Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.407

Report Reference No....... GTS20250708005-2-04 FCC ID......: 2AVEDFRX-M7663BU6

Compiled by

(position+printed name+signature) .: File administrators Peter Xiao

Supervised by

(position+printed name+signature) .: Test Engineer Evan Ouyang

Test Engineer Evan Ouyang

Approved by

(position+printed name+signature) .: Manager Jason Hu

Date of issue Aug. 05, 2025

Representative Laboratory Name.: Shenzhen Global Test Service Co., Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Address Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu

Street, Longgang District, Shenzhen, Guangdong, China

Keder Sino Evan Ouyang

Applicant's name...... Shenzhen Feng Rui Xiang Intelligent Technology Co., Ltd.

Test specification:

TRF Originator...... Shenzhen Global Test Service Co.,Ltd.

Master TRF Dated 2014-12

Shenzhen Global Test Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Module

Trade Mark: N/A

Manufacturer: Shenzhen Feng Rui Xiang Intelligent Technology Co., Ltd.

Model/Type reference FRX-M7663BU6

Listed Models: N/A

Operation Frequency...... From 5180MHz to 5240MHz/ 5745MHz to 5825MHz

Report No.: GTS20250708005-2-04 Page 2 of 35

TEST REPORT

Test Report No. :	GTS20250708005-2-04	Aug. 05, 2025
rest Report No		Date of issue

Equipment under Test : 802.11ac 2T2R 867Mbps WLAN + Bluetooth v5.1 Combo USB2.0

Module

Model /Type : FRX-M7663BU6

Listed model : N/A

Applicant : Shenzhen Feng Rui Xiang Intelligent Technology Co., Ltd.

Address 2108 Longhu Junhui, No. 4745 Longhua Avenue, Qinghua

Community, Longhua Street, Longhua District, Shenzhen, China

Manufacturer : Shenzhen Feng Rui Xiang Intelligent Technology Co., Ltd.

Address 3/F, Building G, No. 2, Mud Pit Road, Guanlan Street, Longhua

District, Shenzhen, China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	7
2.4. Short description of the Equipment under Test (EUT)	7
2.5. EUT operation mode	7
2.6. Block Diagram of Test Setup	8
2.7. Related Submittal(s) / Grant (s)	8
2.8. EUT Exercise Software	8
2.9. Special Accessories	8
2.10. External I/O Cable	8
2.11. Modifications	8
3. TEST ENVIRONMENT	9
3.1. Address of the test laboratory	9
3.2. Test Facility	9
3.3. Environmental conditions	9
3.4. Statement of the measurement uncertainty	9
3.5. Test Description	10
3.6. Equipments Used during the Test	11
4. TEST CONDITIONS AND RESULTS	12
4.1. AC Power Conducted Emission	12
4.2. Radiated Emission	14
4.3. Duty Cycle	19
4.4. Maximum Average Output Power	20
4.5. Power Spectral Density	22
4.6. 99% and 6dB Bandwidth	25
4.7. 99% and 26dBc Bandwidth	26
4.8. Conducted Spurious Emissions and Band Edge Compliance	27
4.9. Frequency Stability	30
4.10. Antenna Requirement	34
5. TEST SETUP PHOTOS OF THE EUT	35
6 EYTEDNAL AND INTEDNAL DHOTOS OF THE FLIT	25

Report No.: GTS20250708005-2-04 Page 4 of 35

TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.407: General technical requirements.

ANSI C63.10-2020: American National Standard for Testing Unlicensed Wireless Devices

KDB 789033 D02 General U-NII Test Procedures New Rules v02r01: UNII, U-NII, U-NII Test Procedures

Report No.: GTS20250708005-2-04 Page 5 of 35

1. SUMMARY

1.1. General Remarks

Date of receipt of test sample	:	Jul. 11, 2025
Testing commenced on	:	Jul. 15, 2025
Testing concluded on	:	Aug. 04, 2025

1.2. Product Description

1.2. Floudet Description				
Product Name:	802.11ac 2T2R 867Mbps WLAN + Bluetooth v5.1 Combo USB2.0 Module			
Trade Mark:	N/A			
Model/Type reference:	FRX-M7663BU6			
List Model:	N/A			
Model Declaration	N/A			
Power supply:	DC 5.0V			
Hardware Version	N/A			
Software Version	N/A			
Sample ID	GTS20250708005-2-S001-1# & GTS20250708005-2-S001-2#			
Bluetooth	G13202307000003-2-3001-1# & G1320230700003-2-3001-2#			
Frequency Range	2402MHz ~ 2480MHz			
Frequency Kange	79 channels for Bluetooth (DSS)			
Channel Number	40 channels for Bluetooth (DTS)			
	1MHz for Bluetooth (DSS)			
Channel Spacing	2MHz for Bluetooth (DTS)			
	GFSK, π/4-DQPSK, 8DPSK for Bluetooth (DSS)			
Modulation Type	GFSK for Bluetooth (DTS)			
2.4GWLAN				
	IEEE 802.11b:2412-2462MHz			
WLAN Operation frequency	IEEE 802.11g:2412-2462MHz			
WEAR Operation requertey	IEEE 802.11n HT20:2412-2462MHz			
	IEEE 802.11n HT40:2422-2452MHz			
	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)			
WLAN Modulation Type	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)			
WEAN Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK, BPSK)			
Channel number:	11 Channel for IEEE 802.11b/g/n (HT20)			
Charmer number.	7 Channel for IEEE 802.11n (HT40)			
Channel separation:	5MHz			
WIFI(5.2G/5.8G Band)				
WLAN Operation frequency	5180-5240MHz/ 5745MHz-5825MHz			
	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)			
VVI ANI Madulation Type	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)			
WLAN Modulation Type	IEEE 802.11ac VHT20: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11ac VHT40: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)			
	IEEE 802.11ac VHT80: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)			
	4 Channels for 20MHz bandwidth(5180-5240MHz)			
	5 channels for 20MHz bandwidth(5745-5825MHz)			
Channel number:	2 channels for 40MHz bandwidth(5190~5230MHz)			
	2 channels for 40MHz bandwidth(5755~5795MHz)			

Report No.: GTS20250708005-2-04 Page 6 of 35

	1 channels for 80MHz bandwidth(5210MHz)
	1 channels for 80MHz bandwidth(5775MHz)
Antenna Description	Three External antenna respectively. WLAN support 2*2MIMO technology. ANT0 used for WIFI TX/RX, 3.0 dBi(Max.) for 2.4G Band and 3.0 dBi(Max.) for 5G Band ANT1 used for WIFI TX/RX, 3.0 dBi(Max.) for 2.4G Band and 3.0 dBi (Max.) for 5G Band ANT2 used for BT TX/RX, 3.0 dBi(Max.) for 2.4G Band

Report No.: GTS20250708005-2-04 Page 7 of 35

1.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 5.0V

1.4. Short description of the Equipment under Test (EUT)

This is a 802.11ac 2T2R 867Mbps WLAN + Bluetooth v5.1 Combo USB2.0 Module. For more details, refer to the user's manual of the EUT.

1.5. EUT operation mode

The application provider specific test software to control sample in continuous TX and RX.

