

SYBER SENSE IOT COMPANY LIMITED

TEST REPORT

SCOPE OF WORK
FCC TESTING—EZ-BBELL V1

REPORT NUMBER
230306038SZN-002

ISSUE DATE **[REVISED DATE]**
March 28, 2023 [-----]

PAGES
19

DOCUMENT CONTROL NUMBER
FCC ID 231_a
© 2017 INTERTEK

TEST REPORT

Intertek Report No.: 230306038SZN-002

SYBER SENSE IOT COMPANY LIMITED

Application
For
Certification

FCC ID: 2AVDC-XDC03B2433

EZ-BBell

Model: EZ-BBell V1

Transmitter

Report No.: 230306038SZN-002

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-21]

Prepared and Checked by:

Robin Zhou
Senior Project Engineer

Approved by:

Ryan Chen
Project Engineer
Date: March 28, 2023

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen.
Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

MEASUREMENT/TECHNICAL REPORT

This report concerns (check one) Original Grant Class II Change

Equipment Type: DSC - Part 15 Security Remote Control Transmitter

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes No

If yes, defer until : _____
date

Company Name agrees to notify the Commission by: _____
date

of the intended date of announcement of the product so that the grant can be issued on
that date.

Transition Rules Request per 15.37? Yes No

If no, assumed Part 15, Subpart C for intentional radiator - the new 47 CFR [10-01-21]
Edition] provision.

Report prepared by:

Robin Zhou
Intertek Testing Services Shenzhen Ltd. Longhua Branch
101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing
Community, GuanHu Subdistrict, LongHua District,
ShenZhen, P.R. China
Tel: (86 755) 8614 0651 Fax: (86 755) 8601 6751

Table of Contents

1.0	<u>Summary of Test results</u>	4
2.0	<u>General Description</u>	5
2.1	Product Description	5
2.2	Related Submittal(s) Grants	5
2.3	Test Methodology	5
2.4	Test Facility.....	5
3.0	<u>System Test Configuration</u>	6
3.1	Justification.....	6
3.2	EUT Exercising Software	6
3.3	Special Accessories	6
3.5	Equipment Modification.....	6
3.5	Measurement Uncertainty.....	7
3.6	Support Equipment List and Description	7
4.0	<u>Emission Results</u>	8
4.1	Radiated Test Results	8
4.1.1	Field Strength Calculation	8
4.1.2	Radiated Emission Configuration Photograph.....	9
4.1.3	Radiated Emissions	9
4.2	Conducted Emission.....	11
5.0	<u>Equipment Photographs</u>	14
6.0	<u>Product Labelling</u>	14
7.0	<u>Technical Specifications</u>	14
8.0	<u>Instruction Manual</u>	14
9.0	<u>Miscellaneous Information</u>	15
9.1	Timing Plot	15
9.2	Measured Bandwidth.....	16
9.3	Discussion of Pulse Desensitization	17
9.4	Emissions Test Procedures	18
10.0	<u>Test Equipment List</u>	19

1.0 Summary of Test results

Applicant: SYBER SENSE IOT COMPANY LIMITED

Applicant Address: FLAT/RM 10 BLK A 16/F HI TECH INDUSTRIAL CENTRE 5-21 PAK TIN PAR STREET TSUEN WAN, Hong Kong, China

Manufacturer: SYBER SENSE IOT COMPANY LIMITED

Manufacturer Address: FLAT/RM 10 BLK A 16/F HI TECH INDUSTRIAL CENTRE 5-21 PAK TIN PAR STREET TSUEN WAN, Hong Kong, China

EZ-BBell

Model: EZ-BBell V1

FCC ID: 2AVDC-XDC03B2433

TEST ITEM	REFERENCE	RESULTS
AC Conducted Emission	15.207	Pass
Transmitter Field Strength	15.231(b) &15.205	Pass
Bandwidth	15.231(c)	Pass
Timing Requirement	15.231(a)(1)	Pass

Notes: 1. The EUT uses an Integral Antenna (LDS) which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

2.0 General Description

2.1 Product Description

The Equipment Under Test (EUT) is a EZ-BBell operating at 433.95MHz. The EUT is powered by 5V=2A (Internal Li-ion battery:3.7V==,6400mAh,23.68Wh). For more detailed features description, please refer to the user's manual.

