mode); Quasi-Peak (final measurements) |
| Resolution bandwidth | 9 kHz                                                            |
| Video bandwidth      | 30 kHz                                                           |
| Trace mode           | Max Hold                                                         |
| Measurement time     | 1000 ms                                                          |


8.1.4 Test data



Date: 11.FEB.2020 15:19:52

*Conducted emissions on phase line*

| Frequency (MHz) | Level (dBμV) | Limit (dBμV) | Margin (dB) | Detector |
|-----------------|--------------|--------------|-------------|----------|
| 0.510           | 38.3         | 56           | -17.7       | QP       |
| 0.510           | 22.2         | 45.9         | -23.7       | Av       |
| 3.002           | 36.7         | 55.9         | -19.2       | QP       |
| 3.002           | 21.6         | 45.9         | -24.3       | Av       |
| 7.526           | 31.9         | 50           | -18.0       | Av       |
| 7.526           | 40.4         | 60           | -19.5       | QP       |
| 7.556           | 49.4         | 60           | -10.5       | QP       |
| 13.562          | 48.4         | 50           | -1.5        | Av       |
| 13.562          | 44.5         | 50           | -15.4       | QP       |
| 20.474          | 36.6         | 50           | -13.3       | Av       |



Date: 11.FEB.2020 15:24:11

Conducted emissions on neutral line

| Frequency (MHz) | Level (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Detector |
|-----------------|--------------------|--------------------|-------------|----------|
| 0.510           | 38.3               | 56                 | -17.7       | QP       |
| 0.510           | 22.2               | 45.9               | -23.7       | Av       |
| 3.002           | 36.7               | 55.9               | -19.2       | QP       |
| 3.002           | 21.6               | 45.9               | -24.3       | Av       |
| 7.526           | 31.9               | 50                 | -18.0       | Av       |
| 7.526           | 40.4               | 60                 | -19.5       | QP       |
| 7.556           | 49.4               | 60                 | -10.5       | QP       |
| 13.562          | 48.4               | 50                 | -1.5        | Av       |
| 13.562          | 44.5               | 50                 | -15.4       | QP       |
| 20.474          | 36.6               | 50                 | -13.3       | Av       |

## 8.2 FCC 15.215(c) Occupied (Emission) bandwidth

### 8.2.1 Definitions and limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80 % of the permitted band in order to minimize the possibility of out-of-band operation.

### 8.2.2 Test summary

|               |                   |                   |           |
|---------------|-------------------|-------------------|-----------|
| Test date     | February 14, 2020 | Temperature       | 21 °C     |
| Test engineer | G. Tepelena       | Air pressure      | 1015 mbar |
| Verdict       | Pass              | Relative humidity | 58 %      |

### 8.2.3 Observations, settings and special notes

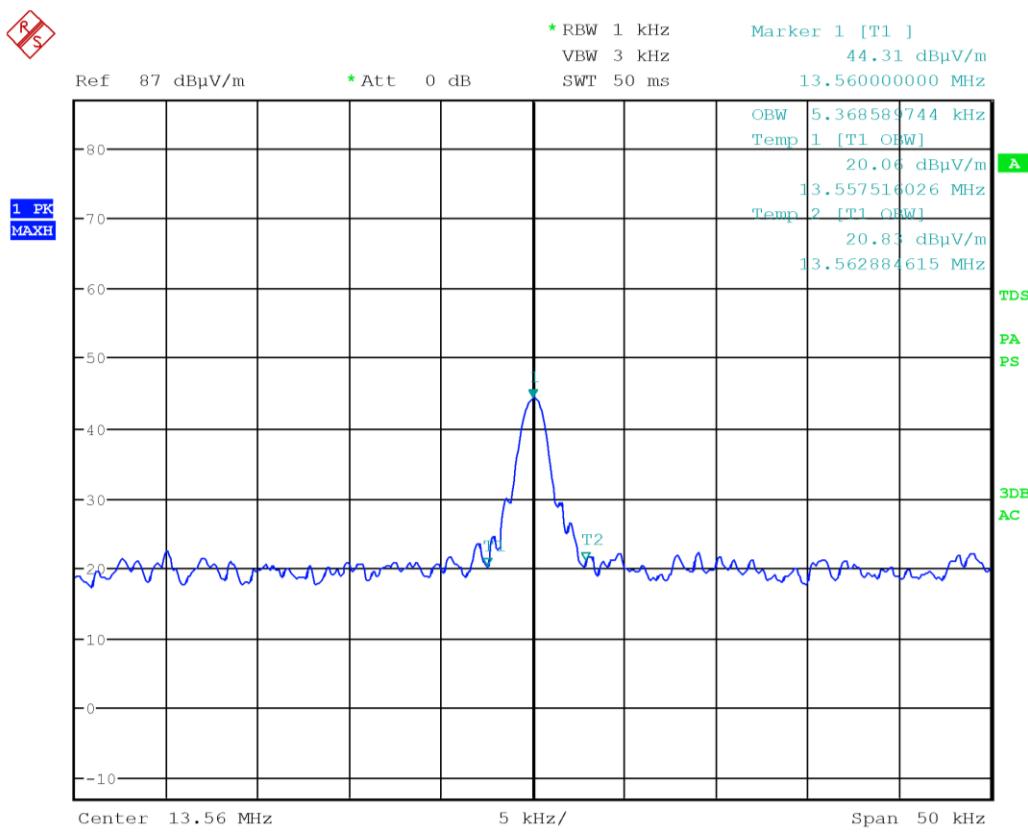
Spectrum analyzer settings:

|                      |              |
|----------------------|--------------|
| Detector mode        | Peak         |
| Resolution bandwidth | ≥1 % of span |
| Video bandwidth      | RBW × 3      |
| Trace mode           | Max Hold     |


### 8.2.4 Test data

*Table 8.2-1: Lower 20 dBc frequency cross result*

| Fundamental frequency, MHz | Lower 20 dBc frequency cross, MHz | Limit, MHz | Margin, kHz |
|----------------------------|-----------------------------------|------------|-------------|
| 13.560                     | 13.558                            | 13.553     | 5           |


*Table 8.2-2: Upper 20 dBc frequency cross result*

| Fundamental frequency, MHz | Upper 20 dBc frequency cross, MHz | Limit, MHz | Margin, kHz |
|----------------------------|-----------------------------------|------------|-------------|
| 13.560                     | 13.562                            | 13.567     | 5           |



Date: 13.FEB.2020 18:16:23

Figure 8.2-1: 20 dB bandwidth



Date: 13.FEB.2020 18:21:15

Figure 8.2-2: 99% dB bandwidth

## 8.3 FCC 15.225(a–c) Field strength within the 13.110–14.010 MHz band

### 8.3.1 Definitions and limits

- a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15848  $\mu$ V/m (84 dB $\mu$ V/m) at 30 m.
- b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334  $\mu$ V/m (50.5 dB $\mu$ V/m) at 30 m.
- c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106  $\mu$ V/m (40.5 dB $\mu$ V/m) at 30 m.

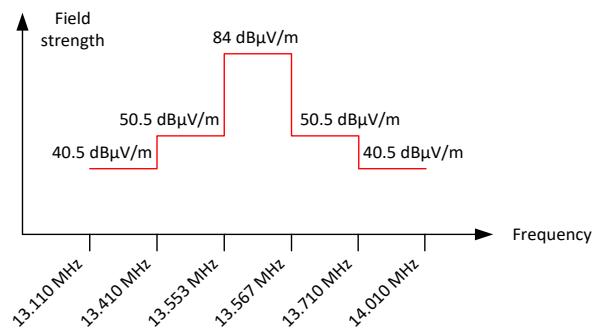



Figure 8.3-1: In-band spurious emissions limit

### 8.3.2 Test summary

|               |                   |                   |           |
|---------------|-------------------|-------------------|-----------|
| Test date     | February 14, 2020 | Temperature       | 23 °C     |
| Test engineer | G. Tepelena       | Air pressure      | 1015 mbar |
| Verdict       | Pass              | Relative humidity | 58 %      |