Antenna	Chain0 (ANT 0)			Chain1 (ANT 1)			Simultaneously
Bandwidth Mode	20MHz	40MHz	80MHz	20MHz	40MHz	80MHz	/
IEEE 802.11a	V			Ø			
IEEE 802.11n	V						Ø
IEEE 802.11ac	V	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\square}$	$\overline{\checkmark}$	V

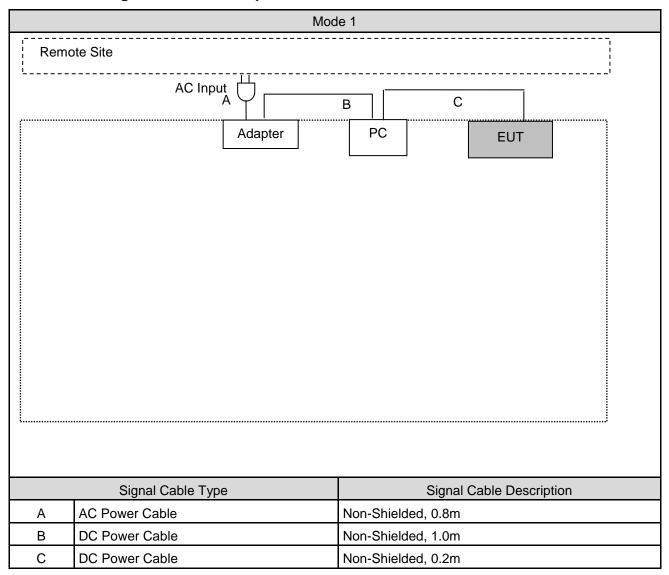
IEEE 802.11a/ac20/ac40/ac80n20/n40:

UN	II-1	UN	III-1	UN	II-1
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230		
44	5220				
48	5240				

U-N	NI-3	U-I	VI-3	U-N	NI-3
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785				
161	5805				
165	5825				

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.


AC main conducted emission pre-test voltage at both AC 120V/60Hz and AC 240V/60Hz, recorded worst case(AC 120V/60Hz);

AC main conducted emission pre-test at charge from PC modes, recorded worst case;

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11ac VHT20 mode (HCH).

Report No.: GTS20250708005-2-04 Page 8 of 35

1.6. Block Diagram of Test Setup

1.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AVEDFRX-M7663BU6** filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

1.8. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (MT7663) provided by application.

1.9. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
LENOVO	PC	DESKYOP-EUIVCNR		SDOC
SHENZHEN HONOR ELECTRONIC	Adapter	ADS-65HI-19A-		SDOC
CO.,LTD.	7 135 710 1	124036F		

Note: The PC and Adapter is only used for auxiliary testing.

1.10. External I/O Cable

I/O Port Description	Quantity	Cable
/	/	/

1.11. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20250708005-2-04 Page 9 of 35

2. TEST ENVIRONMENT

2.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China.

2.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1401.

FCC Registered Test Site Number is 684561.

2.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

2.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: GTS20250708005-2-04 Page 10 of 35

2.5. Test Description

Applied Standard: FCC Part 15 Subpart E				
FCC Rules	Rules Description of Test Test Sample		Result	Remark
1	On Time and Duty Cycle	GTS20250708005-2- S001-1#	Compliant	Appendix D Appendix E
§15.407(a) Maximum Conducted Output Power		GTS20250708005-2- S001-1#	Compliant	Appendix D Appendix E
§15.407(a) Power Spectral Density		GTS20250708005-2- S001-1#	Compliant	Appendix D Appendix E
§15.407(a) 26dB&6dB Bandwidth and 99% Bandwidth		GTS20250708005-2- S001-1#	Compliant	Appendix D Appendix E
§15.209, §15.407(b)	Radiated Emissions	GTS20250708005-2- S001-1# GTS20250708005-2- S001-2#	Compliant	Note 1
§15.209, Conducted Spurious Emissions and Band Edges Test		GTS20250708005-2- S001-1#	Compliant	Appendix D Appendix E
§15.209, §15.407(b) Emissions at Restricted Ban		GTS20250708005-2- S001-1#	Compliant	Note 1
§15.407(g)	Frequency Stability	GTS20250708005-2- S001-1#	Compliant	Note 1
§15.207(a)	AC Mians Line Conducted Emissions	GTS20250708005-2- S001-2#	Compliant	Note 1
§15.203 §15.407(h)	Antenna Requirements	GTS20250708005-2- S001-1#	Compliant	Note 1
§15.407 §2.1091	RF Exposure	1	Compliant	Note 2

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. Note 1 Test results inside test report;
- 4. Note 2 Test results in other test report (MPE Report).
- 5. We tested all test mode and recorded worst case in report

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

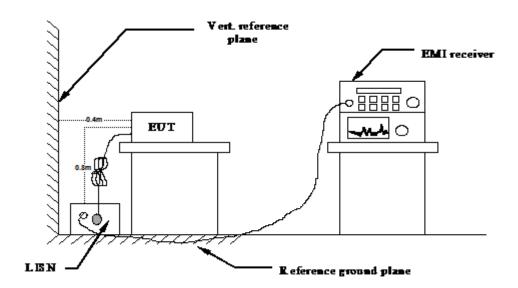
Test Items	Mode	Data Rate
Maximum Peak Conducted Output Power	802.11a	6 Mbps
Power Spectral Density		'
6dB Bandwidth	802.11ac20/ac40/ac80	
26dB Bandwidth	802.11n HT20/40	MCS0
Radiated Emission30M~1GHz&	002.111111120/40	
Radiated Emission 1GHz~10 th Harmonic		
	802.11a	6 Mbps
Band Edge	802.11ac20/ac40/ac80 802.11n HT20/40	MCS0

