ESP32 Technical Reference Manual

Version 3.1

Espressif Systems

About This Manual

The ESP32 Technical Reference Manual is addressed to application developers. The manual provides detailed
and complete information on how to use the ESP32 memory and peripherals.

For pin definition, electrical characteristics and package information, please see ESP32 Datasheet.

Related Resources

Additional documentation and other resources about ESP32 can be accessed here: ESP32 Resources.

Release Notes

Date Version Release notes
2016.08 V1.0 Initial release.
2016.09 V1.1 Added Chapter 12C Controller.
Added Chapter PID/MPU/MMU;
2016.11 V1.2 Updated Section I0_MUX and GPIO Matrix Register Summary;

Updated Section LED_PWM Register Summary.
Added Chapter eFuse Controller;
Added Chapter RSA Accelerator;

2016.12 V1.3
Added Chapter Random Number Generator;
Updated Section 12C Controller Interrupt and Section 12C Controller Registers.
Added Chapter SPI;

2017.01 V1.4

Added Chapter UART Controllers.

2017.03 V1.5 Added Chapter 12S.

Added Chapter SD/MMC Host Controller;

Added register I0_MUX_PIN_CTRL in Chapter IO_MUX and GPIO Matrix.
Added Chapter On-Chip Sensors and Analog Signal Processing;
Added Section Audio PLL;

2017.05 V1.7 Updated Section eFuse Controller Register Summary;

Updated Sections 12S PDM and LCD MODE;

Updated Section Communication Format Supported by GP-SPI Slave.
Added register 12S_STATE_REG in Chapter 12S;

2017.06 V1.8 Updated Chapter IO_MUX and GPIO Matrix;

Added Chapter ULP Co-processor.

Updated Chapter |IO_MUX and GPIO Matrix;

2017.03 V1.6

2017.06 V1.9
Added Chapter MCPWM.
2017.07 V2.0 Added Chapter SDIO Slave.
Updated the addresses of the GPIO configuration/data registers and the GPIO
2017.07 V2.1 RTC function configuration registers in Chapter I0_MUX and GPIO Matrix;
Added Chapter PID Controller.
2017.07 V2.2 Added Chapter Low-Power Management.

2017.08 V2.3 Added Chapter Flash Encryption/Decryption.

Date

Version

Release notes

2017.09

V2.4

Added the description of register SLCOHOST_TOKEN_RDATA in Chapter
SDIO Slave;

Added notes in Section The Clock of 12S Module;

Added a note in Section GP-SPI Master Mode;

Added Chapter DPort Register;

Added Chapter DMA Controller.

2017.11

V2.5

Updated the addresses for register SPI_CTRL_REG in Section SPI Register
Summary;

Added Section Clock Phase Selection in Chapter SD/MMC Host Controller,
and a description of register CLK_EDGE_SEL;

Major revision on Chapter 12C Controller.

2017.11

V2.6

Updated Chapter Remote Controller Peripheral:

e Updated Figure 88 RMT Architecture;

e Updated section RMT RAM,;

e Updated section Transmitter;

e Updated the description of RMT_CHn_TX_THR_EVENT_INT.
Added notes in Section UART RAM and Register UART_CONFO_REG.

201712

V2.7

Added Subsection Cache in Section System and Memory;

Updated Section Timers and the naming of several registers in LED_PWM,;
Updated the description of console_debug_disable in Chapter eFuse Con-
troller.

2018.01

V2.8

Added Chapter Ethernet MAC.
Added the description of system parameter BLK3_part_reserve in Chapter
eFuse Controller.

2018.02

V2.9

Updated Sections 4.2.2, 4.2.3, 4.3.2;
Added registers 12S_FIFO_WR_REG and 12S_FIFO_RD_REG in Section 12S
Registers.

2018.03

V3.0

Updated the instruction layout diagram of ST in Section 29.4.2;
Added description of registers EMACADDR2HIGH_REG to
EMACADDR7LOW_REG in Section 10.9 and Section 10.10.

2018.04

V3.1

Updated Figure 88 RMT Architecture;
Added a note to Section 4.7;
Added the function description for the bits of the register in section 4.46.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation.
Please subscribe here.

Certification

’ Download certificates for Espressif products from here.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT IS
PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABIL-
ITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to the use of information in this doc-
ument, is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights
are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a
registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective
owners, and are hereby acknowledged.

Copyright © 2018 Espressif Inc. All rights reserved.

Contents

1 System and Memory

1.1 Introduction

1.2 Features

1.3 Functional Description

1.3.1
1.3.2

Address Mapping
Embedded Memory

1.3.2.1 Internal ROM 0
1.3.2.2 Internal ROM 1
1.3.2.3 Internal SRAM O
1.3.2.4 Internal SRAM 1
1.3.2.5 Internal SRAM 2
1.3.2.6 DMA

1.3.2.7 RTC FAST Memory
1.3.2.8 RTC SLOW Memory

1.3.3
1.34
1.3.5

External Memory
Cache
Peripherals

1.3.5.1 Asymmetric PID Controller Peripheral

1.3.5.2 Non-Contiguous Peripheral Memory Ranges
1.3.5.3 Memory Speed

2 Interrupt Matrix

2.1 Introduction

2.2 Features

2.3 Functional Description

2.31
2.3.2
2.3.3
2.3.4
2.3.5

Peripheral Interrupt Source

CPU Interrupt

Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU
CPU NMI Interrupt Mask

Query Current Interrupt Status of Peripheral Interrupt Source

3 Reset and Clock

3.1 System Reset

3.11
3.1.2

Introduction
Reset Source

3.2 System Clock

3.21
3.2.2
3.2.3
3.2.4

Introduction
Clock Source
CPU Clock
Peripheral Clock

3.2.41 APB_CLK Source
3.2.4.2 REF_TICK Source
3.2.4.3 LEDC_SCLK Source
3.2.4.4 APLL_SCLK Source

23
23
23
25
25
25
26
26
27
27
28
28
28
28
28
29
30
31
31
32

33
33
33
33
33
36
36
37
37

38
38
38
38
39
39
40
40
41
41
42
42
42

3.2.4.5 PLL_D2_CLK Source
3.2.4.6 Clock Source Considerations
3.2.5 Wi-Fi BT Clock
3.2.6 RTC Clock
3.2.7 Audio PLL

4 10_MUX and GPIO Matrix

4.1 Overview
4.2 Peripheral Input via GPIO Matrix
421 Summary
4.2.2 Functional Description
4.2.3 Simple GPIO Input
4.3 Peripheral Output via GPIO Matrix
4.3.1 Summary
4.3.2 Functional Description
4.3.3 Simple GPIO Output
4.4 Direct 1/0 via |O_MUX
4.41 Summary
4.4.2 Functional Description
4.5 RTC I0_MUX for Low Power and Analog I/0
451 Summary
4.5.2 Functional Description
4.6 Light-sleep Mode Pin Functions
4.7 Pad Hold Feature
4.8 1/0 Pad Power Supply
4.8.1 VDD_SDIO Power Domain
4.9 Peripheral Signal List
410 IO_MUX Pad List
4.11 RTC_MUX Pin List
4.12 Register Summary
4.13 Registers

5 DPort Register

5.1 Introduction

5.2 Features

5.3 Functional Description
5.83.1 System and Memory Register
5.3.2 Reset and Clock Registers
5.3.3 Interrupt Matrix Register
5.3.4 DMA Registers
5.3.5 PID/MPU/MMU Registers
5.3.6 APP_CPU Controller Registers
5.3.7 Peripheral Clock Gating and Reset

5.4 Register Summary

5.5 Registers

6 DMA Controller

42
43
43
43
43

45
45
46
46
46
47
47
47
48
49
49
49
49
49
49
50
50
50
51
51
51
56
57
58
62

84
84
84
84
84
84
85
89
89
92
92
95
101

115

6.1
6.2
6.3

6.4
6.5
6.6

7.1
7.2
7.3

7.4

7.5

7.6

7.7
7.8

8.1
8.2
8.3

8.4
8.5
8.6

Overview

Features

Functional Description
6.3.1 DMA Engine Architecture
6.3.2 Linked List

UART DMA (UDMA)

SPI DMA Interface

12S DMA Interface

SPI

Overview

SPI Features

GP-SPI
7.3.1 GP-SPI Master Mode
7.3.2 GP-SPI Slave Mode

7.3.2.1 Communication Format Supported by GP-SPI Slave
7.3.2.2 Command Definitions Supported by GP-SPI Slave in Half-duplex Mode

7.3.3 GP-SPI Data Buffer
GP-SPI Clock Control

7.4.1 GP-SPI Clock Polarity (CPOL) and Clock Phase (CPHA)

7.4.2 GP-SPI Timing
Parallel QSPI
7.5.1 Communication Format of Parallel QSPI
GP-SPI Interrupt Hardware
7.6.1 SPlInterrupts
7.6.2 DMA Interrupts
Register Summary
Registers

SDIO Slave

Overview
Features
Functional Description
8.3.1 SDIO Slave Block Diagram
8.3.2 Sending and Receiving Data on SDIO Bus
8.3.3 Register Access
8.3.4 DMA
8.3.5 Packet-Sending/-Receiving Procedure
8.3.5.1 Sending Packets to SDIO Host
8.3.5.2 Receiving Packets from SDIO Host
8.3.6 SDIO Bus Timing
8.3.7 Interrupt
8.3.7.1 Host Interrupt
8.3.7.2 Slave Interrupt
Register Summary
SLC Registers
SLC Host Registers

115
115
115
115
116
116
117
118

120
120
120
121
121
122
122
122
123
123
124
124
125
126
126
126
127
127
130

162
152
152
152
152
163
163
154
155
155
156
157
158
158
158
159
161
169

8.7

9.1
9.2
9.3
9.4

9.5
9.6

9.7
9.8
9.9

HINF Registers

SD/MMC Host Controller

Overview
Features
SD/MMC External Interface Signals
Functional Description
9.4.1 SD/MMC Host Controller Architecture
9.411 BIU
9.41.2 ClU
9.4.2 Command Path
9.4.3 Data Path
9.4.3.1 Data Transmit Operation
9.4.3.2 Data Receive Operation
Software Restrictions for Proper CIU Operation
RAM for Receiving and Sending Data
9.6.1 Transmit RAM Module
9.6.2 Receive RAM Module
Descriptor Chain
The Structure of a Linked List
Initialization
9.9.1 DMAC Initialization
9.9.2 DMAC Transmission Initialization
9.9.3 DMAC Reception Initialization

9.10 Clock Phase Selection
9.11 Interrupt

9.12 Register Summary
9.13 Registers

10 Ethernet MAC

10.1 Overview
10.2 EMAC_CORE

10.2.1 Transmit Operation
10.2.1.1 Transmit Flow Control
10.2.1.2 Retransmission During a Collision
10.2.2 Receive Operation
10.2.2.1 Reception Protocol
10.2.2.2 Receive Frame Controller
10.2.2.3 Receive Flow Control
10.2.2.4 Reception of Multiple Frames
10.2.2.5 Error Handling
10.2.2.6 Receive Status Word

10.3 MAC Interrupt Controller
10.4 MAC Address Filtering

10.4.1 Unicast Destination Address Filtering
10.4.2 Multicast Destination Address Filtering
10.4.3 Broadcast Address Filtering

182

183
183
183
183
184
184
185
185
185
186
186
187
187
188
188
189
189
189
191
191
192
192
193
193
194
195

215
215
217
217
218
218
218
219
219
219
220
220
220
220
221
221
221
221

10.4.4 Unicast Source Address Filtering
10.4.5 Inverse Filtering Operation

10.4.6 Good Transmitted Frames and Received Frames

10.5 EMAC_MTL (MAC Transaction Layer)
10.6 PHY Interface
10.6.1 MIl (Media Independent Interface)

10.6.1.1 Interface Signals Between MIl and PHY

10.6.1.2 MIl Clock

10.6.2 RMIl (Reduced Media-Independent Interface)
10.6.2.1 RMIl Interface Signal Description

10.6.2.2 RMII Clock

10.6.3 Station Management Agent (SMA) Interface

10.7 Ethernet DMA Features
10.8 Linked List Descriptors
10.8.1 Transmit Descriptors
10.8.2 Receive Descriptors
10.9 Register Summary
10.10Registers

11 12C Controller

11.1 Overview
11.2 Features
11.3 Functional Description
11.3.1 Introduction
11.3.2 Architecture
11.3.3 12C Bus Timing
11.3.4 12C cmd Structure
11.3.5 12C Master Writes to Slave
11.3.6 12C Master Reads from Slave
11.8.7 Interrupts
11.4 Register Summary
11.5 Registers

12 12S

12.1 Overview
12.2 Features
12.3 The Clock of 12S Module
12.4 125 Mode
12.4.1 Supported Audio Standards
12.4.1.1 Philips Standard
12.4.1.2 MSB Alignment Standard
12.4.1.3 PCM Standard
12.4.2 Module Reset
12.4.3 FIFO Operation
12.4.4 Sending Data
12.4.5 Receiving Data
12.4.6 12S Master/Slave Mode

221
222
223
224
224
224
224
225
226
226
227
227
227
228
228
234
239
241

273
273
273
273
273
274
275
275
276
280
282
283
285

296
296
297
208
299
299
299
299
300
300
300
301
302
304

12.4.7 12S PDM

12.5 LCD Mode
12.5.1 LCD Master Transmitting Mode
12.5.2 Camera Slave Receiving Mode
12.5.3 ADC/DAC mode

12.6 12S Interrupts
12.6.1 FIFO Interrupts
12.6.2 DMA Interrupts

12.7 Register Summary

12.8 Registers

13 UART Controllers

13.1 Overview
13.2 UART Features
18.3 Functional Description
18.3.1 Introduction
138.3.2 UART Architecture
13.3.3 UART RAM
13.3.4 Baud Rate Detection
13.3.5 UART Data Frame
138.3.6 Flow Control
18.3.6.1 Hardware Flow Control
18.3.6.2 Software Flow Control
13.3.7 UART DMA
13.3.8 UART Interrupts
13.3.9 UCHI Interrupts
13.4 Register Summary
13.5 Registers

14 LED_PWM

14.1 Introduction
14.2 Functional Description
14.2.1 Architecture
14.2.2 Timers
14.2.3 Channels
14.2.4 Interrupts
14.3 Register Summary
14.4 Registers

15 Remote Control Peripheral

15.1 Introduction

15.2 Functional Description
15.2.1 RMT Architecture
15.2.2 RMT RAM
15.2.3 Clock
15.2.4 Transmitter
15.2.5 Receiver

304
306
306
307
308
309
309
309
310
312

330
330
330
330
330
331
332
332
333
334
334
335
335
335
336
336
340

367
367
367
367
368
368
369
370
373

383
383
383
383
384
384
385
385

15.2.6 Interrupts
15.3 Register Summary
15.4 Registers

16 MCPWM

16.1 Introduction
16.2 Features
16.3 Submodules
16.3.1 Overview
16.3.1.1 Prescaler Submodule
16.3.1.2 Timer Submodule
16.3.1.3 Operator Submodule
16.3.1.4 Fault Detection Submodule
16.3.1.5 Capture Submodule
16.3.2 PWM Timer Submodule
16.3.2.1 Configurations of the PWM Timer Submodule
16.3.2.2 PWM Timer's Working Modes and Timing Event Generation
16.3.2.3 PWM Timer Shadow Register
16.3.2.4 PWM Timer Synchronization and Phase Locking
16.3.3 PWM Operator Submodule
16.3.3.1 PWM Generator Submodule
16.3.3.2 Dead Time Generator Submodule
16.3.3.3 PWM Carrier Submodule
16.3.3.4 Fault Handler Submodule
16.3.4 Capture Submodule
16.3.4.1 Introduction
16.3.4.2 Capture Timer
16.3.4.3 Capture Channel
16.4 Register Summary
16.5 Registers

17 PULSE_CNT

17.1 Introduction
17.2 Functional Description
17.2.1 Architecture
17.2.2 Counter Channel Inputs
17.2.3 Watchpoints
17.2.4 Examples
17.2.5 Interrupts
17.3 Register Summary
17.4 Registers

18 64-bit Timers

18.1 Introduction
18.2 Functional Description
18.2.1 16-bit Prescaler
18.2.2 64-bit Time-base Counter

385
385
387

392
392
392
394
394
394
394
395
397
397
397
397
398
402
402
402
403
413
417
419
421
421
421
421
422
424

467
467
467
467
467
468
469
469
469
471

475
475
475
475
475

18.2.3 Alarm Generation
18.2.4 MWDT
18.2.5 Interrupts
18.3 Register Summary
18.4 Registers

19 Watchdog Timers

19.1 Introduction

19.2 Features

19.3 Functional Description

19.3.1 Clock

19.3.1.1 Operating Procedure
19.3.1.2 Write Protection
19.3.1.3 Flash Boot Protection
19.3.1.4 Registers

20 eFuse Controller
20.1 Introduction
20.2 Features
20.3 Functional Description
20.3.1 Structure
20.3.1.1 System Parameter efuse_wr_disable
20.3.1.2 System Parameter efuse_rd_disable
20.3.1.3 System Parameter coding_scheme
20.3.1.4 BLK3_part_reserve
20.83.2 Programming of System Parameters
20.3.3 Software Reading of System Parameters
20.3.4 The Use of System Parameters by Hardware Modules
20.3.5 Interrupts
20.4 Register Summary
20.5 Registers

21 AES Accelerator

21.1 Introduction
21.2 Features
21.3 Functional Description
21.8.1 AES Algorithm Operations
21.3.2 Key, Plaintext and Ciphertext
21.3.3 Endianness
21.3.4 Encryption and Decryption Operations
21.3.5 Speed
21.4 Register Summary
21.5 Registers

22 SHA Accelerator

22.1 Introduction
22.2 Features

476
476
476
476
478

485
485
485
485
485
486
486
486
487

488
488
488
488
488
489
490
490
491
491
494
495
496
496
498

508
508
508
508
508
508
509
511
511
511
513

515
515
515

22.3 Functional Description
22.3.1 Padding and Parsing the Message
22.3.2 Message Digest
22.3.3 Hash Operation
22.3.4 Speed
22.4 Register Summary
22.5 Registers

23 RSA Accelerator

23.1 Introduction

23.2 Features

23.3 Functional Description
23.3.1 |Initialization
23.3.2 Large Number Modular Exponentiation
23.3.3 Large Number Modular Multiplication
23.3.4 Large Number Multiplication

23.4 Register Summary

23.5 Reqgisters

24 Random Number Generator
24.1 Introduction

24.2 Feature

24.3 Functional Description

24.4 Register Summary

24.5 Register

25 Flash Encryption/Decryption
25.1 Overview
25.2 Features
25.3 Functional Description
25.3.1 Key Generator
25.3.2 Flash Encryption Block
25.3.3 Flash Decryption Block
25.4 Register Summary
25.5 Register

26 PID/MPU/MMU

26.1 Introduction
26.2 Features
26.3 Functional Description
26.3.1 PID Controller
26.3.2 MPU/MMU
26.3.2.1 Embedded Memory
26.3.2.2 External Memory
26.3.2.3 Peripheral

27 PID Controller

515
515
515
516
516
516
518

523
523
523
523
523
523
525
525
526
527

529
529
529
529
529
529

530
530
530
530
531
531
532
532
534

535
535
535
535
535
536
536
542
548

550

27.1 Overview

27.2 Features

27.3 Functional Description
27.3.1 Interrupt Identification
27.3.2 Information Recording
27.3.3 Proactive Process Switching

27.4 Register Summary

27.5 Registers

28 On-Chip Sensors and Analog Signal Processing

28.1 Introduction
28.2 Capacitive Touch Sensor
28.2.1 Introduction
28.2.2 Features
28.2.3 Available GPIOs
28.2.4 Functional Description
28.2.5 Touch FSM
28.3 SAR ADC
28.3.1 Introduction
28.3.2 Features
28.3.3 Outline of Function
28.3.4 RTC SAR ADC Controllers
28.3.5 DIG SAR ADC Controllers
28.4 Low-Noise Amplifier
28.4.1 Introduction
28.4.2 Features
28.4.3 Overview of Function
28.5 Hall Sensor
28.5.1 Introduction
28.5.2 Features
28.5.3 Functional Description
28.6 Temperature Sensor
28.6.1 Introduction
28.6.2 Features
28.6.3 Functional Description
28.7 DAC
28.7.1 Introduction
28.7.2 Features
28.7.3 Structure
28.7.4 Cosine Waveform Generator
28.7.5 DMA support
28.8 Register Summary
28.8.1 Sensors
28.8.2 Advanced Peripheral Bus
28.8.3 RTCI/O
28.9 Registers
28.9.1 Sensors

550
550
550
551
551
5563
555
556

560
560
560
560
560
561
561
562
563
563
564
564
566
567
569
569
569
569
570
570
571
571
571
571
572
572
572
572
572
573
573
574
575
575
575
576
577
577

28.9.2 Advanced Peripheral Bus
28.9.3 RTC1/O

29 ULP Co-processor
29.1 Introduction
29.2 Features
29.3 Functional Description
29.4 Instruction Set
29.4.1 ALU - Perform Arithmetic/Logic Operations
29.4.1.1 Operations among Registers
29.4.1.2 Operations with Immediate Value
29.4.1.3 Operations with Stage Count Register
29.4.2 ST - Store Data in Memory
29.4.3 LD - Load Data from Memory
29.4.4 JUMP - Jump to an Absolute Address
29.4.5 JUMPR - Jump to a Relative Offset (Conditional upon RO)
29.4.6 JUMPS - Jump to a Relative Address (Conditional upon Stage Count Register)
29.4.7 HALT - End the Program
29.4.8 WAKE - Wake up the Chip
29.4.9 Sleep — Set the ULP Timer’'s Wake-up Period
29.4.10 WAIT — Wait for a Number of Cycles
29.4.11 TSENS - Take Measurements with the Temperature Sensor
29.4.12 ADC — Take Measurement with ADC
29.4.1312C_RD/I2C_WR - Read/Write 12C
29.4.14 REG_RD - Read from Peripheral Register
29.4.15 REG_WR - Write to Peripheral Register
29.5 ULP Program Execution
29.6 RTC_|2C Controller
29.6.1 Configuring RTC_I2C
29.6.2 Using RTC_I2C
29.6.2.1 12C_RD - Read a Single Byte
29.6.2.2 12C_WR - Write a Single Byte
29.6.2.3 Detecting Error Conditions
29.6.2.4 Connecting 12C Signals
29.7 Register Summary
29.7.1 SENS_ULP Address Space
29.7.2 RTC_I2C Address Space
29.8 Registers
29.8.1 SENS_ULP Address Space
29.8.2 RTC_I2C Address Space

30 Low-Power Management
30.1 Introduction
30.2 Features
30.3 Functional Description
30.3.1 Overview
30.3.2 Digital Core Voltage Regulator

588
591

592
592
592
593
593
594
594
595
595
596
596
597
597
598
598
599
599
599
599
600
601
601
602
602
604
604
604
605
605
606
606
607
607
607
608
608
610

617
617
617
618
618
618

30.3.3 Low-Power Voltage Regulator
30.3.4 Flash Voltage Regulator
30.3.5 Brownout Detector
30.3.6 RTC Module
30.3.7 Low-Power Clocks
30.3.8 Power-Gating Implementation
30.3.9 Predefined Power Modes
30.3.10 Wakeup Source
30.3.11 RTC Timer
30.3.12 RTC Boot

30.4 Register Summary

30.5 Registers

618
619
620
620
622
623
624
625
626
626
628
630

List of Tables

0 N O O b~ W N

11
12
13
14
15
16
17
18
19
20
26
27
28
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
56
57
58

Address Mapping

Embedded Memory Address Mapping
Module with DMA

External Memory Address Mapping

Cache memory mode

Peripheral Address Mapping

PRO_CPU, APP_CPU Interrupt Configuration
CPU Interrupts

PRO_CPU and APP_CPU Reset Reason Values
CPU_CLK Source

CPU_CLK Derivation

Peripheral Clock Usage

APB_CLK Derivation

REF_TICK Derivation

LEDC_SCLK Derivation

IO_MUX Light-sleep Pin Function Registers
GPIO Matrix Peripheral Signals

IO_MUX Pad Summary

RTC_MUX Pin Summary

SPI Signal and Pin Signal Function Mapping

Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Master
Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Slave

SD/MMC Signal Description
DESO

DESH

DES2

DES3

Destination Address Filtering
Source Address Filtering
Transmit Descriptor O (TDESO
Transmit Descriptor 1 (TDEST
Transmit Descriptor 2 (TDES2
Transmit Descriptor 3 (TDES3
Transmit Descriptor 6 (TDES6
Transmit Descriptor 7 (TDES7
Receive Descriptor O (RDESO

)
)
)
)
)
)

()
Receive Descriptor 1 (RDES1)
Receive Descriptor 2 (RDES2)
Receive Descriptor 3 (RDES3)
Receive Descriptor 4 (RDES4)
Receive Descriptor 6 (RDESB)
Receive Descriptor 7 (RDES7)
12S Signal Bus Description
Register Configuration

Send Channel Mode

25
26
28
29
29
30
34
36
38
40
41
41
42
42
42
50
51
56
57

120

124

124

184

190

191

191

191

200

223

228

232

232

232

232

233

234

236

237

237

237

239

239

297

301

301

59
60
61
62
68
69
70
71
72
73
78
79
80
81
82
84
85
86
87
88
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
118
119
120
121

Modes of Writing Received Data into FIFO and the Corresponding Register Configuration
The Register Configuration to Which the Four Modes Correspond
Upsampling Rate Configuration

Down-sampling Configuration

Configuration Parameters of the Operator Submodule
Timing Events Used in PWM Generator

Timing Events Priority When PWM Timer Increments
Timing Events Priority when PWM Timer Decrements
Dead Time Generator Switches Control Registers
Typical Dead Time Generator Operating Modes
System Parameter

BLOCK1/2/3 Encoding

Program Register

Timing Configuration

Software Read Register

Operation Mode

AES Text Endianness

AES-128 Key Endianness

AES-192 Key Endianness

AES-256 Key Endianness

MPU and MMU Structure for Internal Memory

MPU for RTC FAST Memory

MPU for RTC SLOW Memory

Page Mode of MMU for the Remaining 128 KB of Internal SRAMO and SRAM2
Page Boundaries for SRAMO MMU

Page Boundaries for SRAM2 MMU
DPORT_DMMU_TABLEN_REG & DPORT_IMMU_TABLEN_REG
MPU for DMA

Virtual Address for External Memory

MMU Entry Numbers for PRO_CPU

MMU Entry Numbers for APP_CPU

MMU Entry Numbers for PRO_CPU (Special Mode)
MMU Entry Numbers for APP_CPU (Special Mode)
Virtual Address Mode for External SRAM

Virtual Address for External SRAM (Normal Mode)
Virtual Address for External SRAM (Low-High Mode)
Virtual Address for External SRAM (Even-Odd Mode)
MMU Entry Numbers for External RAM

MPU for Peripheral
DPORT_AHBLITE_MPU_TABLE_X_REG

Interrupt Vector Entry Address

Configuration of PIDCTRL_LEVEL_REG

Configuration of PIDCTRL_FROM_n_REG

ESP32 Capacitive Sensing Touch Pads

Inputs of SAR ADC module

ESP32 SAR ADC Controllers

Fields of the Pattern Table Register

303
303
305
306
396
404
404
405
414
415
488
490
492
493
494
508
509
510
510
510
536
537
537
538
539
539
540
541
543
543
543
544
544
545
546
546
546
547
548
549
551
551
552
561
565
566
568

