

**TEST REPORT****Report No.: 25010937HKG-004**

Nacon (HK) Limited

Application For Original Grant of 47 CFR Part 15 Certification

Single New of RSS-247 Issue 3 Equipment Certification

Gaming headset with dongle

**FCC ID: 2AVPR-600MAX****IC: 25872-600MAX**

This report contains the data of Bluetooth 5.3 portion only

**Prepared and Checked by:****Approved by:**

Signed on File

Leung Chun Ning, Peter  
EngineerWong Cheuk Ho, Herbert  
Assistant Manager  
Date: May 20, 2025

---

Intertek's standard Terms and Conditions can be obtained at our website <http://www.intertek.com/terms/>.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

© 2017 Intertek

**TEST REPORT****GENERAL INFORMATION**

|                                    |                                                                                                                                                      |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Grantee:</b>                    | Nacon (HK) Limited                                                                                                                                   |
| <b>Grantee Address:</b>            | 17/F., 148 Electric Road,<br>North Point, Hong Kong.                                                                                                 |
| <b>FCC Specification Standard:</b> | FCC Part 15, October 1, 2023 Edition                                                                                                                 |
| <b>FCC ID:</b>                     | 2AVPR-600MAX                                                                                                                                         |
| <b>FCC Model(s):</b>               | RIG600MAX                                                                                                                                            |
| <b>IC Specification Standard:</b>  | RSS-247 Issue 3, August 2023<br>RSS-Gen Issue 5 Amendment 2, February 2021                                                                           |
| <b>IC:</b>                         | 25872-600MAX                                                                                                                                         |
| <b>HVIN:</b>                       | 600MAX                                                                                                                                               |
| <b>PMN:</b>                        | Gaming headset                                                                                                                                       |
| <b>Type of EUT:</b>                | Spread Spectrum Transmitter                                                                                                                          |
| <b>Description of EUT:</b>         | Gaming headset with dongle                                                                                                                           |
| <b>Sample Receipt Date:</b>        | April 14, 2025                                                                                                                                       |
| <b>Date of Test:</b>               | April 18, 2025 to April 24, 2025                                                                                                                     |
| <b>Report Date:</b>                | May 20, 2025                                                                                                                                         |
| <b>Environmental Conditions:</b>   | Temperature: +10 to 40°C<br>Humidity: 10 to 90%                                                                                                      |
| <b>Conclusion:</b>                 | Test was conducted by client submitted sample.<br>The submitted sample as received complied with the 47 CFR Part 15 / RSS-247 Issue 3 Certification. |

This report contains the data of Bluetooth 5.3 portion only

**TEST REPORT****TABLE OF CONTENTS**

|                  |                                                                               |           |
|------------------|-------------------------------------------------------------------------------|-----------|
| <b>EXHIBIT 1</b> | <b>TEST RESULTS SUMMARY &amp; STATEMENT OF COMPLIANCE</b>                     | <b>4</b>  |
| 1.1              | Summary of Test Results.....                                                  | 4         |
| 1.2              | Statement of Compliance .....                                                 | 4         |
| <b>EXHIBIT 2</b> | <b>GENERAL DESCRIPTION</b>                                                    | <b>5</b>  |
| 2.1              | Product Description .....                                                     | 5         |
| 2.2              | Test Methodology .....                                                        | 5         |
| 2.3              | Test Facility.....                                                            | 5         |
| 2.4              | Related Submittal Grants.....                                                 | 5         |
| <b>EXHIBIT 3</b> | <b>SYSTEM TEST CONFIGURATION</b>                                              | <b>6</b>  |
| 3.1              | Justification .....                                                           | 6         |
| 3.2              | EUT Exercising Software.....                                                  | 7         |
| 3.3              | Supporting Equipment List and Description .....                               | 8         |
| 3.4              | Measurement Uncertainty.....                                                  | 8         |
| <b>EXHIBIT 4</b> | <b>TEST RESULTS</b>                                                           | <b>9</b>  |
| 4.1              | Maximum Conducted (Peak) Output Power at Antenna Terminals.....               | 9         |
| 4.2              | Maximum 20dB RF Bandwidth and Occupied Bandwidth.....                         | 12        |
| 4.3              | Minimum Number of Hopping Frequencies .....                                   | 14        |
| 4.4              | Minimum Hopping Channel Carrier Frequency Separation .....                    | 16        |
| 4.5              | Average Channel Occupancy Time .....                                          | 18        |
| 4.6              | Out of Band Conducted Emissions.....                                          | 20        |
| 4.7              | Field Strength Calculation .....                                              | 23        |
| 4.8              | Transmitter Radiated Emission in Restricted Bands and Spurious Emission ..... | 24        |
| 4.9              | AC Power Line Conducted Emission .....                                        | 30        |
| <b>EXHIBIT 5</b> | <b>EQUIPMENT LIST</b>                                                         | <b>33</b> |

## TEST REPORT

### EXHIBIT 1 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

#### 1.1 Summary of Test Results

| Test Items                                                      | FCC Part 15<br>Section | RSS-210/<br>RSS-Gen <sup>#</sup> | Test<br>Engineer | Results | Details<br>See<br>Section |
|-----------------------------------------------------------------|------------------------|----------------------------------|------------------|---------|---------------------------|
| Antenna Requirement                                             | 15.203                 | 8.3 <sup>#</sup>                 | N/A              | Pass    | 2.1                       |
| Max. Conducted Output Power                                     | 15.247(b)(1) &<br>(4)  | 5.4(2)                           | David Du         | Pass    | 4.1                       |
| Max. 20dB RF Bandwidth                                          | N/A                    | 5.1(1)                           | David Du         | Pass    | 4.2                       |
| Min. No. of Hopping Frequencies                                 | 15.247(a)(1)(iii)      | 5.1(4)                           | David Du         | Pass    | 4.3                       |
| Min. Hopping Channel Carrier<br>Frequency Separation            | 15.247(a)(1)           | 5.1(2)                           | David Du         | Pass    | 4.4                       |
| Average Time of Occupancy                                       | 15.247(a)(1)(iii)      | 5.1(4)                           | David Du         | Pass    | 4.5                       |
| Out of Band Antenna Conducted<br>Emission                       | 15.247(d)              | 5.5                              | David Du         | Pass    | 4.6                       |
| Radiated Emission in Restricted<br>Bands and Spurious Emissions | 15.247(d)              | 8.10 <sup>#</sup>                | Leo Li           | Pass    | 4.8                       |
| AC Power Line Conducted Emission                                | 15.207 & 15.107        | 8.8 <sup>#</sup>                 | Linson Xie       | Pass    | 4.9                       |

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

#### 1.2 Statement of Compliance

The equipment under test is found to be complying with the following standards:

FCC Part 15, October 1, 2023 Edition

RSS-247 Issue 3, August 2023

RSS-Gen Issue 5 Amendment 2, February 2021

## TEST REPORT

### EXHIBIT 2 GENERAL DESCRIPTION

#### 2.1 Product Description

The Equipment Under Test (EUT), is a 2.4GHz and Bluetooth 5.3 Transceiver for a Gaming headset. For the Bluetooth 5.3 mode, the sample supplied operated on 79 channels, normally at 2402 - 2480MHz. The channels are separated with 1MHz spacing. For the 2.4GHz mode, the sample supplied operated on 40 channels, normally at 2402 - 2480MHz. The channels are separated with 2MHz spacing. The EUT is powered by 3.8V Li-ion battery or notebook USB port (5VDC).