2.6. Equipments Used during the Test

LISN	Calibration Due Date 2026/07/03 2026/07/06 2026/07/06 2026/07/03 2026/07/03 2026/07/03 2026/07/14 2026/07/14 N/A 2025/12/15
Artificial Mains CYBERTEK EM5040A E1850400205 2025/07/07 LISN R&S ESH2-Z5 893606/008 2025/07/07 EMI Test Receiver R&S ESPI 3 / 2025/07/04 Test Receiver R&S ESCI 7 101102 2025/07/04 Spectrum Analyzer Agilent N9020A MY48010425 2025/07/04 Spectrum Analyzer R&S FSV40-N 101800 2025/07/04 Vector Signal generator Agilent N5181A MY49060502 2025/07/15 Signal generator Agilent N5182A MY50141550 2025/07/04 Climate Chamber ESPEC EL-10KA A20120523 2025/07/15 Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/06 2026/07/06 2026/07/03 2026/07/03 2026/07/03 2026/07/14 2026/07/14 N/A 2025/12/15
LISN R&S ESH2-Z5 893606/008 2025/07/07 EMI Test Receiver R&S ESPI 3 / 2025/07/04 Test Receiver R&S ESCI 7 101102 2025/07/04 Spectrum Analyzer Agilent N9020A MY48010425 2025/07/04 Spectrum Analyzer R&S FSV40-N 101800 2025/07/04 Vector Signal generator Agilent N5181A MY49060502 2025/07/15 Signal generator Agilent N5182A MY50141550 2025/07/04 Climate Chamber ESPEC EL-10KA A20120523 2025/07/15 Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/06 2026/07/03 2026/07/03 2026/07/03 2026/07/14 2026/07/14 N/A 2025/12/15
EMI Test Receiver R&S ESPI 3 / 2025/07/04 Test Receiver R&S ESCI 7 101102 2025/07/04 Spectrum Analyzer Agilent N9020A MY48010425 2025/07/04 Spectrum Analyzer R&S FSV40-N 101800 2025/07/04 Vector Signal generator Agilent N5181A MY49060502 2025/07/15 Signal generator Agilent N5182A MY50141550 2025/07/04 Climate Chamber ESPEC EL-10KA A20120523 2025/07/15 Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/03 2026/07/03 2026/07/03 2026/07/14 2026/07/14 2026/07/14 N/A 2025/12/15
Test Receiver R&S ESCI 7 101102 2025/07/04 Spectrum Analyzer Agilent N9020A MY48010425 2025/07/04 Spectrum Analyzer R&S FSV40-N 101800 2025/07/04 Vector Signal generator Agilent N5181A MY49060502 2025/07/15 Signal generator Agilent N5182A MY50141550 2025/07/04 Climate Chamber ESPEC EL-10KA A20120523 2025/07/15 Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/03 2026/07/03 2026/07/03 2026/07/14 2026/07/14 N/A 2025/12/15
Spectrum Analyzer Agilent N9020A MY48010425 2025/07/04 Spectrum Analyzer R&S FSV40-N 101800 2025/07/04 Vector Signal generator Agilent N5181A MY49060502 2025/07/15 Signal generator Agilent N5182A MY50141550 2025/07/04 Climate Chamber ESPEC EL-10KA A20120523 2025/07/15 Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/03 2026/07/03 2026/07/14 2026/07/03 2026/07/14 N/A 2025/12/15
Spectrum Analyzer R&S FSV40-N 101800 2025/07/04 Vector Signal generator Agilent N5181A MY49060502 2025/07/15 Signal generator Agilent N5182A MY50141550 2025/07/04 Climate Chamber ESPEC EL-10KA A20120523 2025/07/15 Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/03 2026/07/14 2026/07/03 2026/07/14 N/A 2025/12/15
Vector Signal generator Agilent N5181A MY49060502 2025/07/15 Signal generator Agilent N5182A MY50141550 2025/07/04 Climate Chamber ESPEC EL-10KA A20120523 2025/07/15 Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/14 2026/07/03 2026/07/14 N/A 2025/12/15
generator Agrient NS181A MY49060302 2025/07/15 Signal generator Agilent N5182A MY50141550 2025/07/04 Climate Chamber ESPEC EL-10KA A20120523 2025/07/15 Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/03 2026/07/14 N/A 2025/12/15
Climate Chamber ESPEC EL-10KA A20120523 2025/07/15 Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/14 N/A 2025/12/15
Controller EM Electronics Controller EM 1000 N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	N/A 2025/12/15
Horn Antenna Schwarzbeck BBHA 9120D 01622 2024/12/16 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2025/12/15
Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	
Active Loop Antenna Technology Co.,Ltd. ZN30900C / 2025/07/04 By-log Antenna SCHWARZBECK VULB9163 00976 2025/07/15 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/03
Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	
Antenna SCHWARZBECK BBHA 9170 791 2025/07/15	2026/07/14
SK2024010400	2026/07/14
Amplifier SKET LAPA_30M01G-32 3K2024010400 2025/01/21	2026/01/20
Amplifier EMCI EMC012645SE 980340 2025/01/21	2026/01/20
Amplifier Schwarzbeck BBV9179 9719-025 2025/01/21	2026/01/20
Temperature/Humidity Meter HUATU HTC-1 / 2025/07/15	2026/07/14
High-Pass Filter Stest 1 / 2025/07/04	2026/07/03
High-Pass Filter Stest 2 / 2025/07/04	2026/07/03
RF Cable(below 1GHz) HUBER+SUHNER RG214 RE01 2025/07/15	2026/07/14
RF Cable(above 1GHz) HUBER+SUHNER RG214 RE02 2025/07/15	2026/07/14
Data acquisition card Agilent U2531A TW53323507 2025/07/15	2026/07/14
Power Sensor Keysight E9301A MY41495308 2025/07/04	2026/07/03
Control Unit Tonscend JS0806-2 / 2025/07/07	2026/07/06
Wireless Communication Tester CMW500 125408 2025/07/04	2026/07/03
Automated filter bank Tonscend JS0806-F 19F8060177 2025/07/04	2026/07/03
EMI Test Software Tonscend JS1120-1 Ver 2.6.8.0518 /	/
EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 /	/
EMI Test Software Tonscend JS32-CE Ver 2.5 /	/
EMI Test Software Tonscend JS32-RE Ver 2.5.1.8 /	

Remark:

^{1.} The calibration interval was one year.


^{2.}All devices whose calibration expired on July 15, 2025 were calibrated from July 16, 2024 to July 15, 2025.

Report No.: GTS20250708005-2-04 Page 12 of 35

3. TEST CONDITIONS AND RESULTS

3.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020
- 4 The EUT received DC 19V power, the adapter received AC120V/60Hz or AC 240V/50Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

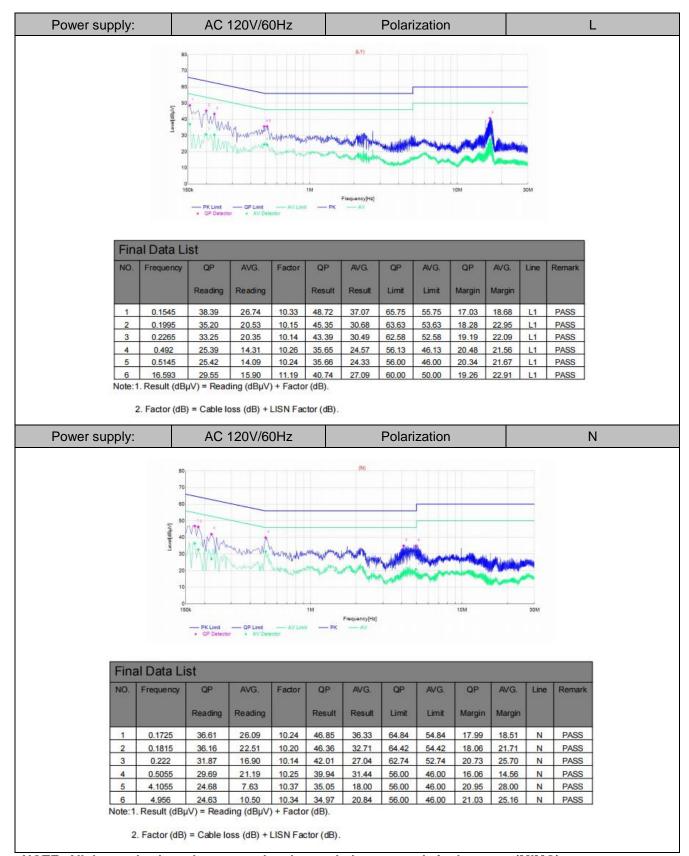
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)		
r requericy rarige (IMI12)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30 60 50			
* Decreases with the logarithm of the frequency.			