122
123
126
127
128
129
132
133

Fields of Type | DMA Data Format

Fields of Type Il DMA Data Format

ALU Operations among Registers

ALU Operations with Immediate Value

ALU Operations with Stage Count Register

Input Signals Measured using the ADC Instruction
RTC Power Domains

Wake-up Source

569
569
594
595
596
600
623
626

List of Figures

O N O O~ 0N =

A DM DD DM DO W WWWWWWWwWwMNNDMMNDDNDMNDMNDNDNDMNDDND S 20004 O
O b WON -+ O O 00 NO O B WN -+ O O 0 ~NO O b~ wWwN -+ O O 0 ~NO 0w —+ O

System Structure

System Address Mapping

Cache Block Diagram

Interrupt Matrix Structure

System Reset

System Clock

IO_MUX, RTC I0_MUX and GPIO Matrix Overview
Peripheral Input via I0_MUX, GPIO Matrix
QOutput via GPIO Matrix

ESP32 I/O Pad Power Sources

DMA Engine Architecture

Linked List Structure

Data Transfer in UDMA Mode

SPI DMA

SPI Architecture

SPI Master and Slave Full-duplex Communication
SPI Data Buffer

Parallel QSPI

Communication Format of Parallel QSPI
SDIO Slave Block Diagram

SDIO Bus Packet Transmission

CMD53 Content

SDIO Slave DMA Linked List Structure

SDIO Slave Linked List

Packet Sending Procedure (Initiated by Slave)
Packet Receiving Procedure (Initiated by Host)
Loading Receiving Buffer

Sampling Timing Diagram

Output Timing Diagram

SD/MMC Controller Topology

SD/MMC Controller External Interface Signals
SDIO Host Block Diagram

Command Path State Machine

Data Transmit State Machine

Data Receive State Machine

Descriptor Chain

The Structure of a Linked List

Clock Phase Selection

Ethernet MAC Functionality Overview
Ethernet Block Diagram

Ml Interface

MiII Clock

RMIl Interface

RMII Clock

Transmit Descriptor

24
24
29
33
38
39
45
46
48
51
115
116
117
118
120
121
123
125
126
152
163
163
154
154
155
156
157
157
158
183
184
184
186
186
187
189
189
193
215
217
224
226
226
227
228

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
o1
92

Receive Descriptor

12C Master Architecture

12C Slave Architecture

12C Sequence Chart

Structure of The 12C Command Register

12C Master Writes to Slave with 7-bit Address
12C Master Writes to Slave with 10-bit Address
12C Master Writes to addrM in RAM of Slave with 7-bit Address
12C Master Writes to Slave with 7-bit Address in Three Segments
12C Master Reads from Slave with 7-bit Address
12C Master Reads from Slave with 10-bit Address
12C Master Reads N Bytes of Data from addrM in Slave with 7-bit Address
I2C Master Reads from Slave with 7-bit Address in Three Segments
12S System Block Diagram

12S Clock

Philips Standard

MSB Alignment Standard

PCM Standard

Tx FIFO Data Mode

The First Stage of Receiving Data

Modes of Writing Received Data into FIFO

PDM Transmitting Module

PDM Sends Signal

PDM Receives Signal

PDM Receive Module

LCD Master Transmitting Mode

LCD Master Transmitting Data Frame, Form 1
LCD Master Transmitting Data Frame, Form 2
Camera Slave Receiving Mode

ADC Interface of 12S0

DAC Interface of 12S

Data Input by 12S DAC Interface

UART Basic Structure

UART shared RAM

UART Data Frame Structure

AT_CMD Character Format

Hardware Flow Control

LED_PWM Architecture

LED_PWM High-speed Channel Diagram
LED_PWM Divider

LED PWM Output Signal Diagram

Output Signal Diagram of Gradient Duty Cycle
RMT Architecture

Data Structure

MCPWM Module Overview

Prescaler Submodule

Timer Submodule

234
274
274
275
275
276
278
278
279
280
280
281
281
296
298
299
299
300
301
302
303
304
305
305
306
306
307
307
307
308
308
308
331
332
333
333
334
367
367
368
369
369
383
384
392
394
394

93
94
95
96
97
98
99
100
101
102
103
104
105

106
107

108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

Operator Submodule 395

Fault Detection Submodule 397
Capture Submodule 397
Count-Up Mode Waveform 398
Count-Down Mode Waveforms 399
Count-Up-Down Mode Waveforms, Count-Down at Synchronization Event 399
Count-Up-Down Mode Waveforms, Count-Up at Synchronization Event 399
UTEP and UTEZ Generation in Count-Up Mode 400
DTEP and DTEZ Generation in Count-Down Mode 401
DTEP and UTEZ Generation in Count-Up-Down Mode 401
Submodules Inside the PWM Operator 403
Symmetrical Waveform in Count-Up-Down Mode 406
Count-Up, Single Edge Asymmetric Waveform, with Independent Modulation on PWMxA and PWMxB

— Active High 407
Count-Up, Pulse Placement Asymmetric Waveform with Independent Modulation on PWMxA 408
Count-Up-Down, Dual Edge Symmetric Waveform, with Independent Modulation on PWMXxA and
PWMxB — Active High 409
Count-Up-Down, Dual Edge Symmetric Waveform, with Independent Modulation on PWMxA and
PWMxB — Complementary 410
Example of an NCI Software-Force Event on PWMxA 411
Example of a CNTU Software-Force Event on PWMxB 412
Options for Setting up the Dead Time Generator Submodule 414
Active High Complementary (AHC) Dead Time Waveforms 415
Active Low Complementary (ALC) Dead Time Waveforms 416
Active High (AH) Dead Time Waveforms 416
Active Low (AL) Dead Time Waveforms 416
Example of Waveforms Showing PWM Carrier Action 418
Example of the First Pulse and the Subsequent Sustaining Pulses of the PWM Carrier Submodule 419
Possible Duty Cycle Settings for Sustaining Pulses in the PWM Carrier Submodule 419
PULSE_CNT Architecture 467
PULSE_CNT Upcounting Diagram 469
PULSE_CNT Downcounting Diagram 469
Flash Encryption/Decryption Module Architecture 530
MMU Access Example 538
Interrupt Nesting 553
Touch Sensor 560
Touch Sensor Structure 561
Touch Sensor Operating Flow 562
Touch FSM Structure 563
SAR ADC Depiction 564
SAR ADC Ouitline of Function 565
RTC SAR ADC Outline of Function 567
Diagram of DIG SAR ADC Controllers 568
Structure of Low-Noise Amplifier 569
Low-Noise Amplifier — Sequence of Operation 570
Hall Sensor 571
Temperature Sensor 572

137 Diagram of DAC Function 573

138 Cosine Waveform (CW) Generator 574
139 ULP Co-processor Diagram 592
140 The ULP Co-processor Instruction Format 593
141 Instruction Type — ALU for Operations among Registers 594
142 Instruction Type — ALU for Operations with Immediate Value 595
143 Instruction Type — ALU for Operations with Stage Count Register 595
144 Instruction Type — ST 596
145 Instruction Type — LD 596
146 Instruction Type — JUMP 597
147 Instruction Type — JUMPR 597
148 Instruction Type — JUMP 598
149 Instruction Type — HALT 598
150 Instruction Type — WAKE 599
151 Instruction Type — SLEEP 599
152 Instruction Type — WAIT 599
153 Instruction Type — TSENS 599
154 Instruction Type — ADC 600
155 Instruction Type — 12C 601
156 Instruction Type — REG_RD 601
157 Instruction Type — REG_WR 602
158 Control of ULP Program Execution 603
159 Sample of a ULP Operation Sequence 604
160 12C Read Operation 605
161 12C Write Operation 606
162 ESP32 Power Control 617
163 Digital Core Voltage Regulator 618
164 Low-Power Voltage Regulator 619
165 Flash Voltage Regulator 620
166 Brownout Detector 620
167 RTC Structure 621
168 RTC Low-Power Clocks 622
169 Digital Low-Power Clocks 622
170 RTC States 623
171 Power Modes 625

172 ESP32 Boot Flow 627

1. SYSTEM AND MEMORY

1. System and Memory

1.1 Introduction

The ESP32 is a dual-core system with two Harvard Architecture Xtensa LX6 CPUs. All embedded memory,
external memory and peripherals are located on the data bus and/or the instruction bus of these CPUs.

With some minor exceptions (see below), the address mapping of two CPUs is symmetric, meaning that they use
the same addresses to access the same memory. Multiple peripherals in the system can access embedded
memory via DMA.

The two CPUs are named “PRO_CPU” and “APP_CPU” (for “protocol” and “application”), however, for most
purposes the two CPUs are interchangeable.

1.2 Features
e Address Space

- Symmetric address mapping

4 GB (32-bit) address space for both data bus and instruction bus

1296 KB embedded memory address space

19704 KB external memory address space

512 KB peripheral address space

Some embedded and external memory regions can be accessed by either data bus or instruction bus

- 328 KB DMA address space

Embedded Memory
- 448 KB Internal ROM
- 520 KB Internal SRAM
- 8 KB RTC FAST Memory

- 8 KB RTC SLOW Memory

External Memory
Off-chip SPI memory can be mapped into the available address space as external memory. Parts of the
embedded memory can be used as transparent cache for this external memory.

— Supports up to 16 MB off-Chip SPI Flash.
— Supports up to 8 MB off-Chip SPI SRAM.
e Peripherals
- 41 peripherals
e DMA

- 13 modules are capable of DMA operation

Espressif Systems 23 ESP32 Technical Reference Manual V3.1

1. SYSTEM AND MEMORY

The block diagram in Figure 1 illustrates the system structure, and the block diagram in Figure 2 illustrates the
address map structure.

DMA

v

Embedded
Memory

PRO_CPU APP_CPU
MMU

External
Memory

Peripheral

Figure 1: System Structure

0x0000_0000
0x3F3F_FFFF

0x3F40_0000
OX3F7F_FFFF

0x3F80_0000
Ox3FBF_FFFF

0x3FC0_0000
OX3FEF_FFFF

0x3FF0_0000
Ox3FF7_FFFF

Peripheral

0x3FF8_0000
0x3FF8_1FFF

0X3FF8_2000
External OX3FF8_FFFF #

Flash 24 0x3FF9_0000 Internal > Internal RTC RTC
O0x3FF9_FFFF ROM SRAM FAST Memory SLOW Memory

0x3FFA_0000
External 23 Ox3FFA_DFFF

SRAM

MMU Cache 4+— T

Ox3FFA_E000
Ox3FFF_FFFF

DMA

0x4000_0000
0x4005_FFFF

0x4006_0000
0x4006_FFFF

0x4007_0000
0x400B_FFFF

0x400C_0000
0x400C_1FFF

0x400C_2000
0x40BF_FFFF

0x40C0_0000
Ox4FFF_FFFF

0x5000_0000
0x5000_1FFF

0x5000_2000
OXFFFF_FFFF

Figure 2: System Address Mapping

Espressif Systems 24 ESP32 Technical Reference Manual V3.1

1. SYSTEM AND MEMORY

1.3 Functional Description

1.3.1 Address Mapping

Each of the two Harvard Architecture Xtensa LX6 CPUs has 4 GB (32-bit) address space. Address spaces are
symmetric between the two CPUs.

Addresses below 0x4000_0000 are serviced using the data bus. Addresses in the range 0x4000_0000 ~
Ox4FFF_FFFF are serviced using the instruction bus. Finally, addresses over and including 0x5000_0000 are
shared by the data and instruction bus.

The data bus and instruction bus are both little-endian: for example, byte addresses 0x0, Ox1, 0x2, Ox3 access
the least significant, second least significant, second most significant, and the most significant bytes of the 32-bit
word stored at the 0x0 address, respectively. The CPU can access data bus addresses via aligned or non-aligned

byte, half-word and word read-and-write operations. The CPU can read and write data through the instruction

bus, but only in a word aligned manner; non-word-aligned access will cause a CPU exception.

Each CPU can directly access embedded memory through both the data bus and the instruction bus, external

memory which is mapped into the address space (via transparent caching & MMU), and peripherals. Table 2

illustrates address ranges that can be accessed by each CPU’s data bus and instruction bus.

Some embedded memories and some external memories can be accessed via the data bus or the instruction

bus. In these cases, the same memory is available to either of the CPUs at two address ranges.

Table 2: Address Mapping

Boundary Address ;
Bus Type - Size Target
Low Address High Address
0x0000_0000 Ox3F3F_FFFF Reserved
Data Ox3F40_0000 Ox3F7F_FFFF 4 MB External Memory
Data 0x3F80_0000 Ox3FBF_FFFF 4 MB External Memory
Ox3FCO_0000 Ox3FEF_FFFF 3 MB Reserved
Data Ox3FFO_0000 Ox3FF7_FFFF 512 KB Peripheral
Data Ox3FF8_0000 Ox3FFF_FFFF 512 KB Embedded Memory
Instruction 0x4000_0000 Ox400C_1FFF 776 KB Embedded Memory
Instruction 0x400C_2000 Ox40BF_FFFF 11512 KB External Memory
0x40C0_0000 Ox4FFF_FFFF 244 MB Reserved
Data Instruction 0x5000_0000 0x5000_1FFF 8 KB Embedded Memory
0x5000_2000 OxFFFF_FFFF Reserved

1.3.2 Embedded Memory

The Embedded Memory consists of four segments: internal ROM (448 KB), internal SRAM (520 KB), RTC FAST
memory (8 KB) and RTC SLOW memory (8 KB).

The 448 KB internal ROM is divided into two parts: Internal ROM 0 (384 KB) and Internal ROM 1 (64 KB). The
520 KB internal SRAM is divided into three parts: Internal SRAM 0 (192 KB), Internal SRAM 1 (128 KB), and
Internal SRAM 2 (200 KB). RTC FAST Memory and RTC SLOW Memory are both implemented as SRAM.

Table 3 lists all embedded memories and their address ranges on the data and instruction buses.

Espressif Systems

25

ESP32 Technical Reference Manual V3.1

1. SYSTEM AND MEMORY

Table 3: Embedded Memory Address Mapping

Boundary Address :
Bus Type . Size Target Comment
Low Address High Address
Data Ox3FF8_0000 Ox3FF8_1FFF 8 KB RTC FAST Memory PRO_CPU Only
Ox3FF8_2000 Ox3FF8_FFFF 56 KB Reserved -
Data O0x3FF9_0000 Ox3FF9_FFFF 64 KB Internal ROM 1 -
0x3FFA_0000 Ox3FFA_DFFF 56 KB Reserved -
Data Ox3FFA_EO0O Ox3FFD_FFFF 200 KB Internal SRAM 2 DMA
Data Ox3FFE_0000 Ox3FFF_FFFF 128 KB Internal SRAM 1 DMA
Boundary Address :
Bus Type : Size Target Comment
Low Address High Address
Instruction 0x4000_0000 0x4000_7FFF 32 KB Internal ROM 0 Remap
Instruction 0x4000_8000 0x4005_FFFF 352 KB Internal ROM 0O -
0x4006_0000 0x4006_FFFF 64 KB Reserved -
Instruction 0x4007_0000 0x4007_FFFF 64 KB Internal SRAM 0 Cache
Instruction 0x4008_0000 0x4009_FFFF 128 KB Internal SRAM O -
Instruction 0x400A_0000 Ox400A_FFFF 64 KB Internal SRAM 1 -
Instruction 0x400B_0000 0x400B_7FFF 32 KB Internal SRAM 1 Remap
Instruction 0x400B_8000 Ox400B_FFFF 32 KB Internal SRAM 1 -
Instruction 0x400C_0000 0x400C_1FFF 8 KB RTC FAST Memory PRO_CPU Only
Boundary Address :
Bus Type . Size Target Comment
Low Address High Address
Data Instruc-
tion 0x5000_0000 0x5000_1FFF 8 KB RTC SLOW Memory -
i

1.3.2.1 Internal ROM 0

The capacity of Internal ROM 0 is 384 KB. It is accessible by both CPUs through the address range
0x4000_0000 ~ 0x4005_FFFF, which is on the instruction bus.

The address range of the first 32 KB of the ROM 0 (0x4000_0000 ~ 0x4000_7FFF) can be remapped in order to
access a part of Internal SRAM 1 that normally resides in @ memory range of 0x400B_0000 ~ 0x400B_7FFF.
While remapping, the 32 KB SRAM cannot be accessed by an address range of 0x400B_0000 ~ 0x400B_7FFF
any more, but it can still be accessible through the data bus (Ox3FFE_8000 ~ Ox3FFE_FFFF). This can be done
on a per-CPU basis: setting bit O of register DPORT_PRO_BOOT_REMAP_CTRL_REG or
DPORT_APP_BOOT_REMAP_CTRL_REG will remap SRAM for the PRO_CPU and APP_CPU,

respectively.

1.3.2.2 Internal ROM 1

The capacity of Internal ROM 1 is 64 KB. It can be read by either CPU at an address range Ox3FF9_0000 ~
Ox3FF9_FFFF of the data bus.

Espressif Systems 26 ESP32 Technical Reference Manual V3.1

1. SYSTEM AND MEMORY

1.3.2.3 Internal SRAM 0

The capacity of Internal SRAM 0 is 192 KB. Hardware can be configured to use the first 64 KB to cache external
memory access. When not used as cache, the first 64 KB can be read and written by either CPU at addresses
0x4007_0000 ~ 0x4007_FFFF of the instruction bus. The remaining 128 KB can always be read and written by
either CPU at addresses 0x4008_0000 ~ 0x4009_FFFF of instruction bus.

1.3.2.4 Internal SRAM 1

The capacity of Internal SRAM 1 is 128 KB. Either CPU can read and write this memory at addresses
Ox3FFE_0000 ~ Ox3FFF_FFFF of the data bus, and also at addresses 0x400A_0000 ~ 0x400B_FFFF of the
instruction bus.

The address range accessed via the instruction bus is in reverse order (word-wise) compared to access via the
data bus. That is to say, address

OX3FFE_0000 and 0x400B_FFFC access the same word

Ox3FFE_0004 and 0x400B_FFF8 access the same word

Ox3FFE_0008 and 0x400B_FFF4 access the same word

Ox3FFF_FFF4 and 0x400A_0008 access the same word

Ox3FFF_FFF8 and 0x400A_0004 access the same word

Ox3FFF_FFFC and 0x400A_0000 access the same word

The data bus and instruction bus of the CPU are still both little-endian, so the byte order of individual words is not
reversed between address spaces. For example, address

Ox3FFE_0000 accesses the least significant byte in the word accessed by 0x400B_FFFC.
Ox3FFE_0001 accesses the second least significant byte in the word accessed by 0x400B_FFFC.
Ox3FFE_0002 accesses the second most significant byte in the word accessed by 0x400B_FFFC.
Ox3FFE_0003 accesses the most significant byte in the word accessed by 0x400B_FFFC.
Ox3FFE_0004 accesses the least significant byte in the word accessed by 0x400B_FFF8.
Ox3FFE_0005 accesses the second least significant byte in the word accessed by 0x400B_FFF8.
Ox3FFE_0006 accesses the second most significant byte in the word accessed by 0x400B_FFF8.
Ox3FFE_0007 accesses the most significant byte in the word accessed by 0x400B_FFF8.
Ox3FFF_FFF8 accesses the least significant byte in the word accessed by 0x400A_0004.
Ox3FFF_FFF9 accesses the second least significant byte in the word accessed by 0x400A_0004.
Ox3FFF_FFFA accesses the second most significant byte in the word accessed by 0x400A_0004.
Ox3FFF_FFFB accesses the most significant byte in the word accessed by 0x400A_0004.
Ox3FFF_FFFC accesses the least significant byte in the word accessed by 0x400A_0000.
Ox3FFF_FFFD accesses the second most significant byte in the word accessed by 0x400A_0000.
Ox3FFF_FFFE accesses the second most significant byte in the word accessed by 0x400A_0000.
Ox3FFF_FFFF accesses the most significant byte in the word accessed by 0x400A_0000.

Part of this memory can be remapped onto the ROM 0 address space. See Internal Rom O for more
information.

Espressif Systems 27 ESP32 Technical Reference Manual V3.1

1. SYSTEM AND MEMORY

1.3.2.5 Internal SRAM 2

The capacity of Internal SRAM 2 is 200 KB. It can be read and written by either CPU at addresses 0x3FFA_E00O
~ OxBFFD_FFFF on the data bus.

1.3.2.6 DMA

DMA uses the same addressing as the CPU data bus to read and write Internal SRAM 1 and Internal SRAM 2.
This means DMA uses an address range of OxBFFE_0000 ~ Ox3FFF_FFFF to read and write Internal SRAM 1 and
an address range of Ox3FFA_EOQO ~ Ox3FFD_FFFF to read and write Internal SRAM 2.

In the ESP32, 13 peripherals are equipped with DMA. Table 4 lists these peripherals.

Table 4: Module with DMA

| UARTO | UART1 | UART2
| sPi | sP2 | sPiB

|
|
|
| SDIOSlave | SDMMC |
|
|

12S0 121
\ EMAC
. BT | wA

1.3.2.7 RTC FAST Memory

RTC FAST Memory is 8 KB of SRAM. It can be read and written by PRO_CPU only at an address range of
Ox3FF8_0000 ~ 0x3FF8_1FFF on the data bus or at an address range of 0x400C_0000 ~ 0x400C_1FFF on the
instruction bus. Unlike most other memory regions, RTC FAST memory cannot be accessed by the

APP_CPU.

The two address ranges of PRO_CPU access RTC FAST Memory in the same order, so, for example, addresses
0x3FF8_0000 and 0x400C_0000 access the same word. On the APP_CPU, these address ranges do not
provide access to RTC FAST Memory or any other memory location.

1.3.2.8 RTC SLOW Memory

RTC SLOW Memory is 8 KB of SRAM which can be read and written by either CPU at an address range of
0x5000_0000 ~ 0x5000_1FFF. This address range is shared by both the data bus and the instruction bus.

1.3.3 External Memory

The ESP32 can access external SPI flash and SPI SRAM as external memory. Table 5 provides a list of external
memories that can be accessed by either CPU at a range of addresses on the data and instruction buses. When
a CPU accesses external memory through the Cache and MMU, the cache will map the CPU’s address to an
external physical memory address (in the external memory’s address space), according to the MMU settings. Due
to this address mapping, the ESP32 can address up to 16 MB External Flash and 8 MB External SRAM.

Espressif Systems 28 ESP32 Technical Reference Manual V3.1

1. SYSTEM AND MEMORY

Table 5: External Memory Address Mapping

Boundary Address :
Bus Type ; Size Target Comment
Low Address High Address
Data 0x3F40_0000 Ox3F7F_FFFF 4 MB External Flash Read
Data 0Ox3F80_0000 Ox3FBF_FFFF 4 MB External SRAM Read and Write
Boundary Address :
Bus Type : Size Target Comment
Low Address High Address
Instruction | 0x400C_2000 0x40BF_FFFF 11512 KB External Flash Read
1.3.4 Cache

As shown in Figure 3, each of the two CPUs in ESP32 has 32 KB of cache for accessing external storage. PRO
CPU uses bit PRO_CACHE_ENABLE in register DPORT_PRO_CACHE_CTRL_REG to enable the Cache, while
APP CPU uses bit APP_CACHE_ENABLE in register DPORT_APP_CACHE_CTRL_REG to enable the same

function.

External
memory

PRO CPU

APP CPU

CacheO

Cachel |- »

3

Instruction bus

PRO_CACHE_ENABLE

~
01

SWAP

=

‘ CACHE_MUX_MODE

e

Instruction bus

POOLO
32KB

POOL1
32KB

Cache memory

Figure 3: Cache Block Diagram

External
memory

ESP32 uses a two-way set-associative cache. When the Cache function is to be used either by PRO CPU or
APP CPU, bit CACHE_MUX_MODE[1:0] in register DPORT_CACHE_MUX_MODE_REG can be set to select

POOLO or POOL1 in the Internal SRAMO as the cache memory. When both PRO CPU and APP CPU use the
Cache function, POOLO and POOL1 in the Internal SRAMO will be used simultaneously as the cache memory,

while they can also be used by the instruction bus. This is depicted in table 6 below.

Espressif Systems

Table 6: Cache memory mode

CACHE_MUX_MODE POOLO POOL1
0 PRO CPU APP CPU
1 PRO CPU/APP CPU -
2 - PRO CPU/APP CPU
3 APP CPU PRO CPU
29

ESP32 Technical Reference Manual V3.1

1. SYSTEM AND MEMORY

As described in table 6, when bit CACHE_MUX_MODE is set to 1 or 2, PRO CPU and APP CPU cannot enable
the Cache function at the same time. When the Cache function is enabled, POOLO or POOL1 can only be used
as the cache memory, and cannot be used by the instruction bus as well.

ESP32 Cache supports the Flush function. It is worth noting that when the Flush function is used, the data

written in the cache will be disposed rather than being rewritten into the External SRAM. To enable the Flush
function, first clear bit x CACHE_FLUSH_ENA in register DPORT_x_CACHE_CTRL_REG, then set this bit to 1.
Afterwards, the system hardware will set bit x CACHE_FLUSH_DONE to 1, where x can be "PRO” or "APP”,
indicating that the cache flush operation has been completed.

For more information about the address mapping of ESP32 Cache, please refer to Embedded Memory and

External Memory.

1.3.5 Peripherals

The ESP32 has 41 peripherals. Table 7 specifically describes the peripherals and their respective address
ranges. Nearly all peripheral modules can be accessed by either CPU at the same address with just a single
exception; this being the PID Controller.