Antenna Type: Integral Antenna (LDS)

Modulation: OOK

Antenna Gain: -3.72dBi Max.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of the EZ-BBell 433.95MHz transmitter portion. which has 433.95MHz transmitting function and 2.4G Wi-Fi function, and related report for FCC SDOC is subjected to report number: 230306038SZN-005, 2.4G Wi-Fi function is subjected to report number: 230306038SZN-001.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013) and KDB 558074 D01 v05r02. Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst-case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application.

2.4 Test Facility

The Semi-anechoic chamber and shielded room used to collect the radiated data and conducted data are **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjiing Community, GuanHu Subdistrict, LongHua District, Shenzhen, P.R. China. This test facility and site measurement data have been fully placed on file with File Number: CN1188.

3.0 System Test Configuration

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT was powered by 5V==2A (Internal Li-ion battery:3.7V==,6400mAh,23.68Wh) by Adapter from AC 120V, 60Hz during the test. Only the worst case data was shown in the report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the bottom of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emission at and above 30 MHz, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data report in Exhibit 4.0.

The rear of unit shall be flushed with the rear of the table.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the styrene turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

There was no special software to exercise the device.

3.3 Special Accessories

No special accessories used.

3.4 Equipment Modification

Any modifications installed previous to testing by SYBER SENSE IOT COMPANY LIMITED will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd.
Longhua Branch.

3.5 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Measurement Uncertainty	Uncertainty
Occupied Channel Bandwidth	± 34.64 Hz
timing measurement	±0.83ms
Spurious emission (6GHz to 18GHz)	±5.1dB
Radiated emission (1GHz to 6GHz)	±4.8dB
Radiated emission (Up to 1GHz)	±4.8dB
Temperature	±1°C
Humidity	±5%

3.6 Support Equipment List and Description

Description	Manufacturer	Model/ Cable length
Adaptor (Provided by Intertek)	Cellularline	AC-250K
Type C USB Cable (Provided by Intertek)	/	Unshielded, 0.35m

4.0 Emission Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors).

A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB/m

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in $-\text{dB}$

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

Example

Assume a receiver reading of $62.0\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4dB and cable factor of 1.6dB is added. The amplifier gain of 29dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0dB , and the resultant average factor was -10dB . The net field strength for comparison to the appropriate emission limit is $32\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

RA = $62.0\text{dB}\mu\text{V}$

AF = 7.4 dB/m

CF = 1.6dB

AG = 29.0dB

PD = 0dB

AV = -10dB

FS = $62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32\text{dB}\mu\text{V}/\text{m}$

Level in $\mu\text{V}/\text{m}$ = Common Antilogarithm $[(32\text{dB}\mu\text{V}/\text{m})/20] = 39.8\mu\text{V}/\text{m}$

4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

4.1.3 Radiated Emissions

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission
at
433.95 MHz

Judgement: Passed by 6.7 dB

TEST PERSONNEL:

Sign on file

Robin Zhou, Senior Project Engineer
Typed/Printed Name

March 21, 2023
Date

Applicant: SYBER SENSE IOT COMPANY LIMITED

Date of Test: March 21, 2023

Model: EZ-BBell V1

Worst Case Operating Mode: Transmitting

Radiated Emissions (30MHz to 5GHz)