DISTURBANCE Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

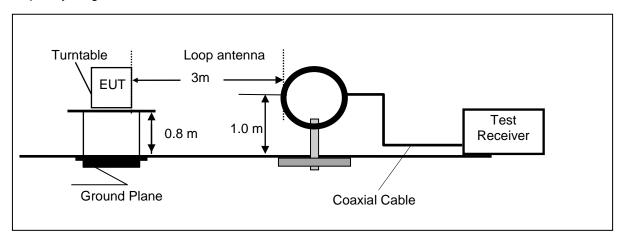

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

Report No.: GTS20250708005-2-04 Page 13 of 35

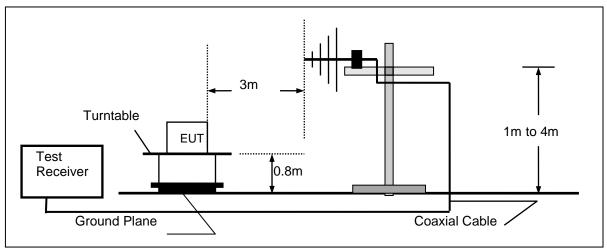
TEST RESULTS

Remark: We measured Conducted Emission at all mode in AC 120V, the worst case was recorded .

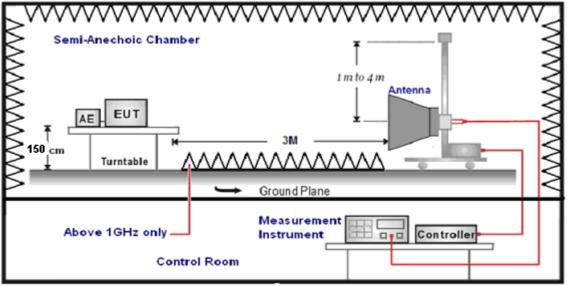
Temperature	25℃	Humidity	60%
Test Engineer	Evan Ouyang	Configurations	IEEE 802.11ac20 HCH


NOTE: All the modes have been tested and recorded worst mode in the report(MIMO).

Report No.: GTS20250708005-2-04 Page 14 of 35


3.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing above 1GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 24MHz and maximum operation frequency was 5825MHz.so radiated emission test frequency band from 9KHz to 40GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz Active Loop Antenna 3		3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)	
RA = Reading Amplitude	AG = Amplifier Gain	
AF = Antenna Factor		

Transd=AF +CL-AG

Report No.: GTS20250708005-2-04 Page 16 of 35

RADIATION LIMIT

According to §15.407 (b): Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits

Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m)
5150-5250	-27	68.2
5250-5350	-27	68.2
5470-5725	-27	682
5725-5850	-27 (beyond 10MHz of the bandedge)	68.2
5725-5650	-17 (within 10 MHz of band edge)	78.2

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

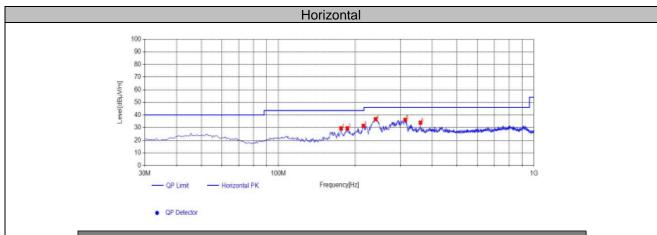
TEST RESULTS

Remark: We measured Radiated Emission at all mode from 9KHz to 25GHz in AC 120V and the worst case was recorded.

Temperature	23.2℃	Humidity	49%
Test Engineer	Evan Ouyang	Configurations	IEEE 802.11ac20 HCH

For 9 KHz~30MHz

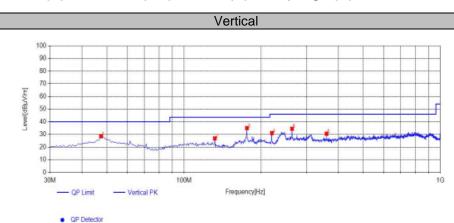
Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note


Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


For 30MHz-1GHz

Susp	Suspected List											
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark	
	i1	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	ľ				
1	175.985	35.68	-6.22	29.46	43.50	14.04	100	315	PK	Horizonta	PASS	
2	186.17	35.19	-5.79	29.40	43.50	14.10	100	359	PK	Horizonta	PASS	
3	215.27	36.03	-4.60	31.43	43.50	12.07	100	40	PK	Horizonta	PASS	
4	240.005	40.36	-3.69	36.67	46.00	9.33	100	204	PK	Horizonta	PASS	
5	313.725	38.20	-1.96	36.24	46.00	9.76	100	204	PK	Horizonta	PASS	
6	359.8	34.17	-0.24	33.93	46.00	12.07	100	164	PK	Horizonta	PASS	

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Susp	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	Limit	Margin	Height	Angle	Detector	Polarity	Remark
	,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	ľ			
1	47.46	31.67	-3.10	28.57	40.00	11.43	100	281	PK	Vertical	PASS
2	131.85	35.06	-8.15	26.91	43.50	16.59	100	226	PK	Vertical	PASS
3	175.985	41.24	-6.22	35.02	43.50	8.48	100	267	PK	Vertical	PASS
4	220.12	35.40	-4.32	31.08	46.00	14.92	100	203	PK	Vertical	PASS
5	263.77	37.26	-2.74	34.52	46.00	11.48	100	132	PK	Vertical	PASS
6	359.8	30.81	-0.24	30.57	46.00	15.43	100	142	PK	Vertical	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

NOTE: All the modes have been tested and recorded worst mode in the report(MIMO).

Report No.: GTS20250708005-2-04 Page 18 of 35

For 1GHz to 40GHz 5150-5250MHz:

IEEE 802.11ac HT20_MIMO 802.11ac20 Mode_Channel 36 _5180 MHz

Item (Mark)	Freq (MHz)	Read Level (dBµV)	Antenna Factor (dB/m)	PRM Factor dB	Cable Loss (dB)	Result Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector	Polarization
1	10360	39.75	38.55	33.13	11.26	56.43	68.20	-11.77	Peak	Horizontal
1	10360	31.43	38.55	33.13	11.26	48.11	54.00	-5.89	AV	Horizontal
1	10360	40.40	38.55	33.13	11.26	57.08	68.20	-11.12	Peak	Vertical
1	10360	29.61	38.55	33.13	11.26	46.29	54.00	-7.71	AV	Vertical

802.11ac20 Mode_Channel 40 _ 5200 MHz

Item (Mark)	Freq (MHz)	Read Level (dBµV)	Antenna Factor (dB/m)	PRM Factor dB	Cable Loss (dB)	Result Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector	Polarization
1	10400	40.30	38.55	33.13	11.26	56.98	68.20	-11.22	Peak	Horizontal
1	10400	31.80	38.55	33.13	11.26	48.48	54.00	-5.52	AV	Horizontal
1	10400	40.45	38.55	33.13	11.26	57.13	68.20	-11.07	Peak	Vertical
1	10400	28.98	38.55	33.13	11.26	45.66	54.00	-8.34	AV	Vertical