Table 7: Peripheral Address Mapping

Boundary Address :
Bus Type . Size Target Comment
Low Address High Address
Data Ox3FFO_0000 Ox3FFO_OFFF 4 KB DPort Register
Data Ox3FF0O_1000 Ox3FFO_1FFF 4 KB AES Accelerator
Data 0x3FF0_2000 Ox3FFO_2FFF 4 KB RSA Accelerator
Data Ox3FF0_3000 Ox3FFO_3FFF 4 KB SHA Accelerator
Data Ox3FF0_4000 Ox3FFO_4FFF 4 KB Secure Boot
Ox3FF0_5000 Ox3FFO_FFFF 44 KB Reserved
Data Ox3FF1_0000 Ox3FF1_3FFF 16 KB Cache MMU Table
Ox3FF1_4000 Ox3FF1_EFFF 44 KB Reserved
Data Ox3FF1_F000 Ox3FF1_FFFF 4 KB PID Controller Per-CPU peripheral
Ox3FF2_0000 Ox3FF3_FFFF 128 KB Reserved
Data Ox3FF4_0000 Ox3FF4_OFFF 4 KB UARTO
Ox3FF4_1000 Ox3FF4_1FFF 4 KB Reserved
Data Ox3FF4_2000 Ox3FF4_2FFF 4 KB SPI1
Data Ox3FF4_3000 Ox3FF4_3FFF 4 KB SPIO
Data Ox3FF4_4000 Ox3FF4_4FFF 4 KB GPIO
Ox3FF4_5000 Ox3FF4_7FFF 12 KB Reserved
Data Ox3FF4_8000 Ox3FF4_8FFF 4 KB RTC
Data Ox3FF4_9000 Ox3FF4_9FFF 4 KB IO MUX
Ox3FF4_A000 Ox3FF4_AFFF 4 KB Reserved
Data Ox3FF4_B000 Ox3FF4_BFFF 4 KB SDIO Slave One of three parts
Data Ox3FF4_C000 Ox3FF4_CFFF 4 KB UDMA1
Ox3FF4_D000 Ox3FF4_EFFF 8 KB Reserved
Data Ox3FF4_F000 Ox3FF4_FFFF 4 KB 12S0
Data Ox3FF5_0000 Ox3FF5_OFFF 4 KB UARTA
Ox3FF5_1000 Ox3FF5_2FFF 8 KB Reserved

Espressif Systems

30

ESP32 Technical Reference Manual V3.1

1. SYSTEM AND MEMORY

Boundary Address :

Bus Type . Size Target Comment
Low Address High Address

Data Ox3FF5_3000 Ox3FF5_3FFF 4 KB 12C0

Data Ox3FF5_4000 OX3FF5_4FFF 4 KB UDMAO

Data Ox3FF5_5000 Ox3FF5_5FFF 4 KB SDIO Slave One of three parts

Data Ox3FF5_6000 Ox3FF5_6FFF 4 KB RMT

Data Ox3FF5_7000 Ox3FF5_7FFF 4 KB PCNT

Data Ox3FF5_8000 Ox3FF5_8FFF 4 KB SDIO Slave One of three parts

Data Ox3FF5_9000 OX3FF5_9FFF 4 KB LED PWM

Data Ox3FF5_A000 OX3FF5_AFFF 4 KB Efuse Controller

Data Ox3FF5_B000 Ox3FF5_BFFF 4 KB Flash Encryption
Ox3FF5_C000 Ox3FF5_DFFF 8 KB Reserved

Data Ox3FF5_E000 Ox3FF5_EFFF 4 KB PWMO

Data Ox3FF5_F000 OX3FF5_FFFF 4 KB TIMGO

Data Ox3FF6_0000 Ox3FF6_OFFF 4 KB TIMGH
Ox3FF6_1000 Ox3FF6_3FFF 12 KB Reserved

Data Ox3FF6_4000 OX3FF6_4FFF 4 KB SPI2

Data Ox3FF6_5000 Ox3FF6_5FFF 4 KB SPI3

Data Ox3FF6_6000 Ox3FF6_6FFF 4 KB SYSCON

Data Ox3FF6_7000 Ox3FF6_7FFF 4 KB 12C1

Data Ox3FF6_8000 Ox3FF6_8FFF 4 KB SDMMC

Data Ox3FF6_9000 Ox3FF6_AFFF 8 KB EMAC
Ox3FF6_B000 Ox3FF6_BFFF 4 KB Reserved

Data Ox3FF6_C000 Ox3FF6_CFFF 4 KB PWM1

Data Ox3FF6_D000 Ox3FF6_DFFF 4 KB 1251

Data Ox3FF6_E000 Ox3FF6_EFFF 4 KB UART2

Data Ox3FF6_F000 Ox3FF6_FFFF 4 KB PWM2

Data Ox3FF7_0000 Ox3FF7_OFFF 4 KB PWM3
Ox3FF7_1000 OX3FF7_4FFF 16 KB Reserved

Data Ox3FF7_5000 Ox3FF7_5FFF 4 KB RNG
Ox3FF7_6000 OX3FF7_FFFF 40 KB Reserved

1.3.5.1 Asymmetric PID Controller Peripheral

There are two PID Controllers in the system. They serve the PRO_CPU and the APP_CPU, respectively. The
PRO_CPU and the APP_CPU can only access their own PID Controller and not that of their counterpart.
Each CPU uses the same memory range 0x3FF1_F000 ~ 3FF1_FFFF to access its own PID Controller.

1.3.5.2 Non-Contiguous Peripheral Memory Ranges

The SDIO Slave peripheral consists of three parts and the two CPUs use non-contiguous addresses to access
these. The three parts are accessed at the address ranges Ox3FF4_B000 ~ 3FF4_BFFF, Ox3FF5_5000 ~
3FF5_5FFF and Ox3FF5_8000 ~ 3FF5_8FFF of each CPU’s data bus. Similarly to other peripherals, access to
this peripheral is identical for both CPUs.

Espressif Systems

ESP32 Technical Reference Manual V3.1

1. SYSTEM AND MEMORY

1.3.5.3 Memory Speed

The ROM as well as the SRAM are both clocked from CPU_CLK and can be accessed by the CPU in a single
cycle. The RTC FAST memory is clocked from the APB_CLOCK and the RTC SLOW memory from the
FAST_CLOCK, so access to these memories may be slower. DMA uses the APB_CLK to access memory.

Internally, the SRAM is organized in 32K-sized banks. Each CPU and DMA channel can simultaneously access
the SRAM at full speed, provided they access addresses in different memory banks.

Espressif Systems 32 ESP32 Technical Reference Manual V3.1

2. INTERRUPT MATRIX

2. Interrupt Matrix

2.1 Introduction

The Interrupt Matrix embedded in the ESP32 independently allocates peripheral interrupt sources to the two
CPUs’ peripheral interrupts. This configuration is made to be highly flexible in order to meet many different needs.

2.2 Features

e Accepts 71 peripheral interrupt sources as input.

Generates 26 peripheral interrupt sources per CPU as output (52 total).

CPU NMI Interrupt Mask.
e Queries current interrupt status of peripheral interrupt sources.

The structure of the Interrupt Matrix is shown in Figure 4.

PRO_CPU Peripheral Interrupt Configuration Register

PRO_CPU NMI Interrupt Mask

APP_CPU Peripheral Interrupt Configuration Register

v

APP_CPU NMI Interrupt Mask

PRO_CPU Peripheral Interrupt

v

Peripheral Interrupt Source

Interrupt Matrix
APP_CPU Peripheral Interrupt

v

PRO_CPU Peripheral Interrupt Source Status Register

»

APP_CPU Peripheral Interrupt Source Status Register

»

Figure 4: Interrupt Matrix Structure

2.3 Functional Description

2.3.1 Peripheral Interrupt Source

ESP32 has 71 peripheral interrupt sources in total. All peripheral interrupt sources are listed in table 8. 67 of 71
ESP32 peripheral interrupt sources can be allocated to either CPU.

The four remaining peripheral interrupt sources are CPU-specific, two per CPU. GPIO_INTERRUPT_PRO and
GPIO_INTERRUPT_PRO_NMI can only be allocated to PRO_CPU. GPIO_INTERRUPT_APP and
GPIO_INTERRUPT_APP_NMI can only be allocated to APP_CPU. As a result, PRO_CPU and APP_CPU each
have 69 peripheral interrupt sources.

Espressif Systems 33 ESP32 Technical Reference Manual V3.1

INTERRUPT MATRIX

2.

1dnuielu| [eseyduad

JalsiBey snieis

90.n0g 1dnuslu| [esayduad

JalsiBey snieis

O34 dVIN_INITVNG HAS ddV 02 as ANITVYNG HAS 4 0c O34 dVIN_INITVING” LIS OHd
934 dVIN HINIVSH ddv 61 5] HINI"VSH LS 6l O34 dVW HINITVSH Odd
O34 dVIN HINI™LIX3 03l ddv 8l 0s HINI™LIX3 0zl 0s 13 O3 dVIN HINI™LIX3 02l Odd
O34 dVW HINIT0LX3 02l ddv L 67 HINIT0Xx3 ozl 67 A D34 dVN HINIT01X30zI”0dd
O34 dVIN HINITINOd ddV 9k 14 HINI™INOd 87 9k O34 dVIN HINITINOd Odd
O3 VN HINITLWY ddv Sl A4 HINICLAY Ly Sl O3H dVIN HINIT LAY Odd
O34 dVIN HINIT3HOO 0L ddV 143 o HINI3H00 01 Si4 143 O34 dVIN HINIT3H0O 014 Odd
O3 dVIN_INITNVYO ddv el 14 AINITNVO 14 el O3 dVIN_INITNVO OHd
O34 dVIN LN ISN3 ddv cl 144 ANIT3sn43 144 [43 O34 dVIN_LNIT3ISN43 Odd
O34 dVIN_INITOd3T ddv L 154 AINITOa31 94 Ll O34 dVYIN_INITOd3 T Odd
O34 dVW HINITENMd ddv ol 17934 SNIVLS HINI ddv [44 HINI"ENMd [44 17934 SNUIVLS HINI Odd 0ok O34 dVIN HINITEWMd Odd
O3H dVIN HINITZNMG ddV 6 34 HINITZAMd 34 6 O3 dVIN HINI ZNMd Odd
O34 dVW HINITHAMJ ddv 8 oy HINITHAMA or 8 O34 dVIN HINITHAMd Odd
O3 dVINHINITONMd ddv L 68 HINITOAMd 6E L O34 dVIN HINITOWMd Odd
O34 dVW LNITOVINT ddV 9 8¢ AINICOVINT 8¢ 9 O34 dVNINITOVING Old
D34 dVIN_LdNYHILNILSOH 0IdS” ddv S L8 L1dNHY3LINITLSOH 0IasS L8 S O34 dVIN_LdNYHIINILSOH 0IdS™ O4dd
O34 dVIN HINI ZLHYN ddV 4 9€ HINICZ1HvN 9e 14 O34 dVIN HINI Z1dYN Odd
O3H dVIN HINILLIHYN ddY € se HINI LLHVN se € O34 dVIN HINILIHYN Odd
O3H VN HINITLHYN ddv 2 1% HINIC1HVN 13 [OIH dVIN HINICLHYN Odd
O34 dYW INI™IS2l ddv] £€e AN LSzl 133 3 O34 dYW INI” kS2l Odd
O3H dVININIT0SZI ddV 0 143 ANI"0SzI 43 0 O3 dVINLNIT0SZI Odd
O3H dVIN“E HINITIdS ddv L& LE € HINIIdS LE L& OIH dVIN € HIN
O34 dVIN 2 HINITIdS ddv 0g 0e C HINIIdS 0g 0g O34 dVIN 2 HIN
O3H dVIN_ L HINITIdS ddv 62 62 L HINICIdS 62 62 OIH dVINT L HIN
934 dVIN 0 HINITIdS ddv 8¢ 8¢ 0 HINIIdS 8¢ 8¢ O34 dVIN 0 HIN
O3 dVIN“E N0 WOHS HINI"NdO ddV g g £ NdO”NOH4 HINI"NdO g g O3 dVIN € NdO WOHS HINI"NdO Odd
O34 dVN 2 NdO NOHS HINI" NdO ddv 92 92 2 NdO WOH4 HINIT NdO 9 92 O34 dVIN 2 NdO WOH4 HINI" N0 OHd
O3 dVIN_ L NdO”WOHS HINI"NdO ddV Sc Sc 1" NdO"WOH4 HINI"NdO Sc Sc O3 dVIN_ L NdO WOHS HINI" NdO Odd
O34 dVIN 0 NdO NOHS HINI" NdO ddv 4 e 0 NdO”WOH4 HINIT NdO 4 e D34 dVIN"0 N0 WOH4 HINI" NdO"0OHd
934 dVIN INN ddV LdNEY3LINIOIdD ddV £2 €2 INN"ddV 1dNYY3LNI OIdD _ INN"OHd 1dNYY3LNI OIdD 2 134 O34 dVIN INN"OHd ™ LdNYH3LNI"OIdD " Odd
934 dVW ddV LdNEEILNI"OIdD " ddV [44 [44 ddV LdNYYILNI"OIdD _ OHd LdNYYILNI OIdD [44 [44 O34 dVIN OHd LdNYHILINIOIdD Odd
O3H dVNINITIIATTLOVT DL ddv 34 4 AINTISAIT 1OV 191 34 14 O3H dVININITI3AIT LOVT 1O 0Hd
O34 dVIN NI T3ATT LAM DL ddV 0c 0C ANITI3A3T 1AM DL 0c 0c O34 dVIN INITI3ATT LAM 191 0dd
O3 VN INTI3AIT L 1DL ddV 6l 61 AINTI3AIT L 1DL 6L 61 O34 dVININITI3AIT LU 191 Odd
O34 VN LINITT3ATT OL DL ddY 8l 8l AINITI3A3T 0L 1OL 8l 8l 934 dVIN INITI3A3T 0L 1OL Odd
O3 dVININITI3AIT LOVT DL ddv Ll L ANTI3AITLOVT BL Ll Ll O34 dVIN_INIT13A3T LOV1 DL Odd
O34 dVW INITI3AIT 1AM DL ddv 9l 9L AINITI3A3T LM DL 9l 9k O34 YW INITI3AIT 1AM DL 0dd
O3 dVININITI3A3T L D1 ddv Sl Sk ANTI3AIT LI DL Sl Sk O3 dVININITI3AIT L D1 0dd
O34 u/w_z k@ 4w>\w4 oL \Ok ddv vk 053 SNIVIS HIN ddy 143 ANI 4w>\w4 0L 5L i 07534 SNIVIS HINIOHd 143 O34 n_/WE EM_ 4w>\w4 oL \0._. Odd
93d VN HINI HOHN ddv 18 13 HINI HOHN 118 13 O34 dVIN HINI HOHN Odd
O34 VN HINIT0IOHN ddV 43 43 HINIT0IOHN 43 43 934 dVIN HINIT0IOHN Odd
O34 dVIN HINI OIS ddv L 13 HINI“LO1S L 13 O34 dVW HINIT OIS Odd
O3H dVIN HINIT001S ddv 0ok ol HINIT001S 0ok 0ok OIH dVIN HINIT001S Odd
O34 dVIN INN"I1EMY ddV 6 6 INN"31gMY 6 6 O34 dVIN INN"I1gMH " 0dd
O3 dVIN INN LMY ddV 8 8 INN"LEMYH 8 8 O3 dVIN INN_LGMH OHd
934 dVIN OHI 31gMY ddv L L o4l 31emd L L O34 dvIN OHI 31gMY Odd
O34 dVIN OHI" LMY ddV 9 9 OdI"1gmd 9 9 O34 dVIN OHI"L8MY OHd
O34 dVNTINN"g8 19 ddv S) INN"89"19 S) O34 dvW INN 89”19 0dd
O34 dVIN_OHI"L8MH ddV 9 9 OdI"1amd 9 9 O34 dVIN OHI"L8MH OHd
O34 dVN INN" 88”19 ddv S) INN"89"19 S S O34 dVW INN 89”19 0dd
O34 dVIN_INIT88™ 18 ddV 14 14 AINag1g9 14 \4 O34 dVIN_INIT88™ 18 0dd
O34 dVYW INITOVIN_ LG ddV € € AINCOVNLE € € O34 dVIN INITOVIN_ L9 Odd
O34 dVIN_INIT88 ddv [[AINI"8g [[O34 dVIN_INI"88 0dd
O3 dVIN INN OV ddV 3 b INN"OVIA 3 3 O3 dVININN"OVIN OHd
O34 dVIN HINI OV ddY 0 0 HINITOVN 0 0 O34 dVIN HINI"OVIN Obd
ug sweN aweN g
JeysiBay uonenByuo) “ON sweN ‘ON JasiBay uonenByuo)

1dnusyu| [esayduad

NdO™ ddv

NdO OHd

uoneinByuo 1dnusiul NdD ddV ‘NdD OHd 8 dlqeL

ESP32 Technical Reference Manual V3.1

34

Espressif Systems

INTERRUPT MATRIX

2.

O34 dVININIVI"IHOVO ddV 14 89 ANI"VITIHOVO 89 \4 O34 dVIN_INITVI IHOVO OHd
O34 VW INITVITNdW ddv € 29 AINCYICNdN 29 € O34 VYW INIVI"NdW Odd
O3 dVIN_INIVITNAIW ddvY [2 O3H SNLVLS HINI ddv 99 ANICVITNAIN 99 ¢ O34 SNUVLS HINIOdd 4 O3 dVIN_INIVITNININ-Odd

O34 VW INIT39A3 LOVT 191 ddv L S9 AINT39a3 1OV 1OL S9 L O34 dVW INIT3903 1OV D1 0dd
934 dvW INIT3D03 LAM LD ddY 0 9 INIT3903 1AM 1OL 9 0 O34 dvW INI"3903 LM LOL Odd
O34 dYW INIT3D03 LU 1OL ddY 33 €9 AINIT3Da3 HLTIOL €9 53 O34 dVW INIT3Da3 +L DL Odd
OIH JVNINITIDAT 0L 191 ddV 0g 29 AINT3903 0L 1OL 29 0g DI dVININITIDAT 0L DL OHd
O34 dVIN INIT3903 1OV DL ddv 62 19 ANIT3903 1OV 9L 19 6c O34 dVIN INIT3903 1OV ©1 0Odd
DI dVININTIDAT LAM DL ddV 8¢ 09 AINT35a3 LM OL 09 8¢ O3 dVIN_INTIDAT LAM DL Odd
O34 dVIN N3O0 L OL ddv g 65 ANM39a3 LU OL 65 g O34 dVIN N39O0 L DL Odd
O34 dVIN_INITIDAT 0L DL ddvV 92 17934 SNIVLS HINI ddv 85 INM39a3 0L 9L 89 17934 SNIVLS HINI Odd 92 O34 dVIN_INITIDAT 0L L 0dd
O34 dVIN LN HINWIL ddv S¢ PAs) CINITHINILL A} S¢ O34 dVIN ZLINITHIWIL Odd
O34 dVIN_FINITHIWIL ddV 14 95 LINITHINILL 99 e O3H dVINTLINITHIWIL Odd
O34 dVNINITOAM ddv £e SS AINITOaM SS €C O34 dVINLNITOAM Obd
O34 dVIN_INIVING EIdS ddV 44 S ANITVNG SIdS s 144 O34 dVIN_INITVING €IdS™OHd
O34 dVIN"LNITVNG 2IdS™ddv 34 €5 INI"VYIND " 2IdS €5 34 O34 dVIN LNITVING 2IdS™0dd
Jeisibay uoneinbyuo) UE| CREN “ON aweN ‘ON CRENY UE| Ja)siBay uoneinblyuo)

1dnuely| feleydued

Jeysibay snie1g

80In0g 1dnus)u| [esayduad

Ja1siBey snieis

1dnusyu| [esayduad

NdO™ddv

Ndo~0o4d

ESP32 Technical Reference Manual V3.1

35

Espressif Systems

2. INTERRUPT MATRIX

2.3.2 CPU Interrupt

Both of the two CPUs (PRO and APP) have 32 interrupts each, of which 26 are peripheral interrupts. All

interrupts in a CPU are listed in Table 9.

Table 9: CPU Interrupts

No. Category Type Priority Level
0 Peripheral Level-Triggered 1
1 Peripheral Level-Triggered 1
2 Peripheral Level-Triggered 1
3 Peripheral Level-Triggered 1
4 Peripheral Level-Triggered 1
5 Peripheral Level-Triggered 1
6 Internal Timer.0 1
7 Internal Software 1
8 Peripheral Level-Triggered 1
9 Peripheral Level-Triggered 1
10 Peripheral Edge-Triggered 1
11 Internal Profiling 3
12 Peripheral Level-Triggered 1
13 Peripheral Level-Triggered 1
14 Peripheral NMI NMI
15 Internal Timer.1 3
16 Internal Timer.2 5
17 Peripheral Level-Triggered 1
18 Peripheral Level-Triggered 1
19 Peripheral Level-Triggered 2
20 Peripheral Level-Triggered 2
21 Peripheral Level-Triggered 2
22 Peripheral Edge-Triggered 3
23 Peripheral Level-Triggered 3
24 Peripheral Level-Triggered 4
25 Peripheral Level-Triggered 4
26 Peripheral Level-Triggered 5
27 Peripheral Level-Triggered 3
28 Peripheral Edge-Triggered 4
29 Internal Software 3
30 Peripheral Edge-Triggered 4
31 Peripheral Level-Triggered 5

2.3.3 Allocate Peripheral Interrupt Sources to Peripheral Interrupt on CPU

In this section:

e Source_X stands for any particular peripheral interrupt source.

e PRO_X_MAP_REG (or APP_X_MAP_REG) stands for any particular peripheral interrupt configuration

Espressif Systems

36

ESP32 Technical Reference Manual V3.1

2. INTERRUPT MATRIX

register of the PRO_CPU (or APP_CPU). The peripheral interrupt configuration register corresponds to the
peripheral interrupt source Source_X. In Table 8 the registers listed under “PRO_CPU (APP_CPU) -
Peripheral Interrupt Configuration Register” correspond to the peripheral interrupt sources listed in
“Peripheral Interrupt Source - Name”.

e |nterrupt_P stands for CPU peripheral interrupt, numbered as Num_P. Num_P can take the ranges O ~ 5, 8
~10,12~ 14,17 ~ 28, 30 ~ 31.

e |nterrupt_| stands for the CPU internal interrupt numbered as Num_|. Num_| can take values 6, 7, 11, 15,
16, 29.

Using this terminology, the possible operations of the Interrupt Matrix controller can be described as
follows:

¢ Allocate peripheral interrupt source Source_X to CPU (PRO_CPU or APP_CPU)
Set PRO_X_MAP_REG or APP_X_MAP_REG to Num_P. Num_P can be any CPU peripheral interrupt
number. CPU interrupts can be shared between multiple peripherals (see below).

¢ Disable peripheral interrupt source Source_X for CPU (PRO_CPU or APP_CPU)
Set PRO_X_MAP_REG or APP_X _MAP_REG for peripheral interrupt source to any Num_|. The specific
choice of internal interrupt number does not change behaviour, as none of the interrupt numbered as
Num_l is connected to either CPU.

¢ Allocate multiple peripheral sources Source_Xn ORed to PRO_CPU (APP_CPU) peripheral interrupt
Set multiple PRO_Xn_MAP_REG (APP_Xn_MAP_REG) to the same Num_P. Any of these peripheral
interrupts will trigger CPU Interrupt_P.

2.3.4 CPU NMI Interrupt Mask

The Interrupt Matrix temporarily masks all peripheral interrupt sources allocated to PRO_CPU’s (or APP_CPU’s)
NMI interrupt, if it receives the signal PRO_CPU NMI Interrupt Mask (or APP_CPU NMI Interrupt Mask) from the
peripheral PID Controller, respectively.

2.3.5 Query Current Interrupt Status of Peripheral Interrupt Source

The current interrupt status of a peripheral interrupt source can be read via the bit value in
PRO_INTR_STATUS_REG_n (APP_INTR_STATUS_REG_n), as shown in the mapping in Table 8.

Espressif Systems 37 ESP32 Technical Reference Manual V3.1

3. RESET AND CLOCK

3. Reset and Clock

3.1 System Reset

3.1.1 Introduction

The ESP32 has three reset levels: CPU reset, Core reset, and System reset. None of these reset levels clear the
RAM. Figure 5 shows the subsystems included in each reset level.

System

Core

Figure 5: System Reset

e CPU reset: Only resets the registers of one or both of the CPU cores.

e Core reset: Resets all the digital registers, including CPU cores, external GPIO and digital GPIO. The RTC is
not reset.

e System reset: Resets all the registers on the chip, including those of the RTC.

3.1.2 Reset Source

While most of the time the APP_CPU and PRO_CPU will be reset simultaneously, some reset sources are able to
reset only one of the two cores. The reset reason for each core can be looked up individually: the PRO_CPU
reset reason will be stored in RTC_CNTL_RESET_CAUSE_PROCPU, the reset reason for the APP_CPU in
APP_CNTL_RESET_CAUSE_PROCPU. Table 10 shows the possible reset reason values that can be read from
these registers.

Table 10: PRO_CPU and APP_CPU Reset Reason Values

PRO | APP | Source Reset Type Note

0x01 | 0x01 | Chip Power On Reset System Reset | -

0x10 | Ox10 | RWDT System Reset System Reset | See WDT Chapter.

OxOF | OxOF | Brown Out Reset System Reset | See Power Management Chapter.
0x03 | 0x03 | Software System Reset | Core Reset Configure RTC_CNTL_SW_SYS_RST register.
0x05 | 0x05 | Deep Sleep Reset Core Reset See Power Management Chapter.

0x07 | Ox07 | MWDTO Global Reset Core Reset See WDT Chapter.

Espressif Systems 38 ESP32 Technical Reference Manual V3.1

3. RESET AND CLOCK

PRO | APP | APP Source Reset Type Note
0x08 | 0x08 | MWDT1 Global Reset Core Reset See WDT Chapter.
0x09 | 0x09 | RWDT Core Reset Core Reset See WDT Chapter.
Ox0B | - MWDTO CPU Reset CPU Reset See WDT Chapter.
0x0C | - Software CPU Reset CPU Reset Configure RTC_CNTL_SW_APPCPU_RST register.
- 0x0B | MWDT1 CPU Reset CPU Reset See WDT Chapter.
- 0x0C | Software CPU Reset CPU Reset Configure RTC_CNTL_SW_APPCPU_RST register.
0xOD | OxOD | RWDT CPU Reset CPU Reset See WDT Chapter.
Indicates that the PRO CPU has indepen-
- OxE | PRO CPU Reset CPU Reset dently reset the APP CPU by configuring the
DPORT_APPCPU_RESETTING register.

3.2 System Clock

3.2.1

Introduction

The ESP32 integrates multiple clock sources for the CPU cores, the peripherals and the RTC. These clocks can
be configured to meet different requirements. Figure 6 shows the system clock structure.

PLL CLK |
T

APLL CLK |

I
RTC8M_CLK|

T
XTL CLK
I

CLK MANAGEMENT

CPU_CLK ‘ CcPU

CLK GEN

APB GEN ‘

APB_CLK

p REF ; REF_TICK
GEN '

WIFI
BT

LOW_POWER_CLK

XTL32K_CLK |

8M_D256_CLK

L
x LEDC_SCLK
S N
= Peri
APLL_GLK
| PLLD2 CLK
»DIV2| T —
|
! X
RTC CIK | o 3
= | sLow CLK
> ;
[e]
Yl @

DIV

Espressif Systems

FAST_MUX

RTC

FAST CLK

Figure 6: System Clock

39

ESP32 Technical Reference Manual V3.1

3. RESET AND CLOCK

3.2.2 Clock Source

The ESP32 can use an external crystal oscillator, an internal PLL or an oscillating circuit as a clock source.

Specifically, the clock sources available are:

e High Speed Clocks

- PLL_CLK s an internal PLL clock with a frequency of 320 MHz.

- XTL_CLK is a clock signal generated using an external crystal with a frequency range of 2 ~ 40 MHz.

e | ow Power Clocks

- XTL32K_CLK is a clock generated using an external crystal with a frequency of 32 KHz.

- RTC8M_CLK is an internal clock with a default frequency of 8 MHz. This frequency is adjustable.

- RTC8M_D256_CLK is divided from RTC8M_CLK 256. Its frequency is (RTC8M_CLK / 256). With the
default RTC8M_CLK frequency of 8 MHz, this clock runs at 31.250 KHz.

- RTC_CLK s an internal low power clock with a default frequency of 150 KHz. This frequency is

adjustable.

e Audio Clock

- APLL_CLK is an internal Audio PLL clock with a frequency range of 16 ~ 128 MHz.

3.2.3 CPU Clock

As Figure 6 shows, CPU_CLK is the master clock for both CPU cores. CPU_CLK clock can be as high as 160
MHz when the CPU is in high performance mode. Alternatively, the CPU can run at lower frequencies to reduce

power consumption.

The CPU_CLK clock source is determined by the RTC_CNTL_SOC_CLK_SEL register. PLL_CLK, APLL_CLK,
RTC8M_CLK and XTL_CLK can be set as the CPU_CLK source; see Table 11 and 12.

Table 11: CPU_CLK Source

RTC_CNTL_SOC_CLK_SEL Value Clock Source
0 XTL_CLK
1 PLL_CLK
2 RTC8M_CLK
3 APLL_CLK
Espressif Systems 40 ESP32 Technical Reference Manual V3.1

3. RESET AND CLOCK

Table 12: CPU_CLK Derivation

Clock Source SEL* CPU Clock

CPU_CLK = XTL_CLK/ (APB_CTRL_PRE_DIV_CNT+1)
APB_CTRL_PRE_DIV_CNT range is 0 ~ 1023. Default is O.
CPU_CLK =PLL_CLK/ 4

CPU_CLK frequency is 80 MHz

CPU_CLK =PLL_CLK/2

CPU_CLK frequency is 160 MHz

CPU_CLK = RTC8M_CLK / (APB_CTRL_PRE_DIV_CNT+1)
APB_CTRL_PRE_DIV_CNT range is O ~ 1023. Default is O.
3/APLL_CLK 0 CPU_CLK = APLL_CLK/ 4

3/APLL_CLK 1 CPU_CLK = APLL_CLK /2
*SEL: DPORT_CPUPERIOD _SEL value

0/XTL_CLK -

1/PLL_CLK 0

1/PLL_CLK 1

2/RTC8M_CLK | -

3.2.4 Peripheral Clock

Peripheral clocks include APB_CLK, REF_TICK, LEDC_SCLK, APLL_CLK and PLL_D2_CLK.
Table 13 shows which clocks can be used by which peripherals.

