

TEST REPORT

Report No.: BCTC2311438541-2E

Applicant: Shenzhen Swage Electronics Co.,Ltd.

Product Name: Smart watch

Model/Type reference:

X6

Tested Date: 2023-11-27 to 2023-11-29

Issued Date: 2023-12-14

Shenzhen BCTC Testing Co., Ltd.

No.: BCTC/RF-EMC-005 Page 1 of 85 Edition / B.0

FCC ID: 2AVHS-X6

Product Name: Smart watch

Trademark: N/A

X6

Model/Type Ref.: i8Promax, i9pro Max, D20, D20Plus, D20Max, D20 Pro, D20L, X8, X8 Pro, S10,

S12, W26, W26Plus, DT1000, P80, KW66, KW132

Applicant: Shenzhen Swage Electronics Co.,Ltd.

Address: No.4 Floor, Tongxin Industrial Park, HengGang town Longgang District, Shenzhen,

China

Manufacturer: Shenzhen Swage Electronics Co.,Ltd.

Address: No.4 Floor, Tongxin Industrial Park, HengGang town Longgang District, Shenzhen,

China

Prepared By: Shenzhen BCTC Testing Co., Ltd.

Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng,

Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Sample Received Date: 2023-11-20

Sample tested Date: 2023-11-20 to 2023-11-29

Issue Date: 2023-12-14

SAR Max. Values is: 0.534 W/kg (1g) for Near to Mouth

3.321 W/kg (10g) for Limb-worn

Test Standards: IEEE Std C95.1, 2019/ IEEE Std 1528™-2013/FCC Part 2.1093

Test Results: PASS

Remark: This is SAR test report

Min zhi Chena

Min Zhi Cheng/ Project Handler

Approved by:

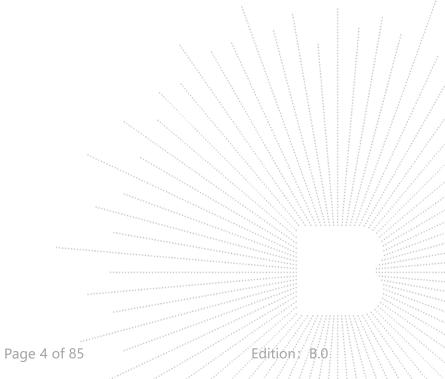
Zero Zhou/ Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No.: BCTC/RF-EMC-005 Page 2 of 85 Edition / B.0

Table Of Content

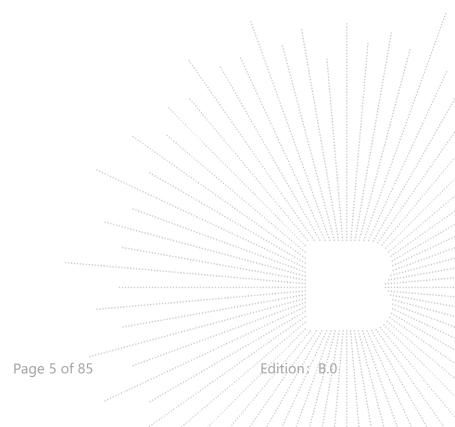
Test Report Declaration	Page
1. Version	5
2. Test Standards	6
3. Test Summary	
4. SAR Limits	
5. Measurement Uncertainty	9
6. Product Information and Test Setup	10
6.1 Product Information	
6.2 Test Setup Configuration	
6.3 Support Equipment	
6.4 Test Environment	
7. Test Facility and Test Instrument Used	
7.1 Test Facility	
7.2 Test Instrument Used	
8. Specific Absorption Rate (SAR)	
8.1 Introduction	
8.2 SAR Definition	
9. SAR Measurement System	
9.1 The Measurement System	
9.2 Probe	
9.3 Probe Calibration Process	
9.4 Phantom	
9.5 Device Holder	
10. Tissue Simulating Liquids	
10.1 Composition of Tissue Simulating Liquid	
10.2 Limit	
10.3 Tissue Calibration Result	
11. System Check	
11.1 Purpose of System Performance Check	
11.2 System Setup	
11.3 Validation Results	
12. EUT Testing Position	24
12.1 Define Two Imaginary Lines on the Handset	24
40.0 THE J D. 19:	111111110
12.3 Tilted Position	25
12.4 DOUY POSITION	23
13. SAR Measurement Procedures	20
12.4 Body Position 13. SAR Measurement Procedures 13.1 Measurement Procedures 13.2 Spatial Peak SAR Evaluation 13.3 Area & Zoom Scan Procedures 13.4 Volume Scan Procedures	20
13.2 Area & Zoom Scan Procedures	20
13.4 Volume Scan Procedures	4 <i>[</i>
13.5 SAR Averaged Methods	20
13.5 SAR Averaged Methods 13.6 Power Drift Monitoring	40 ວູດ
14. SAR Test Result	20
- 1 T O/ (1 \ 1 O3) 1 O3 (1 O3	



Report No. Derezoritosti Zi	Report No:	BCTC2311438541-2	2E
-----------------------------	------------	------------------	----

14.1	Conducted RF Output Power	29
	Measured and Reported (Scaled) SAR Results	
14.3	SAR Measurement Variability	33
14.4	Simultaneous Transmission Evaluation	34
15.	Test Plots	35
15.1	System Performance Check	35
15.2	SAR Test Graph Results	39
16.	CALIBRATION CERTIFICATES	43
17.	EUT Photographs	81
18.	Photographs Of The Liquid	83
19.	EUT Test Setup Photographs	84

(Note: N/A Means Not Applicable)


No.: BCTC/RF-EMC-005

1. Version

Report No.	Issue Date	Description	Approved
BCTC2311438541-2E	2023-12-14	Original	Valid

No.: BCTC/RF-EMC-005

2. Test Standards

IEEE Std C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS KDB 941225 D01 3G SAR Procedures: 3G SAR MEAUREMENT PROCEDURES

KDB 941225 D05 SAR for LTE Devices: SAR EVALUATION CONSIDERATIONS FOR LTE DEVICES

KDB 941225 D06 Hotspot Mode v02r01: SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES

KDB 648474 D04 Handset SAR v01r03: SAR EVALUATION CONSIDERATIONS FOR WIRELESS HANDSETS

3. Test Summary

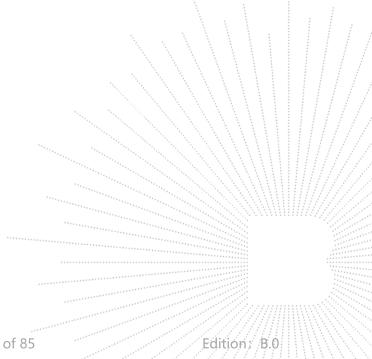
The maximum results of Specific Absorption Rate (SAR) have found during testing are as follows:

Frequency Band	Report SAR1g (W/kg)	SAR1g Limit	
	Near to Mouth (10mm Gap)	(W/kg)	
GSM	0.534	1.6	

Frequency Band	Report SAR10g (W/kg)	SAR1g Limit	
	Limb-worn (0mm Gap)	(W/kg)	
GSM	3.321	4.0	

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedure specified in IEEE 1528-2013.