802.11ac20 Mode_ Channel 48_ 5240 MHz

Item	Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin	Datastas	Dalariantian
(Mark)	(MHz)	Level	Factor (dB/m)	Factor dB	Loss (dB)	Level (dBµV/m)	Line (dBµV/m)	(dB)	Detector	Polarization
1	10480	39.84	38.55	33.13	11.26	56.52	68.20	-11.68	Peak	Horizontal
1	10480	30.68	38.55	33.13	11.26	47.36	54.00	-6.64	AV	Horizontal
1	10480	41.11	38.55	33.13	11.26	57.79	68.20	-10.41	Peak	Vertical
1	10480	29.08	38.55	33.13	11.26	45.76	54.00	-8.24	AV	Vertical

5725-5850MHz:

IEEE 802.11ac HT20_MIMO 802.11ac20 Mode_Channel 149 _5745 MHz

Item	Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin		
(Mark)	(MHz)	Level	Factor	Factor	Loss	Level	Line	Margin (dB)	Detector	Polarization
(iviair)	(1011-12)	(dBµV)	(dB/m)	dB	(dB)	(dBµV/m)	(dBµV/m)	(ub)		
1	11490	39.82	38.55	33.13	11.26	56.50	68.20	-11.70	Peak	Horizontal
1	11490	30.43	38.55	33.13	11.26	47.11	54.00	-6.89	AV	Horizontal
1	11490	41.25	38.55	33.13	11.26	57.93	68.20	-10.27	Peak	Vertical
1	11490	29.40	38.55	33.13	11.26	46.08	54.00	-7.92	AV	Vertical

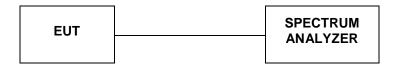
802.11ac20 Mode_Channel 157 _ 5785 MHz

Item (Mark)	Freq (MHz)	Read Level (dBµV)	Antenna Factor (dB/m)	PRM Factor dB	Cable Loss (dB)	Result Level (dBµV/m)	Limit Line (dBµV/m)	Margin (dB)	Detector	Polarization
1	11570	40.19	38.55	33.13	11.26	56.87	68.20	-11.33	Peak	Horizontal
1	11570	31.48	38.55	33.13	11.26	48.16	54.00	-5.84	AV	Horizontal
1	11570	41.98	38.55	33.13	11.26	58.66	68.20	-9.54	Peak	Vertical
1	11570	28.28	38.55	33.13	11.26	44.96	54.00	-9.04	AV	Vertical

802.11ac20 Mode_ Channel 165_ 5825 MHz

Itom	Frog	Read	Antenna	PRM	Cable	Result	Limit	Morgin		
Item (Mark)	Freq (MHz)	Level	Factor	Factor	Loss	Level	Line	Margin	Detector	Polarization
(IVIaIK)	(IVITZ)	(dBµV)	(dB/m)	dB	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
1	11650	39.21	38.55	33.13	11.26	55.89	68.20	-12.31	Peak	Horizontal
1	11650	30.90	38.55	33.13	11.26	47.58	54.00	-6.42	AV	Horizontal
1	11650	40.44	38.55	33.13	11.26	57.12	68.20	-11.08	Peak	Vertical
1	11650	29.48	38.55	33.13	11.26	46.16	54.00	-7.84	AV	Vertical

REMARKS:


- 1. Result Level = Read Level + Antenna Factor + Cable loss PRM Factor.
- 2. Margin = Result Level Limit
- 3. The other emission levels were very low against the limit.
- 4. Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=10Hz/Sweep time=Auto/Detector=Peak;

NOTE: All the modes have been tested and recorded worst mode in the report(MIMO).

Report No.: GTS20250708005-2-04 Page 19 of 35

3.3. Duty Cycle

TEST CONFIGURATION

TEST PROCEDURE

According to KDB789033 D02 General U-NII Test Procedures New Rules v02r01 Duty Cycle (x), Transmission Duration (T):

- a. A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on and off times of the transmitted signal
- b. The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ EBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average. The zerospan measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.)

TEST RESULTS

For reporting purpose only.

Antenna 0:

Please refer to Appendix C-ANT 0-Appendix D.3.

Please refer to Appendix C-ANT 0-Appendix E.3.

Antenna 1:

Please refer to Appendix C-ANT 1-Appendix D.3.

Please refer to Appendix C-ANT 1-Appendix E.3.

Report No.: GTS20250708005-2-04 Page 20 of 35

3.4. Maximum Average Output Power

TEST CONFIGURATION

EUT	Power Sensor

TEST PROCEDURE

According to KDB789033 D02 General U-NII Test Procedures New Rules v02r01 Measurement using a Power Meter (PM):

- Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied
 - 1. The EUT is configured to transmit continuously or to transmit with a constant duty cycle
 - 2. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - 3. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- b. If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B
- c. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

Adjust the measurement in dBm by adding $10 \log(1/x)$ where x is the duty cycle (e.g., $10 \log(1/0.25)$ if the duty cycle is 25 percent).

<u>LIMIT</u>

According to §15.407(a): The maximum output power should be not exceed follow:

Frequency Range (MHz)	Limit	
5150-5250	Fixed:1 Watt (30dBm) Mobile and portable: 250mW (24dBm)	
5250-5350	250mW (24dBm)	
5470-5725	250mW (24dBm)	
5725-5850	1 Watt (30dBm)	

Note: The maximum e.i.r.p at anyelevation angle above 30 degrees as measured from the horizon must not exceed 125mW(21dBm)

TEST RESULTS

For reporting purpose only.

Antenna 0:

Please refer to Appendix C-ANT 0-Appendix D.4.

Please refer to Appendix C-ANT 0-Appendix E.4.

Antenna 1:

Please refer to Appendix C-ANT 1-Appendix D.4.

Please refer to Appendix C-ANT 1-Appendix E.4.