Table 13: Peripheral Clock Usage

Peripherals APB_CLK REF_TICK LEDC_SCLK APLL_CLK PLL_D2_CLK
EMAC Y N N Y N
TIMG Y N N N N
12S Y N N Y Y
UART Y Y N N N
RMT Y Y N N N
LED PWM Y Y Y N N
PWM Y N N N N
12C Y N N N N
SPI Y N N N N
PCNT Y N N N N
Efuse Controller | Y N N N N
SDIO Slave Y N N N N
SDMMC Y N N N N

3.2.4.1 APB_CLK Source

The APB_CLK is derived from CPU_CLK as detailed in Table 14. The division factor depends on the CPU_CLK
source.

Espressif Systems 41 ESP32 Technical Reference Manual V3.1

3. RESET AND CLOCK

Table 14: APB_CLK Derivation

CPU_CLK Source APB_CLK
PLL_CLK PLL CLK/4
APLL_CLK CPU_CLK/ 2
XTAL_CLK CPU_CLK
RTC8M_CLK CPU_CLK

3.2.4.2 REF_TICK Source

REF_TICK is derived from APB_CLK via a divider. The divider value used depends on the APB_CLK source,
which in turn depends on the CPU_CLK source.

By configuring correct divider values for each APB_CLK source, the user can ensure that the REF_TICK
frequency does not change when CPU_CLK changes source, causing the APB_CLK frequency to change.

Clock divider registers are shown in Table 15.

Table 15: REF_TICK Derivation

CPU_CLK & APB_CLK Source Clock Divider Register
PLL_CLK APB_CTRL_PLL_TICK_NUM
XTAL_CLK APB_CTRL_XTAL_TICK_NUM
APLL_CLK APB_CTRL_APLL_TICK_NUM
RTC8M_CLK APB_CTRL_CK8M_TICK_NUM

3.2.4.3 LEDC_SCLK Source

The LEDC_SCLK clock source is selected by the LEDC_APB_CLK_SEL register, as shown in Table 16.

Table 16: LEDC_SCLK Derivation

LEDC_APB_CLK_SEL Value LEDC_SCLK Source
0 RTC8M_CLK
1 APB_CLK

3.2.4.4 APLL_SCLK Source

The APLL_CLK is sourced from PLL_CLK, with its output frequency configured using the APLL configuration
registers.

3.2.4.5 PLL_D2 CLK Source

PLL_D2_CLK is half the PLL_CLK frequency.

Espressif Systems 42 ESP32 Technical Reference Manual V3.1

3. RESET AND CLOCK

3.2.4.6 Clock Source Considerations

Most peripherals will operate using the APB_CLK frequency as a reference. When this frequency changes, the
peripherals will need to update their clock configuration to operate at the same frequency after the change.
Peripherals accessing REF_TICK can continue operating normally when switching clock sources, without
changing clock source. Please see Table 13 for details.

The LED PWM module can use RTC8M_CLK as a clock source when APB_CLK is disabled. In other words,
when the system is in low-power consumption mode (see Power Management Chapter), normal peripherals will
be halted (APB_CLK is turned off), but the LED PWM can work normally via RTC8M_CLK.

3.2.5 Wi-Fi BT Clock

Wi-Fi and BT can only operate if APB_CLK uses PLL_CLK as its clock source. Suspending PLL_CLK requires
Wi-Fi and BT to both have entered low-power consumption mode first.

For LOW_POWER_CLK, one of RTC_CLK, SLOW_CLK, RTC8M_CLK or XTL_CLK can be selected as the
low-power consumption mode clock source for Wi-Fi and BT.

3.2.6 RTC Clock

The clock sources of SLOW_CLK and FAST_CLK are low-frequency clocks. The RTC module can operate when
most other clocks are stopped.

SLOW_CLK is used to clock the Power Management module. It can be sourced from RTC_CLK, XTL32K_CLK
or RTC8M_D256_CLK

FAST_CLK is used to clock the On-chip Sensor module. It can be sourced from a divided XTL_CLK or from
RTC8M_CLK.

3.2.7 Audio PLL

The operation of audio and other time-critical data-transfer applications requires highly-configurable, low-jitter,
and accurate clock sources. The clock sources derived from system clocks that serve digital peripherals may
carry jitter and, therefore, they do not support a high-precision clock frequency setting.

Providing an integrated precision clock source can minimize system cost. To this end, ESP32 integrates an audio
PLL intended for 12S peripherals. More details on how to clock the 12S module, using an APLL clock, can be
found in Chapter 12S. The Audio PLL formula is as follows:

fxtal(sdmM2 + sdzirgﬂ + Sg?go +4)
2(odiv + 2)

fout =

The parameters of this formula are defined below:

e fya: the frequency of the crystal oscillator, usually 40 MHz;

sdmO: the value is 0 ~ 255;

sdm1: the value is O ~ 255;

sdm2: the value is 0 ~ 63;

odir: the value is O ~ 31;

Espressif Systems 43 ESP32 Technical Reference Manual V3.1

3. RESET AND CLOCK

The operating frequency range of the numerator is 350 MHz ~ 500 MHz:

’
350MHz < fya(SdM2 + sdmt + sdmo

28 W+4)<500MHZ

Please note that sdm1 and sdmO are not available on revision0 of ESP32. Please consult the silicon revision in
ECO and Workarounds for Bugs in ESP32 for further details.

Audio PLL can be manually enabled or disabled via registers RTC_CNTL_PLLA_FORCE_PU and
RTC_CNTL_PLLA_FORCE_PD, respectively. Disabling it takes priority over enabling it. When
RTC_CNTL_PLLA_FORCE_PU and RTC_CNTL_PLLA_FORCE_PD are 0, PLL will follow the state of the system,
i.e., when the system enters sleep mode, PLL will be disabled automatically; when the system wakes up, PLL will
be enabled automatically.

Espressif Systems 44 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

4. 10_MUX and GPIO Matrix

4.1 Overview

The ESP32 chip features 34 physical GPIO pads. Each pad can be used as a general-purpose I/O, or be
connected to an internal peripheral signal. The IO_MUX, RTC IO_MUX and the GPIO matrix are responsible for
routing signals from the peripherals to GPIO pads. Together these systems provide highly configurable 1/0.

Note that the I/0 GPIO pads are 0-19, 21-23, 25-27, 32-39, while the output GPIOs are 0-19, 21-23, 25-27,
32-33. GPIO pads 34-39 are input-only.

This chapter describes the signal selection and connection between the digital pads (FUNC_SEL, IE, OE, WPU,
WDU, etc.), 162 peripheral input and 176 output signals (control signals: SIG_IN_SEL, SIG_OUT_SEL, IE, OE,
etc.), fast peripheral input/output signals (control signals: IE, OE, etc.), and RTC IO0_MUX.

JTAG, SDIO, Direct I/0
UART, SPI, 4—— P Pad control signals:
Ethernet Control FUNC_SEL/IE/
(fast signal) signals: OE/WPU/PDU, etc.
IE/OE, etc. . o | Digital
IO_MUX |~ A pads
34
. GPIOs -
162 peripheral
SPI, input/176
UART, output signals | GPIO
12C, 128, 4 p| matrix
Eg\g\é Control signals:
IE/OE, etc.
and more
RTC
> pads
RTC | @ p| RTCIO_MUX |« >
GPIO B

Figure 7: 10_MUX, RTC I0_MUX and GPIO Matrix Overview

1. The IO_MUX contains one register per GPIO pad. Each pad can be configured to perform a "GPIO” function
(when connected to the GPIO Matrix) or a direct function (bypassing the GPIO Matrix). Some high-speed
digital functions (Ethernet, SDIO, SPI, JTAG, UART) can bypass the GPIO Matrix for better high-frequency
digital performance. In this case, the I0_MUX is used to connect these pads directly to the peripheral.)

See Section 4.10 for a list of I0_MUX functions for each 1/0 pad.
2. The GPIO Matrix is a full-switching matrix between the peripheral input/output signals and the pads.

e For input to the chip: Each of the 162 internal peripheral inputs can select any GPIO pad as the input
source.

e For output from the chip: The output signal of each of the 34 GPIO pads can be from one of the 176
peripheral output signals.

See Section 4.9 for a list of GPIO Matrix peripheral signals.

3. RTC I0_MUX is used to connect GPIO pads to their low-power and analog functions. Only a subset of
GPIO pads have these optional "RTC” functions.

Espressif Systems 45 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

See Section 4.11 for a list of RTC I0_MUX functions.

4.2 Peripheral Input via GPIO Matrix

4.21 Summary

To receive a peripheral input signal via the GPIO Matrix, the GPIO Matrix is configured to source the peripheral
signal’s input index (0-18, 23-36, 39-58, 61-90, 95-124, 140-155, 164-181, 190-195, 198-206) from one of the
34 GPIOs (0-19, 21-23, 25-27, 32-39).

The input signal is read from the GPIO pad through the I0_MUX. The I0_MUX must be configured to set the
chosen pad to "GPIO” function. This causes the GPIO pad input signal to be routed into the GPIO Matrix, which
in turn routes it to the selected peripheral input.

4.2.2 Functional Description

Figure 8 shows the logic for input selection via GPIO Matrix.

In GPIO matrix In 1O MUX
GPIO_FUNCy_IN_SEL
GPIOX_MCU_SEL
0 GPIOO_in
1 | GPIO1 in GPIO_SIGxx_IN_SEL
> |< GPIO2_in l
3 |« GPIO3_in 0 (FUNC)
° GPIOX_i GPIO X i 0 > (oMo M X
Peripheral Signal Y X (= n n_11 (GPIO) 2 (GPI0)
. ‘le
39 | GPIO39 in
GPIOX_FUN_IE = 1
(0x30) 48 Constant 0 !nput
(0x38) 56 Constant 1 input

Figure 8: Peripheral Input via I0_MUX, GPIO Matrix

To read GPIO pad X into peripheral signal Y, follow the steps below:
1. Configure the GPIO_FUNCy_IN_SEL_CFG register corresponding to peripheral signal ¥ in the GPIO Matrix:

e Set the GPIO_FUNCx_IN_SEL field in this register, corresponding to the GPIO pad X to read from.
Clear all other fields corresponding to other GPIO pads.

2. Configure the GPIO_FUNCx_OUT_SEL_CFG register and clear the GPIO_ENABLE_DATA[X] field
corresponding to GPIO pad X in the GPIO Matrix:

e Set the GPIO_FUNCx_OEN_SEL bit in the GPIO_FUNCx_OUT_SEL_CFG register to force the pin’s
output state to be determined always by the GPIO_ENABLE_DATA[X] field.

e The GPIO_ENABLE_DATA[A] field is a bit in either GPIO_ENABLE_REG (GPIOs 0-31) or
GPIO_ENABLE1_REG (GPIOs 32-39). Clear this bit to disable the output driver for the GPIO pad.

3. Configure the I0_MUX to select the GPIO Matrix. Set the I0_MUX_x_REG register corresponding to GPIO
pad X as follows:

Espressif Systems 46 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

e Set the function field (I0_x_MCU_SEL) to the IO_MUX function corresponding to GPIO X (this is
Function #3—numeric value 2—for all pins).

¢ Enable the input by setting the FUN_IE bit.

e Set or clear the FUN_WPU and FUN_WPD bits, as desired, to enable/disable internal
pull-up/pull-down resistors.

Notes:
e One input pad can be connected to multiple input_signals.
e The input signal can be inverted with GPIO_FUNCx_IN_INV_SEL.

e |t is possible to have a peripheral read a constantly low or constantly high input value without connecting
this input to a pad. This can be done by selecting a special GPIO_FUNCy_IN_SEL input, instead of a GPIO
number:

— When GPIO_FUNCx_IN_SEL is 0x30, input_signal_x is always 0.
— When GPIO_FUNCXx_IN_SEL is 0x38, input_signal_x is always 1.

For example, to connect RMT peripheral channel O input signal (RMT_SIG_INO_IDX, signal index 83) to GPIO 15,
please follow the steps below. Note that GPIO 15 is also named the MTDO pin:

1. Set the GPIO_FUNC_83_IN_SEL_CFG register field GPIO_FUNC83_IN_SEL value to 15.
2. As this is an input-only signal, set GPIO_FUNC15_OEN_SEL bit in GPIO_FUNC15_OUT_SEL_CFG_REG.
3. Clear bit 15 of GPIO_ENABLE_REG (field GPIO_ENABLE_DATA[15]).

4. Set the I0_MUX_GPIO15 register MCU_SEL field to 2 (GPIO function) and also set the FUN_IE bit (input
mode).

4.2.3 Simple GPIO Input
The GPIO_IN_REG/GPIO_IN1_REG register holds the input values of each GPIO pad.

The input value of any GPIO pin can be read at any time without configuring the GPIO Matrix for a particular
peripheral signal. However, it is necessary to enable the input in the IO_MUX by setting the FUN_IE bit in the
I0_MUX_x_REG register corresponding to pad X, as mentioned in Section 4.2.2.

4.3 Peripheral Output via GPIO Matrix

4.3.1 Summary

To output a signal from a peripheral via the GPIO Matrix, the GPIO Matrix is configured to route the peripheral
output signal (0-18, 23-37, 61-121, 140-125, 224-228) to one of the 28 GPIOs (0-19, 21-23, 25-27,
32-33).

The output signal is routed from the peripheral into the GPIO Matrix. It is then routed into the IO_MUX, which is
configured to set the chosen pad to "GPIO” function. This causes the output GPIO signal to be connected to the
pad.

Note:
The peripheral output signals 224 to 228 can be configured to be routed in from one GPIO and output directly from another
GPIO.

Espressif Systems 47 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

4.3.2 Functional Description

One of the 176 output signals can be selected to go through the GPIO matrix into the IO_MUX and then to a pad.
Figure 9 illustrates the configuration.

In GPIO matrix In 10 MUX
GPIO_FUNCx_OUT _SEL

signal0_out ——»|
signall_out ——»>|
signal2_out ——p»|
signal3_out ——p»|
e
[}

GPIOX_MCU_SEL

GPIO: t
x ol 1/0 Pad x

»-
—

GPIOx_out

¢ & v NnNmD
=

signal228_out ——p 228

GPIO_OUT_DATA bit x ——» 256 GPIOx_FUN_OE=1
(0x100)

Figure 9: Output via GPIO Matrix

To output peripheral signal Y to particular GPIO pad X, follow these steps:

1. Configure the GPIO_FUNCx_OUT_SEL_CFG register and GPIO_ENABLE_DATA[X] field corresponding to
GPIO X'in the GPIO Matrix:

e Set the GPIO_FUNCx_OUT_SEL field in GPIO_FUNCx_OUT_SEL_CFG to the numeric index (¥) of
desired peripheral output signal Y.

e |f the signal should always be enabled as an output, set the GPIO_FUNCx_OEN_SEL bit in the
GPIO_FUNCx_OUT_SEL_CFG register and the GPIO_ENABLE_DATA[¥] field in the
GPIO_ENABLE_REG register corresponding to GPIO pad X. To have the output enable signal decided
by internal logic, clear the GPIO_FUNCx_OEN_SEL bit instead.

e The GPIO_ENABLE_DATA[X] field is a bit in either GPIO_ENABLE_REG (GPIOs 0-31) or
GPIO_ENABLE1_REG (GPIOs 32-39). Clear this bit to disable the output driver for the GPIO pad.

2. For an open drain output, set the GPIO_PINx_PAD_DRIVER bit in the GPIO_PINXx register corresponding to
GPIO pad X. For push/pull mode (default), clear this bit.

3. Configure the I0_MUX to select the GPIO Matrix. Set the I0_MUX_x_REG register corresponding to GPIO
pad X as follows:

e Set the function field (I0_x_MCU_SEL) to the IO_MUX function corresponding to GPIO X (this is
Function #3—numeric value 2—for all pins).

e Set the FUN_DRYV field to the desired value for output strength (1-3). The higher the drive strength, the
more current can be sourced/sunk from the pin.

e |f using open drain mode, set/clear the FUNC_WPU and FUNC_WPD bits to enable/disable the
internal pull-up/down resistors.

Espressif Systems 48 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Notes:
¢ The output signal from a single peripheral can be sent to multiple pads simultaneously.
e Only the 28 GPIOs can be used as outputs.

e The output signal can be inverted by setting the GPIO_FUNCx_OUT_INV_SEL bit.

4.3.3 Simple GPIO Output

The GPIO Matrix can also be used for simple GPIO output — setting a bit in the GPIO_OUT_DATA register will
write to the corresponding GPIO pad.

To configure a pad as simple GPIO output, the GPIO Matrix GPIO_FUNCx_OUT_SEL register is configured with a
special peripheral index value (0x100).

4.4 Direct 1/0 via I0_MUX

441 Summary

Some high speed digital functions (Ethernet, SDIO, SPI, JTAG, UART) can bypass the GPIO Matrix for better
high-frequency digital performance. In this case, the IO_MUXis used to connect these pads directly to the
peripheral.

Selecting this option is less flexible than using the GPIO Matrix, as the I0_MUX register for each GPIO pad can
only select from a limited number of functions. However, better high-frequency digital performance will be
maintained.

4.4.2 Functional Description
Two registers must be configured in order to bypass the GPIO Matrix for peripheral 1/0:

1. I0_MUX for the GPIO pad must be set to the required pad function. (Please refer to section 4.10 for a list of
pad functions.)

2. Forinputs, the SIG_IN_SEL register must be set to route the input directly to the peripheral.

4.5 RTC IO_MUX for Low Power and Analog I/0

451 Summary

18 GPIO pads have low power capabilities (RTC domain) and analog functions which are handled by the RTC
subsystem of ESP32. The I0_MUX and GPIO Matrix are not used for these functions; rather, the RTC_MUX is
used to redirect the 1/0O to the RTC subsystem.

When configured as RTC GPIOs, the output pads can still retain the output level value when the chip is in
Deep-sleep mode, and the input pads can wake up the chip from Deep-sleep.

Section 4.11 has a list of RTC_MUX pins and their functions.

Espressif Systems 49 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

4.5.2 Functional Description

Each pad with analog and RTC functions is controlled by the RTC_IO_TOUCH_PADx_TO_GPIO bit in the
RTC_GPIO_PINx register. By default this bit is set to 1, routing all I/0 via the IO_MUX subsystem as described in
earlier subsections.

If the RTC_IO_TOUCH_PADx_TO_GPIO bit is cleared, then I/0O to and from that pad is routed to the RTC
subsystem. In this mode, the RTC_GPIO_PINXx register is used for digital I/O and the analog features of the pad
are also available. See Section 4.11 for a list of RTC pin functions.

See 4.11 for a table mapping GPIO pads to their RTC equivalent pins and analog functions. Note that the
RTC_IO_PINx registers use the RTC GPIO pin numbering, not the GPIO pad numbering.

4.6 Light-sleep Mode Pin Functions

Pins can have different functions when the ESP32 is in Light-sleep mode. If the GPIOxx_SLP_SEL bit in the
IO_MUKX register for a GPIO pad is set to 1, a different set of registers is used to control the pad when the ESP32
is in Light-sleep mode:

Table 17: 10_MUX Light-sleep Pin Function Registers

Normal Execution Light-sleep Mode

|O_MUX Function

OR GPIOxx_SLP_SEL =0

AND GPIOxx_SLP_SEL = 1

Output Drive Strength

GPIOxx_FUNC_DRV

GPIOxx_MCU_DRV

Pullup Resistor

GPIOxx_FUNC_WPU

GPIOx<_MCU_WPU

Pulldown Resistor

GPIOxx_FUNC_WPD

GPIOxx_MCU_WPD

Output Enable (From GPIO Matrix _OEN field) GPIOxx_MCU_OE

If GPIOxx_SLP_SEL is set to 0, the pin functions remain the same in both normal execution and Light-sleep
mode.

4.7 Pad Hold Feature

Each 10 pad (including the RTC pads) has an individual hold function controlled by a RTC register. When the pad
is set to hold, the state is latched at that moment and will not change no matter how the internal signals change
or how the IO_MUX configuration or GPIO configuration is modified. Users can use the hold function for the pads
to retain the pad state through a core reset and system reset triggered by watchdog time-out or Deep-sleep
events.

Note:

e For digital pads, to maintain the pad’s input/output status in Deep-sleep mode, you can set
REG_DG_PAD_FORCE_UNHOLD to 0 before powering down.
For RTC pads, the input and output values are controlled by the corresponding bits of register
RTC_CNTL_HOLD_FORCE_REG, and you can set it to 1 to hold the value or set it to 0 to unhold the value.

e Fordigital pads, to disable the hold function after the chip is woken up, you can set REG_DG_PAD_FORCE_UNHOLD
to 1. To maintain the hold function of the pad, you can change the corresponding bit in the register by setting
RTC_CNTL_HOLD_FORCE_REG to 1.

Espressif Systems 50 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

4.8 1/0 Pad Power Supply

IO pad power supply is shown in Figure 10.

C cap2
(] voon
O xmee
] xmn
@ voon
(] spomn
@ oo
(] vorro
@ oroz
C GPIO19
(] voospa_ceu
A EAEAMAO

VDDA GPI023

-
g
<
o
LNA_IN . GPIO18

VDDA3P3 GPIOS

VDDA3P3 SD_DATA_1
SENSOR_VP SD_DATA_0

SENSOR_CAPP SD_CLK

SENSOR_CAPN SD_CMD

SENSOR_VN SD_DATA_3

CHIP_PU SD_DATA 2

VDET_1 GPIO17

VDET 2 VDD_SDIO

32K_XP GPIO16

Powered by VDDA

GPIOO

GPIO25
GPIO26
GPI027
MTMS
MTDI
MTCK
MTDO
GPIO2
GPI04

z
X
M
o
=

Powered by VDD3P3_CPU
Powered by VDD_SDIO
Powered by vDD3P3_RTC [N

VDD3P3_RTC

Figure 10: ESP32 I/0 Pad Power Sources

e Pads marked blue are RTC pads that have their individual analog function and can also act as normal
digital IO pads. For details, please see Section 4.11.

e Pads marked pink and green have digital functions only.

e Pads marked green can be powered externally or internally via VDD_SDIO (see below).

4.8.1 VDD_SDIO Power Domain

VDD_SDIO can source or sink current, allowing this power domain to be powered externally or internally. To
power VDD_SDIO externally, apply the same power supply of VDD3P3_RTC to the VDD_SDIO pad.

Without an external power supply, the internal regulator will supply VDD_SDIO. The VDD_SDIO voltage can be
configured to be either 1.8V or the same as VDD3P3_RTC), depending on the state of the MTDI pad at reset — a
high level configures 1.8V and a low level configures the voltage to be the same as VDD3P3_RTC. Setting the
efuse bit determines the default voltage of the VDD_SDIO. In addition, software can change the voltage of the
VDD_SDIO by configuring register bits.

4.9 Peripheral Signal List

Table 18 contains a list of Peripheral Input/Output signals used by the GPIO Matrix:

Table 18: GPIO Matrix Peripheral Signals

Signal Input Signal Output Signal Direct I/0O in IO_MUX
0 SPICLK in SPICLK _out YES

Espressif Systems 51 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Signal Input Signal Output Signal Direct I/0 in IO_MUX
1 SPIQ_in SPIQ_out YES
2 SPID_in SPID_out YES
3 SPIHD_in SPIHD_out YES
4 SPIWP_in SPIWP_out YES
5 SPICSO_in SPICSO_out YES
6 SPICS1_in SPICS1_out
7 SPICS2_in SPICS2_out
8 HSPICLK _in HSPICLK _out YES
9 HSPIQ_in HSPIQ_out YES
10 HSPID_in HSPID_out YES
11 HSPICSO_in HSPICSO_out YES
12 HSPIHD_in HSPIHD_out YES
13 HSPIWP_in HSPIWP_out YES
14 UORXD_in UOTXD_out YES
15 UOCTS_in UORTS_out YES
16 UODSR_in UODTR_out
17 U1RXD_in U1TXD_out YES
18 U1CTS_in U1RTS_out YES
23 12S00_BCK_in 12500_BCK _out
24 12S10_BCK_in 12S10_BCK _out
25 12S00_WS_in 12500_WS_out
26 12S10_WS_in 12S10_WS_out
27 12S0I_BCK_in 12S01_BCK_out
28 12S0I_WS_in 12S0I_WS_out
29 I2CEXTO_SCL_in I2CEXTO_SCL _out
30 I2CEXTO_SDA_in |2CEXTO_SDA_out
31 pwmO_syncO_in sdio_tohost_int_out
32 pwmO_sync1_in pwmO_outOa
33 pwmO_sync2_in pwmO_outOb
34 pwmO_fO_in pwmO_outia
35 pwmO_f1_in pwmO_outib
36 pwmO_f2_in pwmO_out2a
37 pwmO_out2b
39 pcnt_sig_ch0_in0
40 pcnt_sig_ch1_in0
41 pcnt_ctrl_ch0_in0
42 pcnt_ctrl_ch1_in0
43 pcnt_sig_chO_in1
44 pcnt_sig_ch1_in1
45 pcnt_ctrl_chO_in1
46 pcnt_ctrl_ch1_in1
47 pcnt_sig_ch0_in2
48 pcnt_sig_chi_in2
49 pcnt_ctrl_ch0_in2

Espressif Systems 52 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Signal Input Signal Output Signal Direct I/0 in IO_MUX
50 pcnt_ctrl_ch1_in2

51 pcnt_sig_ch0_in3

52 pcnt_sig_ch1_in3

53 pcnt_ctrl_ch0_in3

54 pcnt_ctrl_ch1_in3

55 pcnt_sig_ch0_in4

56 pcnt_sig_ch1_in4

57 pcnt_ctrl_ch0_in4

58 pcnt_ctrl_ch1_in4

61 HSPICS1_in HSPICS1_out

62 HSPICS2_in HSPICS2_out

63 VSPICLK _in VSPICLK_out_mux YES
64 VSPIQ_in VSPIQ_out YES
65 VSPID_in VSPID_out YES
66 VSPIHD_in VSPIHD_out YES
67 VSPIWP_in VSPIWP_out YES
68 VSPICSO_in VSPICSO_out YES
69 VSPICS1_in VSPICS1_out

70 VSPICS2_in VSPICS2_out

71 pcnt_sig_chO0_in5 ledc_hs_sig_outO

72 pcnt_sig_chi_in5 ledc_hs_sig_out1

73 pcnt_ctrl_ch0_in5 ledc_hs_sig_out2

74 pcnt_ctrl_ch1_in5 ledc_hs_sig_out3

75 pcnt_sig_chO0_in6 ledc_hs_sig_out4

76 pcnt_sig_ch1_in6 ledc_hs_sig_out5

77 pcnt_ctrl_ch0_in6 ledc_hs_sig_out6

78 pcnt_ctrl_ch1_in6 ledc_hs_sig_out?