No.: BCTC/RF-EMC-005 Page 7 of 85 Edition B.0


4. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population /	(Occupational /		
EXPOSORE LIMITS	Uncontrolled Exposure	Controlled Exposure		
	Environment)	Environment)		
Spatial Average(averaged over the whole body)	0.08	0.4		
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0		
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

No.: BCTC/RF-EMC-005 Page 8 of 85 Edition / B.0

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is <3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k=2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

No.: BCTC/RF-EMC-005 Page 9 of 85 Edition/ B.C

6. Product Information and Test Setup

6.1 Product Information

X6

Model/Type reference: i8Promax, i9pro Max, D20, D20Plus, D20Max, D20 Pro, D20L, X8, X8 Pro, S10, S12,

W26, W26Plus, DT1000, P80, KW66, KW132

Model differences:

All the model are the same circuit and RF module, except model names and

appearance of the color.

Hardware Version: N/A
Software Version: N/A

Operation Frequency: GSM 850: TX: 824~849MHz; RX: 869~894MHz; GSM 1900: TX:1850~1910MHz; RX:1930~1990MHz;

GPRS Class: Class 12

Max RF Output Power: GSM 850: 33.75dBm, GSM 1900: 30.48dBm

Type of Modulation: GSM with GMSK Modulation

Type of Emission: GSM 850: 236KGXW GSM 1900: 236KGXW

Antenna installation: Internal antenna

Antenna Gain: GSM850: 0 dBi GSM1900: 0 dBi

Connecting I/O Port(s) Please refer to the User's Manual

Ratings: DC 5V from adapter/DC 3.7V from battery

10 of 85 Edition / B.O.

No.: BCTC/RF-EMC-005 Page 10 of 85

6.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

6.3 Support Equipment

Cable of Product

No.	Cable Type	Quantity	Provider	Length (m)	Shielded	Note
1			Applicant		Yes/No	
2			встс		Yes/No	

No.	Device Type	Brand	Model	Series No.	Note
1.					
2.					

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6.4 Test Environment

1. Normal Test Conditions:

Humidity(%):	35-75
Atmospheric Pressure(kPa):	95-105
Temperature(°C):	18-25

2. Extreme Test Conditions:

N/A

No.: BCTC/RF-EMC-005 Page 11 of 85 Edition B.0

7. Test Facility and Test Instrument Used

7.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212

ISED Registered No.: 23583 ISED CAB identifier: CN0017

No.: BCTC/RF-EMC-005 Page 12 of 85 Edition / B.C

7.2 Test Instrument Used

Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
PC	DELL	\	\	N/A	N/A
SAR Measurement	SATIMO	\	/	N/A	N/A
Signal Generator	Keysight	83711B	US37100131	Aug. 29, 2023	Aug. 28, 2024
Multimeter	Keithley	1160271	\	Nov. 10, 2022	Nov 09, 2023
S-parameter Network Analyzer	R&S	ZVB 8	101353	Dec. 07, 2022	Dec. 06, 2023
Wideband Radio Communication Tester	R&S	CMW500	\	Nov. 10, 2022	Nov 09, 2023
E SAR PROBE 6GHz	MVG	SSE2	2623-EPGO-420	July 18, 2023	July 17, 2024
DIPOLE 835	SATIMO	SID 835	SN 47/21 DIP 0G835-621	Nov. 25, 2021	Nov. 24, 2024
DIPOLE 1900	SATIMO	SID 1900	SN 47/21 DIP 2G100-624	Nov. 25, 2021	Nov. 24, 2024
DIPOLE 2450	SATIMO	SID 2450	SN 47/21 DIP 2G450-627	Nov. 25, 2021	Nov. 24, 2024
DIPOLE 2600	SATIMO	SID 2600	SN 47/21 DIP 2G600-628	Nov. 25, 2021	Nov. 24, 2024
COMOSAR OPENCoaxial Probe	SATIMO	1	\	Nov. 18, 2022	Nov. 17, 2023
SAR Locator	SATIMO	1	\	Nov. 18, 2022	Nov. 17, 2023
Communication Antenna	SATIMO	\	\	Nov. 18, 2022	Nov. 17, 2023
FEATURE PHONEPOSITIONING DEVICE	SATIMO	\	\	N/A	N/A
DUMMY PROBE	SATIMO	\	\	N/A	N/A
SAM Phantom	MVG	1	SN 13/09 SAM68	N/A	N/A
Liquid measurement Kit	HP	85033D	3423A08186	N/A	N/A
Power meter	Agilent	E4419	\	May 15, 2023	May 14, 2024
Power meter	Agilent	E4419	\	May 15, 2023	May 14, 2024
Power sensor	Agilent	E9300A	\	May 15, 2023	May 14, 2024
Power sensor	Agilent	E9300A	\	May 15, 2023	May 14, 2024
Directional Coupler	Krytar 158020	131467	1	Nov. 10, 2022	Nov 09, 2023

Note:

Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.

- 1. There is no physical damage on the dipole;
- 2. System check with specific dipole is within 10% of calibrated values;
- 3. The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- 4. The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.

Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

No.: BCTC/RF-EMC-005 Page 13 of 85 Edition/ B.0

8. Specific Absorption Rate (SAR)

8.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techiques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

8.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δ T is the temperature rise and δ t is the exposure duration, or related to the

electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

9. SAR Measurement System

9.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

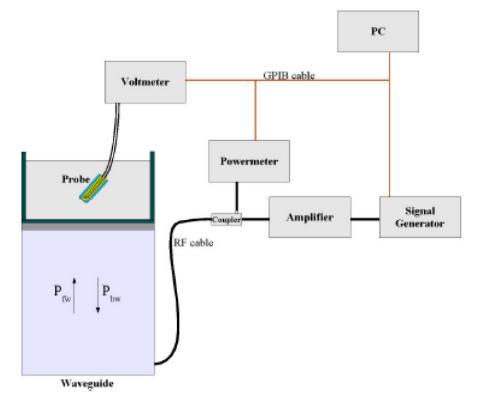
The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

9.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 46/21 EPGO362 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 5 mm
- Distance between probe tip and sensor center: 2.10mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB
- Calibration range: 835 to 2500MHz for head & body simulating liquid.