Report No.: GTS20250708005-2-04 Page 21 of 35

MIMO*2 5150-5250MHz:

Туре	Channel	Power (dBm) ANT 0	Power (dBm) ANT 1	Total (dBm)	Limit (dBm)	Result
	36	9.86	8.97	12.45		
802.11n HT20	40	9.97	10.03	13.01	23.99	Pass
	48	9.79	9.90	12.86		
802.11n HT40	38	9.76	9.86	12.82	23.99	Door
002.1111 1140	46	9.72	9.76	12.75		Pass
	36	10.02	9.93	12.99		
802.11ac20	40	10.05	8.42	12.32	23.99	Pass
	48	9.74	8.46	12.16		
802.11ac40	38	9.46	8.99	12.24	23.99	Pass
002.11dC40	46	9.23	8.35	11.82		Pass
802.11ac80	42	8.73	8.20	11.48	23.99	Pass

5745-5825MHz:

745-5825WHZ:						
Туре	Channel	Power (dBm) ANT 0	Power (dBm) ANT 1	Total (dBm)	Limit (dBm)	Result
	149	8.20	9.61	11.97		
802.11n HT20	157	8.93	11.11	13.17	29.99	Pass
	165	10.14	12.22	14.31		
000 44 a LIT40	151	8.42	9.96	12.27	29.99	Pass
802.11n HT40	159	9.45	11.66	13.70		
	149	8.73	10.71	12.84		
802.11ac20	157	9.57	10.89	13.29	29.99	Pass
	165	10.60	11.80	14.25		
802.11ac40	151	8.89	10.48	12.77	20.00	Page
002.11aC40	159	9.97	11.25	13.67	29.99	Pass
802.11ac80	155	9.44	10.38	12.95	29.99	Pass

Remark

The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain; Array gain = 10 log (Nant), where Nant is the number of transmit antennas Directional Gain=6.01 dBi

Limit (dBm)=30dBm-(Directional Gain-6dBi)

Report No.: GTS20250708005-2-04 Page 22 of 35

3.5. Power Spectral Density

TEST CONFIGU	<u>IRATION</u>		
	EUT		SPECTRUM ANALYZER
TEST PROCED	URE	•	

According to KDB789033 D02 General U-NII Test Procedures New Rules v02r01: The rules requires "maximum power spectral density" measurements where the intent is to measure the maximum value of the time average of the power spectral density measured during a period of continuous transmission

- a. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- b. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- c. Make the following adjustments to the peak value of the spectrum, if applicable:
 - 1. If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
 - 2.) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- d. The result is the Maximum PSD over 1 MHz reference bandwidth.
- e. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:
 - 1. Set RBW ≥ 1/T, where T is defined in section II.B.l.a).
 - 2. Set VBW ≥ 3 RBW.
 - If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - 4. If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - 5. Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHz is available on nearly all spectrum analyzers.

f. Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10 log(1/0.25) if the duty cycle is 25 percent).

LIMIT

According to §15.407(a): The maximum output power should be not exceed follow:

Frequency Range (MHz)	Limit	
5150-5250	Other then Mobile and portable:17dBm/MHz	
5150-5250	Mobile and portable:11dBm/MHz	
5250-5350	11dBm/MHz	
5470-5725	11dBm/MHz	
5725-5850	30dBm/500kHz	

Report No.: GTS20250708005-2-04 Page 23 of 35

TEST RESULTS

For reporting purpose only.

Antenna 0:

Please refer to Appendix C-ANT 0-Appendix D.5.

Please refer to Appendix C-ANT 0-Appendix E.5.

Antenna 1:

Please refer to Appendix C-ANT 1-Appendix D.5.

Please refer to Appendix C-ANT 1-Appendix E.5.

MIMO*2

5150-5250MHz:

Туре	Channel	PSD (dBm/1MHz) ANT 0	PSD (dBm/1MHz) ANT 1	Total (dBm/1MHz)	Limit (dBm/1MHz)	Result
	36	-1.05	-1.85	1.58		
802.11n HT20	40	-0.88	-0.71	2.22	10.99	Pass
11120	48	-0.91	-0.74	2.19		
802.11n	38	-3.92	-3.84	-0.87	10.00	Door
HT40	46	-3.89	-3.90	-0.88	10.99	Pass
	36	-0.96	-0.88	2.09		
802.11ac 20	40	-0.92	-2.28	1.46	10.99	Pass
	48	-1.06	-3.02	1.08		
802.11ac	38	-4.36	-4.60	-1.47	40.00	Door
40	46	-4.39	-5.11	-1.72	10.99	Pass
802.11ac 80	42	-7.60	-8.11	-4.84	10.99	Pass

5725-5850MHz:

Туре	Channel	PSD (dBm/500KHz) ANT 0	PSD (dBm/500KHz) ANT 1	Total (dBm/500KHz)	Limit (dBm/500KHz)	Result
	149	-5.44	-3.83	-1.55		
802.11 n HT20	157	-4.43	-2.79	-0.52	29.99	Pass
111120	165	-3.08	-1.43	0.83		
802.11	151	-8.01	-6.16	-3.98	20.00	Door
n HT40	159	-6.95	-4.73	-2.69	29.99	Pass
	149	-4.82	-2.82	-0.70		
802.11 ac20	157	-3.89	-2.48	-0.12	29.99	Pass
4020	165	-2.88	-1.65	0.79		
802.11	151	-7.39	-5.59	-3.39	20.00	Door
ac40	159	-6.29	-4.81	-2.48	29.99	Pass
802.11 ac80	155	-9.55	-8.42	-5.94	29.99	Pass

Remark:

The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain; Array gain = 10 log (Nant), where Nant is the number of transmit antennas Directional Gain=6.01 dBi
Limit (dBm)=30dBm-(Directional Gain-6dBi)

Report No.: GTS20250708005-2-04 Page 25 of 35

3.6. 99% and 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

6dB Bandwidth:

According to KDB789033 D02 General U-NII Test Procedures New Rules v02r01 for one of the following procedures may be used for section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a. Set RBW = 100 kHz.
- b. Set the video bandwidth (VBW) ≥ 3 × RBW
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

99% Bandwidth:

According to section 6.9.3 of ANSI C63.10-2020, for the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Set RBW = 1%~5% OBW; VBW≥3*RBW (for occupied bandwidth measurement).
- 3. Measured the 6dB bandwidth and 99% occupied bandwidth by related function of the spectrum analyzer. **LIMIT**

For Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz

TEST RESULTS

For reporting purpose only.

Antenna 0:

Please refer to Appendix C-ANT 0-Appendix E.1.

Please refer to Appendix C-ANT 0-Appendix E.2.

Antenna 1:

Please refer to Appendix C-ANT 1-Appendix E.1.

Please refer to Appendix C-ANT 1-Appendix E.2.

Report No.: GTS20250708005-2-04 Page 26 of 35

3.7. 99% and 26dBc Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

26dBc Bandwidth:

According to KDB789033 D02 General U-NII Test Procedures New Rules v02r01 for one of the following procedures may be used for Emission Bandwidth (EBW) measurement:

- a. Set RBW = 220 kHz/430 kHz /820 kHz (approximately 1% of the emission bandwidth).
- b. Set the video bandwidth (VBW) = 3* RBW)
- c. Detector = Peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize
- g. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

99% Bandwidth:

According to section 6.9.3 of ANSI C63.10-2020, for the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Set RBW = 1%~5% OBW; VBW≥3*RBW (for occupied bandwidth measurement).
- 3. Measured the 6dB bandwidth and 99% occupied bandwidth by related function of the spectrum analyzer.

LIMIT

No Limits for 26dBc Bandwith

TEST RESULTS

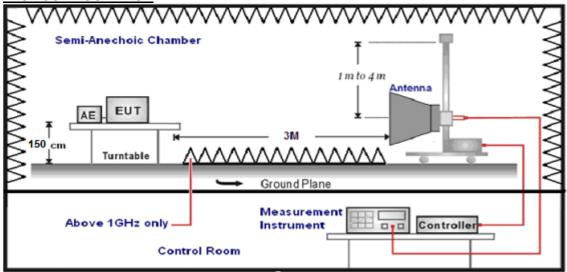
For reporting purpose only.