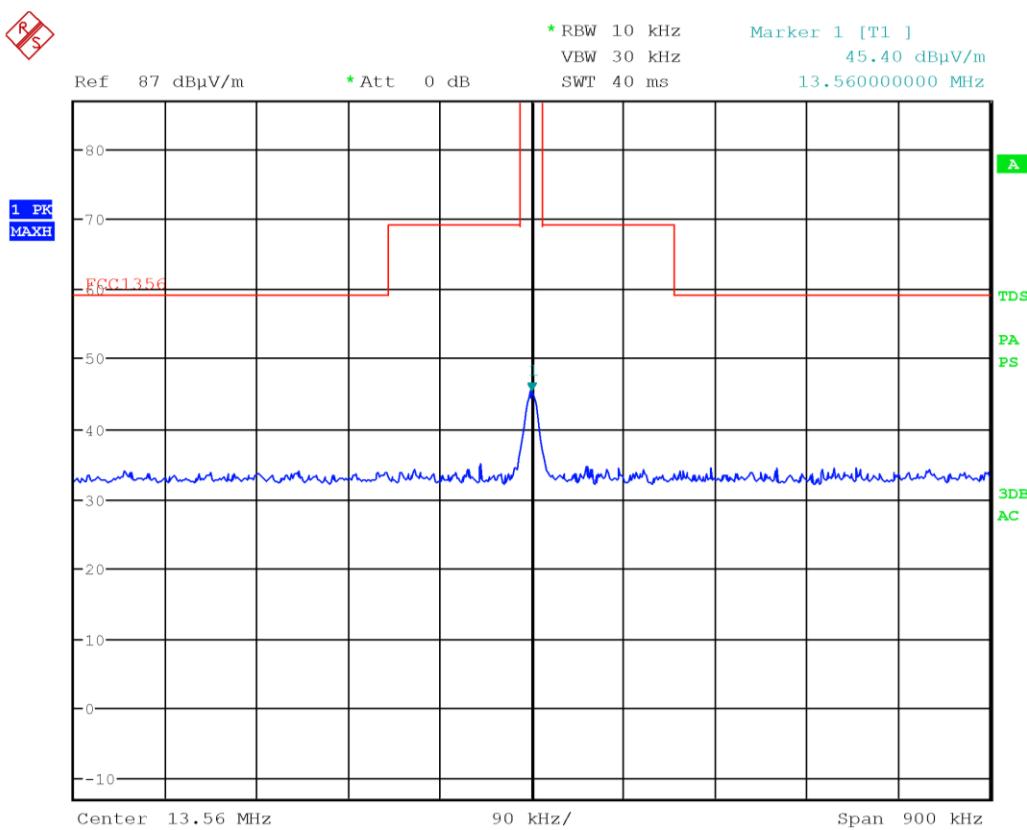
### 8.3.3 Observations/special notes

The measurements were performed at the distance of 10 m. 40 dB distance correction factor\* was applied to the measurement result in order to comply with 30 m limits.

\* 30 m to 10 m distance correction factor calculation (for 13 MHz band):

$$40 \times \log_{10} (10 \text{ m}/30 \text{ m}) = 40 \times \log_{10} (0.333) = -19.1 \text{ dB}$$

Spectrum analyzer settings:


|                      |          |
|----------------------|----------|
| Detector mode        | Peak     |
| Resolution bandwidth | 10 kHz   |
| Video bandwidth      | 30 kHz   |
| Trace mode           | Max Hold |

### 8.3.4 Test data

**Table 8.3-1: Field strength measurements results**

| Frequency range, MHz | Frequency, MHz | Field strength at 10 m, dB $\mu$ V/m | Calculated field strength at 30 m, dB $\mu$ V/m | Limit, dB $\mu$ V/m | Margin, dB |
|----------------------|----------------|--------------------------------------|-------------------------------------------------|---------------------|------------|
| 13.553–13.567        | 13.560         | 45.4                                 | 26.3                                            | 84.00               | 57.7       |
| 13.410–13.553        | 13.540         | 32.5                                 | 13.4                                            | 50.50               | 37.1       |
| 13.567–13.710        | 13.575         | 32.4                                 | 13.3                                            | 50.50               | 37.2       |
| 13.110–13.410        | 13.345         | 32.2                                 | 13.2                                            | 40.50               | 27.3       |
| 13.710–14.010        | 13.765         | 32.1                                 | 13.1                                            | 40.50               | 27.4       |

Note: Calculated field strength at 30 m = Measured field strength at 10 m – 19.1 dB



Date: 13.FEB.2020 19:09:15

**Figure 8.3-2: Field strength within 13.110–14.010 MHz band**

## 8.4 FCC 15.225(d) Field strength of emissions outside 13.110–14.010 MHz band

### 8.4.1 Definitions and limits

The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in §15.209. The field strength of emissions appearing within restricted bands (as specified in §15.205) shall not exceed the limits from §15.209.

**Table 8.4-1: FCC §15.209 – Radiated emission limits**

| Frequency,<br>MHz | Field strength of emissions<br>µV/m | Field strength of emissions<br>dBµV/m | Measurement distance, m |
|-------------------|-------------------------------------|---------------------------------------|-------------------------|
| 0.009–0.490       | 2400/F                              | 67.6 – 20 × log <sub>10</sub> (F)     | 300                     |
| 0.490–1.705       | 24000/F                             | 87.6 – 20 × log <sub>10</sub> (F)     | 30                      |
| 1.705–30.0        | 30                                  | 29.5                                  | 30                      |
| 30–88             | 100                                 | 40.0                                  | 3                       |
| 88–216            | 150                                 | 43.5                                  | 3                       |
| 216–960           | 200                                 | 46.0                                  | 3                       |
| above 960         | 500                                 | 54.0                                  | 3                       |

Notes: In the emission table above, the tighter limit applies at the band edges. For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