Angle between probe axis (evaluation axis) and surface normal line:1ess than 30°

Probe calibration is realized, in compliance with EN 62209-1 and IEEE 1528 STD, with CALISAR,
Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annex

technique using reference guide at the five frequencies.

No.: BCTC/RF-EMC-005 Page 15 of 85 Edition / B.0

$$SAR = \frac{4(p_{\int w} - p_{\text{pbw}})}{ab\delta} \cos^2 (\pi \frac{y}{a}) c^{(2\pi/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

I = Skin depth

Keithley configuration:

Rate = Medium; Filter = ON; RDGS = 10; Filter type = Moving Average; Range auto after each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/VIin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N)) (N=1,2,3)$$

where DCP is the diode compression point in mV.

No.: BCTC/RF-EMC-005 Page 16 of 85 Edition / B.0

9.3 Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1mW/cm2.

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

$$SAR = C \frac{\Delta T}{\Delta t}$$

 Δ t = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 \triangle T = temperature increase due to RF exposure.

Report No: BCTC2311438541-2E

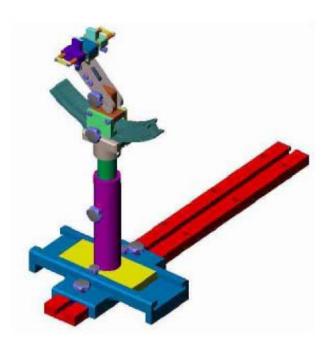
SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

Where:

 $\sigma = \text{simulated tissue conductivity},$

 ρ = Tissue density (1.25 g/cm³ for brain tissue)



9.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

9.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

No.: BCTC/RF-EMC-005 Page 18 of 85 Edition/ B.0

10. Tissue Simulating Liquids

10.1 Composition of Tissue Simulating Liquid

For the measurement of the field distribution inside the SAM phantom with SMTIMO, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. Please see the following photos for the liquid height.

Liquid Height for Body SAR

The Composition of Tissue Simulating Liquid

Frequency (MHz)	Water (%)	Salt (%)	1,2-Propane diol (%)	HEC (%)	Preventol (%)	DGBE (%)
(111112)			Head/Body		(70)	
835	40.3	1.4	57.9	0.2	0.2	0
900	40.3	1.4	57.9	0.2	0.2	0
1800-2000	55.2	0.3	0	0 7.,	. 0	44.5
2450	55.0	0.1	0	0	0	44.9
2600	54.9	0.1	0	0	0	45.0

Frequency (MHz)	Water (%)	Hexyl Carbitol (%)	Triton X-100 (%)
		Head/Body	\sim
5000-6000	65.52	17.24	17.24

10.2 Limit

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters

computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Toward Francisco (MILE)	He	ead		
Target Frequency (MHz)	Conductivity (σ)	Permittivity (& r)		
150	0.76	52.3		
300	0.87	45.3		
450	0.87	43.5		
750	0.89	41.9		
835	0.90	41.5		
900	0.97	41.5		
915	0.98	41.5		
1450	1.20	40.5		
1610	1.29	40.3		
1800-2000	1.40	40.0		
2450	1.80	39.2		
2600	1.96	39.0		
3000	2.40	38.5		
5200	4.66	36.0		
5400	4.86	35.8		
5600	5.07	35.5		
5800	5.27	35.3		

No.: BCTC/RF-EMC-005 Page 20 of 85 Edition / B.0

10.3 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an R&S ZVB 8. Dielectric Probe Kit and an Agilent Network Analyzer.

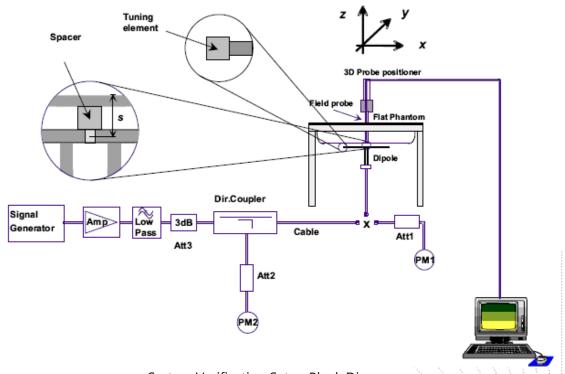
Calibration Result for Dielectric Parameters of Tissue Simulating Liquid

Frequency (MHz)	Liquid	Target Conductivity (σ)	Target Permitivity (εr)	Measured Conductivity (σ)	Measured Permitivity (εr)	Delta (σ)%	Delta (εr)%	Limit (%)	Temp . TSL (°C)	Date
835	Head	0.90	41.50	0.875	40.240	-2.78	-3.04	±5	23.0	27/11/2023
1900	Head	1.40	40.00	1.414	40.905	1.00	2.26	±5	23.0	27/11/2023

Remark:

No.: BCTC/RF-EMC-005

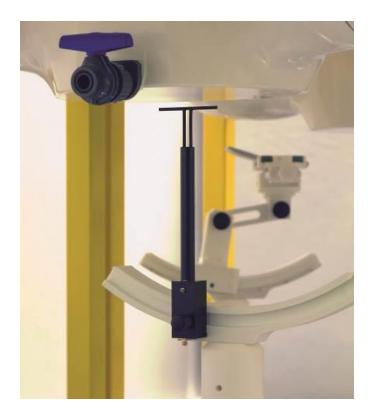
- 1. The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within ± 2°C of the temperature when the tissue parameters are characterized.
- 2. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.


11. System Check

11.1 Purpose of System Performance Check

At the device test frequencies. System check verifies the measurement repeatability of a SAR system before compliance testing and is not a validation of all system specifications. The latter is not required for testing a device but is mandatory before the system is deployed. The system check detects possible short-term drift and unacceptable measurement errors or uncertainties in the system.

11.2 System Setup


In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 600MHz-6000MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The output power on dipole port must be calibrated to 20 dBm (100 mW) before dipole is connected.

System Verification Setup Block Diagram

No.: BCTC/RF-EMC-005 Page 22 of 85 Edition / B.0

Setup Photo of Dipole Antenna

11.3 Validation Results

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %. The following table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion.

