

Solutions

TEST REPORT

Test Report No.: UL-RPT-RP-15107211-1316

Customer : Wingtra AG
Model No. / PMN : WingtraRAY / WingtraRAY
HVIN : WingtraRAY
FCC ID : 2AVC8-WINGTRA-RAY
ISED Certification No. : IC: 25963-WINGTRARAY
Technology : 60 GHz Radar
Test Standard(s) : **FCC Parts 15.209, 15.215 & 15.255**
ISED Canada RSS-210 Issue 11, June 2024, Annex J & RSS-Gen Issue 5, February 2021

For details of applied tests refer to test result summary

1. This test report shall not be reproduced in full or partial, without the written approval of UL International Germany GmbH.
2. The results in this report apply only to the sample tested.
3. The test results in this report are traceable to the national or international standards.
4. Test Report Version 1.0
5. Result of the tested sample: **Pass**
6. All information marked with a (*) were provided by customer / applicant or authorized representative

Yixiang Lin

Prepared by: Yixiang Lin
Title: Project Engineer
Date: 24 June 2025

Faiq Khan

Approved by: Muhammad Faiq Khan
Title: Project Engineer
Date: 24 June 2025

This laboratory is accredited by DAkkS.
The tests reported herein have been performed in accordance with its' terms of accreditation.

UL INTERNATIONAL GERMANY GMBH

Hedelfinger Str. 61
70327 Stuttgart, Germany
STU.CTECHLab@ul.com

This page has been left intentionally blank.

Customer Information

Company Name:	Wingtra AG
Address:	Giesshübelstrasse 40, 8045 Zürich, Switzerland

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	24/06/2025	Initial Version	Yixiang Lin

Table of Contents

Customer Information.....	3
Report Revision History	3
Table of Contents.....	4
1 Attestation of Test Results.....	5
1.1 Description of EUT	5
1.2 General Information	5
1.3 Summary of Test Results	6
1.4 Deviations from the Test Specification	6
2 Summary of Testing.....	7
2.1 Facilities and Accreditation	7
2.2 Methods and Procedures	7
2.3 Calibration and Uncertainty	8
2.4 Test and Measurement Equipment	9
3 Equipment Under Test (EUT)	11
3.1 Identification of Equipment Under Test (EUT)	11
3.2 Modifications Incorporated in the EUT	11
3.3 Additional Information Related to Testing	12
3.4 Description of Test Setup	12
A. Support Equipment (In-house)	12
B. Support Equipment (Manufacturer supplied) *	12
4 Test Results	15
4.1 Transmitter Duty Cycle	15
4.2 Transmitter Peak EIRP	17
4.3 Transmitter 20 dB Bandwidth	19
4.4 Transmitter 99% Emission Bandwidth	21
4.5 Transmitter Radiated Spurious Emissions	23
4.6 Transmitter Radiated Emissions >1 GHz	27
4.7 Transmitter Frequency Stability (Temperature Variation)	34
4.8 Transmitter Frequency Stability (Voltage Variation)	36

1 Attestation of Test Results

1.1 Description of EUT

The equipment under test (EUT) was a drone with 60GHz radar sensor.

1.2 General Information

Specification Reference:	47CFR15.255
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Section 15.255
Specification Reference:	47CFR15.209
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Sections 15.207 and 15.209
Specification Reference:	RSS-Gen Issue 5 February 2021
Specification Title:	General Requirements for Compliance of Radio Apparatus
Specification Reference:	RSS-210 Issue 11 June 2024
Specification Title:	License-Exempt Radio Apparatus: Category I Equipment
Site Registration:	FCC: 399704, ISEDC: 22511
FCC Lab. Designation No.:	DE0019
ISEDC CABID:	DE0008
Location of Testing:	Hedelfinger Strasse. 61,70327 Stuttgart, GERMANY
Test Dates:	25 April 2025 to 28 April 2025

1.3 Summary of Test Results

FCC Reference (47CFR)	ISED Canada Reference	Measurement	Result
Part 15.255(b)(3)	RSS-Gen 8.2	Transmitter Duty Cycle	✓
Part 15.255(b)(3)	RSS-210 J.3.2d.	Transmitter EIRP	✓
Part 15.215(c)	N/A	Transmitter 20 dB Bandwidth	✓
N/A	RSS-Gen 6.7	Transmitter 99% Emission Bandwidth	✓
Part 15.255(d) / 15.209	RSS-Gen 6.13 &8.9 / RSS-210 J.4	Transmitter Spurious Emissions	✓
Part 15.255(f)	RSS-Gen 6.11 / RSS-210 J.6	Transmitter Frequency Stability (Temperature & Voltage Variation)	✓

Key to Results
✓ = Complied ✗ = Did not comply

Decision rule:
 Where not otherwise specified or communicated in writing, statements of conformity (e.g. Pass/Fail) are established according to the following decision rule: considering the ILAC G8:2019 chapter 4.2.1 (simple acceptance rule). This leads to a maximum 50% of false accept or false reject when the measured value equals the tolerance limit. See ILAC-G8:09/2019 for further details.

Note(s):

N/A

1.4 Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

2 Summary of Testing

2.1 Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Hedelfinger Strasse. 61,70327 Stuttgart, GERMANY. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

SR1	X
SR9	X
SR4/5	X

UL International Germany GmbH is accredited by the DAkkS. DAkkS is one of the signatories to the International Laboratory Accreditation Co-operation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2 Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Reference:	KDB 364244 D01 Meas 15.255 Radars v01r01 March 31, 2025
Title:	RADAR DEVICES CERTIFYING UNDER THE PROVISIONS OF §15.255

2.3 Calibration and Uncertainty

Measuring Instrument Calibration

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Measurement Uncertainty

Overview

No measurement or test can ever be perfect, and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Measurement Uncertainty

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document “approximately” is interpreted as meaning “effectively” or “for most practical purposes”.

Measurement Type	Confidence Level (%)	Calculated Uncertainty
Operating Bandwidth	95%	±0.87 %
Radiated Peak EIRP	95%	±4.98 dB
Transmitter Duty Cycle	95%	±3.4%
Radiated Spurious Emissions below 40 GHz	95%	±3.10 dB
Radiated Spurious Emissions above 40 GHz	95%	±4.98 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

2.4 Test and Measurement Equipment

Test site: SR 1/2

ID	Manufacturer	Type	Model	Serial	Calibration Date	Cal. Cycle (months)
1	Rohde & Schwarz	Antenna, Loop	HFH2-Z2	831247/012	18/07/2023	36
377	BONN Elektronik	Amplifier, Low Noise Pre	BLMA 0118-1A	025294B	18/07/2023	36
460	Deisel	Turntable	DT 4250 S	n/a	n/a	n/a
465	Schwarzbeck	Antenna, Trilog Broadband	VULB 9163	01691	30/11/2023	36
496	Rohde & Schwarz	Antenna, log. - periodical	HL050	100297	22/08/2022	36
588	Maturo	Controller	NCD	029/7180311	n/a	n/a
669	Rohde & Schwarz	EMI Test Receiver	ESW 44	103087	21/12/2023	18
607	Schwarzbeck	Antenna broadband horn antenna	BBHA 9170	9170-561	13/05/2024	36
608	Rohde & Schwarz	Switch Matrix	OSP 120	101227	lab verification	n/a
628	Maturo	Antenna mast	CAM 4.0-P	224/19590716	n/a	n/a
629	Maturo	Kippeinrichtung	KE 2.5-R-M	MAT002	n/a	n/a
-/-	Testo	Thermo-Hygrometer	608-H1	01	lab verification	n/a
1603665	Siemens Matsushita Components	semi-anechoic chamber SR1/2	-/-	B83117-A1421-T161	n/a	n/a
681	Maturo	Antenna mast, tilting	BAM4.5-P	402/0718.1	n/a	n/a

Test site: SR 9 and SR 4/5

ID	Manufacturer	Type	Model	Serial	Calibration Date	Cal. Cycle (months)
239944	Rohde & Schwarz	Analyzer Spectrum	FSW50	101847	9/05/2023	24
239964	Rohde & Schwarz	Power Meter	NRP110T	101328	10/05/2023	24
239963	Rohde & Schwarz	Frequency Multiplier	SMZ110	101418	4/07/2023	Internal Verification
239962	Rohde & Schwarz	Frequency Multiplier	SMZ75	101368	24/07/2023	Internal Verification
239956	Rohde & Schwarz	Harmonic Mixer	FS-Z110	102122	5/06/2023	Internal Verification
239957	Rohde & Schwarz	Harmonic Mixer	FS-Z170	101065	25/04/2023	Internal Verification
239958	Rohde & Schwarz	Harmonic Mixer	FS-Z220	101093	16/03/2023	Internal Verification
239959	Rohde & Schwarz	Harmonic Mixer	FS-Z325	101050	23/05/2023	Internal Verification
239945	Rohde & Schwarz	Harmonic Mixer	FS-Z60	101376	5/06/2023	Internal Verification
239955	Rohde & Schwarz	Harmonic Mixer	FS-Z90	102303	5/06/2023	Internal Verification
239946	Rohde & Schwarz	Standard Horn Antenna	TC-HORN60	101259	17/05/2023	Internal Verification
239947	Rohde & Schwarz	Standard Horn Antenna	TC-HORN60	101258	17/05/2023	Internal Verification
239948	Rohde & Schwarz	Standard Horn Antenna	TC-HORN90	100997	21/11/2023	Internal Verification
239949	Rohde & Schwarz	Standard Horn Antenna	TC-HORN90	100998	21/11/2023	Internal Verification
239950	Rohde & Schwarz	Standard Horn Antenna	TC-HORN110	101141	21/11/2023	Internal Verification
239951	Rohde & Schwarz	Standard Horn Antenna	TC-HORN110	101142	21/11/2023	Internal Verification
239952	Rohde & Schwarz	Standard Horn Antenna	SGH170G20	101352	21/11/2023	Internal Verification
239953	Rohde & Schwarz	Standard Horn Antenna	TC-HORN220	101244	21/11/2023	Internal Verification
-/-	Testo	Thermo-Hygrometer	608-H1	07	lab verification	n/a
645	Weiss Umwelttechnik	Climatic Chamber	LabEvent T/110/70/3	58226197940010	lab verification	n/a