**Table 8.4-2: FCC restricted frequency bands**

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090–0.110       | 16.42–16.423        | 399.9–410     | 4.5–5.15    |
| 0.495–0.505       | 16.69475–16.69525   | 608–614       | 5.35–5.46   |
| 2.1735–2.1905     | 16.80425–16.80475   | 960–1240      | 7.25–7.75   |
| 4.125–4.128       | 25.5–25.67          | 1300–1427     | 8.025–8.5   |
| 4.17725–4.17775   | 37.5–38.25          | 1435–1626.5   | 9.0–9.2     |
| 4.20725–4.20775   | 73–74.6             | 1645.5–1646.5 | 9.3–9.5     |
| 6.215–6.218       | 74.8–75.2           | 1660–1710     | 10.6–12.7   |
| 6.26775–6.26825   | 108–121.94          | 1718.8–1722.2 | 13.25–13.4  |
| 6.31175–6.31225   | 123–138             | 2200–2300     | 14.47–14.5  |
| 8.291–8.294       | 149.9–150.05        | 2310–2390     | 15.35–16.2  |
| 8.362–8.366       | 156.52475–156.52525 | 2483.5–2500   | 17.7–21.4   |
| 8.37625–8.38675   | 156.7–156.9         | 2690–2900     | 22.01–23.12 |
| 8.41425–8.41475   | 162.0125–167.17     | 3260–3267     | 23.6–24.0   |
| 12.29–12.293      | 167.72–173.2        | 3332–3339     | 31.2–31.8   |
| 12.51975–12.52025 | 240–285             | 3345.8–3358   | 36.43–36.5  |
| 12.57675–12.57725 | 322–335.4           | 3600–4400     | Above 38.6  |
| 13.36–13.41       |                     |               |             |

### 8.4.2 Test summary

|               |                   |                   |           |
|---------------|-------------------|-------------------|-----------|
| Test date     | February 14, 2020 | Temperature       | 21 °C     |
| Test engineer | G. Tepelena       | Air pressure      | 1015 mbar |
| Verdict       | Pass              | Relative humidity | 57 %      |

#### 8.4.3 Observations, settings and special notes

---

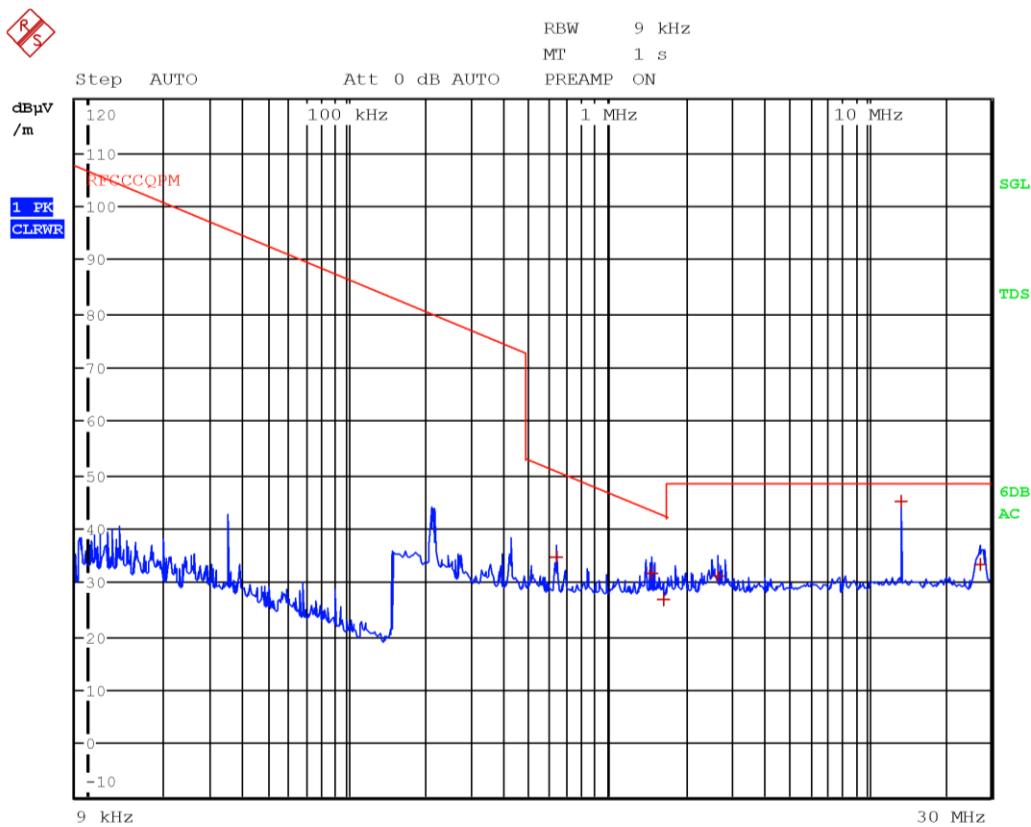
The spectrum was searched from 9 kHz to 1 GHz.