Frequency (MHz)	Power	Measured SAR _{1g} (W/Kg)	Normalize to 1 Watt	Drift (%)	1W Target SAR _{1g} (W/Kg)	Difference Percentage (%)	Limit (%)	Liquid Temp	Date
835	250 mW	2.539	10.155	0.969	10.01	1.449	±10	23.0	27/11/2023
1900	250 mW	10.094	40.377	0.622	41.26	-2.140	±10	23.0	27/11/2023

No.: BCTC/RF-EMC-005 Page 23 of 85 Edition / B.0

12. EUT Testing Position

12.1 Define Two Imaginary Lines on the Handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic
- output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

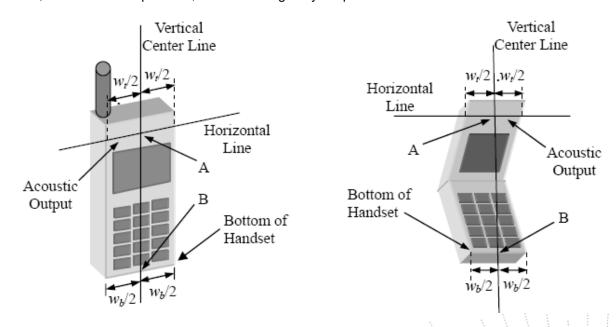


Illustration for Handset Vertical and Horizontal Reference Lines

12.2 Cheek Position

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see below).

No.: BCTC/RF-EMC-005 Page 24 of 85 Edition / B.0

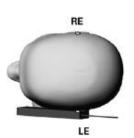


Illustration for Cheek Position

12.3 Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see below).

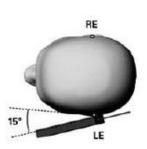
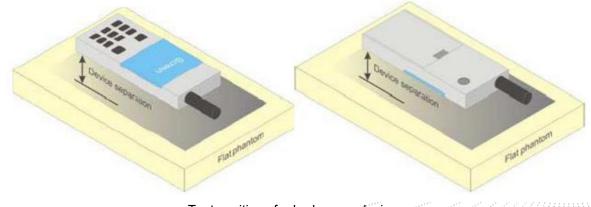



Illustration for Tilted Position

12.4 Body Position

A typical example of a body-worn device is a Mobile Phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Test positions for body-worn devices

No.: BCTC/RF-EMC-005 Page 25 of 85 Edition / B.0

13. SAR Measurement Procedures

13.1 Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.
- (b) Keep EUT to radiate maximum output power or 100% factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as Annex D demonstrates.
- (e) Set scan area, grid size and other setting on the SATIMO software.
- (f) Measure SAR results for the highest power channel on each testing position.
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

13.2 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The SATIMO software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

13.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

Parameter	DUT transmit frequer	ncy being tested		
Parameter	<i>f</i> ≤ 3 GHz	3 GHz < f ≤ 10 GHz		
Maximum distance between the closest measured points and the phantom surface ($z_{\rm M1}$ in Figure 20 and Table 3, in mm)	5	δ In(2)/2 ^a		
Maximum angle between the probe axis and the	5° (flat phantom only)	5° (flat phantom only)		
phantom surface normal (α in Figure 20)	30° (other phantoms)	20° (other phantoms)		
Maximum spacing between measured points in the x- and y-directions (Δx and Δy , in mm)	8	24/f b		
For uniform grids: Maximum spacing between measured points in the direction normal to the phantom shell $(\Delta z_1$ in Figure 20, in mm)	5	10/(f - 1)		
For graded grids: Maximum spacing between the two closest measured points in the direction normal to the phantom shell (Δz_1 in Figure 20, in mm)	4	12 <i>lf</i>		
For graded grids: Maximum incremental increase in the spacing between measured points in the direction normal to the phantom shell $(R_z = \Delta z_2/\Delta z_1 \text{ in Figure 20})$	1,5	1,5		
Minimum edge length of the zoom scan volume in the x - and y -directions (L_z in O.8.3.2, in mm)	30	22		
Minimum edge length of the zoom scan volume in the direction normal to the phantom shell $(L_{\rm h}$ in O.8.3.2 in mm)	30	22		
Tolerance in the probe angle	1°	1°		

 $^{^{\}mathrm{a}}$ $^{\mathrm{c}}$ is the penetration depth for a plane-wave incident normally on a planar half-space.

No.: BCTC/RF-EMC-005 Page 27 of 85 Edition B.0

b This is the maximum spacing allowed, which might not work for all circumstances.

13.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

13.5 SAR Averaged Methods

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10g and 1 g requires a very fine resolution in the three dimensional scanned data array.

13.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In SATIMO measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

No.: BCTC/RF-EMC-005 Page 28 of 85 Edition / B.0

14. SAR Test Result

14.1 Conducted RF Output Power

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

The Tune-up limit already includes component tolerance. KDB 447498 sec.4.1.(d) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

<GSM>

General Note:

- 1. Per KDB 447498 D01, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 2. Per KDB 941225 D01, SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions.
- 3. Per October 2013 TCB Workshop: When the maximum frame-averaged powers levels are within 0.25 dB of each other, test the configuration with the most number of time slots.

Conducted power measurement results

GSM - Burst Average Power (dBm)									
Band		GSM850		GSM1900					
Channel	128	190	251	Tune- up	512	661	810	Tune- up	
Frequency (MHz)	824.2	836.6	848.8		1850.2	1880	1909.8		
GSM	33.75	33.70	33.74	34.0	30.48	30.15	29.96	31.0	

GSM - Source-Based Time-Average Power (dBm)									
Band		GSM850		GSM1900					
Channel	128	190	251	512	661	810			
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880	1909.8			
GSM	24.75	24.70	24.74	21.48	21.15	20.96			

Notes:Per KDB 941225 D01, SAR is not required for EDGE (8PSK) mode because the maximum output power and tune-up limit is \leq 1/4dB higher than GPRS/EDGE (GMSK) or the adjusted SAR of the highest reported SAR of GPRS/EDGE (GMSK) is \leq 1.2W/kg.