The antenna(s) used in the EUT is integral, and the test sample is a prototype.

Maximum Antenna Gain: 4.0dBi

The circuit description and frequency hopping algorithm are attached in the Appendix and saved with filename: descri.pdf.

#### 2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in radiated emission test sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. Antenna port conducted measurements were performed according to ANSI C63.10 (2013) and KDB Publication No. 558074 D01 v05r02 (April 02, 2019). All other measurements were made in accordance with the procedures in 47 CFR Part 2 and RSS-Gen Issue 5 Amendment 2, February 2021.

#### 2.3 Test Facility

The radiated emission test site and antenna port conducted measurement facility used to collect the radiated data and conductive data are at Shenzhen UnionTrust Quality and Technology Co., Ltd. at 16/F., Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109. This test facility and site measurement data have been fully placed on file with the FCC and Industry Canada No.: 21600, CABID "HKAP01", "CN0023" ..

#### 2.4 Related Submittal Grants

This is a single application for certification of a transceiver (Bluetooth 5.3 Portion).

## TEST REPORT

### EXHIBIT 3 SYSTEM TEST CONFIGURATION

#### 3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit / receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT is powered by 3.8V Li-ion battery or notebook USB port (5VDC).

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable at 0.8m height from the ground plane for emission testing at or below 1GHz and 1.5m for emission measurements above 1GHz. If the EUT attached to peripherals, they were connected and operational (as typical as possible).

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

For transmitter radiated measurement, the spectrum analyzer resolution bandwidth was 100 kHz for frequencies below 1000 MHz. The resolution bandwidth was 3 MHz for frequencies above 1000 MHz.

Radiated emission measurement for transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209 / RSS-247 2.5. Digital circuitries used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 / RSS-247 Section 5.5 Limits.

## TEST REPORT

### 3.1 Justification (Cont'd)

Detector function for radiated emissions was in peak mode. Average readings, when required, were taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.8.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis... Pulsed RF*. The effective period (Teff) was referred to Exhibit 4.8.3. With the resolution bandwidth 1MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC power line-conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

All relevant operation modes have been tested, and the worst-case data is included in this report.

### 3.2 EUT Exercising Software

The EUT exercise program (AB1565/68 Lab Test Tool-2.11.2) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

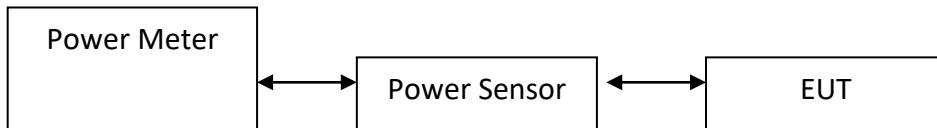
**TEST REPORT****3.3 Supporting Equipment List and Description**

| <b>Description</b>             | <b>Remark</b>          |
|--------------------------------|------------------------|
| HUAWEI KLVF-16 Notebook        | Provided by UnionTrust |
| DELL MS111 Mouse               | Provided by UnionTrust |
| 0.1m Antenna SMA Cable         | Provided by Applicant  |
| 0.5m USB Type-C Charging Cable | Provided by Applicant  |

**3.4 Measurement Uncertainty**

Decision Rule for compliance: For FCC/IC standard, the measured value must be within the limits of applicable standard without accounting for the measurement uncertainty. For EN/IEC/HKTA/HKTC standard, conformity rules will be used as per standard directly excepted EN/IEC 61000-3-2, EN/IEC 61000-3-3, HKTA1004, HKCA1008, HKTA1019, HKTA1020, HKTA1041 and HKTA1044.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.


## TEST REPORT

### EXHIBIT 4 TEST RESULTS

#### 4.1 Maximum Conducted (Peak) Output Power at Antenna Terminals

##### RF Conducted measurement Test Setup by a Spectrum Analyzer

The figure below shows the test setup, which is utilized to make these measurements.



- The antenna power of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.
- The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for RBW>20dB bandwidth and power was read directly in dBm. External attenuation and cable loss were compensated for using the OFFSET function of the analyzer.

Bluetooth 5.3 Peak Antenna Gain = 4.0 dBi

| Frequency (MHz)      | Output in dBm | Output in mWatt |
|----------------------|---------------|-----------------|
| Low Channel: 2402    | -1.22         | 0.76            |
| Middle Channel: 2441 | -1.68         | 0.68            |
| High Channel: 2480   | -1.89         | 0.65            |

Cable loss: 0.5dB External Attenuation: 0dB

Cable loss, external attenuation:  included in OFFSET function  
 added to SA raw reading

Bluetooth 5.3

Max. Conducted (Peak) Output Level = -1.22 dBm

Limits:

0.125W (21dBm) for antennas with gains of 6dBi or less.

The plots of Conducted (Peak) Output Power are saved as below.

## TEST REPORT

### PLOTS OF CONDUCTED (PEAK) OUTPUT POWER

#### Lowest Channel (2402MHz)

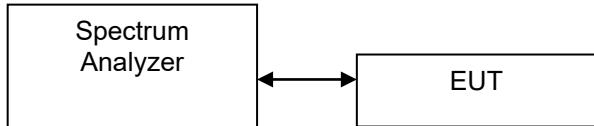


#### Middle Channel (2441MHz)



## TEST REPORT

### PLOTS OF CONDUCTED (PEAK) OUTPUT POWER


Highest Channel (2480MHz)



## TEST REPORT

### 4.2 Maximum 20dB RF Bandwidth and Occupied Bandwidth

The figure below shows the test setup, which is utilized to make these measurements.



The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 20dB lower than PEAK level. The 20dB bandwidth was determined from where the channel output spectrum intersected the display line.

| Bluetooth 5.3        |                      |                          |
|----------------------|----------------------|--------------------------|
| Frequency (MHz)      | 20dB Bandwidth (MHz) | Occupied Bandwidth (MHz) |
| Low Channel: 2402    | 0.9452               | 0.89747                  |
| Middle Channel: 2441 | 0.8600               | 0.86118                  |
| High Channel: 2480   | 0.9087               | 0.88635                  |

Limits:

N/A for 2400-2483.5MHz

The plots of 20dB bandwidth and occupied bandwidth are saved as below.

## TEST REPORT

### PLOTS OF 20dB BANDWIDTH & OCCUPIED BANDWIDTH

#### Lowest Channel (2402MHz)

##### 20dB BANDWIDTH



##### OCCUPIED BANDWIDTH



#### Middle Channel (2441MHz)

##### 20dB BANDWIDTH



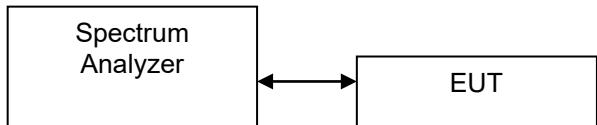
##### OCCUPIED BANDWIDTH



#### Highest Channel (2480MHz)

##### 20dB BANDWIDTH




##### OCCUPIED BANDWIDTH



## TEST REPORT

### 4.3 Minimum Number of Hopping Frequencies

The figure below shows the test setup, which is utilized to make these measurements.



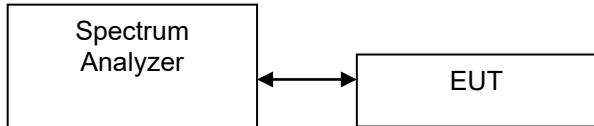
With the analyzer set to MAX HOLD readings were taken for 2-3 minutes in each band. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

#### Bluetooth 5.3

|                          |    |
|--------------------------|----|
| No. of Hopping Channels: | 79 |
|--------------------------|----|

Minimum Requirements:

At least 15 hopping channels for 2400MHz-2483.5MHz


The plots of number of hopping frequencies are saved as below.