79 pcnt_sig_ch0_in7 ledc_lIs_sig_outO

80 pcnt_sig_chi_in7 ledc_Is_sig_out1

81 pcnt_ctrl_ch0_in7 ledc_lIs_sig_out2

82 pcnt_ctrl_ch1_in7 ledc_Is_sig_out3

83 rmt_sig_inO ledc_ls_sig_out4

84 rmt_sig_in1 ledc_Is_sig_outb

85 rmt_sig_in2 ledc_Is_sig_out6

86 rmt_sig_in3 ledc_lIs_sig_out7

87 rmt_sig_in4 rmt_sig_outO

88 rmt_sig_in5 rmt_sig_out1

89 rmt_sig_in6 rmt_sig_out2

90 rmt_sig_in7 rmt_sig_out3

AN rmt_sig_out4

92 rmt_sig_outb

93 rmt_sig_out6

94 rmt_sig_out7

95 [2CEXT1_SCL_in I2CEXT1_SCL_out

Espressif Systems

53

ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Signal Input Signal Output Signal Direct I/0 in IO_MUX
96 [2CEXT1_SDA_in [2CEXT1_SDA_out
97 host_card_detect_n_1 host_ccmd_od_pullup_en_n
98 host_card_detect_n_2 host_rst_n_1

99 host_card_write_prt_1 host_rst_n_2

100 host_card_write_prt_2 gpio_sdO_out

101 host_card_int_n_1 gpio_sd1_out

102 host_card_int_n_2 gpio_sd2_out

103 pwm_syncO_in gpio_sd3_out

104 pwm1_sync1_in gpio_sd4_out

105 pwm1_sync2_in gpio_sd5_out

106 pwm1_fO_in gpio_sd6_out

107 pwm1_f1_in gpio_sd7_out

108 pwm1_f2_in pwm1_outOa

109 pwmO_cap0_in pwm1_outOb

110 pwmO_cap1_in pwm1_outla

111 pwmOQ_cap2_in pwmi_out1b

112 pwm1_cap0_in pwm1_out2a

113 pwm1i_cap1_in pwm1_out2b

114 pwm1_cap2_in pwm2_out1h

115 pwm?2_flta pwm?2_out1l

116 pwm?2_flth pwmz2_out2h

117 pwm2_capi_in pwm?2_out2|

118 pwm2_cap2_in pwmz2_out3h

119 pwm2_cap3_in pwm?2_out3|

120 pwm3_flta pwmz2_out4h

121 pwm3_fltb pwm?2_out4l

122 pwm3_cap1_in

123 pwm3_cap2_in

124 pwm3_cap3_in

140 12S0I_DATA_inO [12S00_DATA_out0
141 I2S0I_DATA_in1 12S00_DATA_outt
142 12S0I_DATA_in2 12S00_DATA_out2
143 12S0I_DATA_in3 12S00_DATA_out3
144 12S0I_DATA_in4 12S00_DATA_out4
145 12S0I_DATA_in5 12S00_DATA_outb
146 12S0I_DATA_in6 12S500_DATA_out6
147 12S0I_DATA_in7 12S00_DATA_out7
148 12S0I_DATA_in8 12S00_DATA_out8
149 12S0I_DATA_in9 12S00_DATA_out9
150 12S0I_DATA_in10 12S00_DATA_out10
151 12S0I_DATA_in11 12S00_DATA_out11
152 12S0I_DATA_in12 12S00_DATA_out12
153 12S0I_DATA_in13 [12S00_DATA _out13
154 I2SOI_DATA_in14 [12S500_DATA_out14

Espressif Systems 54 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Signal Input Signal Output Signal Direct I/0 in IO_MUX
155 I2S0I_DATA_in15 [2S0O_DATA_out15
156 [12S0O_DATA_out16
157 [2S0O_DATA_out17
158 [2S00O_DATA_out18
159 [12S00_DATA_out19
160 [2S00O_DATA_out20
161 12S00_DATA _out21
162 [12SO00O_DATA_out22
163 12S00_DATA_out23
164 12S11_BCK_in 12S11_BCK _out
165 12S11I_WS_in 12S1_WS_out
166 12S11_DATA_inO 12S10_DATA_out0
167 12S1I_DATA_in1 12S10_DATA_out1
168 12S11_DATA_in2 12S10_DATA_out2
169 12S11_DATA_in3 [12S10_DATA_out3
170 12S11_DATA_in4 12S10_DATA_out4
171 12S1I_DATA_in5 [12S10_DATA_out5
172 12S11_DATA_in6 12S10_DATA_out6
173 12S1I_DATA_in7 12S10_DATA _out7
174 12S11_DATA_in8 12S10_DATA_out8
175 12S11_DATA_in9 12S10_DATA_out9
176 [2S11_DATA_in10 [2S10_DATA_out10
177 12S1I_DATA_in11 12S10_DATA_out11
178 [2S11_DATA_in12 12S10_DATA_out12
179 12S1I_DATA_in13 [12S10_DATA_out13
180 [2S11_DATA_in14 12S10_DATA_out14
181 12S1I_DATA_in15 [12S10_DATA_out15
182 [12S10_DATA_out16
183 [12S10_DATA_out17
184 [12S10_DATA_out18
185 [12S10_DATA_out19
186 12S10_DATA_out20
187 12S10_DATA_out21
188 12S10_DATA_out22
189 12S10_DATA_out23
190 12S0I_H_SYNC pwm3_out1h
191 12S0I_V_SYNC pwm3_out1l
192 12S0I_H_ENABLE pwm3_out2h
193 12S1I_H_SYNC pwm3_out2|
194 12S11_V_SYNC pwm3_out3h
195 12S1I_H_ENABLE pwm3_out3l
196 pwma3_out4h
197 pwm3_out4l
198 U2RXD_in U2TXD_out YES
Espressif Systems 55 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Signal Input Signal Output Signal Direct I/0 in IO_MUX
199 U2CTS_in U2RTS_out YES
200 emac_mdc_i emac_mdc_o

201 emac_mdi_i emac_mdo_o

202 emac_crs_i emac_crs_o

203 emac_col_i emac_col_o

204 pcmfsync_in bt_audioO_irq

205 pcmclk_in bt_audiol_irg

206 pcmdin bt_audio2_irq

207 ble_audioO_irq

208 ble_audiol_irg

209 ble_audio2_irq

210 pcmfsync_out

211 pcmclk_out

212 pcmdout

213 ble_audio_syncO_p
214 ble_audio_synci1_p
215 ble_audio_sync2_p
224 sig_in_func224
225 sig_in_func225
226 sig_in_func226
227 sig_in_func227
228 sig_in_func228

Direct I/0 in I10_MUX "YES” means that this signal is also available directly via I0_MUX. To apply the GPIO

Matrix to these signals, their corresponding SIG_IN_SEL register must be cleared.

410

I0_MUX Pad List

Table 19 shows the IO_MUX functions for each 1/O pad:

Table 19: I0_MUX Pad Summary

GPIO | Pad Name Function 1 Function 2 Function 3 Function 4 Function 5 Function 6 Reset| Notes

0 GPIO0 GPIOO CLK_OUT1 | GPIOO - - EMAC_TX_CLK | 3 R

1 UOTXD UOTXD CLK_OUT3 | GPIO1 - - EMAC_RXD2 3 -

2 GPIO2 GPIO2 HSPIWP GPIO2 HS2_DATAO SD_DATAO | - 2 R

3 UORXD UORXD CLK_OUT2 | GPIO3 - - - 3 -

4 GPIO4 GPIO4 HSPIHD GPIO4 HS2_DATA1 SD_DATA1 EMAC_TX_ER 2 R

5 GPIO5 GPIO5 VSPICSO GPIO5 HS1_DATA6 - EMAC_RX_CLK | 3

6 SD_CLK SD_CLK SPICLK GPIO6 HS1_CLK U1CTS - 3 -

7 SD_DATA_O SD_DATAO | SPIQ GPIO7 HS1_DATAO U2RTS - 3 -

8 SD_DATA_1 SD_DATA1 SPID GPIO8 HS1_DATA1 U2CTS - 3 -

9 SD_DATA_2 SD_DATA2 | SPIHD GPIO9 HS1_DATA2 U1RXD - 3 -

10 SD_DATA_3 SD_DATA3 | SPIWP GPIO10 HS1_DATAS U1TXD - 3 -

11 SD_CMD SD_CMD SPICSO GPIO11 HS1_CMD U1TRTS - 3 -

12 MTDI MTDI HSPIQ GPIO12 HS2_DATA2 SD_DATA2 EMAC_TXD3 2 R

13 MTCK MTCK HSPID GPIO13 HS2_DATA3 SD_DATA3 EMAC_RX_ER 1 R

14 MTMS MTMS HSPICLK GPIO14 HS2_CLK SD_CLK EMAC_TXD2 1 R

15 MTDO MTDO HSPICSO GPIO15 HS2_CMD SD_CMD EMAC_RXD3 3 R
Espressif Systems 56 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

GPIO | Pad Name Function 1 Function 2 Function 3 Function 4 Function 5 Function 6 Reset| Notes
16 GPIO16 GPIO16 GPIO16 HS1_DATA4 U2RXD EMAC_CLK_OUT| 1

17 GPIO17 GPIO17 - GPIO17 HS1_DATAS U2TXD EMAC_CLK_180 | 1

18 GPIO18 GPIO18 VSPICLK GPIO18 HS1_DATA7 - 1

19 GPIO19 GPIO19 VSPIQ GPIO19 UOCTS EMAC_TXDO 1

21 GPIO21 GPIO21 VSPIHD GPIO21 - EMAC_TX_EN 1

22 GPIO22 GPIO22 VSPIWP GPI022 UORTS EMAC_TXD1 1

23 GPIO23 GPIO23 VSPID GPIO23 HS1_STROBE| - - 1 -
25 GPI025 GPIO25 GPIO25 - EMAC_RXDO 0 R
26 GPIO26 GPI026 GPI026 EMAC_RXD1 0 R
27 GPIO27 GPIO27 GPIO27 EMAC_RX_DV 1 R
32 32K_XP GPIO32 GPIO32 0 R
33 32K_XN GPIO33 GPIO33 0 R
34 VDET_1 GPIO34 GPIO34 0 R, |
35 VDET_2 GPIO35 GPIO35 0 R, |
36 SENSOR_VP GPIO36 GPIO36 0 R, I
37 SENSOR_CAPP| GPIO37 GPIO37 0 R, |
38 SENSOR_CAPN GPIO38 GPIO38 0 R, |
39 SENSOR_VN GPIO39 GPIO39 0 R, |

Reset Configurations

"Reset” column shows each pad’s default configurations after reset:

e 0 - IE=0 (input disabled).

e 1 - |E=1 (input enabled).

e 2 -|E=1, WPD=1 (input enabled, pulldown resistor).

e 3-IE=1, WPU=1 (input enabled, pullup resistor).

Notes

e R - Pad has RTC/analog functions via RTC_MUX.

e | - Pad can only be configured as input GPIO.

Please refer to the ESP32 Pin Lists in ESP32 Datasheet for more details.

4.11

RTC_MUX Pin List

Table 20 shows the RTC pins and how they correspond to GPIO pads:

Table 20: RTC_MUX Pin Summary

Analog Function
RTC GPIO Num | GPIO Num Pad Name 1 5 3
0 36 SENSOR_VP ADC_H ADC1_CHO -
1 37 SENSOR_CAPP | ADC_H ADC1_CH1 -
2 38 SENSOR_CAPN | ADC_H ADC1_CH2 -
3 39 SENSOR_VN ADC_H ADC1_CH3 -
4 34 VDET_1 - ADC1_CH6 -
5 35 VDET_2 - ADC1_CH7 -
6 25 GPIO25 DAC_1 ADC2_CH8 -
7 26 GPIO26 DAC_2 ADC2_CH9 -
Espressif Systems 57 ESP32 Technical Reference Manual V3.1

4. 10_MUX AND GPIO MATRIX
Analog Function
RTC GPIO Num | GPIO Num Pad Name 1 5 3
8 33 32K_XN XTAL_32K_N | ADC1_CH5 TOUCHS8
9 32 32K_XP XTAL_32K_P | ADC1_CH4 TOUCH9
10 4 GPIO4 - ADC2_CHO TOUCHO
1 0 GPIOO - ADC2_CH1 TOUCHA1
12 2 GPIO2 - ADC2_CH2 TOUCH2
13 15 MTDO - ADC2_CH3 TOUCH3
14 13 MTCK - ADC2_CH4 TOUCH4
15 12 MTDI - ADC2_CH5 TOUCH5
16 14 MTMS - ADC2_CH®6 TOUCH®6
17 27 GPIO27 - ADC2_CH7 TOUCH7
4.12 Register Summary
Name Description Address Access
GPIO_OUT_REG GPIO 0-31 output register Ox3FF44004 | R/W
GPIO_OUT_WI1TS_REG GPIO 0-31 output register_W1TS Ox3FF44008 | WO
GPIO_OUT_WI1TC_REG GPIO 0-31 output register_W1TC Ox3FF4400C | WO
GPIO_OUT1_REG GPIO 32-39 output register Ox3FF44010 | R/W
GPIO_OUT1_WA1TS_REG GPIO 32-39 output bit set register Ox3FF44014 | WO
GPIO_OUT1_WI1TC_REG GPIO 32-39 output bit clear register Ox3FF44018 | WO
GPIO_ENABLE_REG GPIO 0-31 output enable register Ox3FF44020 | R/W
GPIO_ENABLE_WATS_REG GPIO 0-31 output enable register_ W1TS Ox3FF44024 | WO
GPIO_ENABLE_WATC_REG GPIO 0-31 output enable register W1TC Ox3FF44028 | WO
GPIO_ENABLE1_REG GPIO 32-39 output enable register Ox3FF4402C | R/W
GPIO_ENABLE1_W1TS_REG GPIO 32-39 output enable bit set register Ox3FF44030 | WO
GPIO_ENABLE1_WATC_REG GPIO 32-39 output enable bit clear register Ox3FF44034 | WO
GPIO_STRAP_REG Bootstrap pin value register Ox3FF44038 | RO
GPIO_IN_REG GPIO 0-31 input register Ox3FF4403C | RO
GPIO_IN1_REG GPIO 32-39 input register Ox3FF44040 | RO
GPIO_STATUS_REG GPIO 0-31 interrupt status register Ox3FF44044 | R/W
GPIO_STATUS_WAI1TS_REG GPIO 0-31 interrupt status register W1TS Ox3FF44048 | WO
GPIO_STATUS_WI1TC_REG GPIO 0-31 interrupt status register_W1TC Ox3FF4404C | WO
GPIO_STATUS1_REG GPIO 32-39 interrupt status register1 Ox3FF44050 | R/W
GPIO_STATUS1_WATS_REG GPIO 32-39 interrupt status bit set register Ox3FF44054 | WO
GPIO_STATUS1 W1TC_REG GPIO 32-39 interrupt status bit clear register Ox3FF44058 | WO
GPIO_ACPU_INT_REG GPIO 0-31 APP_CPU interrupt status Ox3FF44060 | RO
GPIO 0-31 APP_CPU non-maskable interrupt
GPIO_ACPU_NMI_INT_REG Ox3FF44064 | RO
status
GPIO_PCPU_INT_REG GPIO 0-31 PRO_CPU interrupt status Ox3FF44068 | RO
GPIO 0-31 PRO_CPU non-maskable interrupt
GPIO_PCPU_NMI_INT_REG Ox3FF4406C | RO
status
GPIO_ACPU_INT1_REG GPIO 32-39 APP_CPU interrupt status Ox3FF44074 | RO
Espressif Systems 58 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Name Description Address Access
GPIO 32-39 APP_CPU non-maskable interrupt
GPIO_ACPU_NMI_INT1_REG Ox3FF44078 | RO
status
GPIO_PCPU_INT1_REG GPIO 32-39 PRO_CPU interrupt status Ox3FF4407C | RO
GPIO 32-39 PRO_CPU non-maskable interrupt
GPIO_PCPU_NMI_INT1_REG Ox3FF44080 | RO
status
GPIO_PINO_REG Configuration for GPIO pin O Ox3FF44088 | R/W
GPIO_PIN1_REG Configuration for GPIO pin 1 Ox3FF4408C | R/W
GPIO_PIN2_REG Configuration for GPIO pin 2 Ox3FF44090 | R/W
GPIO_PIN38_REG Configuration for GPIO pin 38 Ox3FF44120 | R/W
GPIO_PIN39_REG Configuration for GPIO pin 39 Ox3FF44124 | R/W
GPIO_FUNCO_IN_SEL_CFG_REG Peripheral function O input selection register Ox3FF44130 | R/W
GPIO_FUNC1_IN_SEL_CFG_REG Peripheral function 1 input selection register Ox3FF44134 | R/W
GPIO_FUNC254_IN_SEL_CFG_REG | Peripheral function 254 input selection register Ox3FF44528 | R/W
GPIO_FUNC255_IN_SEL_CFG_REG | Peripheral function 255 input selection register Ox3FF4452C | R/W
GPIO_FUNCO_OUT_SEL_CFG_REG | Peripheral output selection for GPIO O Ox3FF44530 | R/W
GPIO_FUNC1_OUT_SEL_CFG_REG | Peripheral output selection for GPIO 1 Ox3FF44534 | R/W
GPIO_FUNC38_OUT_SEL_CFG_REG]| Peripheral output selection for GPIO 38 Ox3FF445C8 | R/W
GPIO_FUNC39_OUT_SEL_CFG_REG]| Peripheral output selection for GPIO 39 Ox3FF445CC | R/W
Name Description Address Access
|O_MUX_PIN_CTRL Clock output configuration register Ox3FF49000 | R/W
IO_MUX_GPIO36_REG Configuration register for pad GPIO36 Ox3FF49004 | R/W
|O_MUX_GPIO37_REG Configuration register for pad GPIO37 Ox3FF49008 | R/W
I0_MUX_GPIO38_REG Configuration register for pad GPIO38 Ox3FF4900C | R/W
|O_MUX_GPIO39_REG Configuration register for pad GPIO39 Ox3FF49010 | R/W
I0_MUX_GPIO34_REG Configuration register for pad GPIO34 Ox3FF49014 | R/W
|O_MUX_GPIO35_REG Configuration register for pad GPIO35 Ox3FF49018 | R/W
IO_MUX_GPIO32_REG Configuration register for pad GPIO32 Ox3FF4901C | R/W
IO_MUX_GPIO33_REG Configuration register for pad GPIO33 Ox3FF49020 | R/W
IO_MUX_GPIO25_REG Configuration register for pad GPIO25 Ox3FF49024 | R/W
IO_MUX_GPIO26_REG Configuration register for pad GPIO26 Ox3FF49028 | R/W
I0_MUX_GPIO27_REG Configuration register for pad GPIO27 Ox3FF4902C | R/W
IO_MUX_MTMS_REG Configuration register for pad MTMS Ox3FF49030 | R/W
IO_MUX_MTDI_REG Configuration register for pad MTDI Ox3FF49034 | R/W
IO_MUX_MTCK_REG Configuration register for pad MTCK Ox3FF49038 | R/W
I0_MUX_MTDO_REG Configuration register for pad MTDO Ox3FF4903C | R/W
I0_MUX_GPIO2_REG Configuration register for pad GPIO2 Ox3FF49040 | R/W
|O_MUX_GPIO0_REG Configuration register for pad GPIO0 Ox3FF49044 | R/W
I0_MUX_GPIO4_REG Configuration register for pad GPIO4 Ox3FF49048 | R/W
|O_MUX_GPIO16_REG Configuration register for pad GPIO16 Ox3FF4904C | R/W
IO_MUX_GPIO17_REG Configuration register for pad GPIO17 Ox3FF49050 | R/W
Espressif Systems 59 ESP32 Technical Reference Manual V3.1

4.

1O_MUX AND GPIO MATRIX

Name Description Address Access
IO_MUX_SD_DATA2_REG Configuration register for pad SD_DATA2 Ox3FF49054 | R/W
IO_MUX_SD_DATA3_REG Configuration register for pad SD_DATA3 Ox3FF49058 | R/W
I0_MUX_SD_CMD_REG Configuration register for pad SD_CMD Ox3FF4905C | R/W
IO_MUX_SD_CLK_REG Configuration register for pad SD_CLK Ox3FF49060 | R/W
|O_MUX_SD_DATAO_REG Configuration register for pad SD_DATAO Ox3FF49064 | R/W
IO_MUX_SD_DATA1_REG Configuration register for pad SD_DATA1 Ox3FF49068 | R/W
|O_MUX_GPIO5_REG Configuration register for pad GPIO5 Ox3FF4906C | R/W
IO_MUX_GPIO18_REG Configuration register for pad GPIO18 Ox3FF49070 | R/W
|O_MUX_GPIO19_REG Configuration register for pad GPIO19 Ox3FF49074 | R/W
IO_MUX_GPIO20_REG Configuration register for pad GPIO20 Ox3FF49078 | R/W
|O_MUX_GPIO21_REG Configuration register for pad GPIO21 Ox3FF4907C | R/W
IO_MUX_GPIO22_REG Configuration register for pad GPIO22 Ox3FF49080 | R/W
|O_MUX_UORXD_REG Configuration register for pad UORXD Ox3FF49084 | R/W
IO_MUX_UOTXD_REG Configuration register for pad UOTXD Ox3FF49088 | R/W
|O_MUX_GPIO23_REG Configuration register for pad GPIO23 Ox3FF4908C | R/W
IO_MUX_GPIO24_REG Configuration register for pad GPIO24 Ox3FF49090 | R/W
Name Description Address Access
GPIO configuration / data registers
RTCIO_RTC_GPIO_OUT_REG RTC GPIO output register Ox3FF48400 | R/W
RTCIO_RTC_GPIO_OUT_W1TS_REG RTC GPIO output bit set register Ox3FF48404 | WO
RTCIO_RTC_GPIO_OUT_WI1TC_REG RTC GPIO output bit clear register Ox3FF48408 | WO
RTCIO_RTC_GPIO_ENABLE_REG RTC GPIO output enable register Ox3FF4840C | R/W
RTCIO_RTC_GPIO_ENABLE_W1TS_REG| RTC GPIO output enable bit set register Ox3FF48410 | WO
RTCIO_RTC_GPIO_ENABLE_W1TC_REG| RTC GPIO output enable bit clear register Ox3FF48414 | WO
RTCIO_RTC_GPIO_STATUS_REG RTC GPIO interrupt status register Ox3FF48418 | WO
RTCIO_RTC_GPIO_STATUS_W1TS_REG | RTC GPIO interrupt status bit set register Ox3FF4841C | WO
RTCIO_RTC_GPIO_STATUS_W1TC_REG | RTC GPIO interrupt status bit clear register Ox3FF48420 | WO
RTCIO_RTC_GPIO_IN_REG RTC GPIO input register Ox3FF48424 | RO
RTCIO_RTC_GPIO_PINO_REG RTC configuration for pin O Ox3FF48428 | R/W
RTCIO_RTC_GPIO_PIN1_REG RTC configuration for pin 1 Ox3FF4842C | R/W
RTCIO_RTC_GPIO_PIN2_REG RTC configuration for pin 2 Ox3FF48430 | R/W
RTCIO_RTC_GPIO_PIN3_REG RTC configuration for pin 3 Ox3FF48434 | R/W
RTCIO_RTC_GPIO_PIN4_REG RTC configuration for pin 4 Ox3FF48438 | R/W
RTCIO_RTC_GPIO_PIN5_REG RTC configuration for pin 5 Ox3FF4843C | R/W
RTCIO_RTC_GPIO_PIN6_REG RTC configuration for pin 6 Ox3FF48440 | R/W
RTCIO_RTC_GPIO_PIN7_REG RTC configuration for pin 7 Ox3FF48444 | R/W
RTCIO_RTC_GPIO_PIN8_REG RTC configuration for pin 8 Ox3FF48448 | R/W
RTCIO_RTC_GPIO_PIN9_REG RTC configuration for pin 9 Ox3FF4844C | R/W
RTCIO_RTC_GPIO_PIN10_REG RTC configuration for pin 10 Ox3FF48450 | R/W
RTCIO_RTC_GPIO_PIN11_REG RTC configuration for pin 11 Ox3FF48454 | R/W
RTCIO_RTC_GPIO_PIN12_REG RTC configuration for pin 12 Ox3FF48458 | R/W
RTCIO_RTC_GPIO_PIN13_REG RTC configuration for pin 13 Ox3FF4845C | R/W
RTCIO_RTC_GPIO_PIN14_REG RTC configuration for pin 14 Ox3FF48460 | R/W
Espressif Systems 60 ESP32 Technical Reference Manual V3.1

. 10_MUX AND GPIO MATRIX

Name Description Address Access
RTCIO_RTC_GPIO_PIN15_REG RTC configuration for pin 15 Ox3FF48464 | R/W
RTCIO_RTC_GPIO_PIN16_REG RTC configuration for pin 16 Ox3FF48468 | R/W
RTCIO_RTC_GPIO_PIN17_REG RTC configuration for pin 17 Ox3FF4846C | R/W
RTCIO_DIG_PAD_HOLD_REG RTC GPIO hold register Ox3FF48474 | R/W
GPIO RTC function configuration registers

RTCIO_HALL_SENS_REG Hall sensor configuration Ox3FF48478 | R/W
RTCIO_SENSOR_PADS_REG Sensor pads configuration register Ox3FF4847C | R/W
RTCIO_ADC_PAD_REG ADC configuration register Ox3FF48480 | R/W
RTCIO_PAD DAC1_REG DAC1 configuration register Ox3FF48484 | R/W
RTCIO_PAD_DAC2_REG DAC2 configuration register Ox3FF48488 | R/W
RTCIO_XTAL_32K_PAD_REG 32KHz crystal pads configuration register Ox3FF4848C | R/W
RTCIO_TOUCH_CFG_REG Touch sensor configuration register Ox3FF48490 | R/W
RTCIO_TOUCH_PADO_REG Touch pad configuration register Ox3FF48494 | R/W
RTCIO_TOUCH_PAD9_REG Touch pad configuration register Ox3FF484B8 | R/W
RTCIO_EXT_WAKEUPO_REG External wake up configuration register Ox3FF484BC | R/W
RTCIO_XTL_EXT_CTR_REG Crystal power down enable GPIO source Ox3FF484C0 | R/'W
RTCIO_SAR_I2C_IO_REG RTC 12C pad selection Ox3FF484C4 | R/W

Espressif Systems 61 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

4.13 Registers

Register 4.1: GPIO_OUT_REG (0x0004)

‘31 O‘

‘ X ‘Reset

GPIO_OUT_REG GPIO0-31 output value. (R/W)

Register 4.2: GPIO_OUT_W1TS_REG (0x0008)

‘31 O‘

‘ X ‘Reset

GPIO_OUT_W1TS_REG GPIO0-31 output set register. For every bit that is 1 in the value written here,
the corresponding bit in GPIO_OUT_REG will be set. (WO)

Register 4.3: GPIO_OUT_W1TC_REG (0x000c)

‘31 O‘

‘ X ‘Reset

GPIO_OUT_W1TC_REG GPIO0-31 output clear register. For every bit that is 1 in the value written
here, the corresponding bit in GPIO_OUT_REG will be cleared. (WO)

Register 4.4: GPIO_OUT1_REG (0x0010)

R
&

‘31 8|7 O‘

S
) 90

‘OOOOOOOOOOOOOOOOOOOOOOOO|><xxxxxxx‘Reset

GPIO_OUT_DATA GPIO32-39 output value. (R/W)

Espressif Systems 62 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.5: GPIO_OUT1_W1TS_REG (0x0014)

&
(@& 00
& ’
&

‘31 8|7 O‘

‘oooooooooooooooooooooooo|xxxxxxxx‘Reset

GPIO_OUT_DATA GPIO32-39 output value set register. For every bit that is 1 in the value written
here, the corresponding bit in GPIO_OUT1_DATA will be set. (WO)

Register 4.6: GPIO_OUT1_W1TC_REG (0x0018)

Q
&
Q)%
\§
‘31 8|7 o‘

‘OOOOOOOOOOOOOOOOOOOOOOOO|><xxxxxxX‘Reset

S
) /OQ

GPIO_OUT_DATA GPIO32-39 output value clear register. For every bit that is 1 in the value written
here, the corresponding bit in GPIO_OUT1_DATA will be cleared. (WO)

Register 4.7: GPIO_ENABLE_REG (0x0020)

‘ X ‘Reset

GPIO_ENABLE_REG GPIO0-31 output enable. (R/W)

Register 4.8: GPIO_ENABLE_W1TS_REG (0x0024)

‘31 O‘

‘ X ‘Reset

GPIO_ENABLE_W1TS_REG GPIO0-31 output enable set register. For every bit that is 1 in the value
written here, the corresponding bit in GPIO_ENABLE will be set. (WO)

Register 4.9: GPIO_ENABLE_W1TC_REG (0x0028)

‘31 O‘

‘ X ‘Reset

GPIO_ENABLE_W1TC_REG GPIO0-31 output enable clear register. For every bit that is 1 in the
value written here, the corresponding bit in GPIO_ENABLE will be cleared. (WO)

Espressif Systems 63 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.10: GPIO_ENABLE1_REG (0x002c)

> &
Q?Q)é
A

E T]

’OOOOOOOOOOOOOOOOOOOOOOOO|Xxxxxxxx‘Reset

GPIO_ENABLE_DATA GPIO32-39 output enable. (R/W)

Register 4.11: GPIO_ENABLE1_W1TS_REG (0x0030)

E T]

’OOOOOOOOOOOOOOOOOOOOOOOO|xxxxxxxx‘Reset

GPIO_ENABLE_DATA GPIO32-39 output enable set register. For every bit that is 1 in the value written
here, the corresponding bit in GPIO_ENABLE1 will be set. (WO)

Register 4.12: GPIO_ENABLE1_W1TC_REG (0x0034)

E []

]oooooooooooooooooooooooo|xxxxxxxx‘Reset

GPIO_ENABLE_DATA GPIO32-39 output enable clear register. For every bit that is 1 in the value
written here, the corresponding bit in GPIO_ENABLE1 will be cleared. (WO)

Register 4.13: GPIO_STRAP_REG (0x0038)

S «Q\v
Q?Q)G
A

’31 16|15 O‘

’OOOOOOOOOOOOOOOO|X><xxxxxxxxxxxxxx‘Reset

GPIO_STRAPPING GPIO strapping results: Bit5-bitO of boot_sel_chip[5:0] correspond to MTDI,
GPIO0, GPIO2, GPIO4, MTDO, GPIO5, respectively.