No.: BCTC/RF-EMC-005 Page 29 of 85 Edition / B.0

14.2 Measured and Reported (Scaled) SAR Results

The calculated SAR is obtained by the following formula:

- 1. Reported SAR for WWAN=Measured SAR * Tune-up Scaling factor
- Reported SAR for WLAN and Bluetooth=Measured SAR * Tune-up Scaling factor * Duty Cycle Scaling factor
- 3. Duty Cycle Scaling factor=1/ Duty Cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- \bullet ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR v01r03:

- 1. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.
- 2. when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS, LTE and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)
- 3. For Smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, when hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

KDB 941225 D01 3G SAR Procedures:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

- 1. Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- 3. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- 4. SAR measurement is not required for the 16QAM and 64QAM. When the highest maximum output power for 16QAM and 64QAM is ≤ ½ dB higher than the QPSK or when the reported SAR for the QPSK configuration is ≤ 1.45 W/kg.
- 5. Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

No.: BCTC/RF-EMC-005 Page 30 of 85 Edition / B.0

KDB 248227 D01 802.11 Wi-Fi SAR

Report No: BCTC2311438541-2E

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements.

For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions.

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.16 The initial test position procedure is described in the following:

- a) When the *reported* SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- b) When the *reported* SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the *reported* SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- c) For all positions/configurations tested using the initial test position and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.

Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.

When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR

TCB workshop April 2015:

SAR test exclusion can be applied for testing overlapping LTE bands as follows:

- a) The maximum output power, including tolerance, for the smaller band must be s the larger band to qualify for the SAR test exclusion.
- b) The channel bandwidth and other operating parameters for the smaller band must be fully supported by the larger band.

LTE Band 17 (704-716 MHz) is covered by LTE Band 12 (699-716 MHz)

GSM 850											
RF Exposure				Turn-up Scaling	SAR10g (W/kg)		Plot				
Conditions	(mm)	Mode	rest Position	On.	(MHz) (dBm)		•		Meas.	Scaled	No.
Front-of-face	10	GSM	Front	128	824.2	33.75	34.0	1.059	0.183	0.194	
		GSM	Back	128	824.2	33.75	34.0	1.059	3.135	3.321	1
Limb-worn	0	GSM	Back	190	836.6	33.70	34.0	1.072	2.316	2.482	
		GSM	Back	251	848.8	33.74	34.0	1.062	3.032	3.219	

	GSM 1900											
RF Exposure	Dist.		Test Position	СН.	(MHz) Pov	Output Power (dBm)	Turn	Turn-up Scaling Factor	SAR10g (W/kg)		Plot	
Conditions	(mm)	Mode	rest Position	GH.			up (dBm)		Meas.	Scaled	No.	
Front-of-face	10	GSM	Front	512	1850.2	30.48	31.0	1.127	0.474	0.534		
		GSM	Back	512	1850.2	30.48	31.0	1.127	2.926	3.298		
Limb-worn 0	0	GSM	Back	661	1880	30.15	31.0	1.216	2.420	2.943		
		GSM	Back	810	1909.8	29.96	31.0	1.271	2.605	3.310	2	

14.3 SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Test	T Frequency RE Renealed 9		Highest Measured	First Repeated			
Mode	Band (MHz)	Exposure Configuration	Position	SAR (yes/no)	SAR1-g (W/Kg)	Measued SAR1-g (W/Kg)	Largest to Smallest SAR Ratio
GSM 850	824.2	Limb-worn	Back	yes	3.321	3.257	1.020
GSM 1900	1909.8	Limb-worn	Back	yes	3.310	3.270	1.012

No.: BCTC/RF-EMC-005 Page 33 of 85 Edition / B.0

14.4 Simultaneous Transmission Evaluation

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmiting antenna.

Application Simultaneous Transmission information:

No.	Configurations	Front-of-face	Limb-worn
1	WWAN+WLAN 2.4G	No	No
2	WWAN+ Bluetooth	No	No
3	WLAN+ Bluetooth	No	No

Remark:

- 1. WWAN cannot transmit simultaneously.
- 2. EUT supports only GSM functions.
- 3. According to the KDB 447498 D01 v06, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:
- (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{(GHz)/x}]$ W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Estimated stand alone SAR							
Communication system	Frequency (MHz)	Maximum Power (dBm)	Maximum Power (mW)	Separation Distance (mm)	X	Estimated SAR1-g (W/kg)	
Bluetooth*	2480	1	1	5	7.5	/	
Bluetooth*	2480	/	1	10	7.5	/	

Note:

- 1. Bluetooth*- Including Lower power Bluetooth
- 2. Maximum average power including tune-up tolerance;
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 4. Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

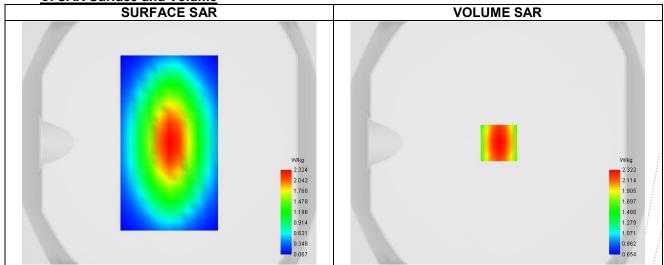
Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

No.: BCTC/RF-EMC-005 Page 34 of 85 Edition / B.0

15. Test Plots

15.1 System Performance Check

System check at 835 MHz


A. Experimental conditions.

711 Exportmental conditions:				
Probe	SN 26/23 EPGO420			
ConvF	0.81			
Area Scan	surf_sam_plan.txt 7x7x8,dx=5mm dy=5mm dz=4mm Validation plane Dipole CW835			
Zoom Scan				
Phantom				
Device Position				
Band				
Channels	Middle			
Signal	CW (Crest factor: 1.0)			

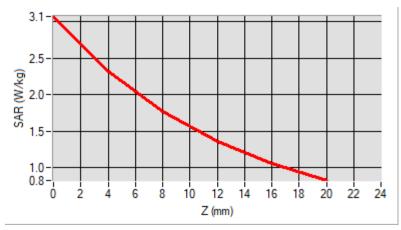
B. Permitivity

Frequency (MHz)	835.000		
Relative permitivity (real part)	40.240		
Relative permitivity (imaginary part)	20.910		
Conductivity (S/m)	0.875		