Freq. (MHz)	Ant. Pol.	Reading PK	Pre- amp. gain	antenna factor	Emission Level (dB μ V/m)			Limit 3m (dB μ V/m)		Margin (dB)	
	H/V	(dB μ V)	(dB)	(dB/m)	PK	AV Factor(dB)	AV	PK	AV	PK	AV
433.95	H	64.4	/	23.3	87.7	-13.6	74.1	100.8	80.8	-13.1	-6.7
867.90	H	4.5	/	28.9	33.4	-13.6	19.8	80.8	60.8	-47.4	-41.0
1301.85*	H	49.9	36.1	25.1	38.9	-13.6	25.3	74.0	54.0	-35.1	-28.7
1735.80	H	45.3	35.8	26.9	36.4	-13.6	22.8	80.8	60.8	-44.4	-38.0
2169.75	H	46.5	35.4	28.4	39.5	-13.6	25.9	80.8	60.8	-41.3	-34.9
3905.55*	H	50.8	34.2	31.2	47.8	-13.6	34.2	74.0	54.0	-26.2	-19.8
4339.50*	H	48.4	33.9	31.7	46.2	-13.6	32.6	74.0	54.0	-27.8	-21.4

NOTES: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3-meter. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna is used for the emission over 1000MHz, the preamplifier is used for frequencies above 1 GHz only.
5. “*” Emission within restricted band fulfils the requirement of section 15.205.
6. AV factor (dB)= 20log (duty cycle)
20log (Duty cycle) =20log (0.2087) = -13.6dB

Applicant: SYBER SENSE IOT COMPANY LIMITED

Date of Test: March 15, 2023

Model: EZ-BBell V1

4.2 Conducted Emission

Simultaneous transmission was considered during the test, only the worst-case data is recorded in this report.

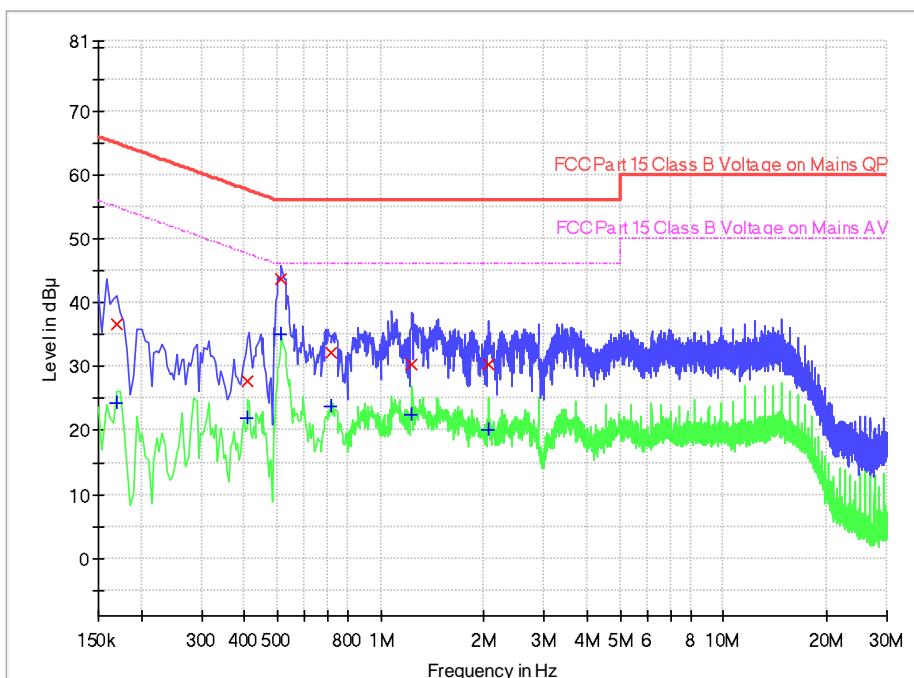
Worst Case Conducted Emission
at 0.514000MHz
is passed by 10.9dB margin.

For the electronic filing, the worst case radiated emission configuration photographs are saved with filename: conducted photos.pdf.