Test Measurement Software/Firmware Used:

Name	Manufacturer	Version
EMC32	Rohde & Schwarz	11.30.00

3 Equipment Under Test (EUT)

3.1 Identification of Equipment Under Test (EUT)

Brand Name:	Wingtra
Model Name or Number:	WingtraRAY
PMN:	WingtraRAY
Test Sample Serial Number:	10030
Hardware Version:	Rev. C
Software Version:	v2
Firmware Version:	v2
HVIN:	WingtraRAY
FVIN:	v2
FCC ID:	2AVC8-WINGTRA-RAY
ISED Canada Certification Number:	IC: 25963-WINGTRARAY
Date of Receipt:	2 April 2025

3.2 Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.3 Additional Information Related to Testing

Category of Equipment	Transceiver	
Modulation Type:	FMCW Chirp	
Power Supply Requirement:	Nominal 24VDC	
Antenna Type:	Antenna on package (AOP)	
Antenna Gain:	8.0 dBi	
Transmit Frequency Range	60.0 GHz to 60.25 GHz	
Transmit Channels Tested:	Channel ID	Frequency (GHz)
	Single	60.125

3.4 Description of Test Setup

Support Equipment

The following support equipment were used to exercise the EUT during testing:

A. Support Equipment (In-house)

Item	Description	Brand Name	Model Name or Number	Serial Number
1	Power Supply	Good Will Instrument Co., LTD.	-	7662217

B. Support Equipment (Manufacturer supplied) *

Item	Description	Brand Name	Model Name or Number	Serial Number
1	Laptop	ACER	TMP215-5-53DG	NXVVAEG00L3361198E7600
2	Ground data terminal	Wingtra	GDT	025-1149589
3	Tablet	Samsung	TabActive 3	-
4	Manual trigger device for parachute	Drone Rescue Systems	Manual Trigger Device	-
5	Wingtra Universal Debug Interface (WUDI) with cable	Wingtra	-	-

Operating Modes

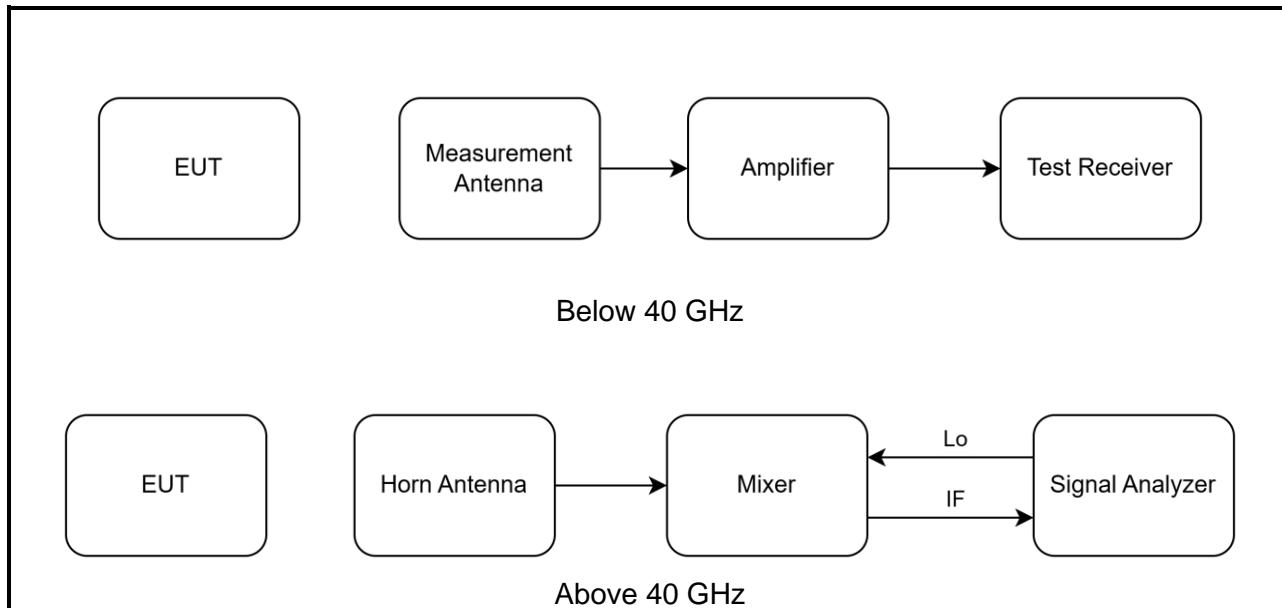
The EUT was tested in the following operating mode(s):

- Continuous Transmit mode: FMCW modulation | Single channel | MAX PWR |

Configuration and Peripherals

The EUT was tested in the following configuration(s):

EUT Power Supply:


- The EUT was powered with internal batteries.

Test Mode Activation:

- The test mode was enabled by a customized firmware provided by the customer running on the Pi computer.

Radiated Measurements:

- The EUT RF sample with antenna was used for radiated spurious emissions measurements.
- Radiated measurements between 30 MHz to 18 GHz were performed with the EUT positioned on the turn table at a height of 1.5m and rotating 360° while the antenna height varies from 1 to 4 m over the measurement frequency range.
- Radiated measurements above 18 GHz were performed with the EUT positioned on the turn table at a height of 1.5m and rotating 360° the antenna height was also fixed to 1.5m over the measurement frequency range.
- R&S® EMC32 V11.30.00 Software was used for the Radiated spurious emission measurements till 40 GHz.

Test Setup Diagrams**Radiated Tests:****Test Setup for Transmitter Radiated Emissions**

4 Test Results

4.1 Transmitter Duty Cycle

Test Summary:

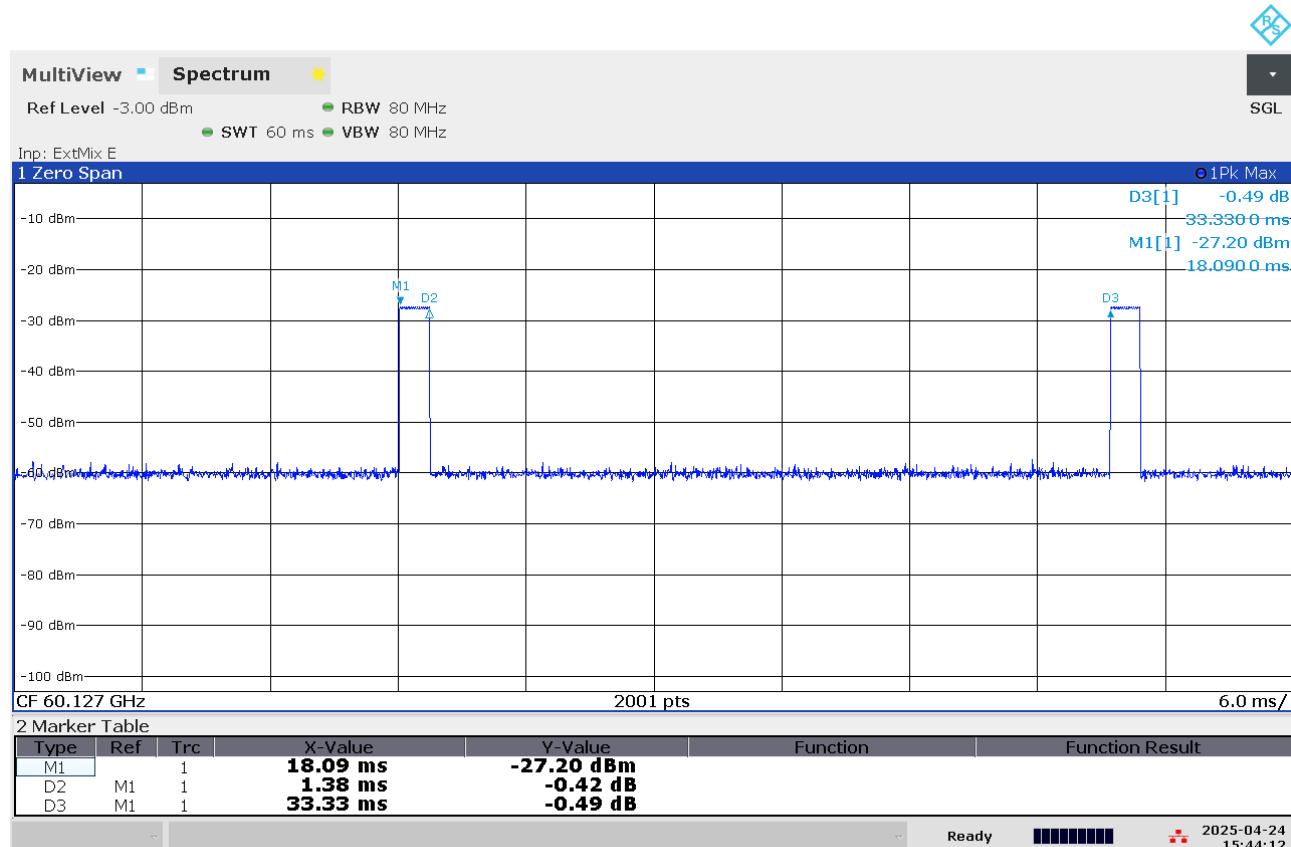
Test Engineer:	Yixiang Lin	Test Date:	24 April 2025
Test Sample Serial Number:	10030		