**TEST REPORT****PLOTS OF NUMBER OF HOPPING FREQUENCIES**

## TEST REPORT

### 4.4 Minimum Hopping Channel Carrier Frequency Separation

The figure below shows the test setup, which is utilized to make these measurements.



Using the DELTA MARKER function of the analyzer, the frequency separation between two adjacent channels was measured and met the requirement.

#### Bluetooth 5.3

Channel Separation (Channel 39 and Channel 40)

1.106MHz

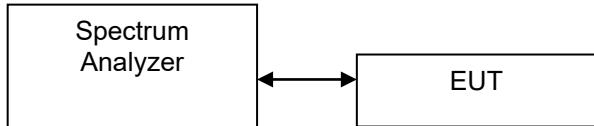
Limits:

The channel separation must be larger than:

2/3 of 20dB bandwidth of hopping channel: 0.6301MHz

The plot(s) of hopping channel carrier frequency separation is saved as below.

## TEST REPORT


### PLOTS OF HOPPING CHANNEL CARRIER FREQUENCY SEPARATION



## TEST REPORT

### 4.5 Average Channel Occupancy Time

The figure below shows the test setup, which is utilized to make these measurements.



The spectrum analyzer center frequency was set to one of the known hopping channels. The SWEEP was set to 1ms, the SPAN was set to ZERO SPAN, and the TRIGGER was set to VIDEO. The time duration of the transmission so captured was measured with the MARKER DELTA function.

The SWEEP was then set to the time required by the regulation (20 seconds for 902-928 MHz devices, if the 20dB bandwidth is less than 250kHz, 10 seconds for 902-928 MHz if the 20dB bandwidth is or greater than 250kHz, “0.4 seconds x Number of hopping channels employed” seconds for 2400-2483.5 MHz, 30 seconds for 5725-5850 MHz). The analyzer was set to SINGLE SWEEP, the total ON time was added and compared against the limit (0.4 seconds).

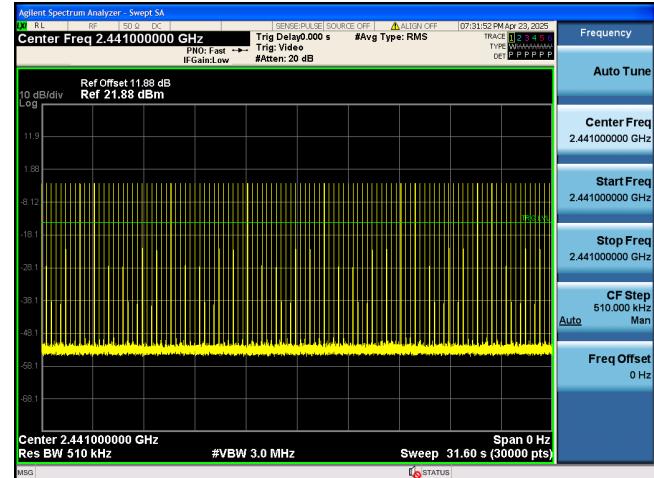
#### Bluetooth 5.3 (Worst-Case)

|                                                                   |                        |
|-------------------------------------------------------------------|------------------------|
| Average Occupancy Time<br>(Traffic – in a clear RF environment) = | 2.897ms x 107 = 0.310s |
|-------------------------------------------------------------------|------------------------|

Limits:


Average 0.4 seconds maximum occupancy in:  
2400MHz-2483.5MHz  
(Traffic – in a clear RF environment)

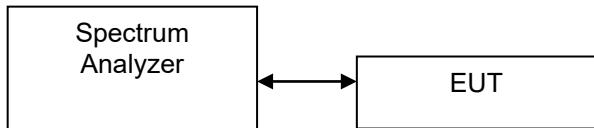
The plots of average channel occupancy time are saved as below.


## TEST REPORT

### PLOTS OF AVERAGE CHANNEL OCCUPANCY TIME

Plot A




Plot B



## TEST REPORT

### 4.6 Out of Band Conducted Emissions

The figure below shows the test setup, which is utilized to make these measurements.

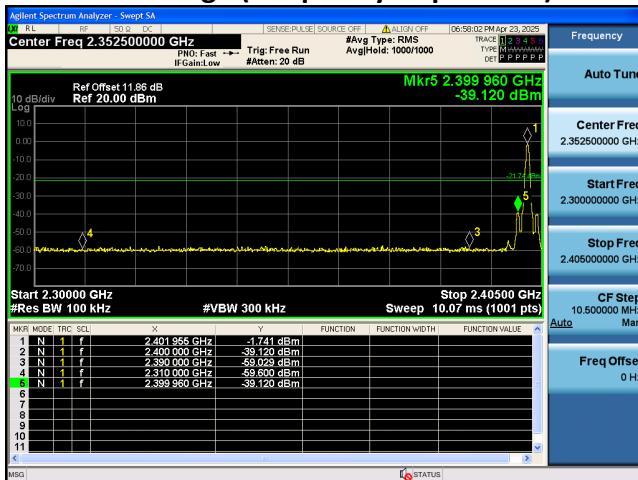


In any 100kHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20dB below that of the maximum in-band 100 kHz emission.

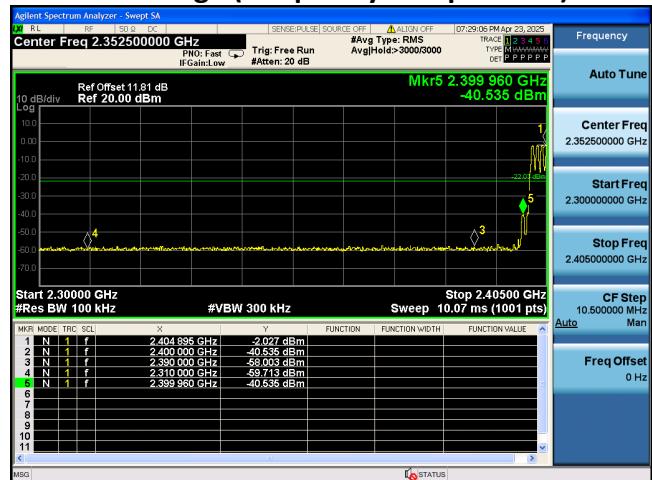
The plot(s) of bandedge compliance is shown the worst-case which has been already considered between enable and disable the hopping function of the EUT.

Furthermore, delta measurement technique for measuring bandedge emissions was incorporated in the test of the edge at 2483.5MHz.

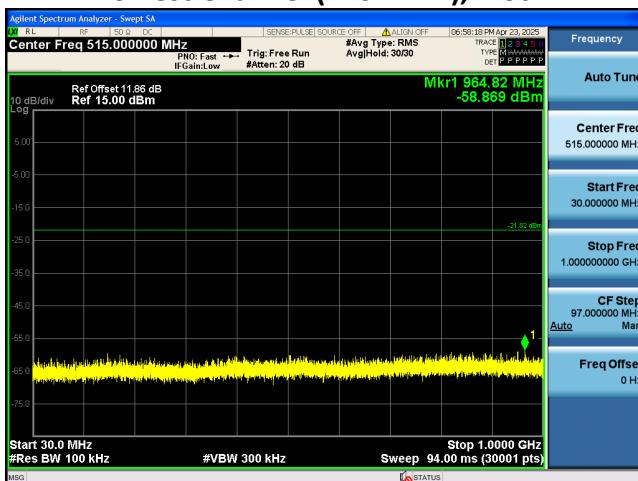
Limits:


All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20 dB below the highest level of the desired power in the passband.