Radiated measurements were performed at a distance of 10 m for frequency below 30 MHz and 3 m for frequencies above 30 MHz.

Receiver settings for frequencies from 9 kHz to 150 kHz:

|                      |            |
|----------------------|------------|
| Detector mode        | Quasi-Peak |
| Resolution bandwidth | 0.2 kHz    |
| Trace mode           | Max Hold   |
| Measurement time     | 1000 ms    |

Receiver settings for frequencies from 150 kHz to 30 MHz:


|                      |            |
|----------------------|------------|
| Detector mode        | Quasi-Peak |
| Resolution bandwidth | 9 kHz      |
| Trace mode           | Max Hold   |
| Measurement time     | 1000 ms    |

Receiver settings for frequencies above 30 MHz:

|                      |            |
|----------------------|------------|
| Detector mode        | Quasi-Peak |
| Resolution bandwidth | 120 kHz    |
| Trace mode           | Max Hold   |
| Measurement time     | 1000 ms    |

Note: all measurement results indicated in the plot were taken with a peak detector. The red cross refer to Quasi-Peak final measurement.

8.4.4 Test data



Date: 13.FEB.2020 18:09:09

Figure 8.4-1: Field strength of spurious emissions below 30 MHz

| Frequency (MHz) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Detector |
|-----------------|----------------------|----------------------|-------------|----------|
| 0.6340          | 34.7                 | 50.7                 | -16.0       | QP       |
| 1.4820          | 31.8                 | 43.3                 | -11.6       | QP       |
| 1.6500          | 26.7                 | 42.4                 | -15.7       | QP       |
| 2.6660          | 31.2                 | 48.6                 | -17.4       | QP       |
| 27.3180         | 33.4                 | 48.6                 | -15.2       | QP       |

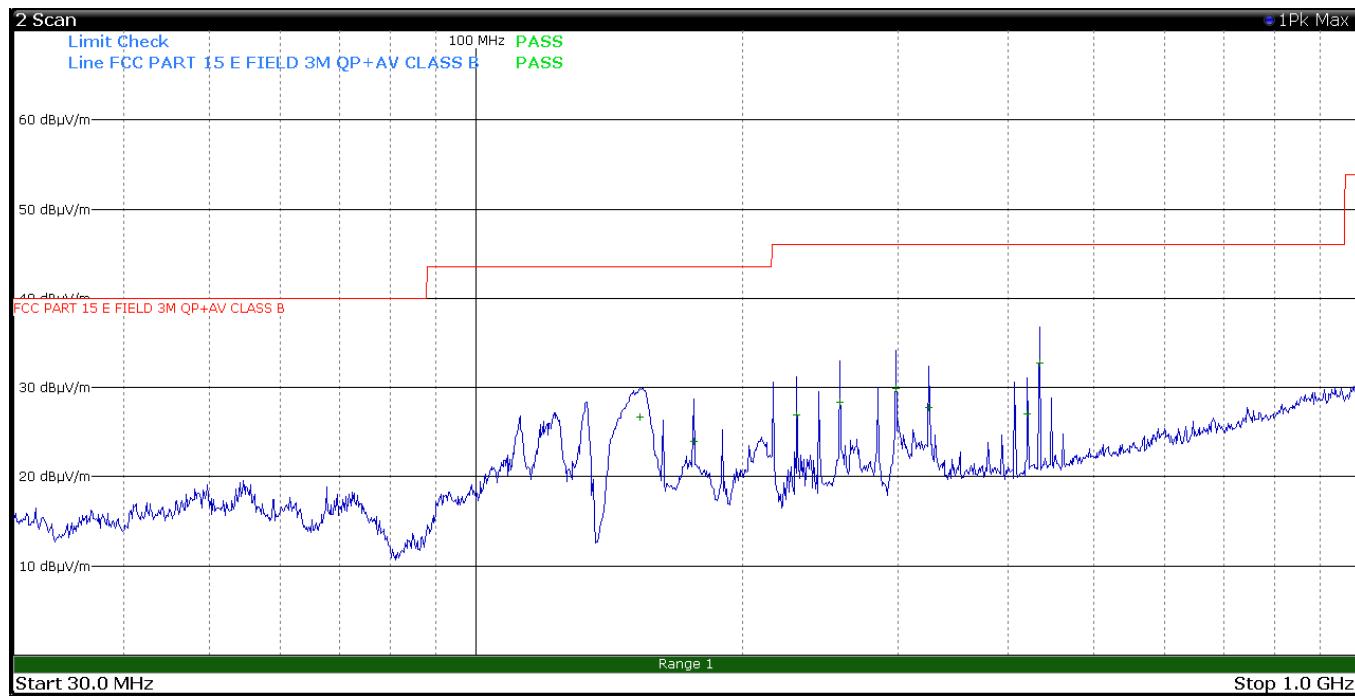



Figure 8.4-2: Field strength of spurious emissions above 30 MHz with antenna in horizontal polarization