FCC Reference:	Part 15.255(b)(3)
ISED Reference:	RSS-Gen 8.2
Test Method Used:	ANSI C63.10 Section 7.5 and notes below

Environmental Conditions:

Temperature (°C):	22.4
Relative Humidity (%):	40.1

Note(s):


- Transmitter duty cycle was measured using a spectrum analyzer. The raw data was captured and analysed to calculate the duty cycle.:

$$10 \log (1 / (\text{On Time} / [\text{Period or } 100 \text{ ms whichever is the lesser}])).$$

$$\text{duty cycle: } 10 \log (1 / (1.38 \text{ ms} / 33.33 \text{ ms})) = 13.83 \text{ dB}$$
- Transmitter off times exceeding 2 ms were summed over a rolling 33 ms period. The minimum combined off time in any 33 ms period was recorded below..

Results:

Pulse On Time (T _{ON}) (ms)	Pulse Period (T _{ON} + T _{OFF}) (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	Minimum Tx Off Duration (ms) ms	Tx Off Limit (ms) ms	Result
1.38	33.33	4.14	13.83	31.62	>16.5	Complied

Transmitter Duty cycle (continued)**Plot**

4.2 Transmitter Peak EIRP

Test Summary:

Test Engineer:	Yixiang Lin	Test Date:	25 April 2025
Test Sample Serial Number:	10030		

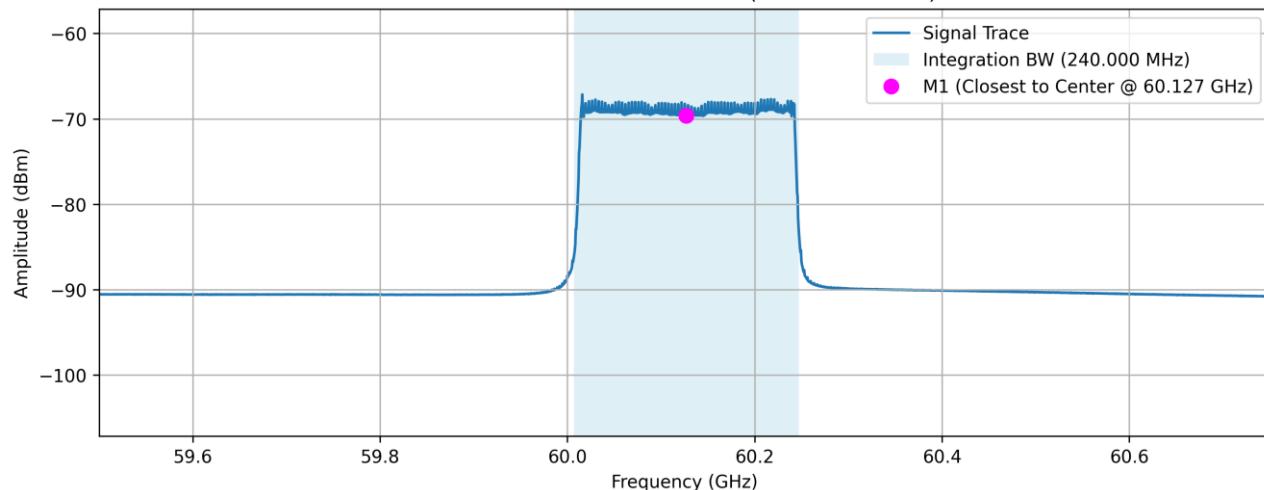
FCC Reference:	Part 15.255(b)(3)
ISED Canada Reference:	RSS-210 J.3.2d
Test Method Used:	FCC KDB 364244 Section 6 referencing ANSI C63.10 Section 9.8

Environmental Conditions:

Temperature (°C):	22.4
Relative Humidity (%):	40.1

Note(s):

1. All measurements were taken at 1 meter distance from EUT, correction factors of the mixers and calbes were loaded to the signal analyser prior to testing. Free space loss were used to compensate the measurement distance. $[FSL] = 10 \log (4\pi r/\lambda)^2$.


Transmitter Peak EIRP (continued)**Results:**

Peak frequency (GHz)	Measured Value (dBm)	Free space loss (dB)	Receiving Antenna Gain (dBi)	Cable loss (dB)	Duty Cycle Correction Factor (dB)	Substituted EIRP Level (dBm)	Limit (dBm)	Margin (dB)
60.125	-45.45	68.097	25	1.294	13.83	12.77	20	7.23

RF output power = Measured Value + Free space loss + Cable loss + Duty cycle correction factor - Receiving Antenna Gain

RBW 1MHz, VBW 3MHz

Channel Power Measurement (Formula Method)

Channel	Bandwidth	Offset	Power
Tx1	240.000MHz		-45.45dBm
Tx Total			-45.45dBm

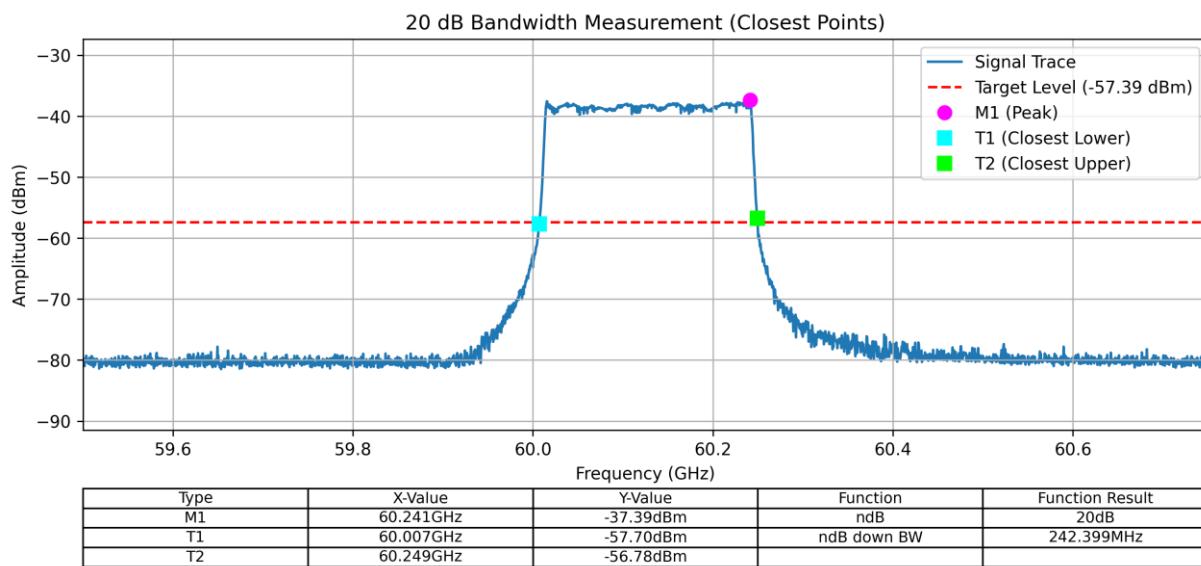
4.3 Transmitter 20 dB Bandwidth

Test Summary:

Test Engineer:	Yixiang Lin	Test Date:	25 April 2025
Test Sample Serial Number:	10030		

FCC Reference:	Part 15.215(c)
ISED Canada Reference:	N/A
Test Method Used:	FCC KDB 364244 Section 5 referencing ANSI C63.10 Section 9.3

Environmental Conditions:


Temperature (°C):	22.4
Relative Humidity (%):	40.1

Note(s):

1. The signal analyser resolution bandwidth was set to 1 MHz and video bandwidth of 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 3 GHz. The 20dB bandwidth was measured at 20 dB down from the peak of the signal.