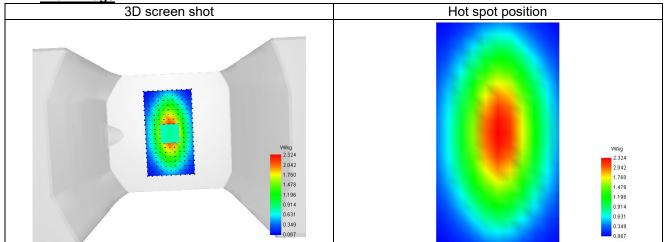
C. SAR Surface and Volume

Maximum location: X=1.00, Y=0.00; SAR Peak: 5.68 W/kg

D. SAR 1g & 10g

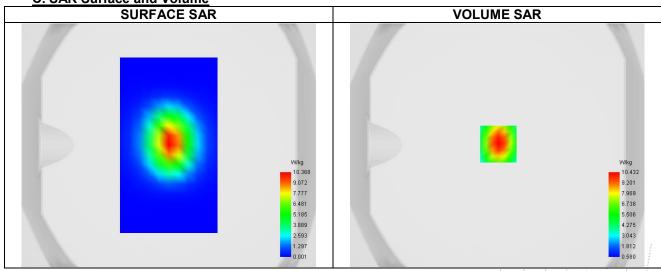

SAR 10g (W/Kg)	1.230
SAR 1g (W/Kg)	2.539
Variation (%)	0.969
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

E. Z Axis Scan


ſ	Z (mm)	0.00	4.00	8:00	12.00	16.00
	SAR (W/Kg)	3.108	2.344	1.786	1.395	1.109

No.: BCTC/RF-EMC-005 Page 35 of 85 Edition/ B.0

System check at 1900 MHz


A. Experimental conditions.

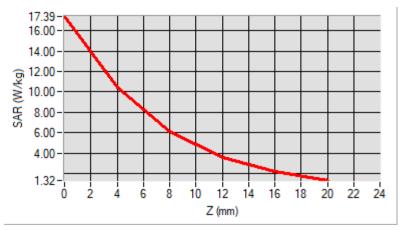
- 11 = 21 p 0 1 11 11 0 11 11 11 11 11 11 11 11 11		
Probe	SN 26/23 EPGO420	
ConvF	1.04	
Area Scan	surf_sam_plan.txt	
Zoom Scan	7x7x8,dx=5mm dy=5mm dz=4mm	
Phantom	Validation plane	
Device Position	Dipole	
Band	CW1900	
Channels	Middle	
Signal	CW (Crest factor: 1.0)	

B. Permitivity

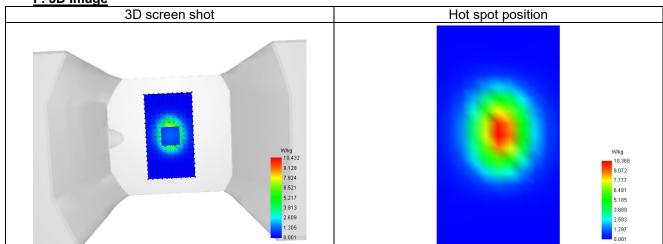
Frequency (MHz)	1900.000
Relative permitivity (real part)	40.905
Relative permitivity (imaginary part)	12.866
Conductivity (S/m)	1.414

C. SAR Surface and Volume

Maximum location: X=1.00, Y=1.00; SAR Peak: 22.54 W/kg


D. SAR 1g & 10g

SAR 10g (W/Kg)	4.775 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SAR 1g (W/Kg)	\10.094 \ \ \
Variation (%)	0.622
Horizontal validation criteria: minimum distance (mm)	0.000000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000\\\\\\\

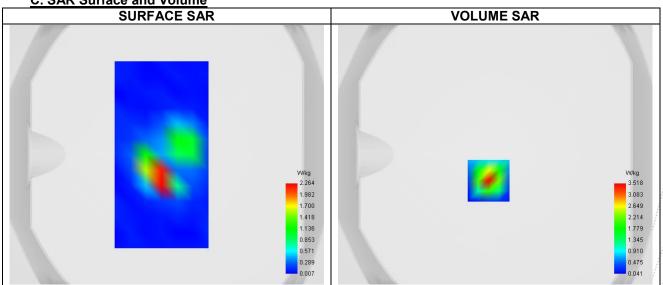

E. Z Axis Scan

Z (mm)	0.00	4.00	8.00	12.00	16.00
SAR (W/Kg)	17.387	10.484	6.206	3.672	2.184

15.2 SAR Test Graph Results

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB $865664\ D02$

Plot 1


A. Experimental conditions.

SN 26/23 EPGO420
0.81
surf_sam_plan.txt
5x5x7,dx=8mm dy=8mm dz=5mm
Validation plane
Body
GSM850
128
TDMA (Crest factor: 8.0)

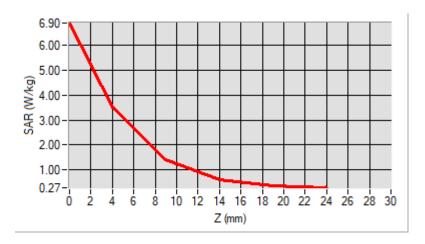
B. Permitivity

<u> </u>	
Frequency (MHz)	824.200
Relative permitivity (real part)	40.240
Relative permitivity (imaginary part)	19.400
Conductivity (S/m)	0.875

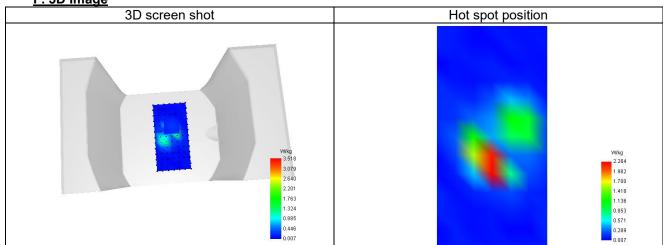
C. SAR Surface and Volume

Maximum location: X=-5.00, Y=-20.00; SAR Peak: 6.91 W/kg

D. SAR 1g & 10g

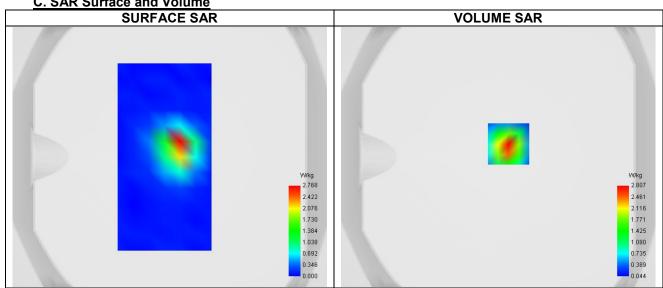

SAR 10g (W/Kg)	1.254
SAR 1g (W/Kg)	3:135
Variation (%)	-2.890
Horizontal validation criteria: minimum distance (mm)	0.00000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.00000