| Frequency (MHz) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Detector |
|-----------------|----------------------|----------------------|-------------|----------|
| 153.3600        | 26.8                 | 43.5                 | -16.7       | QP       |
| 176.2800        | 24.0                 | 43.5                 | -19.5       | QP       |
| 230.5200        | 27.0                 | 46.0                 | -19.0       | QP       |
| 257.6400        | 28.5                 | 46.0                 | -17.5       | QP       |
| 298.3200        | 30.0                 | 46.0                 | -16.0       | QP       |
| 325.4400        | 27.8                 | 46.0                 | -18.2       | QP       |
| 420.3600        | 27.1                 | 46.0                 | -18.9       | QP       |
| 433.9200        | 32.8                 | 46.0                 | -13.2       | QP       |

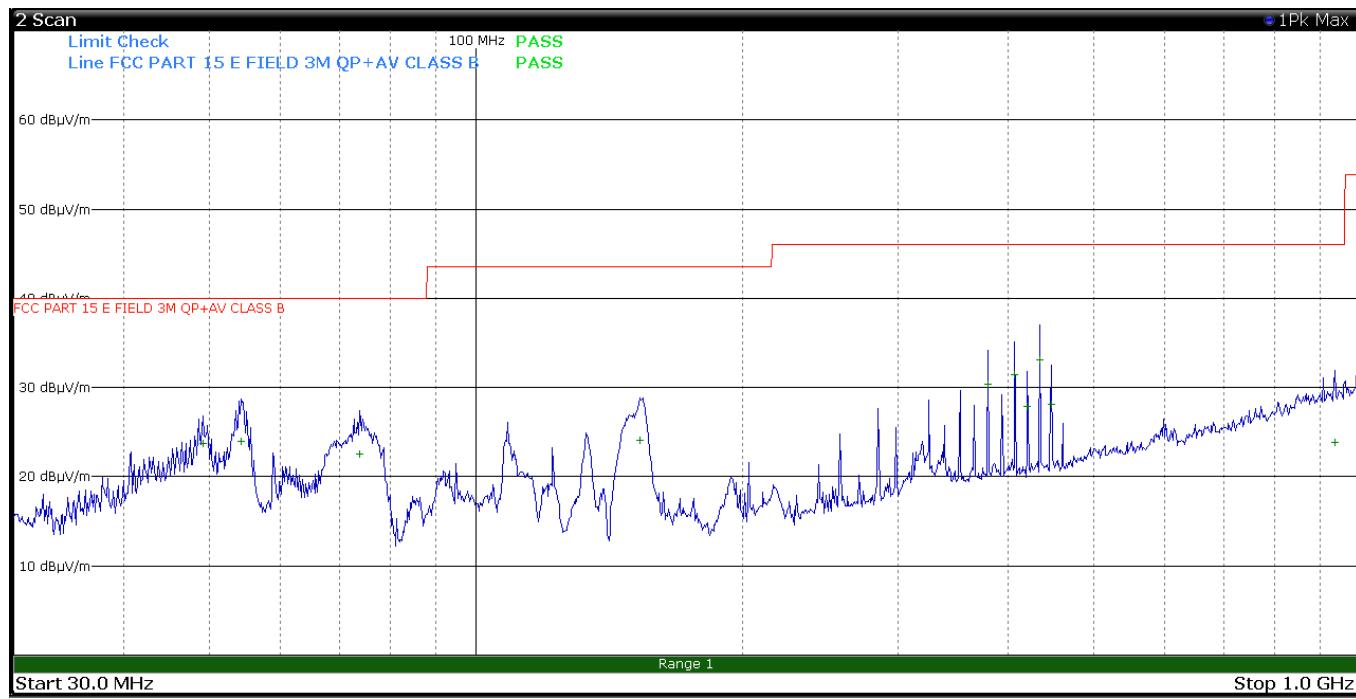



Figure 8.4-3: Field strength of spurious emissions above 30 MHz with antenna in vertical polarization

| Frequency (MHz) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Detector |
|-----------------|----------------------|----------------------|-------------|----------|
| 49.1100         | 23.8                 | 40.0                 | -16.2       | QP       |
| 54.2400         | 24.0                 | 40.0                 | -16.0       | QP       |
| 73.9200         | 22.6                 | 40.0                 | -17.4       | QP       |
| 153.3900        | 24.2                 | 43.5                 | -19.3       | QP       |
| 379.6800        | 30.4                 | 46.0                 | -15.6       | QP       |
| 406.8000        | 31.5                 | 46.0                 | -14.5       | QP       |
| 420.3600        | 27.9                 | 46.0                 | -18.1       | QP       |
| 433.9200        | 33.1                 | 46.0                 | -12.9       | QP       |
| 447.4800        | 28.2                 | 46.0                 | -17.8       | QP       |
| 935.6400        | 23.9                 | 46.0                 | -22.1       | QP       |