Transmitter 20 dB Bandwidth (continued)**Results:**

Channel	RBW (MHz)	VBW (MHz)	20dB Bandwidth (MHz)
Single	1	3	242.399

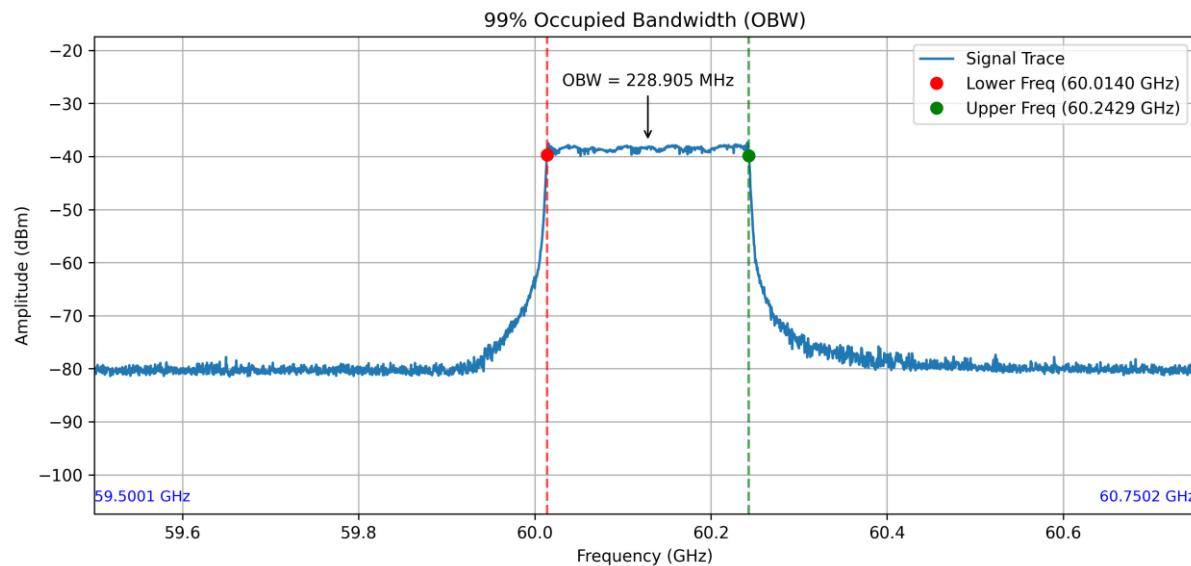
4.4 Transmitter 99% Emission Bandwidth

Test Summary:

Test Engineer:	Yixiang Lin	Test Date:	25 April 2025
Test Sample Serial Number:	10030		

FCC Reference:	N/A
ISED Canada Reference:	RSS-Gen 6.7
Test Method Used:	FCC KDB 364244 Section 5 referencing ANSI C63.10 Section 9.3

Environmental Conditions:


Temperature (°C):	22.4
Relative Humidity (%):	40.1

Note(s):

1. The signal analyser resolution bandwidth was set to 1 MHz and video bandwidth 3MHz. A Peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 3GHz. The analyzer occupied bandwidth function was used to measure the 99% emission bandwidth.

Transmitter 99% Emission Bandwidth (continued)**Results:**

Channel	RBW (MHz)	VBW (MHz)	99% Occupied Bandwidth (MHz)
Single	1	3	228.905

4.5 Transmitter Radiated Spurious Emissions

Test Summary:

Test Engineer:	Yixiang Lin	Test Date:	22 April 2025
Test Sample Serial Number:	10030		

FCC Reference:	Parts 15.255(d) & 15.209
ISED Canada Reference:	RSS-Gen 6.13 & 8.9 / RSS-210 J.4
Test Method Used:	ANSI C63.10 Sections 6.3, 6.4 and 6.5
Frequency Range	9 kHz to 1000 MHz

Environmental Conditions:

Temperature (°C):	21.5
Relative Humidity (%):	39.0

Note(s):

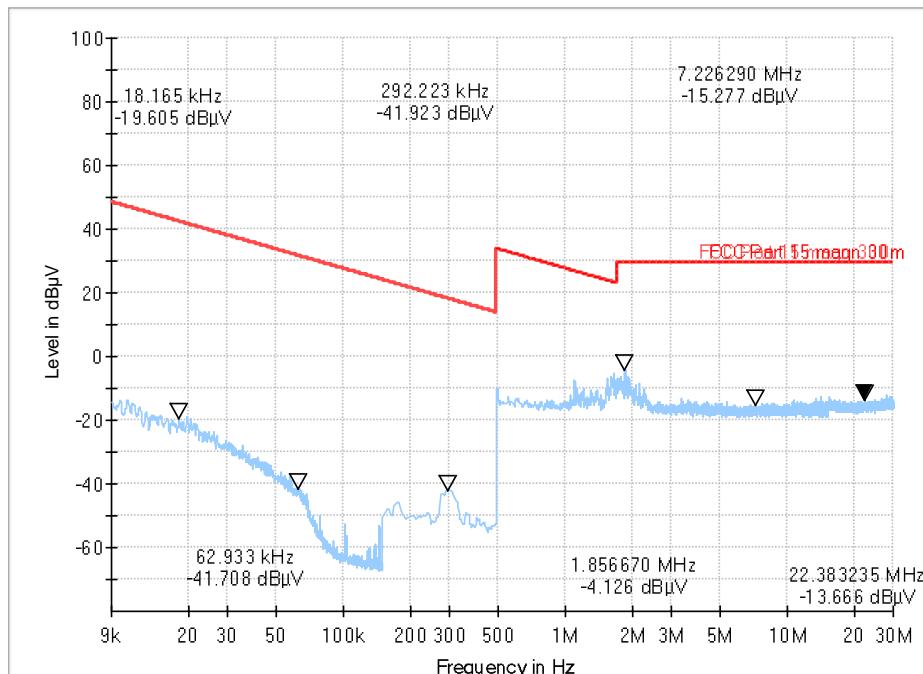
1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore, final radiated emissions measurements were performed with the EUT set to the middle channel only.
3. All other emissions shown on the pre-scans were investigated and found to be ambient, or > 20 dB below the appropriate limit or below the noise floor of the measurement system.
4. Measurements below 30 MHz were performed in a semi-anechoic chamber (Asset Number 1603665) at 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. The measured level was extrapolated to 3 metres in accordance with ANSI C63.10 clause 6.4.3 using the method described in clause 6.4.4.2. ANSI C63.10 clause 5.2 states an alternative test site that can demonstrate equivalence to an open area test site may be used for measurements below 30 MHz. Therefore, measurements were performed in a semi-anechoic chamber. The correlation data between semi-anechoic chamber and an open field test site is available upon request.
5. FCC rule part 15.209(a) specifies limits at 300 m / 30 m in μ V/m but RSS GEN specifies limits at 300 m / 30 m in μ A/m. The relevant limits are the same after accounting for E-field to H-field correction. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table). According to Notice 2020-DRS0023 converting the magnetic field strength into electrical field strength using the following equation while considering free space impedance of 377 Ω results in a factor of 51.5 dB Ω .
$$AF^E [\text{dB}(\text{m}^{-1})] = AF^H [\text{dB}(\Omega^{-1}\text{m}^{-1})] + Z_0[\text{dB}\Omega]$$

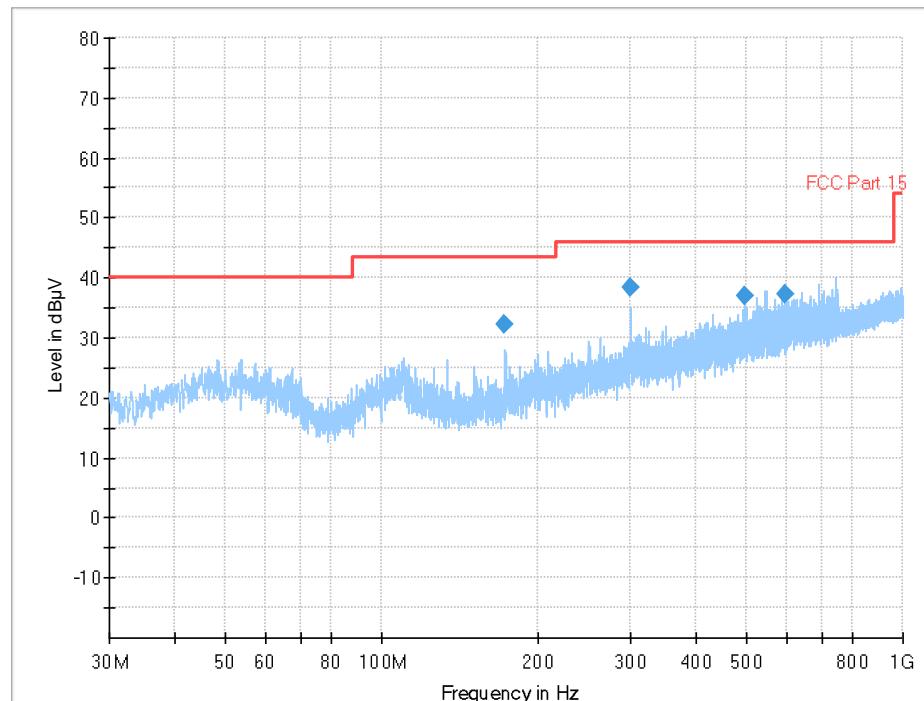
For example, the measurement frequency X KHz resulted in a level of Y dB μ V/m, which is equivalent to Y -51.5 = Z dB μ A/m, which has the same margin, W dB, to the corresponding RSS-GEN Section 8.9, Table 6 limit as it has to the 15.209(a) limit.