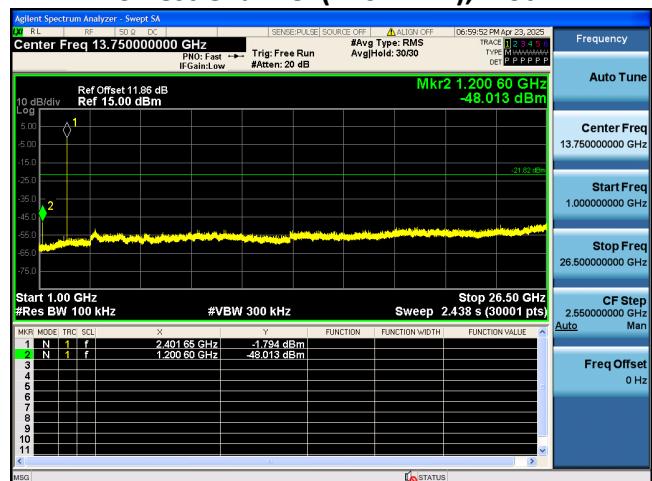
The plots of out of band conducted emissions are saved as below.


## TEST REPORT

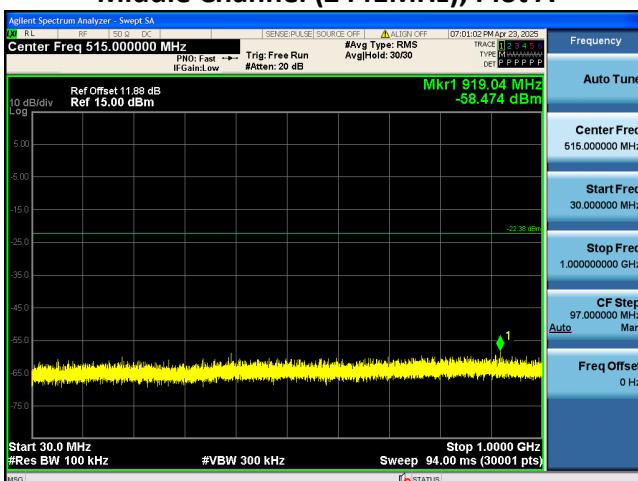
### PLOTS OF OUT OF BAND CONDUCTED EMISSIONS


#### Lowest Channel (2402MHz) Bandedge (Frequency Dependent)

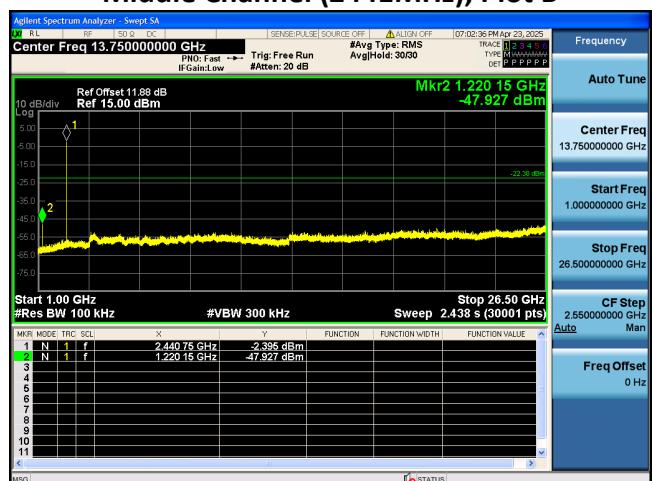



#### Lowest Channel (2402MHz) Bandedge (Frequency Independent)




#### Lowest Channel (2402MHz), Plot A




#### Lowest Channel (2402MHz), Plot B



#### Middle Channel (2441MHz), Plot A

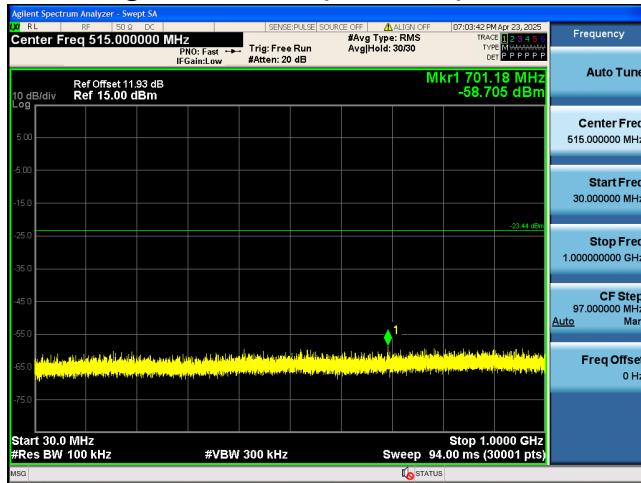


#### Middle Channel (2441MHz), Plot B

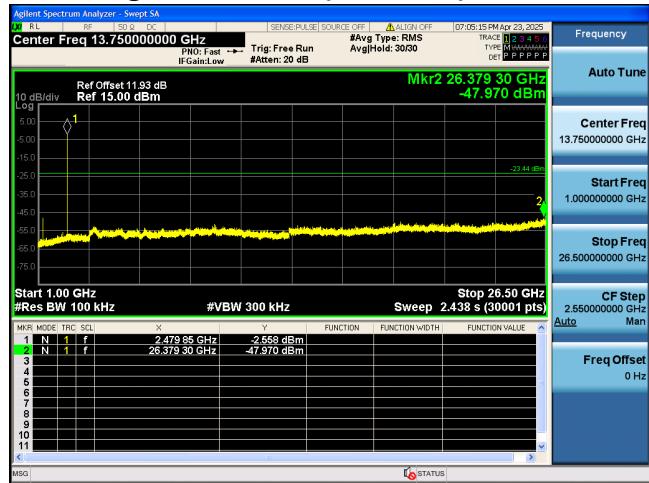


## TEST REPORT

### PLOTS OF OUT OF BAND CONDUCTED EMISSIONS


#### Highest Channel (2480MHz) Bandedge (Frequency Dependent)




#### Highest Channel (2480MHz) Bandedge (Frequency Independent)



#### Highest Channel (2480MHz), Plot A



#### Highest Channel (2480MHz), Plot B



**TEST REPORT****4.7 Field Strength Calculation**

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

where      FS    =    Field Strength in dB $\mu$ V/m  
              RA    =    Receiver Amplitude (including preamplifier) in dB $\mu$ V  
              CF    =    Cable Attenuation Factor in dB  
              AF    =    Antenna Factor in dB  
              AG    =    Amplifier Gain in dB  
              PD    =    Pulse Desensitization in dB  
              AV    =    Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflects the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

**Example:**

Assume a receiver reading of 62.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 dB $\mu$ V/m. This value in dB $\mu$ V/m is converted to its corresponding level in  $\mu$ V/m.