## 8.5 FCC 15.225(e) Frequency tolerance of the carrier signal

### 8.5.1 Definitions and limits

The frequency tolerance of the carrier signal shall be maintained within  $\pm 0.01\%$  ( $\pm 100$  ppm) of the operating frequency over a temperature variation of  $-20\text{ }^{\circ}\text{C}$  to  $+50\text{ }^{\circ}\text{C}$  at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of  $20\text{ }^{\circ}\text{C}$ . For battery operated equipment, the equipment tests shall be performed using a new battery.

### 8.5.2 Test summary

|               |                   |                   |           |
|---------------|-------------------|-------------------|-----------|
| Test date     | February 14, 2020 | Temperature       | 20 °C     |
| Test engineer | G. Tepelena       | Air pressure      | 1020 mbar |
| Verdict       | Pass              | Relative humidity | 55 %      |

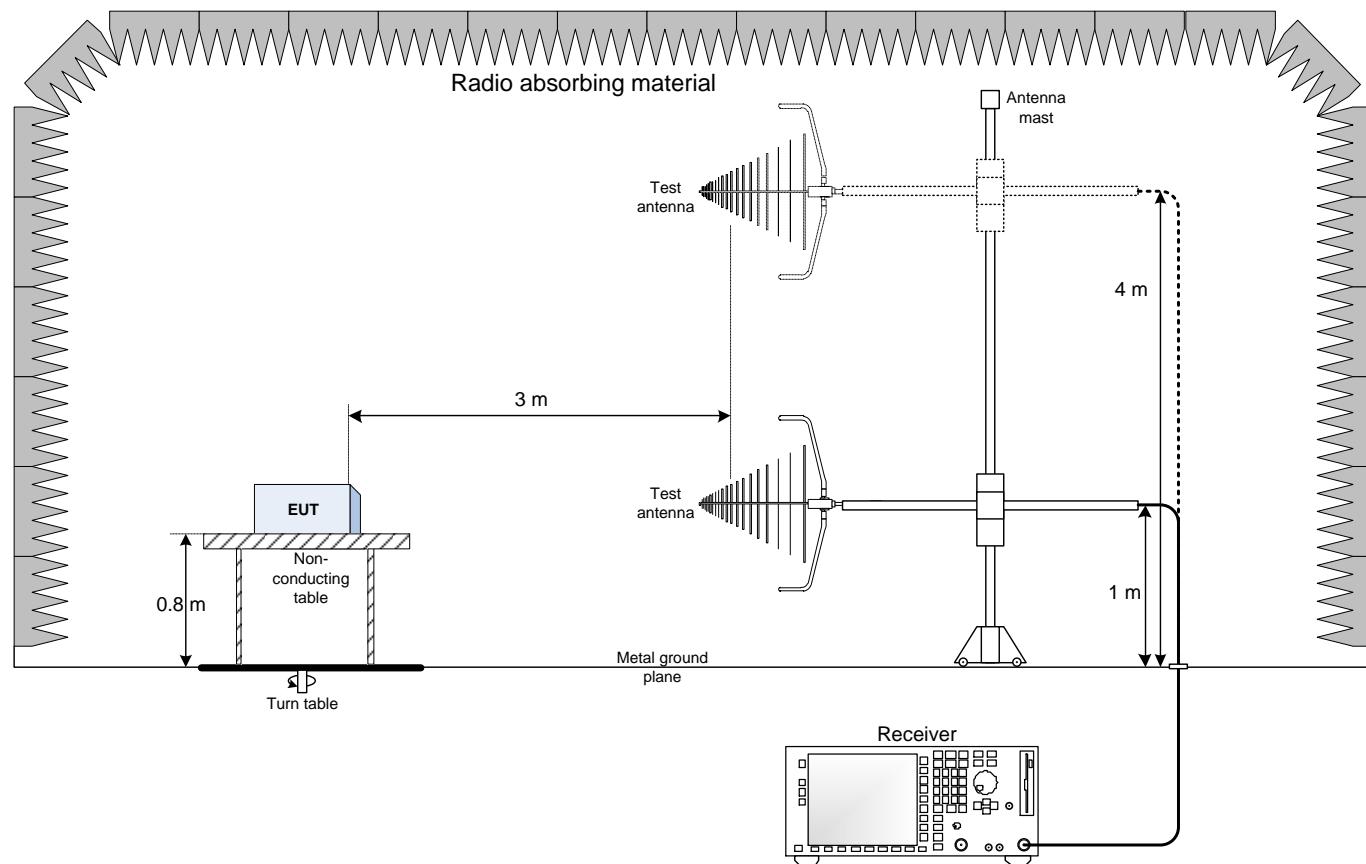
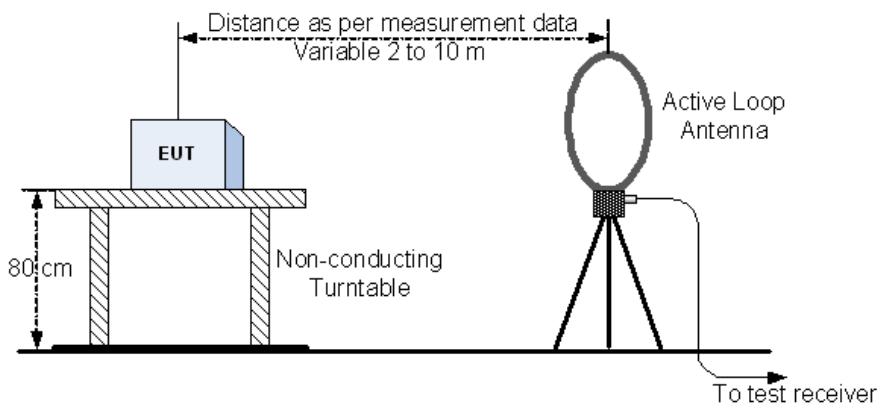
### 8.5.3 Observations, settings and special notes