Espressif Systems 64 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.14: GPIO_IN_REG (0x003c)

‘31 O‘

‘ X ‘Reset

GPIO_IN_REG GPIO0-31 input value. Each bit represents a pad input value, 1 for high level and O
for low level. (RO)

Register 4.15: GPIO_IN1_REG (0x0040)

?\
S 9
Q)%Q)é
\§

‘31 8|7 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOO|><xxxxxxX‘Reset

GPIO_IN_DATA_NEXT GPIO32-39 input value. Each bit represents a pad input value. (RO)

Register 4.16: GPIO_STATUS_REG (0x0044)

‘31 O‘

‘ X ‘Reset

GPIO_STATUS_REG GPIO0-31 interrupt status register. Each bit can be either of the two interrupt
sources for the two CPUs. The enable bits in GPIO_STATUS_INTERRUPT, corresponding to the
0-4 bits in GPIO_PINn_REG should be set to 1. (R/W)

Register 4.17: GPIO_STATUS_W1TS_REG (0x0048)

‘31 O‘

‘ X ‘Reset

GPIO_STATUS_W1TS_REG GPIO0-31 interrupt status set register. For every bit that is 1 in the value
written here, the corresponding bit in GPIO_STATUS_INTERRUPT will be set. (WO)

Register 4.18: GPIO_STATUS_W1TC_REG (0x004c)

‘31 O‘

‘ X ‘Reset

GPIO_STATUS_W1TC_REG GPIO0-31 interrupt status clear register. For every bit that is 1 in the
value written here, the corresponding bit in GPIO_STATUS_INTERRUPT will be cleared. (WO)

Espressif Systems 65 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.19: GPIO_STATUS1_REG (0x0050)

‘oooooooooooooooooooooooo|xxxxxxxx‘Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status. (R/W)

Register 4.20: GPIO_STATUS1_W1TS_REG (0x0054)

Q)é\ &?\

(A
\@C"Q

‘OOOOOOOOOOOOOOOOOOOOOOOO|x><><x><><><X‘Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status set register. For every bit that is 1 in the
value written here, the corresponding bit in GPIO_STATUS_INTERRUPT1 will be set. (WO)

Register 4.21: GPIO_STATUS1_W1TC_REG (0x0058)

é@
\@%@

E T]

1) 33\?

‘OOOOOOOOOOOOOOOOOOOOOOOO|xxxxxxxx‘Reset

GPIO_STATUS_INTERRUPT GPIO32-39 interrupt status clear register. For every bit that is 1 in the
value written here, the corresponding bit in GPIO_STATUS_INTERRUPT1 will be cleared. (WO)

Register 4.22: GPIO_ACPU_INT_REG (0x0060)

‘31 O‘

‘ X ‘Reset

GPIO_ACPU_INT_REG GPIO0-31 APP CPU interrupt status. (RO)

Espressif Systems 66 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.23: GPIO_ACPU_NMI_INT_REG (0x0064)

‘31 O‘

‘ X ‘Reset

GPIO_ACPU_NMI_INT_REG GPIO0-31 APP CPU non-maskable interrupt status. (RO)

Register 4.24: GPIO_PCPU_INT_REG (0x0068)

‘31 O‘

‘ X ‘Reset

GPIO_PCPU_INT_REG GPIO0-31 PRO CPU interrupt status. (RO)

Register 4.25: GPIO_PCPU_NMI_INT_REG (0x006c)

‘31 O‘

‘ X ‘Reset

GPIO_PCPU_NMI_INT_REG GPIO0-31 PRO CPU non-maskable interrupt status. (RO)

Register 4.26: GPIO_ACPU_INT1_REG (0x0074)

‘31 8|7 O‘

‘oooooooooooooooooooooooo|xxxxxxxx‘Reset

GPIO_APPCPU_INT GPIO32-39 APP CPU interrupt status. (RO)

Register 4.27: GPIO_ACPU_NMI_INT1_REG (0x0078)

D &
@Q’@é
A

‘31 8|7 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOO|x><><><><><><X‘Reset

GPIO_APPCPU_NMI_INT GPIO32-39 APP CPU non-maskable interrupt status. (RO)

Espressif Systems 67 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.28: GPIO_PCPU_INT1_REG (0x007c)

R
&

‘OOOOOOOOOOOOOOOOOOOOOOOO|><xxxxxxx‘Reset

GPIO_PROCPU_INT GPIO32-39 PRO CPU interrupt status. (RO)

Register 4.29: GPIO_PCPU_NMI_INT1_REG (0x0080)

‘oooooooooooooooooooooooo|xxxxxxxx‘Reset

GPIO_PROCPU_NMI_INT GPIO32-39 PRO CPU non-maskable interrupt status. (RO)

Espressif Systems 68 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.30: GPIO_PIN/_REG (1: 0-39) (0x88+0x4*")

<
V)
?@ x
&
< {S/OQ 7 & Q®
% & L7 Q7
$ F S %
S &7 NP) N
e N\ &)b OQ\ 5 N (@é 5 N GQ)b
%))4 (%) 4 4 %))
& & ¢ & & ¢ & &

w
“
=
53
-
2
-
@
-
I}
-
=
=
1S
©
~
o
w
N
w
N

GPIO_PIN/_INT_ENA Interrupt enable bits for pin n: (R/W)
bit0: APP CPU interrupt enable;
bit1: APP CPU non-maskable interrupt enable;
bit3: PRO CPU interrupt enable;
bit4: PRO CPU non-maskable interrupt enable.

GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable will only wake up the CPU from Light-sleep.
(R/W)

GPIO_PINA_INT_TYPE Interrupt type selection: (R/W)
0: GPIO interrupt disable;
1: rising edge trigger;

: falling edge trigger;

. any edge trigger;

. low level trigger;

o~ W N

. high level trigger.

GPIO_PINn_PAD_DRIVER 0: normal output; 1: open drain output. (R/W)

Register 4.31: GPIO_FUNC/_IN_SEL_CFG_REG (7: 0-255) (0x130+0x4*7)

I\
5 o F
é
&
A

GPIO_SIG_IN_SEL Bypass the GPIO Matrix. 0: route through GPIO Matrix, 1: connect signal
directly to peripheral configured in the I0_MUX. (R/W)

GPIO_FUNC_IN_INV_SEL Invert the input value. 1: invert; O: do not invert. (R/W)

GPIO_FUNCm_IN_SEL Selection control for peripheral input m. A value of 0-39 selects which of the
40 GPIO Matrix input pins this signal is connected to, or 0x38 for a constantly high input or 0x30
for a constantly low input. (R/W)

Espressif Systems 69 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.32: GPIO_FUNCn_OUT_SEL_CFG_REG (n: 0-19, 21-23, 25-27, 32-33) (0x530+0x4")

& @
& &
i/??A ’ &/%Q/
OO o
S &S
O 50507 O/
XS &

GPIO_FUNC/_OEN_INV_SEL 1: Invert the output enable signal; 0: do not invert the output enable

signal. (R/W)

GPIO_FUNC/_OEN_SEL 1: Force the output enable signal to be sourced from bit n of
GPIO_ENABLE_REG; 0O: use output enable signal from peripheral. (R/W)

GPIO_FUNC/_OUT_INV_SEL 1: Invert the output value; O: do not invert the output value. (R/W)

GPIO_FUNC/_OUT_SEL Selection control for GPIO output n. A value of s (0<=s<256)

connects peripheral output s to GPIO output n.

A value of 256 selects bit n of

GPIO_OUT_REG/GPIO_OUT1_REG and GPIO_ENABLE_REG/GPIO_ENABLE1_REG as the out-

put value and output enable. (R/W)

Register 4.33: |10_MUX_PIN_CTRL (0x3FF49000)

> Qv N
> o N
/ / /
& & & &
2 Z e/ %/
& & S S
’ 31 8 | 7 4 | 3 0 ‘
’ 0x0 0x0 | 0x0 | 0x0 ‘ Reset

If you want to output clock for 12S0 to:
CLK_OUTH1, then set PIN_CTRL[3:0] = 0x0;

CLK_OUT2, then set PIN_CTRL[3:0] = 0x0 and PIN_CTRL[7:4] = Ox0;
CLK_OUTS, then set PIN_CTRL[3:0] = 0x0 and PIN_CTRL[11:8] = 0xO0.

If you want to output clock for 12S1 to:
CLK_OUT1, then set PIN_CTRL[3:0] = OxF;

CLK_OUT2, then set PIN_CTRL[3:0] = OxF and PIN_CTRL[7:4] = OxO:;
CLK_OUTS3, then set PIN_CTRL[3:0] = OxF and PIN_CTRL[11:8] = 0x0. (R/W)

Note:

Only the above mentioned combinations of clock source and clock output pins are possible.

The CLK_OUT1-3 can be found in the IO_MUX Pad Summary.

Espressif Systems

70

ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.34: I0_MUX_x_REG (: GPIO0-GPIO39) (0x10+4*%)

N
& 09@o§o§2c§io®o®o Qj%&/ &
S SR SR SO SO R O O S e
%Q)GQ) +7 {8\) +<5\>‘T<§\>+<5\) ‘%/@ +/ 7 4/ +?\/+/®
@ o Q7 OO Q7 OO0
’31 15|14 12|11 10|9|8|7|6 5|4|3|2|1|0‘
]ooooooooooooooooo| 0x0 |0x2|0|o|o|0xo|o|o|o|o|o‘Reset

10_x_MCU_SEL Select the IO_MUX function for this signal. 0 selects Function 1, 1 selects Function
2, etc. (R/W)

10_x_FUNC_DRV Select the drive strength of the pad. A higher value corresponds with a higher
strength. (R/W)

10_x_FUNC_IE Input enable of the pad. 1: input enabled; O: input disabled. (R/W)

10_x_FUNC_WPU Pull-up enable of the pad. 1: internal pull-up enabled; O: internal pull-up disabled.
(R/W)

10_x_FUNC_WPD Pull-down enable of the pad. 1: internal pull-down enabled, O: internal pull-down
disabled. (R/W)

10_x_MCU_DRV Select the drive strength of the pad during sleep mode. A higher value corresponds
with a higher strength. (R/W)

I0_x_MCU_IE Input enable of the pad during sleep mode. 1: input enabled; O: input disabled. (R/W)

10_x_MCU_WPU Pull-up enable of the pad during sleep mode. 1: internal pull-up enabled; O: internal
pull-up disabled. (R/W)

10_x_MCU_WPD Pull-down enable of the pad during sleep mode. 1: internal pull-down enabled; O:
internal pull-down disabled. (R/W)

I0_x_SLP_SEL Sleep mode selection of this pad. Set to 1 to put the pad in sleep mode. (R/W)

10_x_MCU_OE Output enable of the pad in sleep mode. 1: enable output; O: disable output. (R/W)

Register 4.35: RTCIO_RTC_GPIO_OUT_REG (0x0000)

'
@
@""@é
&K A

’31 14|27 14‘

’xxxxxxxxxxxxxxx><x><|OOOOOOOOOOOOOO‘Re5et

RTCIO_RTC_GPIO_OUT_DATA GPIO0-17 output register. Bit14 is GPIO[Q], bit15 is GPIO[1], etc.
(R/W)

Espressif Systems 71 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.36: RTCIO_RTC_GPIO_OUT_W1TS_REG (0x0004)

’31 14|27 14‘

’xxxxxxxxxxxxxxxxxx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_OUT_DATA_W1TS GPIO0-17 output set register. For every bit that is 1 in the
value written here, the corresponding bit in RTCIO_RTC_GPIO_OUT will be set. (WO)

Register 4.37: RTCIO_RTC_GPIO_OUT_W1TC_REG (0x0008)

’31 14|27 14‘

’xxxxxxxxxxxxxxxxxx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_OUT_DATA_W1TC GPIO0-17 output clear register. For every bit that is 1 in the
value written here, the corresponding bit in RTCIO_RTC_GPIO_OUT will be cleared. (WO)

Register 4.38: RTCIO_RTC_GPIO_ENABLE_REG (0x000C)

’31 14|27 14‘

’xxxxxxxxxxxxxxxxxx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_ENABLE GPIO0-17 output enable. Bit14 is GPIO[Q], bit15 is GPIO[1], etc. 1
means this GPIO pad is output. (R/W)

Espressif Systems 72 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.39: RTCIO_RTC_GPIO_ENABLE_W1TS_REG (0x0010)

’31 14|27 14‘

’xxxxxxxxxxxxxxxxxx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_ENABLE_W1TS GPIO0-17 output enable set register. For every bit that is 1 in
the value written here, the corresponding bit in RTCIO_RTC_GPIO_ENABLE will be set. (WO)

Register 4.40: RTCIO_RTC_GPIO_ENABLE_W1TC_REG (0x0014)

)
S

???}A
e N

’31 14|27 14‘

’xxxxxxxxxxxxxxx><xx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_ENABLE_W1TC GPIO0-17 output enable clear register. For every bit that is 1 in
the value written here, the corresponding bit in RTCIO_RTC_GPIO_ENABLE will be cleared. (WO)

Register 4.41: RTCIO_RTC_GPIO_STATUS_REG (0x0018)

I
@
??Q'é
& A

’31 14|27 14‘

’xxxxxxxxxxxxxxx><xx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_STATUS_INT GPIO0-17 interrupt status. Bit14 is GPIO[0], bit15 is GPIO[1],
etc. This register should be used together with RTCIO_RTC_GPIO_PIN_INT_TYPE in RT-
CIO_RTC_GPIO_PINn_REG. 1: corresponding interrupt; O: no interrupt. (R/W)

Espressif Systems 73 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.42: RTCIO_RTC_GPIO_STATUS_W1TS_REG (0x001C)

’31 14|27 14‘

’xxxxxxxxxxxxxxxxxx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_STATUS_INT_W1TS GPIO0-17 interrupt set register. For every bit that is 1 in
the value written here, the corresponding bit in RTCIO_RTC_GPIO_STATUS_INT will be set. (WO)

Register 4.43: RTCIO_RTC_GPIO_STATUS_W1TC_REG (0x0020)

I
@
?f“'@(\\
& A

’31 l4|27 14‘

’xxxxxxxxxxxxxxx><xx|OOOOOOOOOOOOOO‘Reset

RTCIO_RTC_GPIO_STATUS_INT_W1TC GPIO0-17 interrupt clear register. For every bit that is 1 in
the value written here, the corresponding bit in RTCIO_RTC_GPIO_STATUS_INT will be cleared.

(WO)

Register 4.44: RTCIO_RTC_GPIO_IN_REG (0x0024)

'
S

Qf-’@é
e N

’31 14|27 14‘

’xxxxxxxxxxxxxxx><x><|OOOOOOOOOOOOOO‘Re5et

RTCIO_RTC_GPIO_IN_NEXT GPIO0-17 input value. Bit14 is GPIO[0], bit15 is GPIO[1], etc. Each
bit represents a pad input value, 1 for high level, and O for low level. (RO)

Espressif Systems 74 ESP32 Technical Reference Manual V3.1

4,

I0_MUX AND GPIO MATRIX

Register 4.45: RTCIO_RTC_GPIO_PIN/_REG (: 0-17) (28+4%7)

@\g/
v &
§
S &7 Q7
NS ¥
Q\%W 7 &
07 407 O/
O/Q ong oggz
S & D & D
o O 7 P
@ & & @ & ¢

’31 11|10|9 7|6 3|2|3 2‘

RTCIO_RTC_GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable. This will only wake up the
ESP32 from Light-sleep. (R/W)

RTCIO_RTC_GPIO_PIN_INT_TYPE GPIO interrupt type selection. (R/W)
0: GPIO interrupt disable;
1: rising edge trigger;

: falling edge trigger;

: any edge trigger;

. low level trigger;

a ~ W DN

: high level trigger.

RTCIO_RTC_GPIO_PINn_PAD_DRIVER Pad driver selection. 0: normal output; 1: open drain.
(R/W)

Espressif Systems 75 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.46: RTCIO_DIG_PAD_HOLD_REG (0x0074)

E]

’ 0 ‘ Reset

RTCIO_DIG_PAD_HOLD_REG Selects the digital pads which should be put on hold. While O allows
normal operation, 1 puts the pad on hold. (R/W)

Name Description

Bit[0] Set to 1 to enable the Hold function of pad UORTD

Bit[1] Set to 1 to enable the Hold function of pad UOTXD

Bit[2] Set to 1 to enable the Hold function of pad
SD_CLK

Bit[3] Set to 1 to enable the Hold function of pad
SD_DATAO

Bit[4] Set to 1 to enable the Hold function of pad
SD_DATA1

Bit[5] Set to 1 to enable the Hold function of pad
SD_DATA2

Bit[6] Set to 1 to enable the Hold function of pad
SD_DATAS3

Bit[7] Set to 1 to enable the Hold function of pad
SD_CMD

Bit[8] Set to 1 to enable the Hold function of pad GPIO5

Bit[9] Set to 1 to enable the Hold function of pad GPIO16

Bit[10] Set to 1 to enable the Hold function of pad GPIO17

Bit[11] Set to 1 to enable the Hold function of pad GPIO18

Bit[12] Set to 1 to enable the Hold function of pad GPIO19

Bit[13] Set to 1 to enable the Hold function of pad GPIO20

Bit[14] Set to 1 to enable the Hold function of pad GPIO21

Bit[15] Set to 1 to enable the Hold function of pad GPIO22

Bit[16] Set to 1 to enable the Hold function of pad GPIO23

Register 4.47: RTCIO_HALL_SENS_REG (0x0078)

v
S
7/
NN\
St D
O/ O/ é
S 5
Q/S Q/*\ @%

’31|30 59 30‘

]o|ooooooooooooooooooooooooooooooo‘Reset

RTCIO_HALL_XPD_HALL Power on hall sensor and connect to VP and VN. (R/W)

RTCIO_HALL_PHASE Reverse the polarity of the hall sensor. (R/W)

Espressif Systems 76 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.48: RTCIO_SENSOR_PADS_REG (0x007C)

RTCIO_SENSOR_SENSEn_HOLD Set to 1 to hold the output value on sensen; 0 is for normal op-
eration. (R/W)

RTCIO_SENSOR_SENSEn_MUX_SEL 1: route sensen to the RTC block; 0: route sensen to the
digital I0_MUX. (R/W)

RTCIO_SENSOR_SENSEn_FUN_SEL Select the RTC IO_MUX function for this pad. 0: select Func-
tion 0; 1: select Function 1. (R/W)

RTCIO_SENSOR_SENSEn_SLP_SEL Selection of sleep mode for the pad: set to 1 to put the pad
in sleep mode. (R/W)

RTCIO_SENSOR_SENSE/_SLP_IE Input enable of the pad in sleep mode. 1: enabled; O: disabled.
(R/W)

RTCIO_SENSOR_SENSEn_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)

Espressif Systems 77 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.49: RTCIO_ADC_PAD_REG (0x0080)

’31|30|29|28|27 26|25|24|23|22 21|20|19|18|35 18‘

]o|o|o|o| 0 |o|o|o| 0 |o|o|0|o 0000 0OOOGO OGO OO OG OGO OGO OGO 0O0 O O‘Reset

RTCIO_ADC_ADC/n_HOLD Set to 1 to hold the output value on the pad; 0 is for normal operation.
(R/W)

RTCIO_ADC_ADCn_MUX_SEL O: route pad to the digital I0_MUX; (R/W)
1: route pad to the RTC block.

RTCIO_ADC_ADCn_FUN_SEL Select the RTC function for this pad. 0: select Function O; 1: select
Function 1. (R/W)

RTCIO_ADC_ADC/_SLP_SEL Signal selection of pad’s sleep mode. Set this bit to 1 to put the pad
to sleep. (R/W)

RTCIO_ADC_ADCn_SLP_IE Input enable of the pad in sleep mode. 1 enabled; O disabled. (R/W)

RTCIO_ADC_ADC/n_FUN_IE Input enable of the pad. 1 enabled; O disabled. (R/W)

Espressif Systems 78 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.50: RTCIO_PAD_DAC1_REG (0x0084)

&
QO
N\ Q7
o F & & L S K
2\ V& & Q/Q/ 7/ Q/Q/Q/e/o/
§ PP 3 RIS
O’\/ Q’\/Q’\/Q\/ Q’\/ O\/Q\/ O\/ 0\/0\/0\/0\/0\/
S & & & FFFS S
O ©gO5® © OO o PRGOS 5
O/ O/ O/O/ O/ O/ O/ O/ O/O/ O/ O/O/ Q\
O OAOLD < OUDT O AOUTAUTAOAS P
& O & C& € LEELE ¢
’31 30|29|28|27|26 19|18|17|16 15|14|l3|12|11|10|19 10‘
] 2 |0|o|o| 0 |0|o| 0 |o|o|0|o|o|oooooooooo‘Reset

RTCIO_PAD_PDAC1_DRV Select the drive strength of the pad. (R/W)

RTCIO_PAD_PDAC1_HOLD Set to 1 to hold the output value on the pad; set to O for normal oper-
ation. (R/W)

RTCIO_PAD_PDAC1_RDE 1: Pull-down on pad enabled; O: Pull-down disabled. (R/W)
RTCIO_PAD_PDAC1_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)
RTCIO_PAD_PDAC1_DAC PAD DAC1 output value. (R/W)

RTCIO_PAD_PDAC1_XPD_DAC Power on DAC1. Usually, PDAC1 needs to be tristated if we power
on the DAC, i.e. IE=0, OE=0, RDE=0, RUE=0. (R/W)

RTCIO_PAD_PDAC1_MUX_SEL O0: route pad to the digital IO_MUX; (R/W)
1: route to the RTC block.

RTCIO_PAD_PDAC1_FUN_SEL the functional selection signal of the pad. (R/W)

RTCIO_PAD_PDAC1_SLP_SEL Sleep mode selection signal of the pad. Set this bit to 1 to put the
pad to sleep. (R/W)

RTCIO_PAD_PDAC1_SLP_IE Input enable of the pad in sleep mode. 1: enabled; O: disabled. (R/W)
RTCIO_PAD_PDAC1_SLP_OE Output enable of the pad. 1: enabled ; O: disabled. (R/W)
RTCIO_PAD_PDAC1_FUN_IE Input enable of the pad. 1: enabled it; O: disabled. (R/W)

RTCIO_PAD_PDAC1_DAC_XPD_FORCE Power on DAC1. Usually, we need to tristate PDAC1 if
we power on the DAGC, i.e. |[E=0, OE=0, RDE=0, RUE=0. (R/W)

Espressif Systems 79 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.51: RTCIO_PAD_DAC2_REG (0x0088)

&
QO
O v Q7
N s s O 9:/%% S AR $oF
& S & RUCIPN N PR TN PP
Q7 Q077 Q7 4’7 Q7 Q707979797
v VG S VNV NV VIV
& ol & & FFFS S
O ©gO5® o OO o PRGOS 5
O/ O/ O/O/ O/ O/ O/ O/ O/O/ O/ O/O/ Q\
O OAOLD < OUDT O AOUTAUTAOAS P
S & a8 ¢ EEELL ¢
’31 30| 29 28 | 27 |26 19| 18 17 |16 15| 14 | 13 | 12 | 11 | 10 |19 10‘
] 2 |0|o|o| 0 |0|o| 0 |o|o|0|o|o|oooooooooo‘Reset

RTCIO_PAD_PDAC2_DRV Select the drive strength of the pad. (R/W)

RTCIO_PAD_PDAC2_HOLD Set to 1 to hold the output value on the pad; O is for normal operation.
(R/W)

RTCIO_PAD_PDAC2_RDE 1: Pull-down on pad enabled; O: Pull-down disabled. (R/W)
RTCIO_PAD_PDAC2_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)
RTCIO_PAD_PDAC2_DAC PAD DAC2 output value. (R/W)

RTCIO_PAD_PDAC2_XPD_DAC Power on DAC2. PDAC2 needs to be tristated if we power on the
DAG, i.e. |E=0, OE=0, RDE=0, RUE=0. (R/W)

RTCIO_PAD_PDAC2_MUX_SEL O0: route pad to the digital IO_MUX; (R/W)
1: route to the RTC block.