RA    =    62.0 dB $\mu$ V  
AF    =    7.4 dB  
CF    =    1.6 dB  
AG    =    29 dB  
PD    =    0.0 dB  
AV    =    -10 dB  
FS    =     $62.0 + 7.4 + 1.6 - 29.0 + 0.0 + (-10.0) = 32.0$  dB $\mu$ V/m

$$\text{Level in } \mu\text{V/m} = \text{Common Antilogarithm } [(32.0 \text{ dB}\mu\text{V/m})/20] = 39.8 \mu\text{V/m}$$

**TEST REPORT****4.8 Transmitter Radiated Emission and Spurious Emission**

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

**4.8.1 Radiated Emission Configuration Photograph**

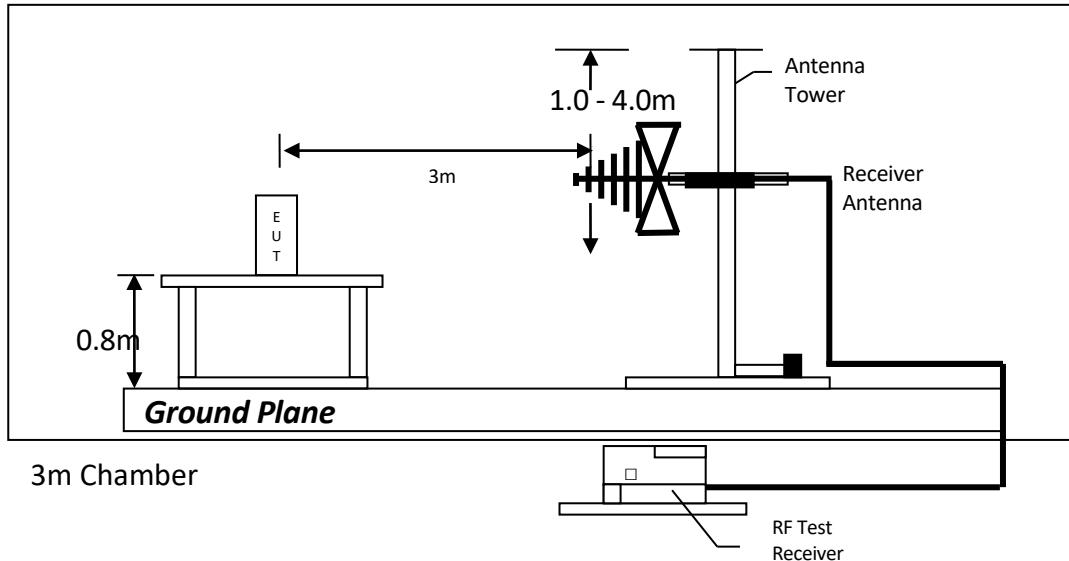
Worst Case Radiated Emission

7323MHz

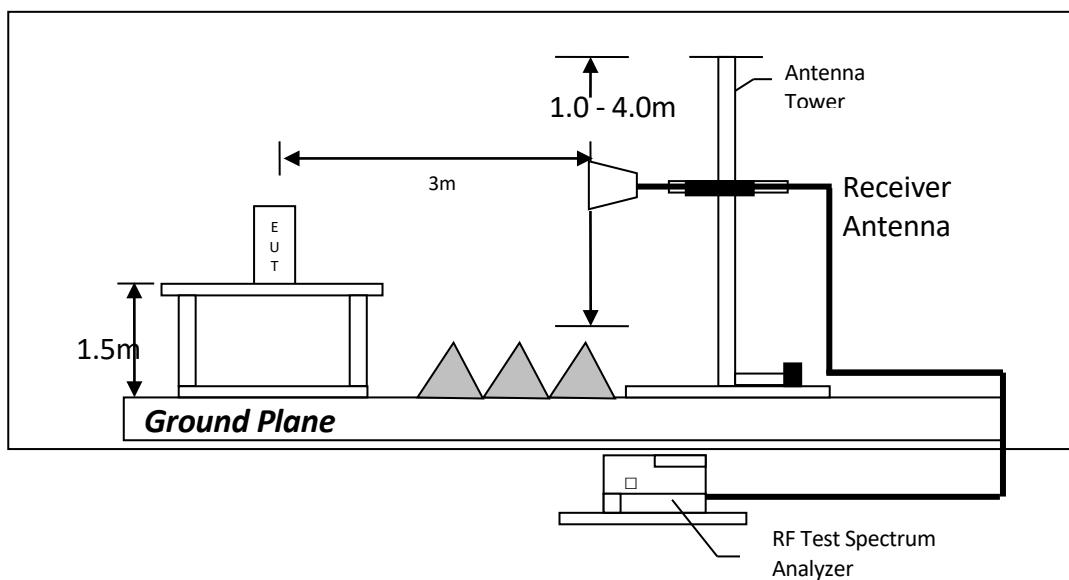
The worst case radiated emission configuration photographs are attached in the Appendix and saved with filename: setup photos.pdf

**4.8.2 Radiated Emission Data**

The data in tables 1-4 list the significant emission frequencies, the limit and the margin of compliance.


Judgement –

Passed by 10.6 dB


## TEST REPORT

### 4.8.3 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.



Test setup of radiated emissions up to 1GHz



Test setup of radiated emissions above 1GHz

## TEST REPORT

### RADIATED EMISSION DATA

**Table 1:**

| No.                 | Frequency (MHz) | Reading (dB $\mu$ V) | Correction factor (dB/m) | Result (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Detector | Antenna Polaxis |
|---------------------|-----------------|----------------------|--------------------------|-----------------------|----------------------|-------------|----------|-----------------|
| <b>DH5_2402 MHz</b> |                 |                      |                          |                       |                      |             |          |                 |
| 1                   | 4804            | 41.57                | -2.08                    | 39.49                 | 54.00                | -14.51      | Average  | Horizontal      |
| 2                   | 4804            | 46.87                | -2.08                    | 44.79                 | 74.00                | -29.21      | Peak     | Horizontal      |
| 3                   | 7206            | 41.46                | 1.30                     | 42.76                 | 54.00                | -11.24      | Average  | Horizontal      |
| 4                   | 7206            | 47.49                | 1.30                     | 48.79                 | 74.00                | -25.21      | Peak     | Horizontal      |
| 5                   | 4804            | 40.20                | -2.08                    | 38.12                 | 54.00                | -15.88      | Average  | Vertical        |
| 6                   | 4804            | 46.87                | -2.08                    | 44.79                 | 74.00                | -29.21      | Peak     | Vertical        |
| 7                   | 7206            | 41.88                | 1.30                     | 43.18                 | 54.00                | -10.82      | Average  | Vertical        |
| 8                   | 7206            | 46.39                | 1.30                     | 47.69                 | 74.00                | -26.31      | Peak     | Vertical        |
| <b>DH5_2441 MHz</b> |                 |                      |                          |                       |                      |             |          |                 |
| 1                   | 4882            | 41.08                | -2.05                    | 39.03                 | 54.00                | -14.97      | Average  | Horizontal      |
| 2                   | 4882            | 45.94                | -2.05                    | 43.89                 | 74.00                | -30.11      | Peak     | Horizontal      |
| 3                   | 7323            | 42.08                | 1.31                     | 43.39                 | 54.00                | -10.61      | Average  | Horizontal      |
| 4                   | 7323            | 46.83                | 1.31                     | 48.14                 | 74.00                | -25.86      | Peak     | Horizontal      |
| 5                   | 4882            | 41.00                | -2.05                    | 38.95                 | 54.00                | -15.05      | Average  | Vertical        |
| 6                   | 4882            | 46.45                | -2.05                    | 44.40                 | 74.00                | -29.60      | Peak     | Vertical        |
| 7                   | 7323            | 40.12                | 1.31                     | 41.43                 | 54.00                | -12.57      | Average  | Vertical        |
| 8                   | 7323            | 46.29                | 1.31                     | 47.60                 | 74.00                | -26.40      | Peak     | Vertical        |
| <b>DH5_2480 MHz</b> |                 |                      |                          |                       |                      |             |          |                 |
| 1                   | 4960            | 39.23                | -2.02                    | 37.21                 | 54.00                | -16.79      | Average  | Horizontal      |
| 2                   | 4960            | 45.84                | -2.02                    | 43.82                 | 74.00                | -30.18      | Peak     | Horizontal      |
| 3                   | 7440            | 41.42                | 1.32                     | 42.74                 | 54.00                | -11.26      | Average  | Horizontal      |
| 4                   | 7440            | 46.75                | 1.32                     | 48.07                 | 74.00                | -25.93      | Peak     | Horizontal      |
| 5                   | 4960            | 40.24                | -2.02                    | 38.22                 | 54.00                | -15.78      | Average  | Vertical        |
| 6                   | 4960            | 44.87                | -2.02                    | 42.85                 | 74.00                | -31.15      | Peak     | Vertical        |
| 7                   | 7440            | 40.98                | 1.32                     | 42.30                 | 54.00                | -11.70      | Average  | Vertical        |
| 8                   | 7440            | 45.21                | 1.32                     | 46.53                 | 74.00                | -27.47      | Peak     | Vertical        |