6. The limits are specified at a test distances of 30 and 300 metres. However, as specified in FCC Section 15.31 (f)(2) & ANSI C63.10 clause 6.4.3, measurements may be performed at a closer distance and the measured level extrapolated to the specified measurement distance using the method described in clauses 6.4.4, specifically sub-clause 6.4.4.1 which specifies that the measured level shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 40 dB/decade.
- Therefore, measurements were performed at a measurement distance of 3 m.

Transmitter Radiated Emissions (continued)**Note(s):**

7. The measured values at 3 m were extrapolated to the required measurement distances of 300 m and 30 m and compared the specified limits at those distances as follows:
 - 9 kHz- 490 kHz: measured value extrapolated from 3 m to 300 m by subtracting 80 dB at 40 dB /decade.
 - 490 kHz-30 MHz: measured value extrapolated from 3 m to 30 m by subtracting 40 dB at 40 dB /decade.
8. Measurements from 30 MHz to 1 GHz were performed in a semi-anechoic chamber (Asset Number 1603665) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
9. Pre-scans were performed and markers placed on the highest measured levels. The test receiver was configured as follows: For 9 kHz to 150 kHz, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold. For 30 MHz to 1 GHz, the resolution bandwidth was set to 120 kHz and video bandwidth 500 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
10. Final measurements were performed on the marker frequencies and the results entered into the table below. The test receiver resolution bandwidth was set to 120 kHz, using a CISPR quasi-peak detector and span wide enough to see the whole emission.


Transmitter Radiated Emissions (continued)**Results:****9kHz to 30MHz**


Frequency (MHz)	Antenna Polarity	Level@3m (dB μ V/m)	Level extrapolated (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
No critical emissions were detected						

30MHz to 1 GHz

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
172.560000	Horizontal	32.35	43.50	11.15	Complied
300.000000	Horizontal	38.46	46.00	7.54	Complied
496.033333	Horizontal	36.95	46.00	9.05	Complied
592.458333	Horizontal	37.15	46.00	8.85	Complied

Full Spectrum

Transmitter Radiated Emissions (continued)

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying table.

4.6 Transmitter Radiated Emissions >1 GHz

Test Summary:

Test Engineer:	Yixiang Lin	Test Date:	23 April 2025
Test Sample Serial Number:	10030		

FCC Reference:	Parts 15.255(d) & 15.209
ISED Canada Reference:	RSS-Gen 6.13 & 8.9 / RSS-210 J.4
Test Method Used:	FCC KDB 364244 Sections 7 referencing ANSI C63.10 Sections 9.12 & 9.13
Frequency Range	1 GHz to 200 GHz

Environmental Conditions:

Temperature (°C):	21.5
Relative Humidity (%):	39.0

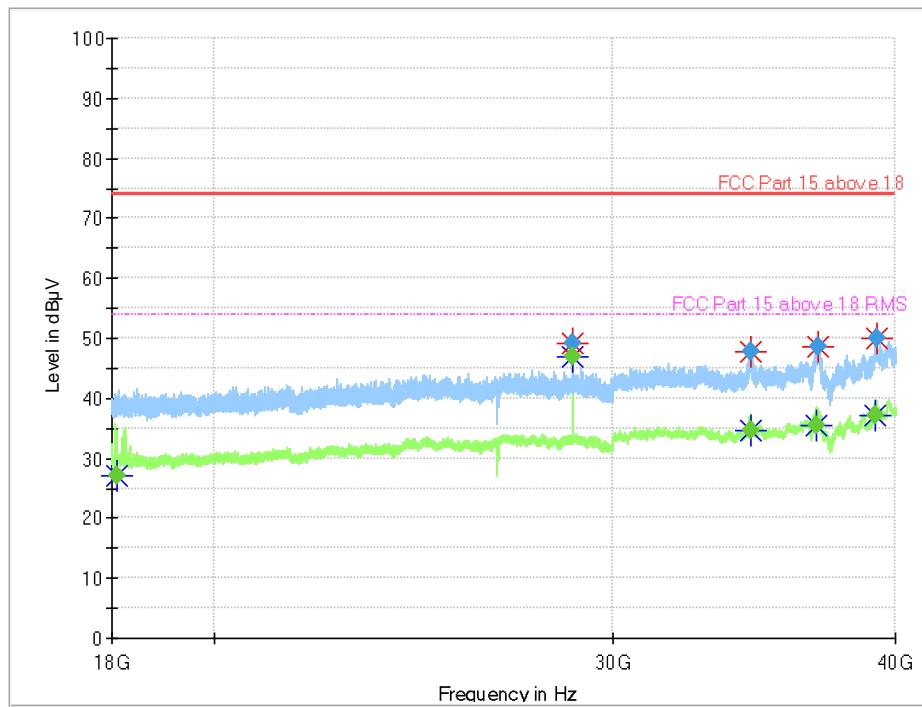
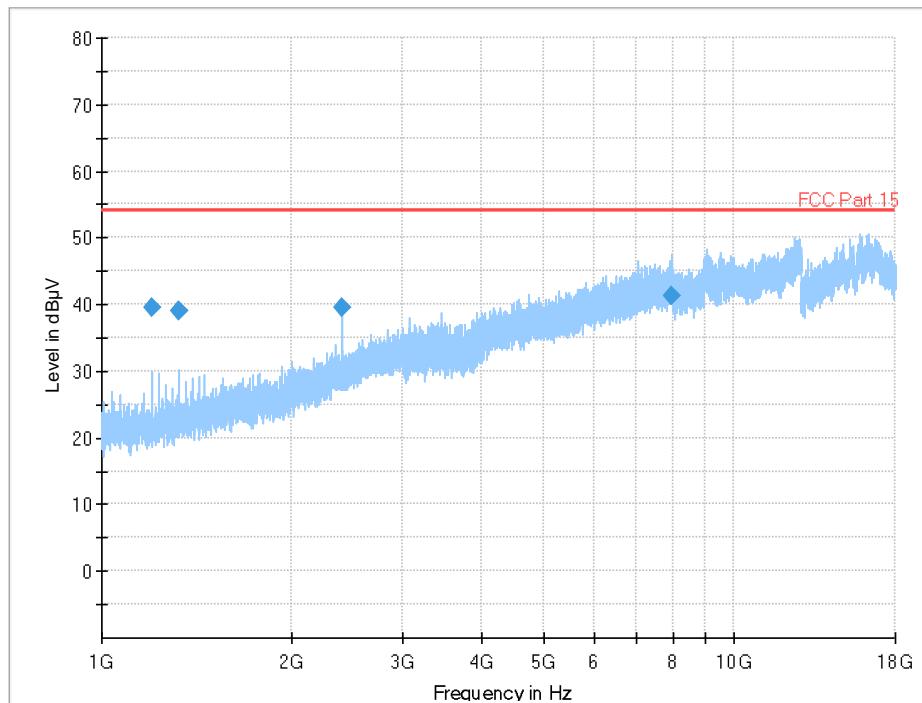
Note(s):