RTCIO_PAD_PDAC2_FUN_SEL Select the RTC function for this pad. O: select Function O; 1: select
Function 1. (R/W)

RTCIO_PAD_PDAC2_SLP_SEL Sleep mode selection signal of the pad. Set this bit to 1 to put the
pad to sleep. (R/W)

RTCIO_PAD_PDAC2_SLP_IE Input enable of the pad in sleep mode. 1: enabled; O: disabled. (R/W)
RTCIO_PAD_PDAC2_SLP_OE Output enable of the pad. 1: enabled; O: disabled. (R/W)
RTCIO_PAD_PDAC2_FUN_IE Input enable of the pad. 1: enabled; O: disabled. (R/W)

RTCIO_PAD_PDAC2_DAC_XPD_FORCE Power on DAC2. Usually, we need to tristate PDAC2 if
we power on the DAGC, i.e. |[E=0, OE=0, RDE=0, RUE=0. (R/W)

Espressif Systems 80 ESP32 Technical Reference Manual V3.1

4. 10_MUX AND GPIO MATRIX

Register 4.52: RTCIO_XTAL_32K_PAD_REG (0x008C)

RTCIO_XTAL_X32N_DRV Select the drive strength of the pad. (R/W)

RTCIO_XTAL_X32N_HOLD Set to 1 to hold the output value on the pad; 0O is for normal operation. (R/W)
RTCIO_XTAL_X32N_RDE 1: Pull-down on pad enabled; O: Pull-down disabled. (R/W)
RTCIO_XTAL_X32N_RUE 1: Pull-up on pad enabled; O: Pull-up disabled. (R/W)
RTCIO_XTAL_X32P_DRV Select the drive strength of the pad. (R/W)

RTCIO_XTAL_X32P_HOLD Set to 1 to hold the output value on the pad, 0 is for normal operation. (R/W)
RTCIO_XTAL_X32P_RDE 1: Pull-down on pad enabled; O: Pull-down disabled. (R/W)
RTCIO_XTAL_X32P_RUE 1: Pull-up on pad enabled; 0: Pull-up disabled. (R/W)
RTCIO_XTAL_DAC_XTAL_32K 32K XTAL bias current DAC value. (R/W)
RTCIO_XTAL_XPD_XTAL_32K Power up 32 KHz crystal oscillator. (R/W)
RTCIO_XTAL_X32N_MUX_SEL 0: route X32N pad to the digital IO_MUX; 1: route to RTC block. (R/W)
RTCIO_XTAL_X32P_MUX_SEL O0: route X32P pad to the digital IO_MUX; 1: route to RTC block. (R/W)
RTCIO_XTAL_X32N_FUN_SEL Select the RTC function. 0: select function 0; 1: select function 1. (R/W)
RTCIO_XTAL_X32N_SLP_SEL Sleep mode selection. Set this bit to 1 to put the pad to sleep. (R/W)
RTCIO_XTAL_X32N_SLP_IE Input enable of the pad in sleep mode. 1: enabled; O: disabled. (R/W)
RTCIO_XTAL_X32N_SLP_OE Output enable of the pad. 1: enabled; 0; disabled. (R/W)
RTCIO_XTAL_X32N_FUN_IE Input enable of the pad. 1: enabled; O: disabled. (R/W)
RTCIO_XTAL_X32P_FUN_SEL Select the RTC function. O: select function O; 1: select function 1. (R/W)
RTCIO_XTAL_X32P_SLP_SEL Sleep mode selection. Set this bit to 1 to put the pad to sleep. (R/W)
RTCIO_XTAL_X32P_SLP_IE Input enable of the pad in sleep mode. 1: enabled; O: disabled. (R/W)
RTCIO_XTAL_X32P_SLP_OE Output enable of the pad in sleep mode. 1: enabled; O: disabled. (R/W)
RTCIO_XTAL_X32P_FUN_IE Input enable of the pad. 1: enabled; 0: disabled. (R/W)
RTCIO_XTAL_DRES_XTAL 32K 32K XTAL resistor bias control. (R/W)

RTCIO_XTAL_DBIAS_XTAL_32K 32K XTAL self-bias reference control. (R/W)

Espressif Systems 81 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.53: RTCIO_TOUCH_CFG_REG (0x0090)

]
NS <
DN ~ O
@ g & & S
+ <O Q Q Q
\2\/ \2\/ \2\/ \2\/ \2\/
SRR R R
Q7 QT LT O QO D
O/ O/ O/ O/ O/ é
O OO O &
L & @& é
’31|30 29|28 27|26 25|24 23|45 23‘
’o|11|oo|11|0o|ooooooooooooooooooooooo‘Reset

RTCIO_TOUCH_XPD_BIAS Touch sensor bias power on bit. 1: power on; 0: disabled. (R/W)
RTCIO_TOUCH_DREFH Touch sensor saw wave top voltage. (R/W)
RTCIO_TOUCH_DREFL Touch sensor saw wave bottom voltage. (R/W)
RTCIO_TOUCH_DRANGE Touch sensor saw wave voltage range. (R/W)

RTCIO_TOUCH_DCUR Touch sensor bias current. When BIAS_SLEEP is enabled, this setting is
available. (R/W)

Register 4.54: RTCIO_TOUCH_PAD/_REG (: 0-9) (94+4*/)

’31 26|25 23|22|21|20|19|37 19‘

]oooooo| x4 |o|o|o|o|ooooooooooooooooooo‘Reset

RTCIO_TOUCH_PADn_DAC Touch sensor slope control. 3-bit for each touch pad, defaults to 100.
(R/W)

RTCIO_TOUCH_PADn_START Start touch sensor. (R/W)
RTCIO_TOUCH_PAD/_TIE_OPT Default touch sensor tie option. O: tie low; 1: tie high. (R/W)
RTCIO_TOUCH_PADn_XPD Touch sensor power on. (R/W)

RTCIO_TOUCH_PADn_TO_GPIO Connect the RTC pad input to digital pad input; 0O is available.
(R/W)

Espressif Systems 82 ESP32 Technical Reference Manual V3.1

4. I0_MUX AND GPIO MATRIX

Register 4.55: RTCIO_EXT_WAKEUPO_REG (0x00BC)

&
S
&
?\
& 5
%)
O I
N &
& &
B e =]
] 0 |ooooooooooooooooooooooooooo‘Reset

RTCIO_EXT_WAKEUPO_SEL GPIO[0-17] can be used to wake up the chip when the chip is in the
sleep mode. This register prompts the pad source to wake up the chip when the latter is in
deep/light sleep mode. 0: select GPIOO; 1: select GPIO2, etc. (R/W)

Register 4.56: RTCIO_XTL_EXT_CTR_REG (0x00C0)

&
Q\/
&
7
&
% @é\
Q7 N
’\0\ Q.%Q‘
& N
’31 27|53 27‘
’ 0 |ooooooooooooooooooooooooooo‘Reset

RTCIO_XTL_EXT_CTR_SEL Select the external crystal power down enable source to get into
sleep mode. 0: select GPIOO; 1: select GPIO2, etc. The input value on this pin XOR RT-
CIO_RTC_EXT_XTAL_CONF_REG[30] is the crystal power down enable signal. (R/W)

Register 4.57: RTCIO_SAR_I2C_IO_REG (0x00C4)

&
?\/ \//
S 5
&P
e 7
g -
o7 Q7
O O &
e e N
’31 30|29 28|55 28‘
]o|o|0ooooooooooooooooooooooooooo‘Reset

RTCIO_SAR_I2C_SDA_SEL Selects a different pad as the RTC 12C SDA signal. 0: use pad
TOUCH_PAD[1]; 1: use pad TOUCH_PADI3]. (R/W)

RTCIO_SAR_I2C_SCL_SEL Selects a different pad as the RTC 12C SCL signal. 0: use pad
TOUCH_PADIO]; 1: use pad TOUCH_PADI2]. (R/W)

Espressif Systems 83 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

5. DPort Register

5.1 Introduction

The ESP32 integrates a large number of peripherals, and enables the control of individual peripherals to achieve
optimal characteristics in performance-vs-power-consumption scenarios. The DPort registers control clock
management (clock gating), power management, and the configuration of peripherals and core-system modules.
The system arranges each module with configuration registers contained in the DPort Register.

5.2 Features
DPort registers correspond to different peripheral blocks and core modules:

e System and memory

Reset and clock
e Interrupt matrix

e DMA

PID/MPU/MMU

APP_CPU

Peripheral clock gating and reset

5.3 Functional Description

5.3.1 System and Memory Register

The following registers are used for system and memory configuration, such as cache configuration and memory
remapping. For a detailed description of these registers, please refer to Chapter System and Memory.

e DPORT_PRO_BOOT_REMAP_CTRL_REG
e DPORT_APP_BOOT_REMAP_CTRL_REG
e DPORT_CACHE_MUX_MODE_REG

5.8.2 Reset and Clock Registers

The following register is used for Reset and Clock. For a detailed description of the register, please refer to Reset
and Clock.

e DPORT_CPU_PER_CONF_REG

Espressif Systems 84 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

5.3.3 Interrupt Matrix Register

The following registers are used for configuring and mapping interrupts through the interrupt matrix. For a

detailed description of the registers, please refer to Interrupt Matrix.

DPORT_CPU_INTR_FROM_CPU_0_REG
DPORT_CPU_INTR_FROM_CPU_1_REG
DPORT_CPU_INTR_FROM_CPU_2_REG
DPORT_CPU_INTR_FROM_CPU_3_REG
DPORT_PRO_INTR_STATUS_0_REG
DPORT_PRO_INTR_STATUS_1_REG
DPORT_PRO_INTR_STATUS_2_REG
DPORT_APP_INTR_STATUS_O_REG
DPORT_APP_INTR_STATUS_1_REG
DPORT_APP_INTR_STATUS_2_REG
DPORT_PRO_MAC_INTR_MAP_REG
DPORT_PRO_MAC_NMI_MAP_REG
DPORT_PRO_BB_INT_MAP_REG
DPORT_PRO_BT_MAC_INT_MAP_REG
DPORT_PRO_BT_BB_INT_MAP_REG
DPORT_PRO_BT_BB_NMI_MAP_REG
DPORT_PRO_RWBT_IRQ_MAP_REG
DPORT_PRO_RWBLE_IRQ_MAP_REG
DPORT_PRO_RWBT_NMI_MAP_REG
DPORT_PRO_RWBLE_NMI_MAP_REG
DPORT_PRO_SLCO_INTR_MAP_REG
DPORT_PRO_SLC1_INTR_MAP_REG
DPORT_PRO_UHCIO_INTR_MAP_REG
DPORT_PRO_UHCIH _INTR_MAP_REG
DPORT_PRO_TG_TO_LEVEL_INT_MAP_REG
DPORT_PRO_TG_T1_LEVEL_INT_MAP_REG
DPORT_PRO_TG_WDT_LEVEL_INT_MAP_REG
DPORT_PRO_TG_LACT_LEVEL_INT_MAP_REG
DPORT_PRO_TG1_TO_LEVEL_INT_MAP_REG
DPORT_PRO_TG1_T1_LEVEL_INT_MAP_REG
DPORT_PRO_TG1_WDT_LEVEL_INT_MAP_REG

Espressif Systems 85

ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

e DPORT_PRO_TG1_LACT_LEVEL_INT_MAP_REG

e DPORT_PRO_GPIO_INTERRUPT_MAP_REG

e DPORT_PRO_GPIO_INTERRUPT_NMI_MAP_REG

e DPORT_PRO_CPU_INTR_FROM_CPU_0_MAP_REG
e DPORT_PRO_CPU_INTR_FROM_CPU_1_MAP_REG
e DPORT_PRO_CPU_INTR_FROM_CPU_2_MAP_REG
e DPORT_PRO_CPU_INTR_FROM_CPU_3_MAP_REG
e DPORT_PRO_SPI_INTR_O_MAP_REG

e DPORT_PRO_SPILINTR_1_MAP_REG

e DPORT_PRO_SPI_INTR_2_MAP_REG

e DPORT_PRO_SPI_INTR_3_MAP_REG

e DPORT_PRO_I2SO_INT_MAP_REG

e DPORT_PRO_I2S1_INT_MAP_REG

e DPORT_PRO_UART_INTR_MAP_REG

e DPORT_PRO_UART1_INTR_MAP_REG

e DPORT_PRO_UART2_INTR_MAP_REG

e DPORT_PRO_SDIO_HOST_INTERRUPT_MAP_REG
e DPORT_PRO_EMAC_INT_MAP_REG

e DPORT_PRO_PWMO_INTR_MAP_REG

e DPORT_PRO_PWM1_INTR_MAP_REG

e DPORT_PRO_PWM2_INTR_MAP_REG

e DPORT_PRO_PWMB_INTR_MAP_REG

e DPORT_PRO_LEDC_INT_MAP_REG

e DPORT_PRO_EFUSE_INT_MAP_REG

e DPORT_PRO_CAN_INT_MAP_REG

e DPORT_PRO_RTC_CORE_INTR_MAP_REG

e DPORT_PRO_RMT_INTR_MAP_REG

e DPORT_PRO_PCNT_INTR_MAP_REG

e DPORT_PRO_I2C_EXTO_INTR_MAP_REG

e DPORT_PRO_I2C_EXT1_INTR_MAP_REG

e DPORT_PRO_RSA_INTR_MAP_REG

e DPORT_PRO_SPI1_DMA_INT_MAP_REG

e DPORT_PRO_SPI2_DMA_INT_MAP_REG

e DPORT_PRO_SPI3_DMA_INT_MAP_REG

Espressif Systems 86 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

e DPORT_PRO_WDG_INT_MAP_REG

e DPORT_PRO_TIMER_INT1_MAP_REG

e DPORT_PRO_TIMER_INT2_MAP_REG

e DPORT_PRO_TG_TO_EDGE_INT_MAP_REG

e DPORT_PRO_TG_T1_EDGE_INT_MAP_REG

e DPORT_PRO_TG_WDT_EDGE_INT_MAP_REG
e DPORT_PRO_TG_LACT_EDGE_INT_MAP_REG
e DPORT_PRO_TG1_TO_EDGE_INT_MAP_REG
e DPORT_PRO_TG1_T1_EDGE_INT_MAP_REG

e DPORT_PRO_TG1_WDT_EDGE_INT_MAP_REG
e DPORT_PRO_TG1_LACT_EDGE_INT_MAP_REG
e DPORT_PRO_MMU_IA_INT_MAP_REG

e DPORT_PRO_MPU_IA_INT_MAP_REG

e DPORT_PRO_CACHE_IA_INT_MAP_REG

e DPORT_APP_MAC_INTR_MAP_REG

e DPORT_APP_MAC_NMI_MAP_REG

e DPORT_APP_BB_INT_MAP_REG

e DPORT_APP_BT_MAC_INT_MAP_REG

e DPORT_APP_BT_BB_INT_MAP_REG

e DPORT_APP_BT_BB_NMI_MAP_REG

e DPORT_APP_RWBT_IRQ_MAP_REG

e DPORT_APP_RWBLE_IRQ_MAP_REG

e DPORT_APP_RWBT_NMI_MAP_REG

e DPORT_APP_RWBLE_NMI_MAP_REG

e DPORT_APP_SLCO_INTR_MAP_REG

e DPORT_APP_SLC1_INTR_MAP_REG

e DPORT_APP_UHCIO_INTR_MAP_REG

e DPORT_APP_UHCI1_INTR_MAP_REG

e DPORT_APP_TG_TO_LEVEL_INT_MAP_REG

e DPORT_APP_TG_T1_LEVEL_INT_MAP_REG

e DPORT_APP_TG_WDT_LEVEL_INT_MAP_REG
e DPORT_APP_TG_LACT_LEVEL_INT_MAP_REG
e DPORT_APP_TG1_TO_LEVEL_INT_MAP_REG
e DPORT_APP_TG1_T1_LEVEL_INT_MAP_REG

Espressif Systems 87

ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

e DPORT_APP_TG1_WDT_LEVEL_INT_MAP_REG

e DPORT_APP_TG1_LACT_LEVEL_INT_MAP_REG

e DPORT_APP_GPIO_INTERRUPT_MAP_REG

e DPORT_APP_GPIO_INTERRUPT_NMI_MAP_REG

e DPORT_APP_CPU_INTR_FROM_CPU_0_MAP_REG
e DPORT_APP_CPU_INTR_FROM_CPU_1_MAP_REG
e DPORT_APP_CPU_INTR_FROM_CPU_2_MAP_REG
e DPORT_APP_CPU_INTR_FROM_CPU_3_MAP_REG
e DPORT_APP_SPI_INTR_O_MAP_REG

e DPORT_APP_SPI_INTR_1_MAP_REG

e DPORT_APP_SPI_INTR_2_MAP_REG

e DPORT_APP_SPI_INTR_3_MAP_REG

e DPORT_APP_I2SO_INT_MAP_REG

e DPORT_APP_I2S1_INT_MAP_REG

e DPORT_APP_UART_INTR_MAP_REG

e DPORT_APP_UART1_INTR_MAP_REG

e DPORT_APP_UART2_INTR_MAP_REG

e DPORT_APP_SDIO_HOST_INTERRUPT_MAP_REG
e DPORT_APP_EMAC_INT_MAP_REG

e DPORT_APP_PWMO_INTR_MAP_REG

e DPORT_APP_PWM1_INTR_MAP_REG

e DPORT_APP_PWM2_INTR_MAP_REG

e DPORT_APP_PWMS3_INTR_MAP_REG

e DPORT_APP_LEDC_INT_MAP_REG

e DPORT_APP_EFUSE_INT_MAP_REG

e DPORT_APP_CAN_INT_MAP_REG

e DPORT_APP_RTC_CORE_INTR_MAP_REG

e DPORT_APP_RMT_INTR_MAP_REG

e DPORT_APP_PCNT_INTR_MAP_REG

e DPORT_APP_I2C_EXTO_INTR_MAP_REG

e DPORT_APP_I2C_EXT1_INTR_MAP_REG

e DPORT_APP_RSA_INTR_MAP_REG

e DPORT_APP_SPI1_DMA_INT_MAP_REG

e DPORT_APP_SPI2_DMA_INT_MAP_REG

Espressif Systems 88 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

e DPORT_APP_SPI3_DMA_INT_MAP_REG

e DPORT_APP_WDG_INT_MAP_REG

e DPORT_APP_TIMER_INT1_MAP_REG

e DPORT_APP_TIMER_INT2_MAP_REG

e DPORT_APP_TG_TO_EDGE_INT_MAP_REG

e DPORT_APP_TG_T1_EDGE_INT_MAP_REG

e DPORT_APP_TG_WDT_EDGE_INT_MAP_REG
e DPORT_APP_TG_LACT_EDGE_INT_MAP_REG
e DPORT_APP_TG1_TO_EDGE_INT_MAP_REG

e DPORT_APP_TG1_T1_EDGE_INT_MAP_REG

e DPORT_APP_TG1_WDT_EDGE_INT_MAP_REG
e DPORT_APP_TG1_LACT_EDGE_INT_MAP_REG
e DPORT_APP_MMU_IA_INT_MAP_REG

e DPORT_APP_MPU_IA_INT_MAP_REG

e DPORT_APP_CACHE_IA_INT_MAP_REG

5.3.4 DMA Registers

The following register is used for the SPI DMA configuration. For a detailed description of the register, please refer
to DMA.

e DPORT_SPI_DMA_CHAN_SEL_REG

5.3.5 PID/MPU/MMU Registers

The following registers are used for PID/MPU/MMU configuration and operation control. For a detailed
description of the registers, please refer to PID/MPU/MMU.

e DPORT_PRO_CACHE_CTRL_REG

e DPORT_APP_CACHE_CTRL_REG

e DPORT_IMMU_PAGE_MODE_REG

e DPORT_DMMU_PAGE_MODE_REG

e DPORT_AHB_MPU_TABLE_0_REG

e DPORT_AHB_MPU_TABLE_1_REG

e DPORT_AHBLITE_MPU_TABLE_UART_REG
e DPORT_AHBLITE_MPU_TABLE_SPI1_REG

e DPORT_AHBLITE_MPU_TABLE_SPIO_REG

e DPORT_AHBLITE_MPU_TABLE_GPIO_REG
e DPORT_AHBLITE_MPU_TABLE_FE2_REG

Espressif Systems 89 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

e DPORT_AHBLITE_MPU_TABLE_FE_REG

e DPORT_AHBLITE_MPU_TABLE_TIMER_REG

e DPORT_AHBLITE_MPU_TABLE_RTC_REG

e DPORT_AHBLITE_MPU_TABLE_IO_MUX_REG

e DPORT_AHBLITE_MPU_TABLE_WDG_REG

e DPORT_AHBLITE_MPU_TABLE_HINF_REG

e DPORT_AHBLITE_MPU_TABLE_UHCI1_REG

e DPORT_AHBLITE_MPU_TABLE_I2S0_REG

e DPORT_AHBLITE_MPU_TABLE_UART1_REG

e DPORT_AHBLITE_MPU_TABLE_I2C_EXTO_REG

e DPORT_AHBLITE_MPU_TABLE_UHCIO_REG

e DPORT_AHBLITE_MPU_TABLE_SLCHOST_REG
e DPORT_AHBLITE_MPU_TABLE_RMT_REG

e DPORT_AHBLITE_MPU_TABLE_PCNT_REG

e DPORT_AHBLITE_MPU_TABLE_SLC_REG

e DPORT_AHBLITE_MPU_TABLE_LEDC_REG

e DPORT_AHBLITE_MPU_TABLE_EFUSE_REG

e DPORT_AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG
e DPORT_AHBLITE_MPU_TABLE_PWMO_REG

e DPORT_AHBLITE_MPU_TABLE_TIMERGROUP_REG
e DPORT_AHBLITE_MPU_TABLE_TIMERGROUP1_REG
e DPORT_AHBLITE_MPU_TABLE_SPI2_REG

e DPORT_AHBLITE_MPU_TABLE_SPI3_REG

e DPORT_AHBLITE_MPU_TABLE_APB_CTRL_REG
e DPORT_AHBLITE_MPU_TABLE_I2C_EXT1_REG

e DPORT_AHBLITE_MPU_TABLE_SDIO_HOST_REG
e DPORT_AHBLITE_MPU_TABLE_EMAC_REG

e DPORT_AHBLITE_MPU_TABLE_PWM1_REG

e DPORT_AHBLITE_MPU_TABLE_I2S1_REG

e DPORT_AHBLITE_MPU_TABLE_UART2_REG

e DPORT_AHBLITE_MPU_TABLE_PWM2_REG

e DPORT_AHBLITE_MPU_TABLE_PWMB3_REG

e DPORT_AHBLITE_MPU_TABLE_PWR_REG

e DPORT_IMMU_TABLEO_REG

Espressif Systems 90

ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

e DPORT_IMMU_TABLE1_REG

e DPORT_IMMU_TABLE2_REG

e DPORT_IMMU_TABLE3_REG

e DPORT_IMMU_TABLE4_REG

e DPORT_IMMU_TABLE5_REG

e DPORT_IMMU_TABLEG_REG

e DPORT_IMMU_TABLE7_REG

e DPORT_IMMU_TABLE8_REG

e DPORT_IMMU_TABLE9_REG

e DPORT_IMMU_TABLE10_REG
e DPORT_IMMU_TABLE11_REG
e DPORT_IMMU_TABLE12_REG
e DPORT_IMMU_TABLE13_REG
e DPORT_IMMU_TABLE14_REG
e DPORT_IMMU_TABLE15_REG
e DPORT_DMMU_TABLEO_REG
e DPORT_DMMU_TABLE1_REG
e DPORT_DMMU_TABLE2_REG
e DPORT_DMMU_TABLE3_REG
e DPORT_DMMU_TABLE4_REG
e DPORT_DMMU_TABLE5S_REG
e DPORT_DMMU_TABLEG_REG
e DPORT_DMMU_TABLE7_REG
e DPORT_DMMU_TABLE8_REG
e DPORT_DMMU_TABLE9_REG
e DPORT_DMMU_TABLE10_REG
e DPORT_DMMU_TABLE11_REG
e DPORT_DMMU_TABLE12_REG
e DPORT_DMMU_TABLE13_REG
e DPORT_DMMU_TABLE14_REG
e DPORT_DMMU_TABLE15_REG

Espressif Systems 91 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

5.3.6 APP_CPU Controller Registers

DPort registers are used for some basic configuration of the APP_CPU, such as performing a stalling execution,
and for configuring the ROM boot jump address.

e APP_CPU is reset when DPORT_APPCPU_RESETTING=1. It is released when
DPORT_APPCPU_RESETTING=0.

e When DPORT_APPCPU_CLKGATE_EN=0, the APP_CPU clock can be disabled to reduce power
consumption.

e When DPORT_APPCPU_RUNSTALL=1, the APP_CPU can be put into a stalled state.

e When APP_CPU is booted up with a ROM code, it will jump to the address stored in the
DPORT_APPCPU_BOOT_ADDR register.

5.38.7 Peripheral Clock Gating and Reset

Reset and clock gating registers covered in this section are active-high registers. Note that the reset bits are not
self-cleared by hardware. When a clock-gating register bit is set to 1, the corresponding clock is enabled. Setting
the register bit to O disables the clock. Setting a reset register bit to 1 puts the peripheral in a reset state, while
setting the register bit to O disables the reset state, thus enabling normal operation.

e DPORT_PERI_CLK_EN_REG: enables the hardware accelerator clock.

BIT4, Digital Signature

BIT3, Secure boot

BIT2, RSA Accelerator

BIT1, SHA Accelerator

BITO, AES Accelerator

e DPORT_PERI_RST_EN_REG: resets the accelerator.

- BIT4, Digital Signature
AES Accelerator and RSA Accelerator will also be reset.

- BIT3, Secure boot
AES Accelerator and SHA Accelerator will also be reset.

- BIT2, RSA Accelerator
- BIT1, SHA Accelerator
— BITO, AES Accelerator
e DPORT_PERIP_CLK_EN_REG=1: enables the peripheral clock.
- BIT26, PWM3
- BIT25, PWM2

- BIT24, UART MEM
All UART-shared memory. As long as a UART is working, the UART memory clock cannot be in the
gating state.

- BIT23, UARTZ2

Espressif Systems 92 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

BIT22, SPI_DMA
BIT21, 1281

BIT20, PWM1
BIT19, CAN

BIT18, 12C1

BIT17, PWMO
BIT16, SPI3

BIT15, Timer Group1
BIT14, eFuse

BIT13, Timer GroupO
BIT12, UHCH
BIT11, LED_PWM
BIT10, PULSE_CNT
BIT9, Remote Controller
BIT8, UHCIO

BIT7, 12C0

BIT6, SPI2

BIT5, UARTH

BIT4, 12S0

BIT3, WDG

BIT2, UART

BIT1, SPI

BITO, Timers

e DPORT_PERIP_RST_EN_REG: resets peripherals

BIT26, PWM3
BIT25, PWM2
BIT24, UART MEM
BIT23, UART2
BIT22, SPI_DMA
BIT21, 1251

BIT20, PWM1
BIT19, CAN
BIT18, 12C1

BIT17, PWMO

Espressif Systems 93

ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

e DPORT_WIFI_CLK_EN_REG: used for Wi-Fi and BT clock gating.

e DPORT_WIFI_RST_EN_REG: used for Wi-Fi and BT reset.