Notes:

1. Peak detector is used for the emission measurement.
2. Average detector is used for the average data of emission measurement.
3. All measurements were made at 3 meters.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
7. Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.

## TEST REPORT

### RADIATED EMISSION DATA (BAND EDGE MEASUREMENTS)

Table 2, DH5\_2402 MHz

| Test Channel:         | DH5_2402            |                     | Ant. Polar. :     | Horizontal             |            |
|-----------------------|---------------------|---------------------|-------------------|------------------------|------------|
| <b>Level (dBuV/m)</b> |                     |                     |                   |                        |            |
|                       | 120                 | 110                 | 100               | 90                     | 80         |
|                       | 70                  | 60                  | 50                | 40                     | 30         |
|                       | 50                  | 40                  | 30                | 20                     |            |
| 2310                  | 2320                | 2350                | 2430              | <b>Frequency (MHz)</b> |            |
| Frequency (MHz)       | Peak level (dBuv/m) | Peak Limit (dBuv/m) | AV level (dBuv/m) | AV Limit (dBuv/m)      | Conclusion |
| 2390.000              | 49.70               | 74.00               | 36.10             | 54.00                  | PASS       |
| Test Channel:         | DH5_2402            |                     | Ant. Polar. :     | Vertical               |            |
| <b>Level (dBuV/m)</b> |                     |                     |                   |                        |            |
|                       | 120                 | 110                 | 100               | 90                     | 80         |
|                       | 70                  | 60                  | 50                | 40                     | 30         |
|                       | 50                  | 40                  | 30                | 20                     |            |
| 2310                  | 2320                | 2350                | 2430              | <b>Frequency (MHz)</b> |            |
| Frequency (MHz)       | Peak level (dBuv/m) | Peak Limit (dBuv/m) | AV level (dBuv/m) | AV Limit (dBuv/m)      | Conclusion |
| 2390.000              | 48.70               | 74.00               | 36.16             | 54.00                  | PASS       |

## TEST REPORT

### RADIATED EMISSION DATA (BAND EDGE MEASUREMENTS)

Table 3, DH5\_2480 MHz

| Test Channel:               | DH5_2480 |                     | Ant. Polar. :       | Horizontal        |                   |
|-----------------------------|----------|---------------------|---------------------|-------------------|-------------------|
| Level (dBuV/m)              |          |                     |                     |                   |                   |
| Frequency (MHz)             | 2430     | 2450                | 2500                |                   |                   |
| Frequency (MHz)             | 2483.500 | Peak level (dBuV/m) | Peak Limit (dBuV/m) | AV level (dBuV/m) | AV Limit (dBuV/m) |
| Conclusion                  |          |                     |                     |                   |                   |
| Test Channel:               |          | DH5_2480            |                     | Ant. Polar. :     | Vertical          |
| Level (dBuV/m)              |          |                     |                     |                   |                   |
| Frequency (MHz)             | 2430     | 2450                | 2500                |                   |                   |
| Frequency (MHz)             | 2483.500 | Peak level (dBuV/m) | Peak Limit (dBuV/m) | AV level (dBuV/m) | AV Limit (dBuV/m) |
| Conclusion                  |          |                     |                     |                   |                   |
| FCC PART 15C Band edge-Peak |          |                     |                     |                   |                   |
| FCC PART 15C Band edge-AV   |          |                     |                     |                   |                   |

## TEST REPORT

### RADIATED EMISSION DATA

Mode: Bluetooth 5.3 Link

**Table 4:**
**Horizontal**

| No. | Frequency (MHz) | Reading (dB $\mu$ V/m) | Correction factor (dB/m) | Result (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Detector |
|-----|-----------------|------------------------|--------------------------|-----------------------|----------------------|-------------|----------|
| 1   | 51.176          | 36.56                  | -14.01                   | 22.55                 | 40.00                | -17.45      | QP       |
| 2   | 119.767         | 37.61                  | -15.29                   | 22.32                 | 43.50                | -21.18      | QP       |
| 3   | 208.658         | 39.42                  | -10.99                   | 28.43                 | 43.50                | -15.07      | QP       |
| 4   | 315.860         | 35.75                  | -8.41                    | 27.34                 | 46.00                | -18.66      | QP       |
| 5   | 398.296         | 35.34                  | -4.87                    | 30.47                 | 46.00                | -15.53      | QP       |
| 6   | 765.648         | 30.92                  | 2.26                     | 33.18                 | 46.00                | -12.82      | QP       |

**Vertical**

| No. | Frequency (MHz) | Reading (dB $\mu$ V/m) | Correction factor (dB/m) | Result (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Detector |
|-----|-----------------|------------------------|--------------------------|-----------------------|----------------------|-------------|----------|
| 1   | 30.212          | 28.88                  | -4.47                    | 24.41                 | 40.00                | -15.59      | QP       |
| 2   | 45.413          | 34.43                  | -12.39                   | 22.04                 | 40.00                | -17.96      | QP       |
| 3   | 204.305         | 34.09                  | -11.05                   | 23.04                 | 43.50                | -20.46      | QP       |
| 4   | 324.864         | 30.67                  | -7.92                    | 22.75                 | 46.00                | -23.25      | QP       |
| 5   | 415.449         | 35.46                  | -4.39                    | 31.07                 | 46.00                | -14.93      | QP       |
| 6   | 760.287         | 28.47                  | 2.04                     | 30.51                 | 46.00                | -15.49      | QP       |

Notes:

1. Quasi-Peak detector are used for the emission measurement.
2. All measurements were made at 3 meters.
3. Negative value in the margin column shows emission below limit.
4. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
5. Measurement Uncertainty is  $\pm 5.3$ dB at a level of confidence of 95%.