E. Z Axis Scan


Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	6.903	3.518	1.387	0.576	0.336

No.: BCTC/RF-EMC-005 Page 39 of 85 Edition/ B.0

Plot 2


A. Experimental conditions.

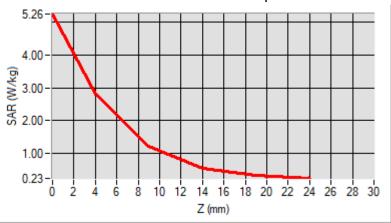
SN 26/23 EPGO420
1.04
surf_sam_plan.txt
5x5x7,dx=8mm dy=8mm dz=5mm
Validation plane
Body
GSM1900
Higher (810)
TDMA (Crest factor: 8.0)

B. Permitivity

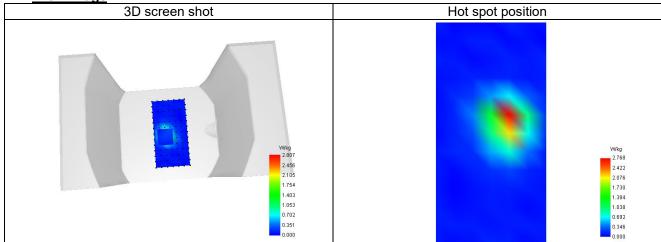
Frequency (MHz)	1909.800
Relative permitivity (real part)	40.905
Relative permitivity (imaginary part)	13.195
Conductivity (S/m)	1.414

C. SAR Surface and Volume

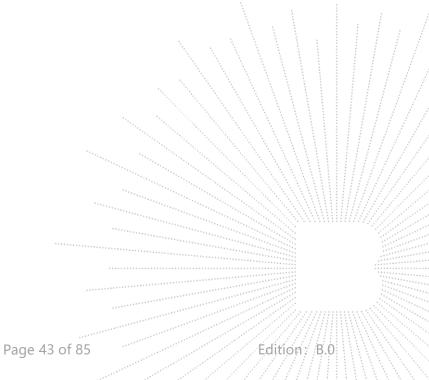
Maximum location: X=8.00, Y=10.00; SAR Peak: 5.28 W/kg


D. SAR 1g & 10g

SAR 10g (W/Kg)	1.166
SAR 1g (W/Kg)	2.605 \ \ \ \ \ / /
Variation (%)	-1.550 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000


E. Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00 19.00
SAR (W/Kg)	5.259	2.807	1.197	0.537 0.312



16. CALIBRATION CERTIFICATES

Probe-EPGO420 Calibration Certificate SID835Dipole Calibration Ceriticate SID1900Dipole Calibration Ceriticate

No.: BCTC/RF-EMC-005 Page 43 of

COMOSAR E-Field Probe Calibration Report

Ref: ACR.199.1.23.BES.A

SHENZHEN BCTC TECHNOLOGY CO., LTD.

1~2/ F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: 2623-EPGO-420

Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 7/18/2023

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/11

No.: BCTC/RF-EMC-005 Page 44 of 85 Edition/ B.0

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.199.1.23.BES.A

	Name	Function	Date	Signature
Prepared by:	Cyrille ONNEE	Measurement Responsible	7/18/2023	(28)
Checked & approved by:	Jérôme Luc	Technical Manager	7/18/2023	JES
Authorized by:	Yann Toutain	Laboratory Director	7/18/2023	Yann TOUTAAN

Yann Signature numérique de Yann Toutain ID Date : 2023.07.18

	Customer Name
Distribution:	Shenzhen BCTC Technology Co.,
	Ltd.

Issue	Name	Date	Modifications
A	Cyrille ONNEE	7/18/2023	Initial release
			4

Page: 2/11

Template ACR.DDD.N. YY.MVGB.ISSUE_COMOSAR Probe vI.

This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 45 of 85 Edition: B.0 No.: BCTC/RF-EMC-005

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.199.1.23.BES.A

TABLE OF CONTENTS

1	De	vice Under Test	
2	Pro	duct Description	
	2.1	General Information	
3	Me	asurement Method	
	3.1	Sensitivity	
	3.2	Linearity	5
	3.3	Isotropy	
	3.4	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	libration Results	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Vei	rification Results	
7	Lis	t of Equipment10	

Page: 3/11

Template ACR.DDD.N. YY.MVGB.ISSUE_COMOSAR Probe vI.

This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 46 of 85 Edition: B.0 No.: BCTC/RF-EMC-005

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.23.BES.A

DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	2623-EPGO-420		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.228 MΩ		
	Dipole 2: R2=0.238 MΩ		
	Dipole 3: R3=0.230 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	24.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.55 mm
Distance between dipoles / probe extremity	12.7 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page: 4/11

Template ACR.DDD.N. YY.MVGB.ISSUE_COMOSAR Probe vI.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 47 of 85 Edition: B.0 No.: BCTC/RF-EMC-005

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.23.BES.A

3.2 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01 W/kg to 100 W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm step}$ along lines that are approximately normal to the surface:

$$SAR_{uncertainty}[\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}/(\delta\rho)}\right)}{\delta/2} \quad \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$$

where

SAR_{uncertaintv} is the uncertainty in percent of the probe boundary effect

dbe is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 Δ_{step} is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

ΔSARbe in percent of SAR is the deviation between the measured SAR value, at the

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit, 2%).

Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-EMC-005 Page 48 of 85 Edition / B.0

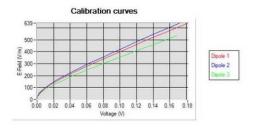
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.23.BES.A

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is \pm 14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition			
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe

DCPi=diode compression point given below for the 3 channels of the probe

Normi=dipole sensitivity given below for the 3 channels of the probe

Page: 6/11

Template ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL

This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-EMC-005 Page 49 of 85 Edition B.0

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.23.BES.A

	Normy dipole $2 (\mu V/(V/m)^2)$	
1.21	1.09	1.56

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
106	109	103

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula. $E_{liquid}^2 = \frac{\rho \, SAR}{\sigma}$

$$E_{liquid}^2 = \frac{\rho SA}{\sigma}$$

where

 σ =the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where

c=the specific heat for the liquid

dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4P_W}{ab\delta} e^{\frac{-2\lambda}{\delta}}$$

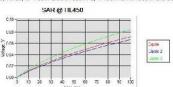
where

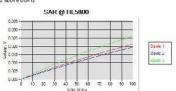
a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ=the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid

Template_ACR.DDD.N.YYMVGB.ISSUE_COMOSAR Probe vL

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 50 of 85 No.: BCTC/RF-EMC-005




COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.199.1.23.BES.A

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

<u>Liquid</u>	Frequency (MHz*)	ConvF
HL450	450	0.86
BL450	450	0.78
HL750	750	0.80
BL750	750	0.87
HL850	835	0.81
BL850	835	0.80
HL900	900	0.76
BL900	900	0.87
HL1800	1800	0.96
BL1800	1800	1.01
HL1900	1900	1.04
BL1900	1900	1.11
HL2100	2100	1.00
BL2100	2100	1.16
HL2300	2300	1.11
BL2300	2300	1.23
HL2450	2450	1.11
BL2450	2450	1.32
HL2600	2600	1.03
BL2600	2600	1.19
HL5200	5200	1.18
BL5200	5200	0.97
HL5400	5400	1.17
BL5400	5400	1.00
HL5600	5600	1.20
BL5600	5600	0.95
HL5800	5800	1.15
BL5800	5800	1.05

Page: 8/11

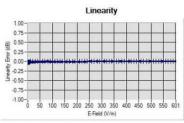
Template ACR.DDD.N. YY.MVGB.ISSUE_COMOSAR Probe vI.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

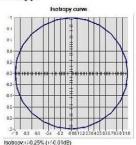
Page 51 of 85 Edition: B.0 No.: BCTC/RF-EMC-005

No.: BCTC/RF-EMC-005

Report No: BCTC2311438541-2E



COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref: ACR 199.1.23.BES.A

VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

Linearity:+/-1.48% (+/-0.06dB)

Page: 9/11

Template ACR.DDD.N. YY.MVGB.ISSUE_COMOSAR Probe vI.

This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 52 of 85 Edition: B.0

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.199.1.23.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG	SN 32/16 COAXCELL_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated, No cal required.

Page: 10/11

Template ACR.DDD.N. YY.MVGB.ISSUE_COMOSAR Probe vI.

This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 53 of 85 Edition: B.0 No.: BCTC/RF-EMC-005

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.199.1.23.BES.A

Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated. No cal required.	Validated. No cal required.
emperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 11/11

Template ACR.DDD.N. YY.MVGB.ISSUE_COMOSAR Probe vI.

This document shall not be reproduced, except in fill or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Edition: B.0 Page 54 of 85 No.: BCTC/RF-EMC-005

SAR Reference Dipole Calibration Report

Ref: ACR.329.9.21.BES.A

SHENZHEN BCTC TECHNOLOGY CO., LTD.

1~2/ F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD,
TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 47/21 DIP 0G835-621

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 11/25/2021

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/13

No.: BCTC/RF-EMC-005 Page 55 of 85 Edition / B.0

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR. 329.9.21 BES. A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	11/25/2021	JES
Checked by :	Jérôme Luc	Technical Manager	11/25/2021	JES
Approved by :	Yann Toutain	Laboratory Director	11/25/2021	Gann TOUTANI

2021.11.25 11:52:29 +01'00'

	Customer Name		
Distribution :	Shenzhen BCTC Technology Co., Ltd.		

Issue	Name	Date	Modifications
A	Jérôme Luc	11/25/2021	Initial release
*			

Page: 2/13

Template ACR.DDD.N. YY.MVGB.ISSUE SAR Reference Dipote vI

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 56 of 85 Edition: B.0 No.: BCTC/RF-EMC-005

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.329.9.21.BES.A

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	
6	Cali	bration Measurement Results 6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	7
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	8
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	11
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/13

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipole vI

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Edition: B.0 Page 57 of 85 No.: BCTC/RF-EMC-005

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR. 329.9.21.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST 2

Device Under Test				
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID835			
Serial Number	SN 47/21 DIP 0G835-621			
Product Condition (new / used)	New			

PRODUCT DESCRIPTION 3

GENERAL INFORMATION 3.1

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/13

Template ACR.DDD.N. YY.MVGB.ISSUE SAR Reference Dipole vI

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 58 of 85 Edition: B.0 No.: BCTC/RF-EMC-005

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR. 329.9.21 BES. A

MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.08 LIN		

DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
0 - 300	0.20 mm		
300 - 450	0.44 mm		

5.3 <u>VALIDATION MEASUREMENT</u>

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/13

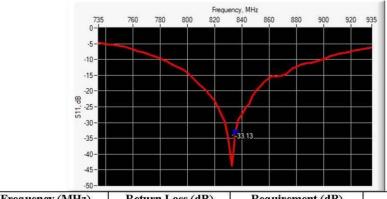
Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipole vI
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 59 of 85 Edition: B.0 No.: BCTC/RF-EMC-005

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR. 329.9.21.BES. A

Scan Volume	Expanded Uncertainty		
1 g	19 % (SAR)		
10 g	19 % (SAR)		


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz) Return Loss (dB) Requirement (dB) Impedance 835 -24.07 55.3 Ω - 3.3 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz) Return Loss (dB) Requirement (dB) Impedance 835 -33.13 -20 52.2 Ω - 0.4 jΩ

Page: 6/13

Template ACR.DDD.N. YY.MVGB.ISSUE SAR Reference Dipote vI

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-EMC-005 Page 60 of 85 Edition: B.0

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR. 329.9.21.BES.A

MECHANICAL DIMENSIONS

Frequency MHz	Ln	Lmm		hmm		d mm	
	required	measured	required	m easured	required	m easured	
300	420.0 ±1 % .		250.0 ±1 %.		6.35 ±1 %.		
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.		
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 % .		
835	161.0 ±1 % .	161.47	89.8 ±1 %.	89.78	3.6 ±1 %.	3.61	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.		
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.		
1500	86.2 ±1 %.		50.0 ±1 %.		3.6 ±1 %.		
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.		
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.		
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.		
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.		
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.		
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.		
2100	61.0 ±1 % .		35.7 ±1 % .		3.6 ±1 %.		
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.		
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 % .		
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.		
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.		
3300					45		
3500	37.0 ±1 %.		26.4 ±1 %.		3.6 ±1 %.		
3700	34.7 ±1 %.		26.4 ±1 %.		3.6 ±1 %.		
3900	2		2		1 <u>0</u>		
4200			ā		j.		
4600		5	*		le .		
4900	2		-		Œ		

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Page: 7/13

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipole vI
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 61 of 85 Edition: B.0 No.: BCTC/RF-EMC-005