Antenna 0:

Please refer to Appendix C-ANT 0-Appendix D.1.

Please refer to Appendix C-ANT 0-Appendix D.2.

Antenna 1:


Please refer to Appendix C-ANT 1-Appendix D.1.

Please refer to Appendix C-ANT 1-Appendix D.2.

Report No.: GTS20250708005-2-04 Page 27 of 35

3.8. Conducted Spurious Emissions and Band Edge Compliance

TEST CONFIGURATION

LIMIT

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

According to §15.407 (b): Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits

Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m)
5150-5250	-27	68.2
5250-5350	-27	68.2
5470-5725	-27	68.2
5725-5850	-27 (beyond 10MHz of the bandedge)	68.2
3723-3630	-17 (within 10 MHz of band edge)	78.2

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above 1GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
1GHz-18GHz	Double Ridged Horn Antenna	3

6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-18GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Report No.: GTS20250708005-2-04 Page 28 of 35

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

TEST RESULTS

Remark:For radiated bandedge We measured at both mode, recorded worst case in 802.11 ac20 mode(MIMO);

For Radiated Bandedge Measurement

Temperature	23.4℃	Humidity	54.5%
Test Engineer	Evan Ouyang	Configurations	IEEE 802.11a/n/ac

1	902 11 as 20/ Channal 26 : E190 MHz												
	802.11 ac20/ Channel 36 :5180 MHz												
	Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin					
	(MHz)	Level	Factor	Factor	Loss	Level	Line	(dB)	Detector	Polarization			
	(IVITZ)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(ub)					
	4500.0	35.06	35.58	29.04	8.28	49.88	68.20	-18.32	Peak	Horizontal			
	4500.0	30.07	35.58	29.04	8.28	44.89	54.00	-9.11	AV	Horizontal			
	5150.0	39.27	35.58	29.04	8.28	54.09	68.20	-14.11	Peak	Horizontal			
	5150.0	30.74	35.58	29.04	8.28	45.56	54.00	-8.44	AV	Horizontal			

	802.11 ac20/ Channel 36 :5180 MHz											
Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin					
(MHz)	Level	Factor	Factor	Loss	Level	Line	(dB)	Detector	Polarization			
(IVITZ)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(ub)					
4500.0	35.08	35.58	29.04	8.28	49.90	68.20	-18.30	Peak	Vertical			
4500.0	30.27	35.58	29.04	8.28	45.09	54.00	-8.91	AV	Vertical			
5150.0	39.17	35.58	29.04	8.28	53.99	68.20	-14.21	Peak	Vertical			
5150.0	30.65	35.58	29.04	8.28	45.47	54.00	-8.53	AV	Vertical			

	802.11 ac20/ Channel 48 :5240 MHz											
Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin					
(MHz)	Level	Factor	Factor	Loss	Level	Line	(dB)	Detector	Polarization			
(1711 12)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(ub)					
5350.0	35.23	35.42	29.06	8.39	49.98	68.20	-18.22	Peak	Horizontal			
5350.0	30.17	35.42	29.06	8.39	44.92	54.00	-9.08	AV	Horizontal			
5460.0	39.23	35.42	29.06	8.39	53.98	68.20	-14.22	Peak	Horizontal			
5460.0	30.58	35.42	29.06	8.39	45.33	54.00	-8.67	AV	Horizontal			

	802.11 ac20/ Channel 48 :5240 MHz											
Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin					
(MHz)	Level	Factor	Factor	Loss	Level	Line	(dB)	Detector	Polarization			
(IVII IZ)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(ub)					
5350.0	35.02	35.42	29.06	8.39	49.77	68.20	-18.43	Peak	Vertical			
5350.0	30.34	35.42	29.06	8.39	45.09	54.00	-8.91	AV	Vertical			
5460.0	39.14	35.42	29.06	8.39	53.89	68.20	-14.31	Peak	Vertical			
5460.0	30.55	35.42	29.06	8.39	45.30	54.00	-8.70	AV	Vertical			

Report No.: GTS20250708005-2-04 Page 29 of 35

	802.11 ac20/ Channel 149 :5745 MHz											
Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin					
(MHz)	Level	Factor	Factor	Loss	Level	Line	(dB)	Detector	Polarization			
(IVITZ)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(ub)					
5650.0	45.93	35.29	29.18	8.8	60.84	68.20	-7.36	Peak	Horizontal			
5700.0	35.08	35.29	29.18	8.8	49.99	68.20	-18.21	Peak	Horizontal			
5720.0	47.10	35.29	29.18	8.8	62.01	68.20	-6.19	Peak	Horizontal			
5725.0	35.54	35.29	29.18	8.8	50.45	68.20	-17.75	Peak	Horizontal			

802.11 ac20/ Channel 149 :5745 MHz												
Erog	Read	Antenna	PRM	Cable	Result	Limit	Margin					
Freq (MHz)	Level	Factor	Factor	Loss	Level	Line	(dB)	Detector	Polarization			
(IVITZ)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(ub)					
5650.0	45.81	35.29	29.18	8.8	60.72	68.20	-7.48	Peak	Vertical			
5700.0	35.06	35.29	29.18	8.8	49.97	68.20	-18.23	Peak	Vertical			
5720.0	47.12	35.29	29.18	8.8	62.03	68.20	-6.17	Peak	Vertical			
5725.0	35.58	35.29	29.18	8.8	50.49	68.20	-17.71	Peak	Vertical			

	802.11 ac20/ Channel 165 :5825 MHz											
Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin					
(MHz)	Level	Factor	Factor	Loss	Level	Line	(dB)	Detector	Polarization			
(IVITZ)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(ub)					
5850.0	45.99	33.21	35.82	9.52	52.90	68.20	-15.30	Peak	Horizontal			
5855.0	35.40	33.21	35.82	9.52	42.31	68.20	-25.89	Peak	Horizontal			
5875.0	47.19	32.82	35.82	9.52	53.71	68.20	-14.49	Peak	Horizontal			
5925.0	35.61	32.82	35.82	9.52	42.13	68.20	-26.07	Peak	Horizontal			

	802.11 ac20/ Channel 165 :5825 MHz											
Freq	Read	Antenna	PRM	Cable	Result	Limit	Margin					
(MHz)	Level	Factor	Factor	Loss	Level	Line	(dB)	Detector	Polarization			
(1011-12)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(ub)					
5850.0	46.08	33.21	35.82	9.52	52.99	68.20	-15.21	Peak	Vertical			
5855.0	35.57	33.21	35.82	9.52	42.48	68.20	-25.72	Peak	Vertical			
5875.0	47.36	32.82	35.82	9.52	53.88	68.20	-14.32	Peak	Vertical			
5925.0	35.75	32.82	35.82	9.52	42.27	68.20	-25.93	Peak	Vertical			

REMARKS:

- 1. Result Level = Read Level + Antenna Factor + Cable loss PRM Factor.
- 2. Margin value = Result Level-Limit value.
- 2. The other emission levels were very low against the limit.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.
- ${\tt 4.\ Detector\ AV\ is\ setting\ spectrum/receiver.\ RBW=1MHz/VBW=10Hz/Sweep\ time=Auto/Detector=Peak;}$

Report No.: GTS20250708005-2-04 Page 30 of 35

For Conducted Band edge Measurement

For reporting purpose only.