## TEST REPORT

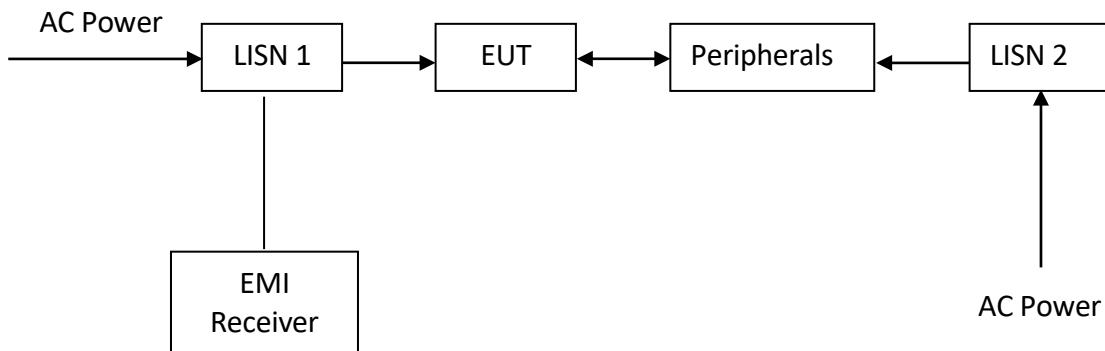
### 4.9 AC Power Line Conducted Emission

EUT connects to AC power line. Emission Data is listed in following pages.

#### 4.9.1 AC Power Line Conducted Emission Configuration Photograph

Worst Case Line-Conducted Configuration

at 2.3864 MHz


The worst-case line conducted configuration photographs are attached in the Appendix and saved with filename: setup photos.pdf.

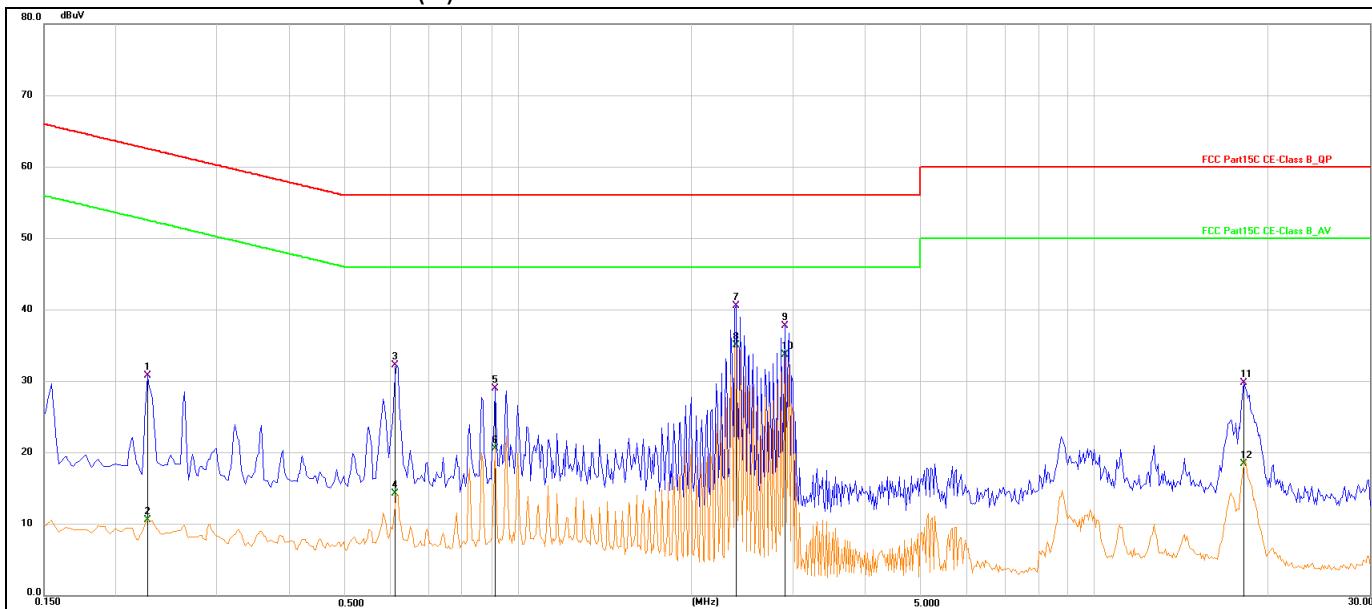
#### 4.9.2 AC Power Line Conducted Emission Data

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by 10.98 dB margin compare with CISPR Average limit.

#### 4.9.3 Conducted Emission Test Setup



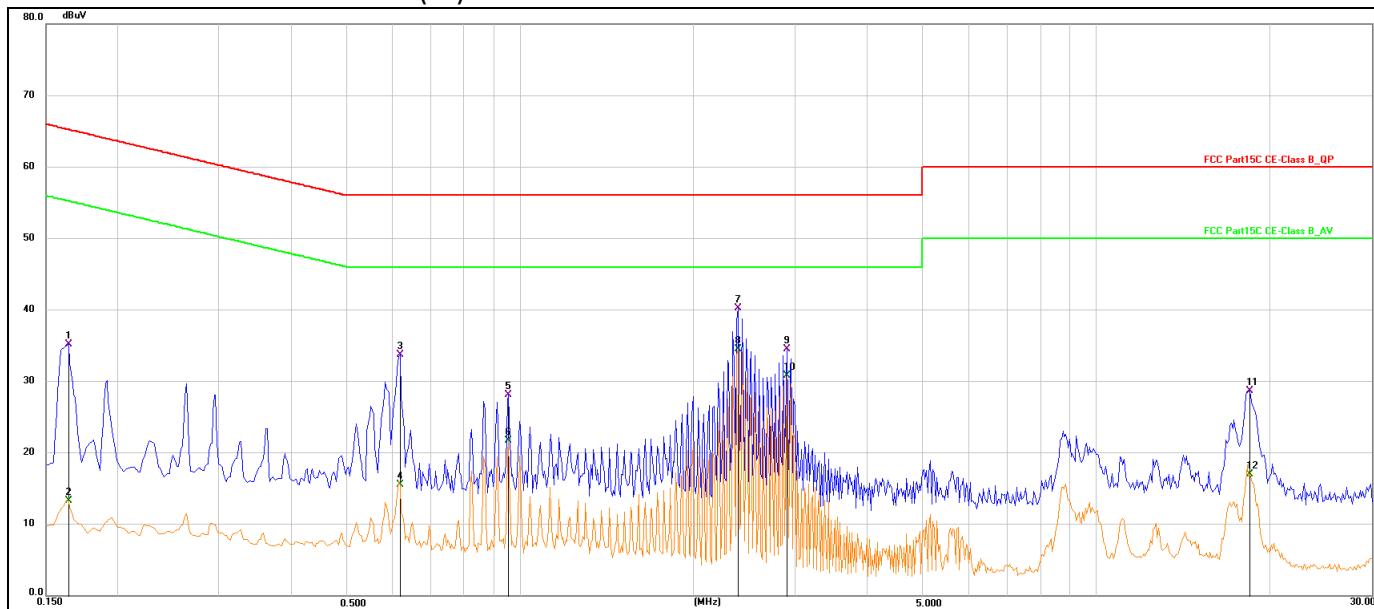

The EUT along with its peripherals were placed on a 1.0m(W)×1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were moved to find the maximum emission.

