

Appendix 5

RF Exposure Information

FCC_ID : 2AVOQ03

Time-averaged maximum conducted output power:

Frequency (MHz)	Maximum output power (dBm)	Pulse duration (ms)	Period (ms)	10 log (1 / D) (dB)	Time-averaged maximum conducted output power (dBm) / (mW)
920.8	12.41	18.0	45.0	3.98	8.43 / 6.96
902.6	13.21	5.5	38.1	8.41	4.80 / 3.02
914.6	12.82	5.5	39.0	8.51	4.31 / 2.68
927.4	12.78	5.5	39.0	8.51	4.27 / 2.67

Note:

- The maximum conducted output power was taken from table of Subclause “FCC 15.247(b)(1) – Peak Output Power”
- Time-averaged maximum conducted output power is calculated by subtracting [10 log (1 / D)] dB from maximum output power, where D is duty cycle, 1 / D = period / pulse duration

For FCC

According to KDB 447498 D01:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* \leq 5 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

Result:

$$(6.96/5) * \sqrt{0.9208} = 1.336 < 3.0$$

$$(3.02/5) * \sqrt{0.9026} = 0.574 < 3.0$$

$$(2.68/5) * \sqrt{0.9146} = 0.513 < 3.0$$

$$(2.67/5) * \sqrt{0.9274} = 0.514 < 3.0$$

Conclusion:

No SAR is required.