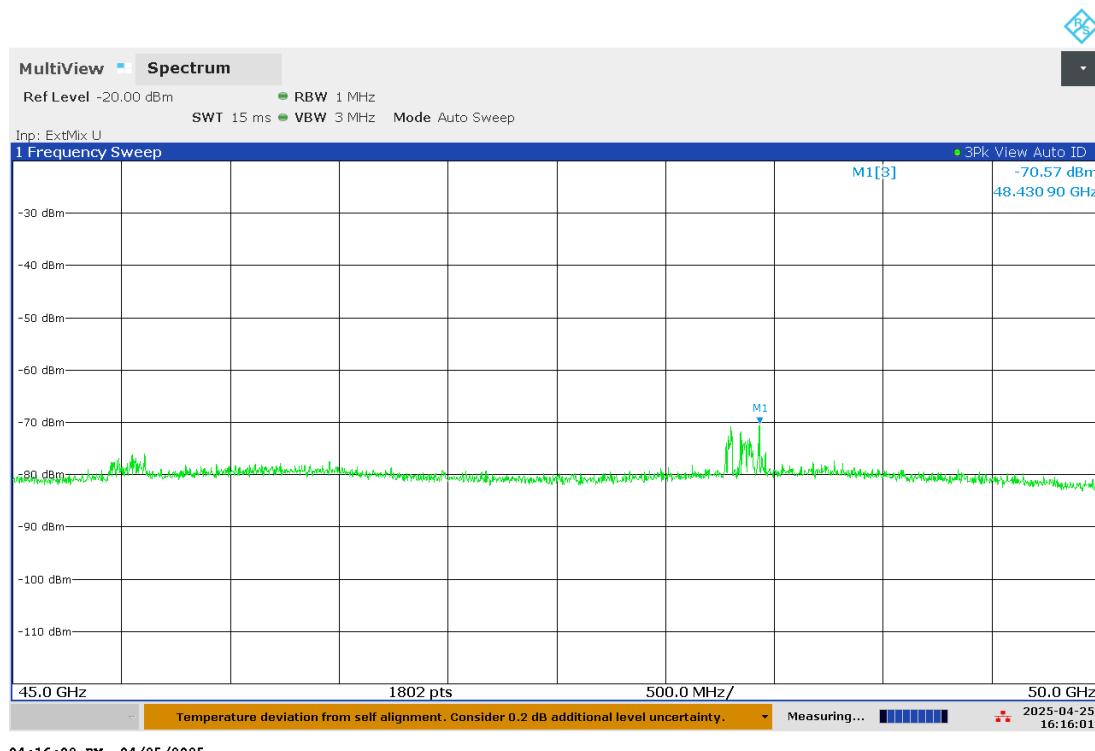
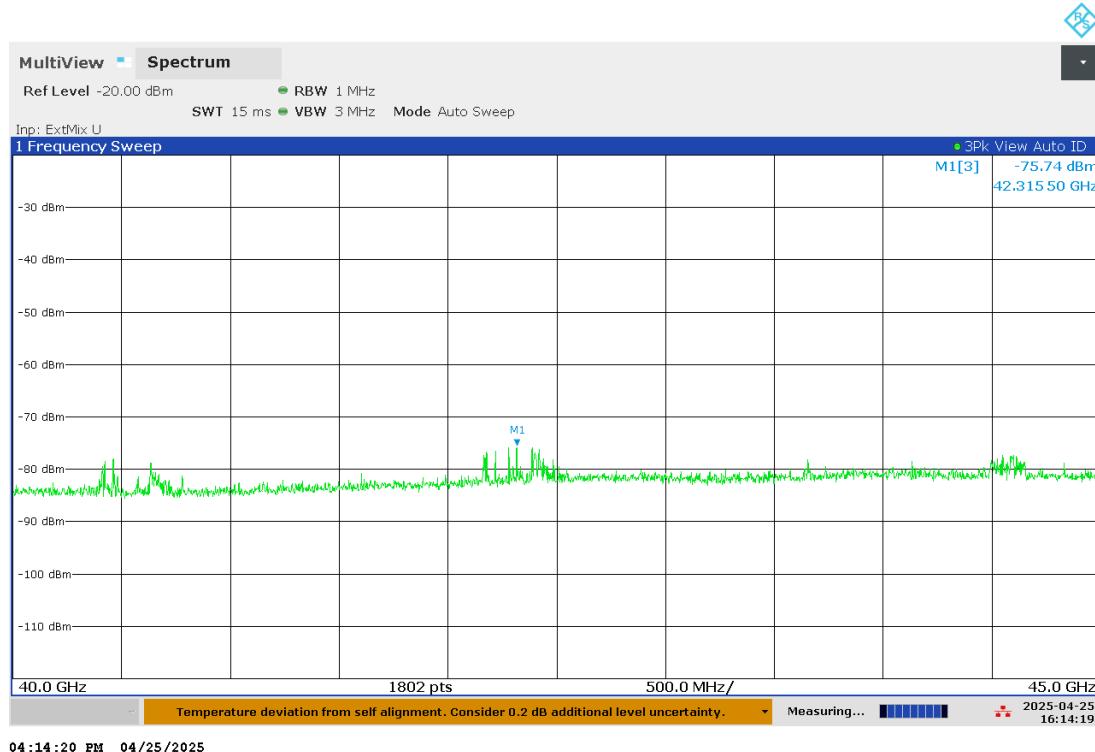
1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. No spurious emissions were detected above the noise floor of the measuring receiver therefore the highest peak and average noise floor readings of the measuring receiver were recorded as shown in the tables below.
3. All other emissions shown on the pre-scans were investigated and found to be ambient, or > 20 dB below the appropriate limit or below the noise floor of the measurement system.
4. Measurements 1 GHz to 18GHz were performed in a semi anechoic chamber (Asset Number 1603665) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
5. Measurements 18 GHz to 40GHz were performed in a semi-anechoic chamber (Asset Number 1603665) at a distance of 1 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable.
6. Part 15.255(d)(3) defines a power density limit of 90 pW/cm² at 3 meters for spurious emissions between 40 GHz and 200 GHz. This was converted to a field strength limit of 85.31 dBuV/m using equation provided in the section 9.6 of ANSI C63.10.
7. Measurement distance above 40 GHz were determined using the procedure defined in section 9.8 of ANSI C63.10. Measurements were made at the following distances:
40GHz to 200 GHz 1 meter

8. *In accordance with ANSI C63.10 Section 6.6.4.3 Note 1, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

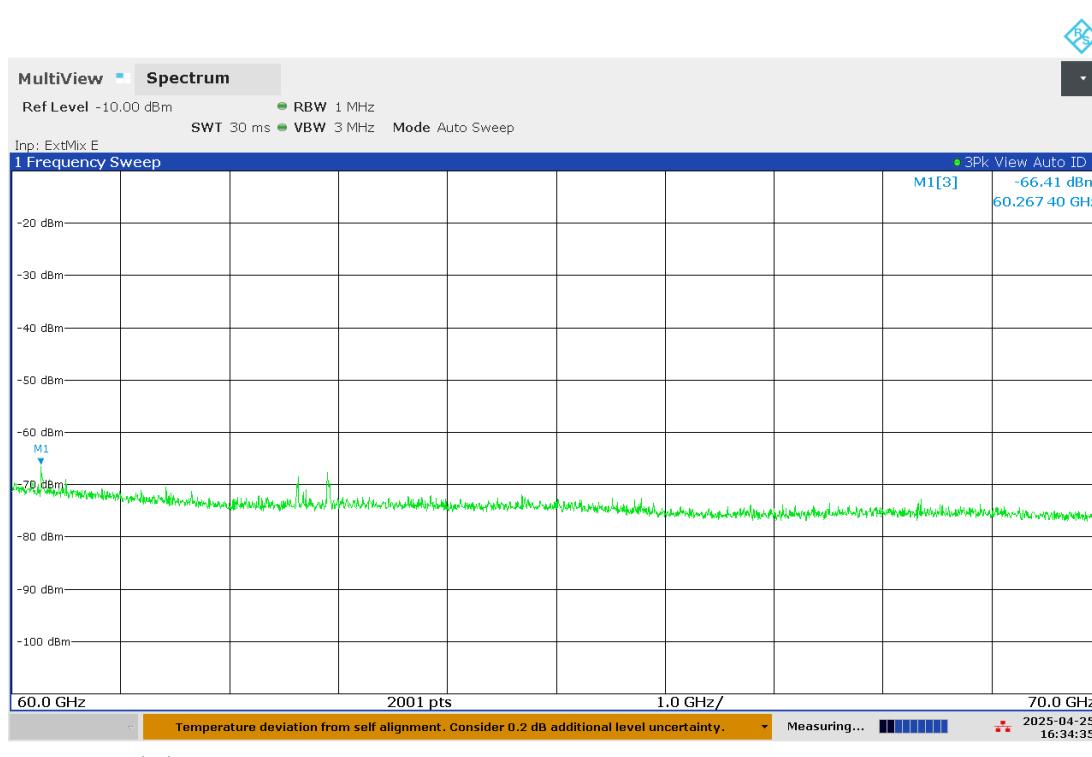
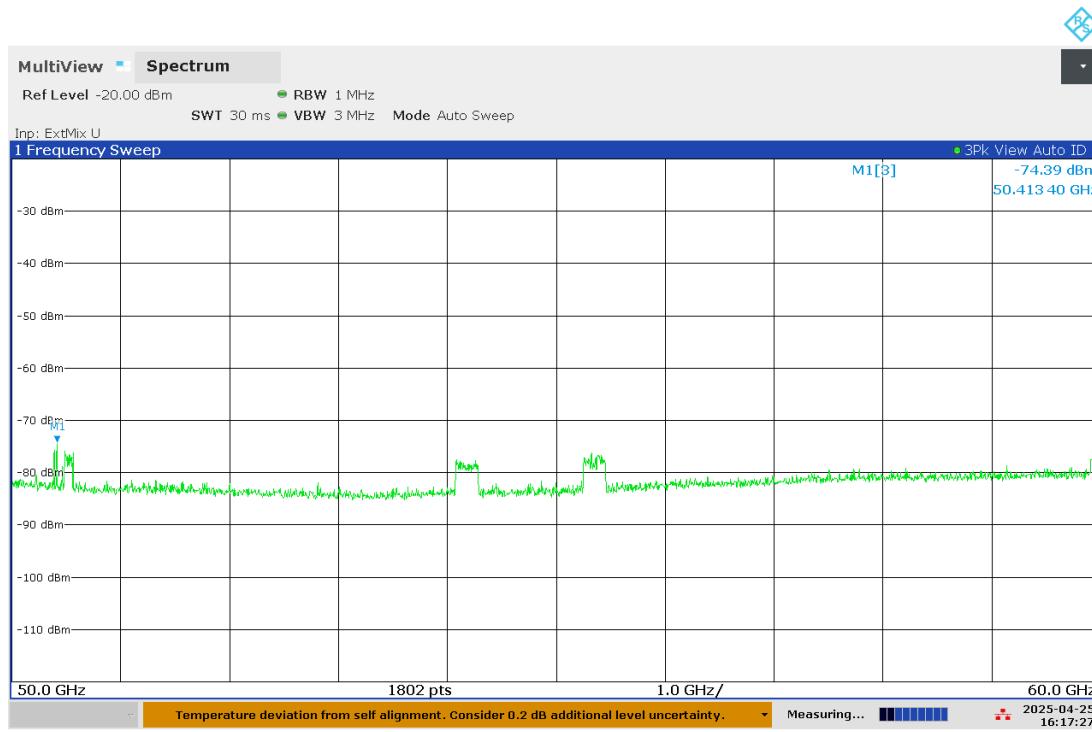
Transmitter Radiated Emissions (continued)**Note(s):**