Applicant: SYBER SENSE IOT COMPANY LIMITED

Date of Test: March 15, 2023

Model: EZ-BBell V1


Worst Case Operating Mode: Simultaneous transmission

Phase: Live

Graphic / Data Table

Conducted Emissions Pursuant to FCC 15.207: Emissions Requirement

Conducted Emission Test FCC Part 15

Limit and Margin QP

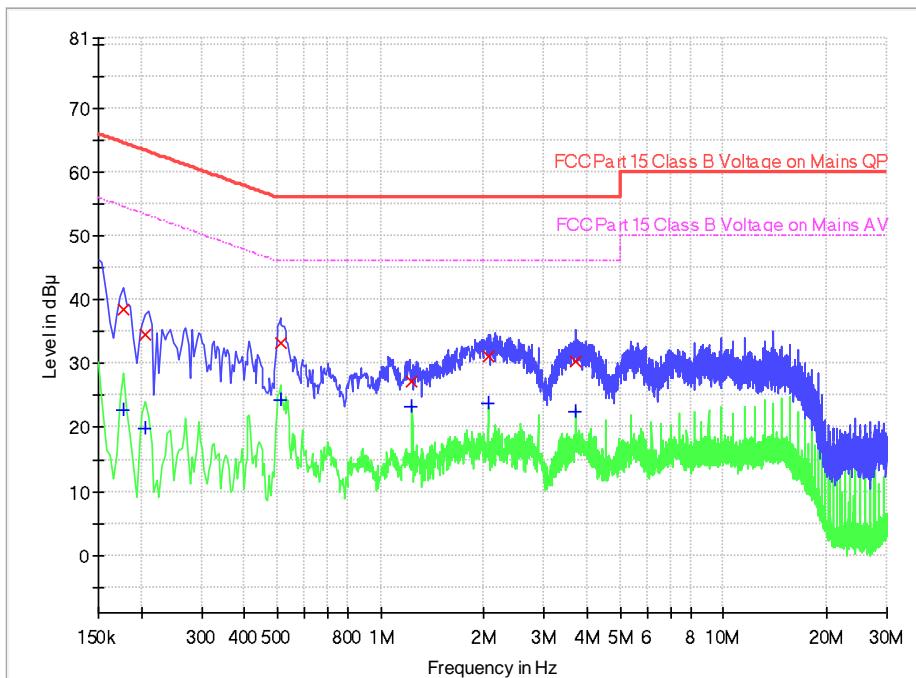
Frequency (MHz)	Quasi Peak (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBμV)
0.170000	36.8	9.000	L	9.6	28.2	65.0
0.410000	27.9	9.000	L	9.6	29.7	57.6
0.514000	43.7	9.000	L	9.6	12.3	56.0
0.714000	32.3	9.000	L	9.6	23.7	56.0
1.234000	30.5	9.000	L	9.7	25.5	56.0
2.058000	30.3	9.000	L	9.7	25.7	56.0

Limit and Margin AV

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBμV)
0.170000	24.4	9.000	L	9.6	30.6	55.0
0.410000	21.9	9.000	L	9.6	25.7	47.6
0.514000	35.1	9.000	L	9.6	10.9	46.0
0.714000	23.9	9.000	L	9.6	22.1	46.0
1.234000	22.5	9.000	L	9.7	23.5	46.0
2.058000	20.0	9.000	L	9.7	26.0	46.0

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)


2. Margin (dB) = Limit (dBμV) – Level (dBμV)

Applicant: SYBER SENSE IOT COMPANY LIMITED
 Date of Test: March 15, 2023
 Model: EZ-BBell V1
 Worst Case Operating Mode: Simultaneous transmission
 Phase: Neutral

Graphic / Data Table

Conducted Emissions Pursuant to FCC 15.207: Emissions Requirement

Conducted Emission Test FCC Part 15

Limit and Margin QP

Frequency (MHz)	Quasi Peak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.178000	38.5	9.000	N	9.6	26.1	64.6
0.206000	34.5	9.000	N	9.6	28.9	63.4
0.510000	33.2	9.000	N	9.6	22.8	56.0
1.234000	27.2	9.000	N	9.6	28.8	56.0
2.058000	31.2	9.000	N	9.7	24.8	56.0
3.702000	30.5	9.000	N	9.7	25.5	56.0