Spectrum analyzer settings:

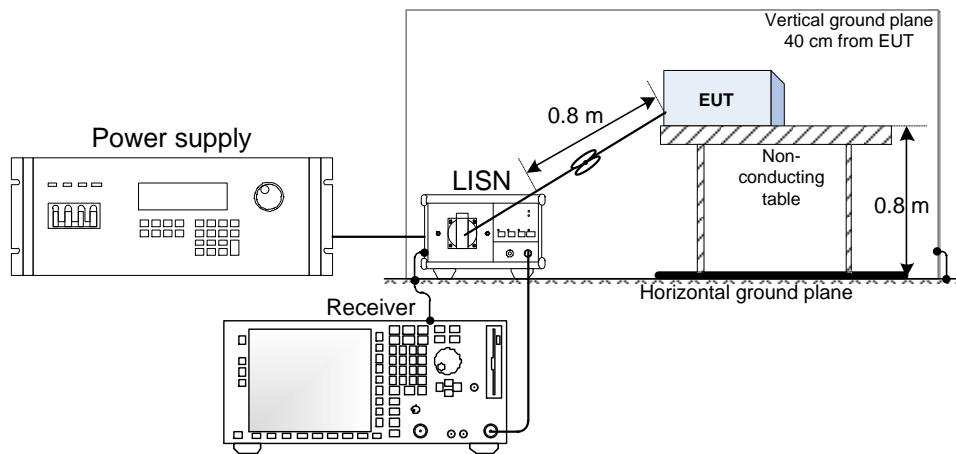
|                      |                                  |
|----------------------|----------------------------------|
| Detector mode        | Peak                             |
| Resolution bandwidth | $\geq 1\%$ of emission bandwidth |
| Video bandwidth      | RBW $\times 3$                   |
| Trace mode           | Max Hold                         |

### 8.5.4 Test data

**Table 8.5-1: Frequency drift measurements results**



| Test conditions | Frequency, MHz | Frequency drift, $\pm$ ppm | Limit, $\pm$ ppm | Margin, ppm |
|-----------------|----------------|----------------------------|------------------|-------------|
| +50 °C, Nominal | 13.56029       | 2.2                        | 100              | 97.8        |
| +20 °C, +15 %   | 13.56032       | 0                          | 100              | 100         |
| +20 °C, Nominal | 13.56032       | Reference                  | Reference        | Reference   |
| +20 °C, -15 %   | 13.56032       | 0                          | 100              | 100         |
| -20 °C, Nominal | 13.56033       | 0.7                        | 100              | 99.3        |

Note: frequency drift was calculated as follows:


$$\text{Frequency drift (ppm)} = ((F_{\text{measured}} - F_{\text{reference}}) \div F_{\text{reference}}) \times 1 \times 10^6$$

## Section 9. Block diagrams of test set-ups

### 9.1 Radiated emissions set-up



## 9.2 Conducted emissions set-up



## Section 10. Photos

---

### 10.1 Photos of the test set-up

---





## 10.2 Photos of the EUT

---





End of report