Calculation of the boundary near/far field:

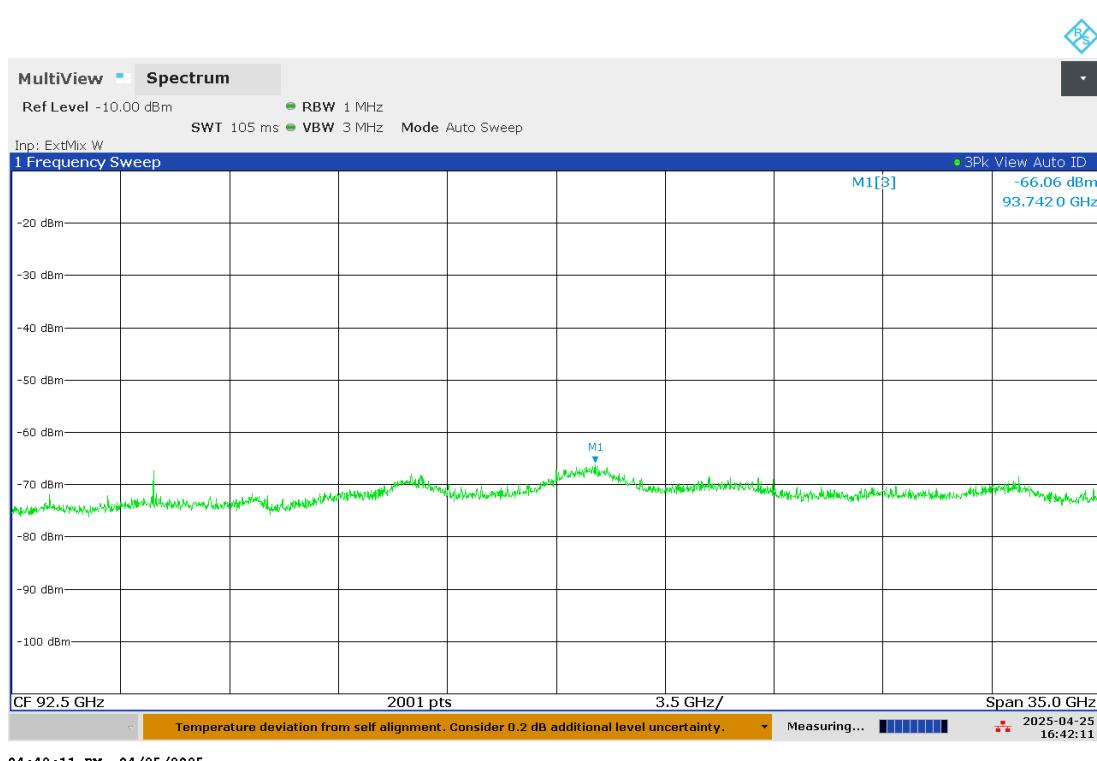
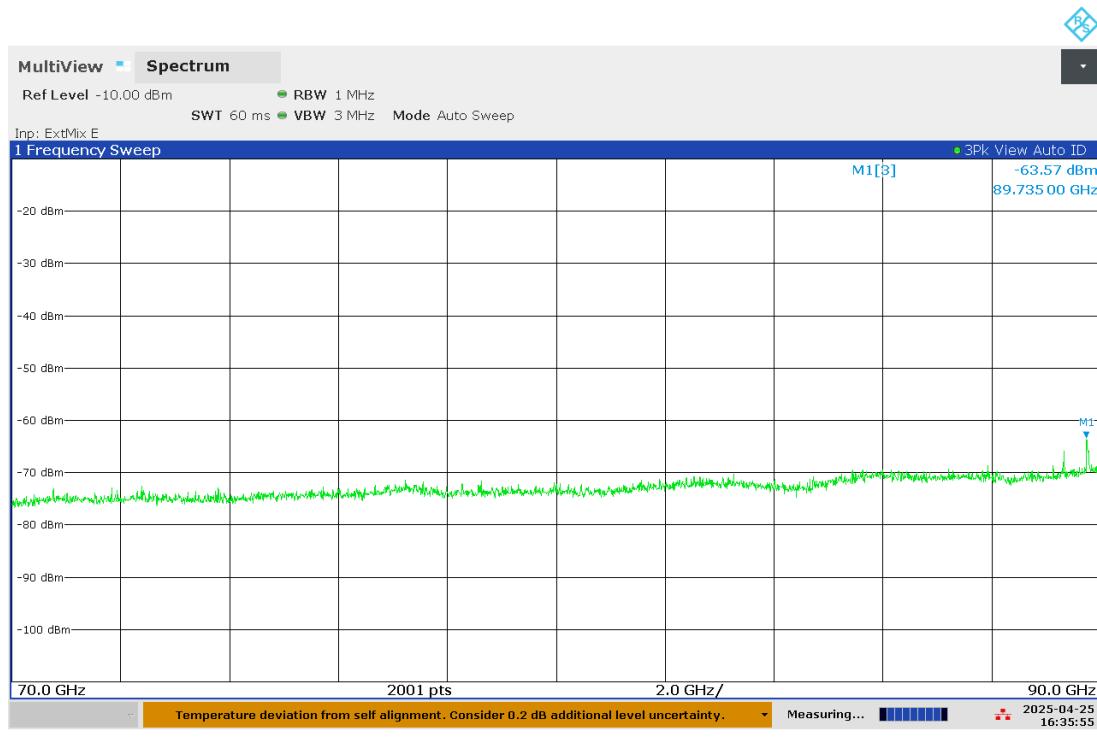


Rayleigh far field distance calculation using formula $R = 2D^2/\lambda$, where D is the dimension of the antenna used during test, λ is the free space wave length in m at the frequency of measurement.



Antenna Range (GHz)	D (m)	Highest frequency (GHz)	Wavelength λ (m)	Near/far field boundary
40-60	0.050	60	0.00499654	1.00
60-90	0.031	90	0.00333103	0.58
90-110	0.028	110	0.00272539	0.58
110-140	0.007	140	0.00214137	0.05
140-220	0.0207	220	0.00136269	0.63