Limit and Margin AV

Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.178000	22.8	9.000	N	9.6	31.8	54.6
0.206000	19.7	9.000	N	9.6	33.7	53.4
0.510000	24.3	9.000	N	9.6	21.7	46.0
1.234000	23.2	9.000	N	9.6	22.8	46.0
2.058000	23.7	9.000	N	9.7	22.3	46.0
3.702000	22.6	9.000	N	9.7	23.4	46.0

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Limit (dB μ V) – Level (dB μ V)

5.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.pdf & internal photos.pdf.

6.0 Product Labeling

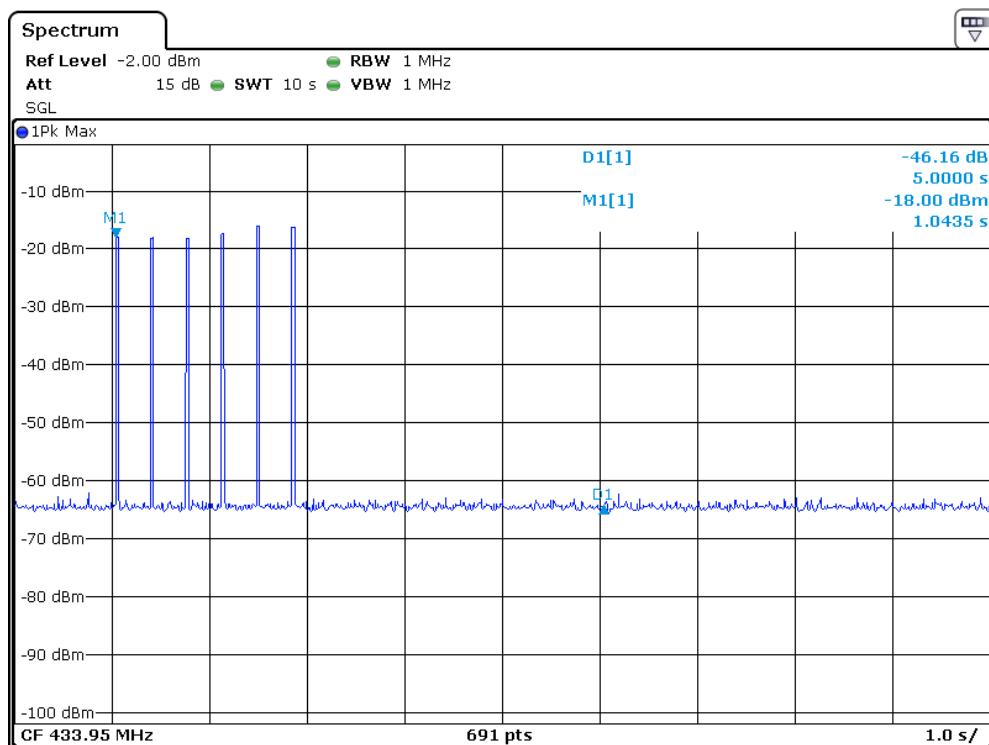
For electronic filing, the FCC ID label artwork and location is saved with filename: label.pdf.

7.0 Technical Specifications

For electronic filing, the block diagram and circuit diagram are saved with filename: block.pdf and circuit.pdf respectively.