Antenna 0:

Please refer to Appendix C-ANT 0-Appendix D.6.

Please refer to Appendix C-ANT 0-Appendix E.6.

Antenna 1:

Please refer to Appendix C-ANT 1-Appendix D.6.

Please refer to Appendix C-ANT 1-Appendix E.6.

For Conducted Spurious Emissions Measurement

For reporting purpose only.

Antenna 0:

Please refer to Appendix C-ANT 0-Appendix D.7.

Please refer to Appendix C-ANT 0-Appendix E.7.

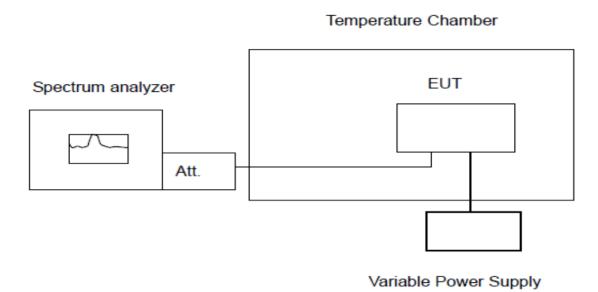
Antenna 1:

Please refer to Appendix C-ANT 1-Appendix D.7.

Please refer to Appendix C-ANT 1-Appendix E.7.

Report No.: GTS20250708005-2-04 Page 31 of 35

3.9. Frequency Stability


Standard Applicable

According to FCC §15.407(g) "Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user manual."

According to FCC §2.1055(a) "The frequency stability shall be measured with variation of ambient temperature as follows:"

- (1) From -30° to + 50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (2) From -20° to + 50° centigrade for equipment to be licensed for use in the Maritime Services under part 80 of this chapter, except for Class A, B, and S Emergency Position Indicating Radiobeacons (EPIRBS), and equipment to be licensed for use above 952 MHz at operational fixed stations in all services, stations in the Local Television Transmission Service and Point-to-Point Microwave Radio Service under part 21 of this chapter, equipment licensed for use aboard aircraft in the Aviation Services under part 87 of this chapter, and equipment authorized for use in the Family Radio Service under part 95 of this chapter.
- (3) From 0° to + 50° centigrade for equipment to be licensed for use in the Radio Broadcast Services under part 73 of this chapter.

Test Configuration

Test Procedure

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum anzlyer via feed through attenators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low engouh to obtain the desired frequency resoluation and measure EUT 20 degree operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30 degree. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure wuth 10 degree increased per stage until the highest temperature of +50 degree reached.

Report No.: GTS20250708005-2-04 Page 32 of 35

Test Results

PASS

Remark:

1. Measured all conditions and recorded worst case(MIMO).

IEEE 802.11ax Mode / 5180 - 5240 MHz / 5180 MHz

Enviroment Temperature (Dregree)	Voltage (V)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results
20	DC 5.5V	5171.551182	5150 – 5250	PASS
20	DC 4.5V	5171.579932	5150 – 5250	PASS
50	DC 5.0V	5171.685071	5150 – 5250	PASS
40	DC 5.0V	5171.671586	5150 – 5250	PASS
30	DC 5.0V	5171.511492	5150 – 5250	PASS
20	DC 5.0V	5171.592262	5150 – 5250	PASS
10	DC 5.0V	5171.694753	5150 – 5250	PASS
0	DC 5.0V	5171.593792	5150 – 5250	PASS
-10	DC 5.0V	5171.511447	5150 – 5250	PASS
-20	DC 5.0V	5171.571228	5150 – 5250	PASS
-30	DC 5.0V	5171.530226	5150 – 5250	PASS

IEEE 802.11ax Mode / 5180 - 5240 MHz / 5240 MHz

Enviroment Temperature (Dregree)	Voltage (V)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results
20	DC 5.5V	5248.622014	5150 – 5250	PASS
20	DC 4.5V	5248.550458	5150 – 5250	PASS
50	DC 5.0V	5248.511467	5150 – 5250	PASS
40	DC 5.0V	5248.696064	5150 – 5250	PASS
30	DC 5.0V	5248.526658	5150 – 5250	PASS
20	DC 5.0V	5248.632204	5150 – 5250	PASS
10	DC 5.0V	5248.618827	5150 – 5250	PASS
0	DC 5.0V	5248.697828	5150 – 5250	PASS
-10	DC 5.0V	5248.560584	5150 – 5250	PASS
-20	DC 5.0V	5248.542872	5150 – 5250	PASS
-30	DC 5.0V	5248.578899	5150 - 5250	PASS

IEEE 802.11ax Mode / 5745 - 5825 MHz / 5745 MHz

Enviroment Temperature (Dregree)	Voltage (V)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results
20	DC 5.5V	5736.663449	5725 – 5850	PASS
20	DC 4.5V	5736.675242	5725 – 5850	PASS
50	DC 5.0V	5736.637998	5725 – 5850	PASS
40	DC 5.0V	5736.559943	5725 – 5850	PASS
30	DC 5.0V	5736.654145	5725 – 5850	PASS
20	DC 5.0V	5736.684623	5725 – 5850	PASS
10	DC 5.0V	5736.580524	5725 – 5850	PASS
0	DC 5.0V	5736.622057	5725 – 5850	PASS
-10	DC 5.0V	5736.525520	5725 – 5850	PASS
-20	DC 5.0V	5736.501426	5725 – 5850	PASS
-30	DC 5.0V	5736.546779	5725 – 5850	PASS

IEEE 802.11ax Mode / 5745 - 5825 MHz / 5825 MHz

Enviroment Temperature (Dregree)	Voltage (V)	Measured Frequency (MHz)	Limit Range (MHz)	Test Results
20	DC 5.5V	5833.501773	5725 – 5850	PASS
20	DC 4.5V	5833.587161	5725 – 5850	PASS
50	DC 5.0V	5833.625979	5725 – 5850	PASS
40	DC 5.0V	5833.653615	5725 – 5850	PASS
30	DC 5.0V	5833.616196	5725 – 5850	PASS
20	DC 5.0V	5833.668457	5725 – 5850	PASS
10	DC 5.0V	5833.659558	5725 – 5850	PASS
0	DC 5.0V	5833.692902	5725 – 5850	PASS
-10	DC 5.0V	5833.617788	5725 – 5850	PASS
-20	DC 5.0V	5833.583507	5725 – 5850	PASS
-30	DC 5.0V	5833.532258	5725 – 5850	PASS

Report No.: GTS20250708005-2-04 Page 34 of 35

3.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The antenna is External Aantenna, through the buckle stretched out, The directional gains of antenna used for transmitting is 3.0dBi.

Reference to the Test Report: GTS20250708005-2-01.

Report No.: GTS20250708005-2-04 Page 35 of 35

4. TEST SETUP PHOTOS OF THE EUT

Reference to the test report No. GTS20250708005-2-01.

5. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No. GTS20250708005-2-01.
End of Report