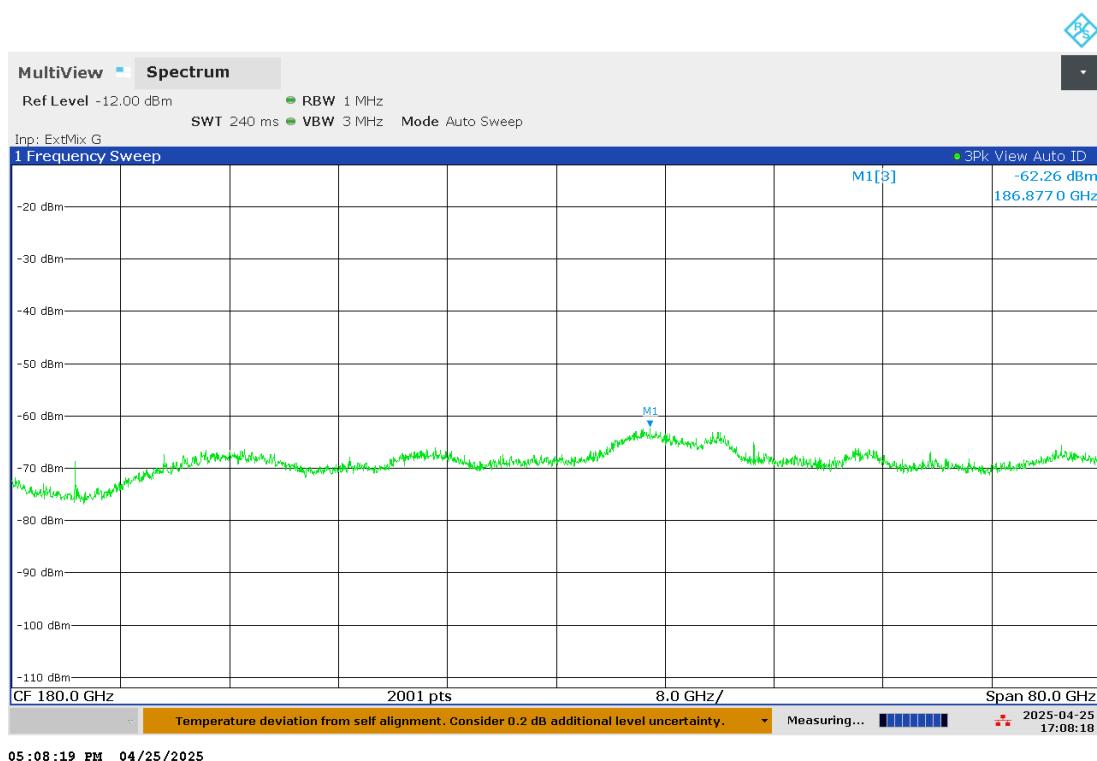
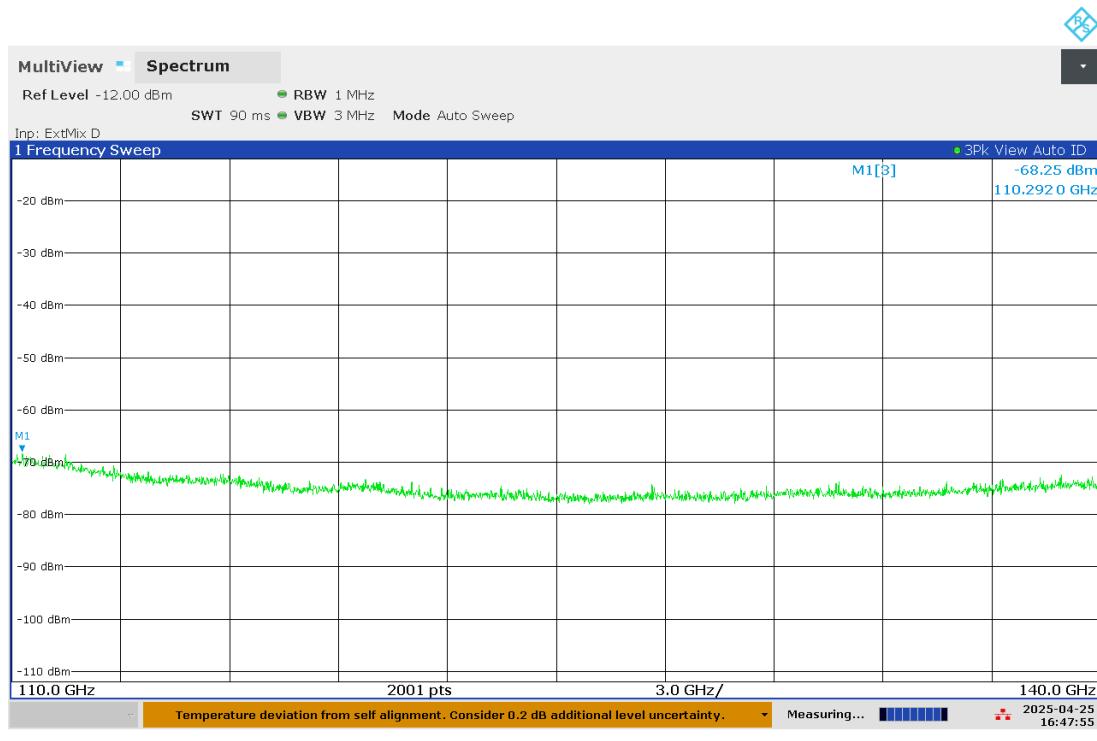
9. Where measurements were performed at a distance other than that specified by the limit, a correction factor was calculated using the equation provided in section 9.4 of ANSI C63.10.



Results:

Frequency (MHz)	Antenna Polarity	Peak Level (dB μ V/m)	Average Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
1328.033333	Horizontal	39.11	-	54.00	14.89	Complied
1199.983333	Horizontal	39.59	-	54.00	14.41	Complied
7948.333333	Horizontal	41.30	-	54.00	12.70	Complied
1328.033333	Horizontal	38.96	-	54.00	15.04	Complied
2399.983333	Vertical	39.45	-	54.00	14.55	Complied
28800.200000	Horizontal	49.07	---	74.00	24.93	Complied
28800.550000	Horizontal	---	46.85	54.00	7.15	Complied
34500.000000	Horizontal	47.87	---	74.00	26.13	Complied
34512.000000	Vertical	---	34.73	54.00	19.27	Complied
36914.000000	Horizontal	---	35.59	54.00	18.41	Complied
36945.000000	Vertical	48.58	---	74.00	25.42	Complied
39211.000000	Vertical	---	37.28	54.00	16.72	Complied
39284.000000	Horizontal	49.99	---	74.00	24.01	Complied



Transmitter Radiated Emissions (continued)

Transmitter Radiated Emissions (continued)



Transmitter Radiated Emissions (continued)

Transmitter Radiated Emissions (continued)

Transmitter Radiated Emissions (continued)

Note: The plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

4.7 Transmitter Frequency Stability (Temperature Variation)

Test Summary:

Test Engineer:	Yixiang Lin	Test Date:	28 April 2025
Test Sample Serial Number:	10030		

FCC Reference:	Part 15.255(f)
ISED Canada Reference:	RSS-Gen 6.11 / RSS-210 J.6
Test Method Used:	FCC KDB 364244 Sections 9 referencing ANSI C63.10 Section 9.14

Environmental Conditions:

Temperature (°C):	21.9
Relative Humidity (%):	43.0

Note(s):

1. The 20 dB emission bandwidth and 99% occupied bandwidth was recorded on a signal analyser and compared to the lower and upper emission edges.
2. Temperature was monitored throughout the test with a calibrated digital thermometer.

Transmitter Frequency Stability (Temperature Variation)**Results: Lower Band Edge**

Temperature (°C)	Lower Band Edge Frequency (MHz)	Lower 20 dB Emission Bandwidth Frequency (MHz)	Lower 99% Occupied Bandwidth Frequency (MHz)	Result
-20	60000	60007	60014	Complied
-10	60000	60007	60014	Complied
0	60000	60007	60014	Complied
10	60000	60007	60014	Complied
20	60000	60007	60014	Complied
30	60000	60007	60014	Complied
40	60000	60007	60013	Complied
50	60000	60007	60013	Complied
Worst-case Margin (MHz)		7		

Results: Upper Band Edge

Temperature (°C)	Upper Band Edge Frequency (MHz)	Upper 20 dB Emission Bandwidth Frequency (MHz)	Upper 99% Occupied Bandwidth Frequency (MHz)	Result
-20	64000	60249	60243	Complied
-10	64000	60249	60243	Complied
0	64000	60248	60242	Complied
10	64000	60248	60242	Complied
20	64000	60248	60242	Complied
30	64000	60249	60242	Complied
40	64000	60249	60242	Complied
50	64000	60249	60243	Complied
Worst-case Margin (MHz)		3751		

4.8 Transmitter Frequency Stability (Voltage Variation)

Test Summary:

Test Engineer:	Yixiang Lin	Test Date:	17 April 2025
Test Sample Serial Number:	10030		

FCC Reference:	Part 15.255(f)
ISED Canada Reference:	RSS-Gen 6.11 / RSS-210 J.6
Test Method Used:	FCC KDB 364244 Sections 8 referencing ANSI C63.10 Section 9.14

Environmental Conditions:

Temperature (°C):	21.9
Relative Humidity (%):	43.0

Note(s):

1. The 20 dB emission bandwidth and 99% occupied bandwidth was recorded on a signal analyser and compared to the lower and upper emission edges.
2. The DC power supply voltage was set to 85% and 115% of the stated radar input voltage of 5 VDC.
3. Voltage was monitored throughout the test with a calibrated digital voltmeter.

Transmitter Frequency Stability (Voltage Variation)**Results: Lower Band Edge**

Supply Voltage (V)	Lower Band Edge Frequency (MHz)	Lower 20 dB Emission Bandwidth Frequency (MHz)	Lower 99% Occupied Bandwidth Frequency (MHz)	Result
5.0	60000	60007	60013	Complied
5.75	60000	60007	60014	Complied
4.25	60000	60006	60013	Complied
Worst-case Margin (MHz)		6		

Results: Upper Band Edge

Temperature (°C)	Upper Band Edge Frequency (MHz)	Upper 20 dB Emission Bandwidth Frequency (MHz)	Upper 99% Occupied Bandwidth Frequency (MHz)	Result
5.0	64000	60249	60243	Complied
5.75	64000	60248	60242	Complied
4.25	64000	60249	60243	Complied
Worst-case Margin (MHz)		3751		

--- END OF REPORT ---