## TEST REPORT

### AC POWER LINE CONDUCTED EMISSION

#### Worst Case: Bluetooth 5.3 Link (N)




| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>(dB) | Result<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Remark |
|-----|--------------------|-------------------|-----------------|------------------|-----------------|----------------|--------|
| 1   | 0.2265             | 21.01             | 9.78            | 30.79            | 62.58           | -31.79         | QP     |
| 2   | 0.2265             | 0.87              | 9.78            | 10.65            | 52.58           | -41.93         | AVG    |
| 3   | 0.6134             | 22.53             | 9.74            | 32.27            | 56.00           | -23.73         | QP     |
| 4   | 0.6134             | 4.52              | 9.74            | 14.26            | 46.00           | -31.74         | AVG    |
| 5   | 0.9104             | 19.25             | 9.75            | 29.00            | 56.00           | -27.00         | QP     |
| 6   | 0.9104             | 10.79             | 9.75            | 20.54            | 46.00           | -25.46         | AVG    |
| 7   | 2.3864             | 30.81             | 9.75            | 40.56            | 56.00           | -15.44         | QP     |
| 8   | 2.3864             | 25.27             | 9.75            | 35.02            | 46.00           | -10.98         | AVG    |
| 9   | 2.9040             | 28.06             | 9.75            | 37.81            | 56.00           | -18.19         | QP     |
| 10  | 2.9040             | 23.99             | 9.75            | 33.74            | 46.00           | -12.26         | AVG    |
| 11  | 18.2085            | 20.01             | 9.83            | 29.84            | 60.00           | -30.16         | QP     |
| 12  | 18.2085            | 8.61              | 9.83            | 18.44            | 50.00           | -31.56         | AVG    |

## TEST REPORT

### AC POWER LINE CONDUCTED EMISSION

#### Worst Case: Bluetooth 5.3 Link (L1)



| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1635    | 25.34   | 9.81    | 35.15  | 65.28  | -30.13 | QP     |
| 2   | 0.1635    | 3.54    | 9.81    | 13.35  | 55.28  | -41.93 | AVG    |
| 3   | 0.6180    | 23.91   | 9.79    | 33.70  | 56.00  | -22.30 | QP     |
| 4   | 0.6180    | 5.70    | 9.79    | 15.49  | 46.00  | -30.51 | AVG    |
| 5   | 0.9555    | 18.45   | 9.71    | 28.16  | 56.00  | -27.84 | QP     |
| 6   | 0.9555    | 11.95   | 9.71    | 21.66  | 46.00  | -24.34 | AVG    |
| 7   | 2.3865    | 30.51   | 9.72    | 40.23  | 56.00  | -15.77 | QP     |
| 8   | 2.3865    | 24.81   | 9.72    | 34.53  | 46.00  | -11.47 | AVG    |
| 9   | 2.9040    | 24.78   | 9.73    | 34.51  | 56.00  | -21.49 | QP     |
| 10  | 2.9040    | 21.09   | 9.73    | 30.82  | 46.00  | -15.18 | AVG    |
| 11  | 18.4695   | 18.73   | 9.89    | 28.62  | 60.00  | -31.38 | QP     |
| 12  | 18.4695   | 7.09    | 9.89    | 16.98  | 50.00  | -33.02 | AVG    |

## TEST REPORT

### EXHIBIT 5 EQUIPMENT LIST

| Radiated Emission Test Equipment List |                                                      |               |            |                            |             |               |
|---------------------------------------|------------------------------------------------------|---------------|------------|----------------------------|-------------|---------------|
| Used                                  | Equipment                                            | Manufacturer  | Model No.  | Serial Number              | Cal. date   | Cal. Due date |
| <input checked="" type="checkbox"/>   | 3m SAC                                               | ETS-LINDGREN  | 3M         | Euroshiedpn-CT001270-1317  | 11-Nov-2023 | 10-Nov-2026   |
| <input checked="" type="checkbox"/>   | Receiver                                             | R&S           | ESIB26     | 100114                     | 25-Oct-2024 | 24-Oct-2025   |
| <input checked="" type="checkbox"/>   | EXA Spectrum Analyzer                                | KEYSIGHT      | N9010A     | MY51440197                 | 28-Mar-2025 | 27-Mar-2026   |
| <input checked="" type="checkbox"/>   | Loop Antenna                                         | ETS-LINDGREN  | 6502       | 00202525                   | 28-Oct-2024 | 27-Oct-2025   |
| <input checked="" type="checkbox"/>   | Broadband Antenna                                    | ETS-LINDGREN  | 3142E      | 00201566                   | 29-Oct-2024 | 28-Oct-2025   |
| <input checked="" type="checkbox"/>   | 6dB Attenuator                                       | Talent        | RA6A5-N-18 | 18103001                   | 29-Oct-2024 | 28-Oct-2025   |
| <input checked="" type="checkbox"/>   | Preamplifier                                         | HP            | 8447F      | 2805A02960                 | 25-Oct-2024 | 24-Oct-2025   |
| <input checked="" type="checkbox"/>   | Double-Ridged Waveguide Horn Antenna (Pre-amplifier) | ETS-LINDGREN  | 3117-PA    | 00201541                   | 29-Mar-2025 | 28-Mar-2026   |
| <input checked="" type="checkbox"/>   | Pre-amplifier                                        | ETS-Lindgren  | 00118385   | 00201874                   | 28-Mar-2025 | 27-Mar-2026   |
| <input checked="" type="checkbox"/>   | Double-Ridged Waveguide Horn Antenna (Pre-amplifier) | ETS-LINDGREN  | 3116C-PA   | 00202652                   | 28-Oct-2024 | 27-Oct-2025   |
| <input checked="" type="checkbox"/>   | Pre-amplifier                                        | ETS-Lindgren  | 00118384   | 00202652                   | 28-Oct-2024 | 27-Oct-2025   |
| <input checked="" type="checkbox"/>   | Band Reject Filter (2400MHz~2500MHz)                 | Micro-Tronics | BRM50702   | G590                       | 21-Feb-2025 | 20-Feb-2026   |
| <input checked="" type="checkbox"/>   | Multi device Controller                              | ETS-LINDGREN  | 7006-001   | 00160105                   | N/A         | N/A           |
| <input checked="" type="checkbox"/>   | Test Software                                        | Audix         | e3         | Software Version: 9.160323 |             |               |

| Conducted Emission Test Equipment List |               |              |           |                                 |             |               |
|----------------------------------------|---------------|--------------|-----------|---------------------------------|-------------|---------------|
| Used                                   | Equipment     | Manufacturer | Model No. | Serial Number                   | Cal. date   | Cal. Due date |
| <input checked="" type="checkbox"/>    | Receiver      | R&S          | ESCI3     | 1166.5950.03                    | 25-Oct-2024 | 24-Oct-2025   |
| <input checked="" type="checkbox"/>    | Pulse Limiter | R&S          | ESH3-Z2   | 0357.8810.54                    | 25-Oct-2024 | 24-Oct-2025   |
| <input checked="" type="checkbox"/>    | LISN          | R&S          | EVN216    | 3560.6550.12                    | 26-Sep-2024 | 25-Sep-2025   |
| <input checked="" type="checkbox"/>    | Test Software | EZ-EMC       | EZ-CON    | Software Version: EMC-CON 3A1.1 |             |               |

| RF Conducted Test Equipment List    |                           |              |                      |                                    |             |               |
|-------------------------------------|---------------------------|--------------|----------------------|------------------------------------|-------------|---------------|
| Used                                | Equipment                 | Manufacturer | Model No.            | Serial Number                      | Cal. date   | Cal. Due date |
| <input checked="" type="checkbox"/> | EXA Spectrum Analyzer     | KEYSIGHT     | N9020A               | MY51286807                         | 25-Oct-2024 | 24-Oct-2025   |
| <input checked="" type="checkbox"/> | USB Wideband Power Sensor | KEYSIGHT     | U2021XA              | MY55430035                         | 25-Oct-2024 | 24-Oct-2025   |
| <input checked="" type="checkbox"/> | Test Software             | Tonscend     | JS1120-3 Test System | Software Version: V3.5.39(BT&WIFI) |             |               |

END OF TEST REPORT