8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

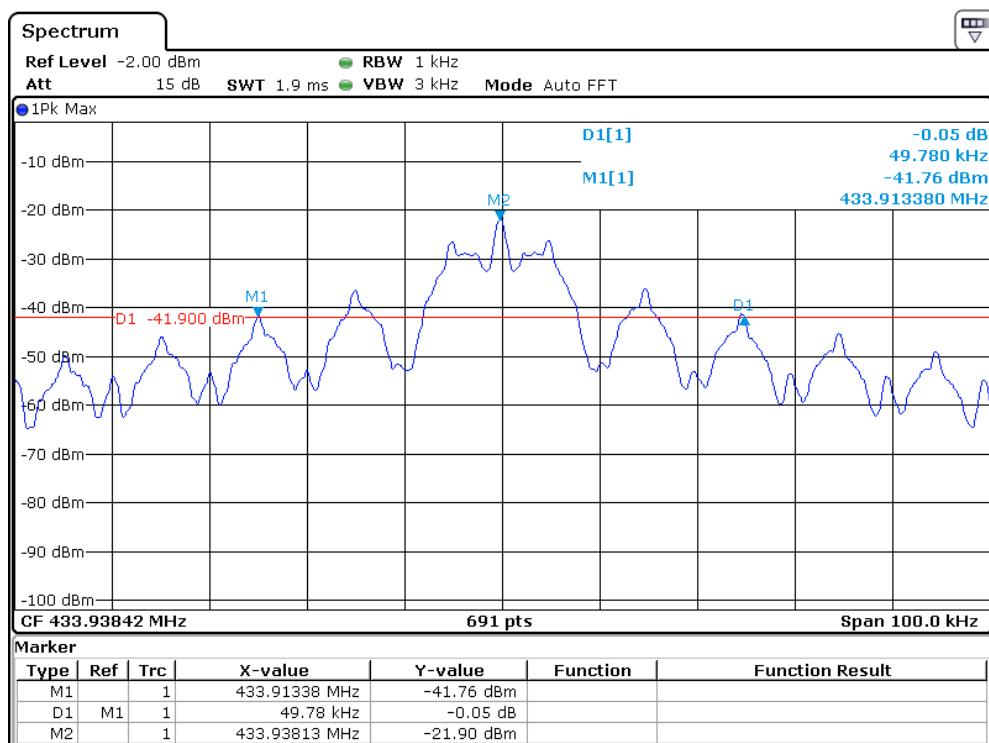

This manual will be provided to the end-user with each unit sold/leased in the United States.

9.0 Miscellaneous Information

This miscellaneous information includes details of the measured bandwidth, the test procedure, calculation of timing requirements and pulse desensitization.

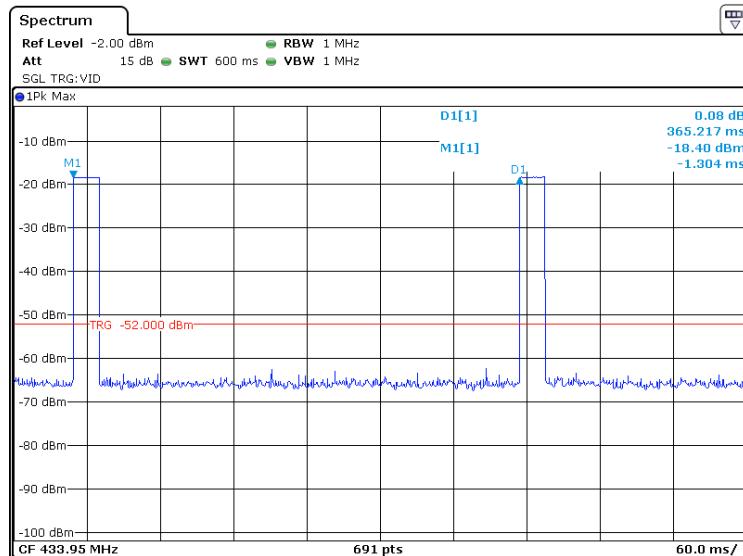
9.1 Timing Plot – Pursuant to FCC Part 15 Section 15.231(a)(1)

Mode	Limit seconds	Verdict
Transmission	<5	PASS

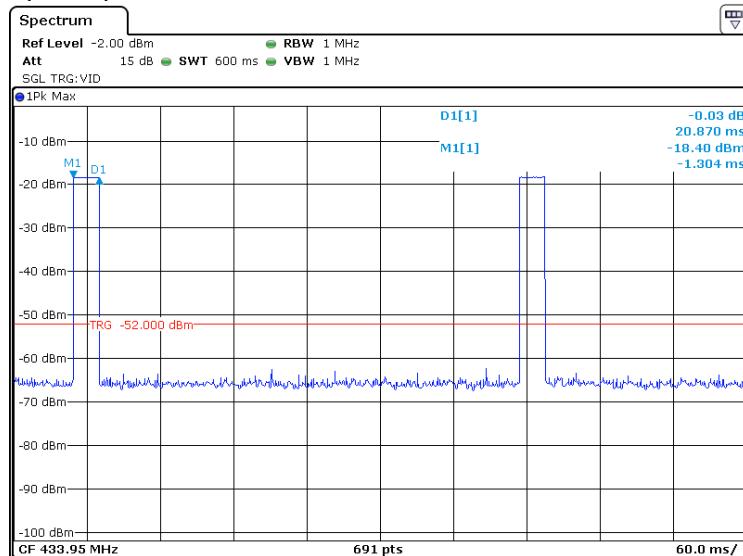


Note: The emission was found to cease within 5 seconds after button release.

Result: Meet the requirements of FCC Part 15 Section 15.231(a)(1)


9.2 Measured Bandwidth

From the plot, the maximum 20dB bandwidth is 49.78 kHz and less than the limit of 1.0848MHz. It fulfils the requirement of 15.231(c).



9.3 Discussion of Pulse Desensitization

The effective period (T_{eff}) is approximately 20.87ms for a digital "1" bit which is illustrated on the technical specification. With a resolution bandwidth (3 dB) of 1 MHz, the pulse desensitivity factor was -13.6 dB.

The pulse period is exceeded 0.1 seconds, so the observation time is 100ms.

The duty cycle is simply the on-time divided by the observation time:

The observation time = 100ms

The effective period (T_{eff}) = 20.87ms
 $DC = 20.87ms / 100ms = 0.2087$ or 20.87%

Therefore, the averaging factor is found by $20 \log_{10} (0.2087) = -13.6dB$

9.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10 - 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter, up to 1GHz 0.8m and above 1GHz 1.5m in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjust through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is based on the use of measurement instrumentation with a CISPR quasi-peak detector.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

10.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-12	Biconilog Antenna	ETS	3142E	00166158	2021-08-04	2024-08-04
SZ061-06	Active Loop Antenna	Electro-Metrics	EM-6876	217	2021-05-18	2023-05-18
SZ061-08	Horn Antenna	ETS	3115	00092346	2021-09-05	2024-09-05
SZ061-07	Pyramidal Horn Antenna	ETS	3160-09	00083067	2022-08-31	2025-08-31
SZ056-03	Spectrum Analyzer	R&S	FSP30	101148	2022-05-16	2023-05-16
SZ056-06	Signal Analyzer	R&S	FSV 40	101101	2022-12-19	2023-12-19
SZ185-03	EMI Receiver	R & S	ESCI	100547	2022-12-26	2023-12-26
SZ181-04	Preamplifier	Agilent	8449B	3008A024 74	2022-05-16	2023-05-16
SZ188-01	Anechoic Chamber	ETS	RFD-F/A-100	4102	2021-12-12	2024-12-12
SZ062-02	RF Cable	RADIALL	RG 213U	--	2022-11-20	2023-05-20
SZ062-05	RF Cable	RADIALL	0.04-26.5GHz	--	2022-11-20	2023-05-20
SZ062-12	RF Cable	RADIALL	0.04-26.5GHz	--	2022-11-20	2023-05-20
SZ187-02	Two-Line V-Network	R&S	ENV216	100073	2022-05-09	2023-05-09
SZ185-02	EMI Receiver	R & S	ESCI	100692	2022-07-08	2023-07-08
SZ188-03	Shielding Room	ETS	RFD-100	4100	2022-12-20	2025-12-20

*****End of Report*****