BIT16, SPI3

BIT15, Timer Group1
BIT14, eFuse

BIT13, Timer GroupO
BIT12, UHCH

BIT11, LED_PWM
BIT10, PULSE_CNT
BIT9, Remote Controller
BIT8, UHCIO

BIT7, 12C0

BIT6, SPI2

BIT5, UARTH

BIT4, 12S0

BIT3, WDG

BIT2, UART

BIT1, SPI

BITO, Timers

Espressif Systems

94

ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

5.4 Register Summary

Name Description Address Access
PRO_BOOT_REMAP_CTRL_REG remap mode for PRO_CPU Ox3FFO0000 | R/W
APP_BOOT_REMAP_CTRL_REG remap mode for APP_CPU 0x3FF00004 | R/W
PERI_CLK_EN_REG clock gate for peripherals Ox3FF0001C | R/W
PERI_RST_EN_REG reset for peripherals Ox3FF00020 | R/W
APPCPU_CTRL_REG_A_REG reset for APP_CPU Ox3FF0002C | R/W
APPCPU_CTRL_REG_B_REG clock gate for APP_CPU 0x3FF00030 | R/W
APPCPU_CTRL_REG_C_REG stall for APP_CPU Ox3FF00034 | R/W
APPCPU_CTRL_REG_D_REG boot address for APP_CPU O0x3FF00038 | R/W
PRO_CACHE_CTRL_REG determines the virtual address mode | Ox3FFO0040 | R/W
of the external SRAM
APP_CACHE_CTRL_REG determines the virtual address mode | Ox3FF00058 | R/W
of the external SRAM
CACHE_MUX_MODE_REG the mode of the two caches sharing | Ox3FFO007C | R/W
the memory
IMMU_PAGE_MODE_REG page size in the MMU for the internal | Ox3FFO0080 | R/W
SRAM 0
DMMU_PAGE_MODE_REG page size in the MMU for the internal | Ox3FF00084 | R/W
SRAM 2
SRAM_PD_CTRL_REG_0_REG powers down internal SRAM_REG Ox3FF00098 | R/W
SRAM_PD_CTRL_REG_1_REG powers down internal SRAM_REG Ox3FF0009C | R/W
AHB_MPU_TABLE_0O_REG MPU for configuring DMA 0x3FFO00B4 | R/W
AHB_MPU_TABLE_1_REG MPU for configuring DMA Ox3FFO00B8 | R/W
PERIP_CLK_EN_REG clock gate for peripherals 0x3FFO00CO | R/W
PERIP_RST_EN_REG reset for peripherals Ox3FFO00C4 | R/W
SLAVE_SPI_CONFIG_REG enables decryption in external flash 0x3FFO00C8 | R/W
WIFI_CLK_EN_REG clock gate for Wi-Fi Ox3FFO00CC | R/W
WIFI_RST_EN_REG reset for Wi-Fi Ox3FFO00DO | R/W
CPU_INTR_FROM_CPU_O_REG interrupt O in both CPUs Ox3FFO00DC | R/W
CPU_INTR_FROM_CPU_1_REG interrupt 1 in both CPUs Ox3FFOOOEQO | R/W
CPU_INTR_FROM_CPU_2_REG interrupt 2 in both CPUs Ox3FFOOOE4 | R/W
CPU_INTR_FROM_CPU_3_REG interrupt 3 in both CPUs Ox3FFOOOE8 | R/W
PRO_INTR_STATUS_REG_0_REG PRO_CPU interrupt status O Ox3FFOOOEC | RO
PRO_INTR_STATUS_REG_1_REG PRO_CPU interrupt status 1 0x3FFOOOFO | RO
PRO_INTR_STATUS_REG_2_REG PRO_CPU interrupt status 2 Ox3FFOO0F4 | RO
APP_INTR_STATUS_REG_0_REG APP_CPU interrupt status O 0x3FFOO0F8 | RO
APP_INTR_STATUS_REG_1_REG APP_CPU interrupt status 1 Ox3FFOOOFC | RO
APP_INTR_STATUS_REG_2_REG APP_CPU interrupt status 2 0x3FF00100 | RO
PRO_MAC_INTR_MAP_REG interrupt map Ox3FF00104 | R/W
PRO_MAC_NMI_MAP_REG interrupt map Ox3FF00108 | R/W
PRO_BB_INT_MAP_REG interrupt map Ox3FFO010C | R/W
PRO_BT_MAC_INT_MAP_REG interrupt map Ox3FF00110 | R/W
PRO_BT_BB_INT_MAP_REG interrupt map 0x3FFO0114 | R/W
Espressif Systems 95 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Name

Description

Address Access

PRO_BT_BB_NMI_MAP_REG

interrupt map

Ox3FF00118 | R/W

PRO_RWBT_IRQ_MAP_REG

interrupt map

Ox3FF0011C | R/W

PRO_RWBLE_IRQ_MAP_REG

interrupt map

Ox3FF00120 | R/W

PRO_RWBT_NMI_MAP_REG

interrupt map

Ox3FF00124 | R/W

PRO_RWBLE_NMI_MAP_REG

interrupt map

Ox3FF00128 | R/W

PRO_SLCO_INTR_MAP_REG

interrupt map

Ox3FF0012C | R/W

PRO_SLC1_INTR_MAP_REG

interrupt map

Ox3FF00130 | R/W

PRO_UHCIO_INTR_MAP_REG

interrupt map

Ox3FF00134 | R/W

PRO_UHCI1_INTR_MAP_REG

interrupt map

Ox3FF00138 | R/W

PRO_TG_TO_LEVEL_INT_MAP_REG

interrupt map

Ox3FF0013C | R/W

PRO_TG_T1_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00140 | R/W

PRO_TG_WDT_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00144 | R/W

PRO_TG_LACT_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00148 | R/W

PRO_TG1_TO_LEVEL_INT_MAP_REG

interrupt map

Ox3FF0014C | R/W

PRO_TG1_T1_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00150 | R/W

PRO_TG1_WDT_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00154 | R/W

PRO_TG1_LACT_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00158 | R/W

PRO_GPIO_INTERRUPT_MAP_REG

interrupt map

Ox3FF0015C | R/W

PRO_GPIO_INTERRUPT_NMI_MAP_REG

interrupt map

Ox3FF00160 | R/W

PRO_CPU_INTR_FROM_CPU_O0_MAP_REG

interrupt map

Ox3FF00164 | R/W

PRO_CPU_INTR_FROM_CPU_1_MAP_REG

interrupt map

Ox3FF00168 | R/W

PRO_CPU_INTR_FROM_CPU_2_MAP_REG

Interrupt map

Ox3FFO016C | R/W

PRO_CPU_INTR_FROM_CPU_3_MAP_REG

interrupt map

Ox3FF00170 | R/W

PRO_SPI_INTR_O_MAP_REG

interrupt map

Ox3FF00174 | R/W

PRO_SPI_INTR_1_MAP_REG

interrupt map

Ox3FF00178 | R/W

PRO_SPI_INTR_2_MAP_REG

interrupt map

Ox3FF0017C | R/W

PRO_SPI_INTR_3_MAP_REG

interrupt map

Ox3FF00180 | R/W

PRO_I2S0_INT_MAP_REG

interrupt map

Ox3FF00184 | R/W

PRO_I2S1_INT_MAP_REG

interrupt map

Ox3FF00188 | R/W

PRO_UART_INTR_MAP_REG

interrupt map

Ox3FF0018C | R/W

PRO_UART1_INTR_MAP_REG

interrupt map

Ox3FF00190 | R/W

PRO_UART2_INTR_MAP_REG

interrupt map

Ox3FF00194 | R/W

PRO_SDIO_HOST_INTERRUPT_MAP_REG

interrupt map

Ox3FF00198 | R/W

PRO_EMAC_INT_MAP_REG

interrupt map

Ox3FF0019C | R/W

PRO_PWMO_INTR_MAP_REG

interrupt map

Ox3FFO01A0 | R/W

PRO_PWM1_INTR_MAP_REG

interrupt map

Ox3FFO01A4 | R/W

PRO_PWM2_INTR_MAP_REG

interrupt map

Ox3FFO01A8 | R/W

PRO_PWMS3_INTR_MAP_REG

interrupt map

Ox3FFOO1AC | R/W

PRO_LEDC_INT_MAP_REG

interrupt map

Ox3FFO01BO | R/W

PRO_EFUSE_INT_MAP_REG

interrupt map

Ox3FF001B4 | R/W

PRO_CAN_INT_MAP_REG

interrupt map

Ox3FFO01B8 | R/W

PRO_RTC_CORE_INTR_MAP_REG

interrupt map

Ox3FFO01BC | R/W

PRO_RMT_INTR_MAP_REG

interrupt map

Ox3FFO01CO | R/W

PRO_PCNT_INTR_MAP_REG

interrupt map

Ox3FF001C4 | R/W

Espressif Systems

96

ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Name

Description

Address Access

PRO_I2C_EXTO_INTR_MAP_REG

interrupt map

Ox3FF001C8 | R/W

PRO_I2C_EXT1_INTR_MAP_REG

interrupt map

Ox3FFO001CC | R/W

PRO_RSA_INTR_MAP_REG

interrupt map

Ox3FFO01D0O | RW

PRO_SPI1_DMA_INT_MAP_REG

interrupt map

Ox3FFO01D4 | R/W

PRO_SPI2_DMA_INT_MAP_REG

interrupt map

Ox3FFO01D8 | R/W

PRO_SPI3_DMA_INT_MAP_REG

interrupt map

Ox3FFO01DC | R/W

PRO_WDG_INT_MAP_REG

interrupt map

Ox3FFOO1EO | R/W

PRO_TIMER_INT1_MAP_REG

interrupt map

Ox3FFOO1E4 | R/W

PRO_TIMER_INT2_MAP_REG

interrupt map

Ox3FFOO1E8 | R/W

PRO_TG_TO_EDGE_INT_MAP_REG

interrupt map

Ox3FFOO1EC | R/W

PRO_TG_T1_EDGE_INT_MAP_REG

interrupt map

Ox3FFOO1FO | R/W

PRO_TG_WDT_EDGE_INT_MAP_REG

interrupt map

Ox3FFOO01F4 | R/W

PRO_TG_LACT_EDGE_INT_MAP_REG

interrupt map

Ox3FFO01F8 | R/W

PRO_TG1_TO_EDGE_INT_MAP_REG

interrupt map

Ox3FFOO1FC | R/W

PRO_TG1_T1_EDGE_INT_MAP_REG

interrupt map

Ox3FF00200 | R/W

PRO_TG1_WDT_EDGE_INT_MAP_REG

interrupt map

Ox3FF00204 | R/W

PRO_TG1_LACT_EDGE_INT_MAP_REG

interrupt map

Ox3FF00208 | R/W

PRO_MMU_IA_INT_MAP_REG

interrupt map

Ox3FF0020C | R/W

PRO_MPU_IA_INT_MAP_REG

interrupt map

Ox3FF00210 | R/W

PRO_CACHE_IA_INT_MAP_REG

interrupt map

Ox3FF00214 | R/W

APP_MAC_INTR_MAP_REG

interrupt map

Ox3FF00218 | R/W

APP_MAC_NMI_MAP_REG

interrupt map

Ox3FF0021C | R/W

APP_BB_INT_MAP_REG

interrupt map

Ox3FF00220 | R/W

APP_BT_MAC_INT_MAP_REG

interrupt map

Ox3FF00224 | R/W

APP_BT_BB_INT_MAP_REG

interrupt map

Ox3FF00228 | R/W

APP_BT_BB_NMI_MAP_REG

interrupt map

Ox3FF0022C | R/W

APP_RWBT_IRQ_MAP_REG

interrupt map

Ox3FF00230 | R/W

APP_RWBLE_IRQ_MAP_REG

interrupt map

Ox3FF00234 | R/W

APP_RWBT_NMI_MAP_REG

interrupt map

Ox3FF00238 | R/W

APP_RWBLE_NMI_MAP_REG

interrupt map

Ox3FF0023C | R/W

APP_SLCO_INTR_MAP_REG

interrupt map

O0x3FF00240 | R/W

APP_SLC1_INTR_MAP_REG

interrupt map

Ox3FF00244 | R/W

APP_UHCIO_INTR_MAP_REG

interrupt map

Ox3FF00248 | R/W

APP_UHCI1_INTR_MAP_REG

interrupt map

Ox3FF0024C | R/W

APP_TG_TO_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00250 | R/W

APP_TG_T1_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00254 | R/W

APP_TG_WDT_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00258 | R/W

APP_TG_LACT_LEVEL_INT_MAP_REG

interrupt map

Ox3FF0025C | R/W

APP_TG1_TO_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00260 | R/W

APP_TG1_T1_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00264 | R/W

APP_TG1_WDT_LEVEL_INT_MAP_REG

interrupt map

Ox3FF00268 | R/W

APP_TG1_LACT_LEVEL_INT_MAP_REG

interrupt map

Ox3FF0026C | R/W

APP_GPIO_INTERRUPT_MAP_REG

interrupt map

Ox3FF00270 | R/W

APP_GPIO_INTERRUPT_NMI_MAP_REG

interrupt map

Ox3FF00274 | R/W

Espressif Systems

97

ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Name

Description

Address Access

APP_CPU_INTR_FROM_CPU_0_MAP_REG

interrupt map

Ox3FF00278 | R/W

APP_CPU_INTR_FROM_CPU_1_MAP_REG

interrupt map

Ox3FF0027C | R/W

APP_CPU_INTR_FROM_CPU_2_MAP_REG

interrupt map

Ox3FF00280 | R/W

APP_CPU_INTR_FROM_CPU_3_MAP_REG

interrupt map

Ox3FF00284 | R/W

APP_SPI_INTR_O_MAP_REG

interrupt map

Ox3FF00288 | R/W

APP_SPI_INTR_1_MAP_REG

interrupt map

Ox3FF0028C | R/W

APP_SPI_INTR_2_MAP_REG

interrupt map

Ox3FF00290 | R/W

APP_SPI_INTR_3_MAP_REG

interrupt map

Ox3FF00294 | R/W

APP_I2S0_INT_MAP_REG

interrupt map

Ox3FF00298 | R/W

APP_I2S1_INT_MAP_REG

interrupt map

Ox3FF0029C | R/W

APP_UART_INTR_MAP_REG

interrupt map

Ox3FFO02A0 | R/W

APP_UART1_INTR_MAP_REG

interrupt map

Ox3FF002A4 | R/W

APP_UART2_INTR_MAP_REG

interrupt map

Ox3FFO002A8 | R/W

APP_SDIO_HOST_INTERRUPT_MAP_REG

interrupt map

Ox3FFO02AC | R/W

APP_EMAC_INT_MAP_REG

interrupt map

Ox3FF002B0O | R/W

APP_PWMO_INTR_MAP_REG

interrupt map

Ox3FF002B4 | R/W

APP_PWM1_INTR_MAP_REG

interrupt map

Ox3FF002B8 | R/W

APP_PWM2_INTR_MAP_REG

interrupt map

Ox3FF002BC | R/W

APP_PWMB3_INTR_MAP_REG

interrupt map

Ox3FF002C0 | R/W

APP_LEDC_INT_MAP_REG

interrupt map

Ox3FF002C4 | R/W

APP_EFUSE_INT_MAP_REG

interrupt map

Ox3FF002C8 | R/W

APP_CAN_INT_MAP_REG

interrupt map

Ox3FF002CC | R/W

APP_RTC_CORE_INTR_MAP_REG

interrupt map

Ox3FF002D0 | R/W

APP_RMT_INTR_MAP_REG

interrupt map

Ox3FF002D4 | R/W

APP_PCNT_INTR_MAP_REG

interrupt map

Ox3FF002D8 | R/W

APP_I2C_EXTO_INTR_MAP_REG

interrupt map

Ox3FF002DC | R/W

APP_I2C_EXT1_INTR_MAP_REG

interrupt map

Ox3FFO02EO0 | R/W

APP_RSA_INTR_MAP_REG

interrupt map

Ox3FFO02E4 | R/W

APP_SPI1_DMA_INT_MAP_REG

interrupt map

Ox3FFO02E8 | R/W

APP_SPI2_DMA_INT_MAP_REG

interrupt map

Ox3FFO02EC | R/W

APP_SPI3_DMA_INT_MAP_REG

interrupt map

Ox3FFO02FO0 | R/W

APP_WDG_INT_MAP_REG

interrupt map

Ox3FFO02F4 | R/W

APP_TIMER_INT1_MAP_REG

interrupt map

Ox3FFO02F8 | R/W

APP_TIMER_INT2_MAP_REG

interrupt map

Ox3FFO02FC | R/W

APP_TG_TO_EDGE_INT_MAP_REG

interrupt map

Ox3FFO0300 | R/W

APP_TG_T1_EDGE_INT_MAP_REG

interrupt map

Ox3FF00304 | R/W

APP_TG_WDT_EDGE_INT_MAP_REG

interrupt map

Ox3FF00308 | R/W

APP_TG_LACT_EDGE_INT_MAP_REG

interrupt map

Ox3FFO030C | R/W

APP_TG1_TO_EDGE_INT_MAP_REG

interrupt map

Ox3FF00310 | R/W

APP_TG1_T1_EDGE_INT_MAP_REG

interrupt map

Ox3FF00314 | R/W

APP_TG1_WDT_EDGE_INT_MAP_REG

interrupt map

Ox3FF00318 | R/W

APP_TG1_LACT_EDGE_INT_MAP_REG

interrupt map

Ox3FF0031C | R/W

APP_MMU_IA_INT_MAP_REG

interrupt map

Ox3FF00320 | R/W

APP_MPU_IA_INT_MAP_REG

interrupt map

Ox3FF00324 | R/W

Espressif Systems

98

ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Name Description Address Access
APP_CACHE_IA_INT_MAP_REG interrupt map 0x3FF00328 | R/W
AHBLITE_MPU_TABLE_UART_REG MPU for peripherals O0x3FF0032C | R/W
AHBLITE_MPU_TABLE_SPIH_REG MPU for peripherals Ox3FF00330 | R/W
AHBLITE_MPU_TABLE_SPIO_REG MPU for peripherals Ox3FF00334 | R/W
AHBLITE_MPU_TABLE_GPIO_REG MPU for peripherals Ox3FF00338 | R/W
AHBLITE_MPU_TABLE_RTC_REG MPU for peripherals Ox3FF00348 | R/W
AHBLITE_MPU_TABLE_IO_MUX_REG MPU for peripherals O0x3FF0034C | R/W
AHBLITE_MPU_TABLE_HINF_REG MPU for peripherals Ox3FF00354 | R/W
AHBLITE_MPU_TABLE_UHCIH_REG MPU for peripherals O0x3FF00358 | R/W
AHBLITE_MPU_TABLE_I2S0_REG MPU for peripherals Ox3FF00364 | R/W
AHBLITE_MPU_TABLE_UART1_REG MPU for peripherals 0x3FF00368 | R/W
AHBLITE_MPU_TABLE_I2C_EXTO_REG MPU for peripherals Ox3FF00374 | R/W
AHBLITE_MPU_TABLE_UHCIO_REG MPU for peripherals 0x3FF00378 | R/W
AHBLITE_MPU_TABLE_SLCHOST_REG MPU for peripherals Ox3FF0037C | R/W
AHBLITE_MPU_TABLE_RMT_REG MPU for peripherals 0x3FF00380 | R/W
AHBLITE_MPU_TABLE_PCNT_REG MPU for peripherals Ox3FF00384 | R/W
AHBLITE_MPU_TABLE_SLC_REG MPU for peripherals 0x3FF00388 | R/W
AHBLITE_MPU_TABLE_LEDC_REG MPU for peripherals Ox3FF0038C | R/W
AHBLITE_MPU_TABLE_EFUSE_REG MPU for peripherals O0x3FF00390 | R/W
AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG | MPU for peripherals Ox3FF00394 | R/W
AHBLITE_MPU_TABLE_PWMO_REG MPU for peripherals O0x3FF0039C | R/W
AHBLITE_MPU_TABLE_TIMERGROUP_REG MPU for peripherals Ox3FFOO3A0 | R/W
AHBLITE_MPU_TABLE_TIMERGROUP1_REG | MPU for peripherals Ox3FFO03A4 | R/W
AHBLITE_MPU_TABLE_SPI2_REG MPU for peripherals Ox3FFO03A8 | R/W
AHBLITE_MPU_TABLE_SPI3_REG MPU for peripherals Ox3FFOO3AC | R/W
AHBLITE_MPU_TABLE_APB_CTRL_REG MPU for peripherals Ox3FFO03BO | R/W
AHBLITE_MPU_TABLE_I2C_EXT1_REG MPU for peripherals Ox3FF003B4 | R/W
AHBLITE_MPU_TABLE_SDIO_HOST_REG MPU for peripherals Ox3FFO03B8 | R/W
AHBLITE_MPU_TABLE_EMAC_REG MPU for peripherals Ox3FFO03BC | R/W
AHBLITE_MPU_TABLE_PWM1_REG MPU for peripherals Ox3FFO03C4 | R/W
AHBLITE_MPU_TABLE_I2S1_REG MPU for peripherals Ox3FF003C8 | R/W
AHBLITE_MPU_TABLE_UART2_REG MPU for peripherals 0x3FFO03CC | R/W
AHBLITE_MPU_TABLE_PWM2_REG MPU for peripherals Ox3FFO03D0O | R/W
AHBLITE_MPU_TABLE_PWM3_REG MPU for peripherals Ox3FFO03D4 | R/W
AHBLITE_MPU_TABLE_PWR_REG MPU for peripherals Ox3FFOO3E4 | R/W
IMMU_TABLEO_REG MMU register 1 for internal SRAM 0 | Ox3FF00504 | R/W
IMMU_TABLE1_REG MMU register 1 for internal SRAM 0 | Ox3FF00508 | R/W
IMMU_TABLE2_REG MMU register 1 for Internal SRAM 0 | OxBFFO050C | R/W
IMMU_TABLE3_REG MMU register 1 for internal SRAM 0 | OxBFF00510 | R/W
IMMU_TABLE4_REG MMU register 1 for internal SRAM 0 | Ox3FF00514 | R/W
IMMU_TABLE5_REG MMU register 1 for internal SRAM 0 | Ox8FF00518 | R/W
IMMU_TABLE6_REG MMU register 1 for internal SRAM 0 | OxBFFO051C | R/W
IMMU_TABLE7_REG MMU register 1 for internal SRAM 0 | Ox8FF00520 | R/W
IMMU_TABLE8_REG MMU register 1 for internal SRAM 0 | Ox3FF00524 | R/W
Espressif Systems 99 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Name Description Address Access
IMMU_TABLE9_REG MMU register 1 for internal SRAM O | Ox3FF00528 | R/W
IMMU_TABLE10_REG MMU register 1 for internal SRAM O | Ox3FF0052C | R/W
IMMU_TABLE11_REG MMU register 1 for internal SRAM O | Ox3FF00530 | R/W
IMMU_TABLE12_REG MMU register 1 for Internal SRAM 0 | Ox3FF00534 | R/W
IMMU_TABLE13_REG MMU register 1 for internal SRAM O | Ox3FF00538 | R/W
IMMU_TABLE14_REG MMU register 1 for internal SRAM 0 | Ox3FF0053C | R/W
IMMU_TABLE15_REG MMU register 1 for internal SRAM O | Ox3FF00540 | R/W
DMMU_TABLEO_REG MMU register 1 for Internal SRAM 2 | Ox3FF00544 | R/W
DMMU_TABLE1_REG MMU register 1 for internal SRAM 2 | Ox3FF00548 | R/W
DMMU_TABLE2_REG MMU register 1 for internal SRAM 2 | Ox3FF0054C | R/W
DMMU_TABLE3_REG MMU register 1 for internal SRAM 2 | Ox8FF00550 | R/W
DMMU_TABLE4_REG MMU register 1 for internal SRAM 2 | Ox3FF00554 | R/W
DMMU_TABLE5_REG MMU register 1 for internal SRAM 2 | Ox38FF00558 | R/W
DMMU_TABLE6G_REG MMU register 1 for internal SRAM 2 | Ox3FF0055C | R/W
DMMU_TABLE7_REG MMU register 1 for internal SRAM 2 | Ox8FF00560 | R/W
DMMU_TABLE8_REG MMU register 1 for internal SRAM 2 | Ox3FF00564 | R/W
DMMU_TABLES_REG MMU register 1 for internal SRAM 2 | Ox3FF00568 | R/W
DMMU_TABLE10_REG MMU register 1 for internal SRAM 2 | Ox3FF0056C | R/W
DMMU_TABLE11_REG MMU register 1 for internal SRAM 2 | Ox8FF00570 | R/W
DMMU_TABLE12_REG MMU register 1 for internal SRAM 2 | Ox3FF00574 | R/W
DMMU_TABLE13_REG MMU register 1 for internal SRAM 2 | Ox3FF00578 | R/W
DMMU_TABLE14_REG MMU register 1 for internal SRAM 2 | Ox3FF0057C | R/W
DMMU_TABLE15_REG MMU register 1 for internal SRAM 2 | Ox3FF00580 | R/W
SECURE_BOOT_CTRL_REG mode for secure_boot Ox3FFO05A4 | R/W
SPI_DMA_CHAN_SEL_REG selects DMA channel for SPI1, SPI2, | Ox3FFO05A8 | R/W
and SPI3
Espressif Systems 100 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

5.5 Registers

Register 5.1: PRO_BOOT_REMAP_CTRL_REG (0x000)

E o]

‘ooooooooooooooooooooooooooooooo|o‘Reset

PRO_BOOT_REMAP Remap mode for PRO_CPU. (R/W)

Register 5.2: APP_BOOT_REMAP_CTRL_REG (0x004)

[o]

‘oooooooooooo00ooooooooooooooooo|o‘Reset

APP_BOOT_REMAP Remap mode for APP_CPU. (R/W)

Register 5.3: PERI_CLK_EN_REG (0x01C)

E |

‘ 0x000000000 \ Reset

PERI_CLK_EN_REG Clock gate for peripherals. (R/W)

Register 5.4: PERI_RST_EN_REG (0x020)

‘ 0x000000000 ‘ Reset

PERI_RST_EN_REG Reset for peripherals. (R/W)

Espressif Systems 101 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.5: APPCPU_CTRL_REG_A_REG (0x02C)

&
&
5 o
QJG QC)
& ¥
‘oooooooooooo00ooooooooooooooooo|1‘Reset
APPCPU_RESETTING Reset for APP_CPU. (R/W)
Register 5.6: APPCPU_CTRL_REG_B_REG (0x030)
%
/\‘</<5/
<)
O\/
S QQ/
& <2C)
& ¥
E o]
‘ooooooooooooooooooooooooooooooo|o‘Reset
APPCPU_CLKGATE_EN Clock gate for APP_CPU. (R/W)
Register 5.7: APPCPU_CTRL_REG_C_REG (0x034)
>
St
@6\ Q\B?
& oo

APPCPU_RUNSTALL Stall for APP_CPU. (R/W)

Register 5.8: APPCPU_CTRL_REG_D_REG (0x038)

‘ 0x000000000 ‘ Reset

APPCPU_CTRL_REG_D_REG Boot address for APP_CPU. (R/W)

Espressif Systems 102 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.9: CPU_PER_CONF_REG (0x03C)

S ngéz
\@C"Q)é
’ 31 2 | 1 0 ‘

’OOOOOOOOOOOOOOOOOOOOOOOO

o
o
o
o
o
o
o
o
Y
)
[
o]
~+

CPU_CPUPERIOD_SEL Select CPU clock. (R/W)

Register 5.10: PRO_CACHE_CTRL_REG (0x040)

&
& X
7 7 \/
> S S
N o S
Q)é\ QQY\ @é\ QQ‘?\ N Q)& O?‘QC)V@Q?Q Q)&
%Q)(A o7 %®6 007 %Q;(A O 0720 c_)t?)(A
@ & @ LE @ EL @
’31 17|16|15 12|11|10|9 6|5|4|3|5 3‘
]ooooooooooooooo|o|o 0o o o|o|o|o) o|o|1|0|o 0 O‘Reset

PRO_DRAM_HL Determines the virtual address mode of the external SRAM. (R/W)
PRO_DRAM_SPLIT Determines the virtual address mode of the external SRAM. (R/W)

PRO_SINGLE_IRAM_ENA Determines a special mode for PRO_CPU access to the external flash.
(R/W)

PRO_CACHE_FLUSH_DONE PRO_CPU cache-flush done. (RO)
PRO_CACHE_FLUSH_ENA Flushes the PRO_CPU cache. (R/W)

PRO_CACHE_ENABLE Enables the PRO_CPU cache. (R/W)

Espressif Systems 103 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.11: APP_CACHE_CTRL_REG (0x058)

&
& S
S SR
& RS BV a
N N S
Q)& QQ\?\ Q)& QQY \$C9 %é\ OVQQVOOVO Q)&
%Q)é Q7 %Q}\\ /R 7 %Q,Q\‘ /R s %Q}\\
N ¥ @ g & % ¢
5 | 4

E

15|14|13 12|11|10|9 6|

’ooooooooooooooooo|o|o o|o|o|oooo

APP_DRAM_HL Determines the virtual address mode of the External SRAM. (R/W)
APP_DRAM_SPLIT Determines the virtual address mode of the External SRAM. (R/W)

APP_SINGLE_IRAM_ENA Determines a special mode for APP_CPU access to the external flash.
(R/W)

APP_CACHE_FLUSH_DONE APP_CPU cache-flush done. (RO)
APP_CACHE_FLUSH_ENA Flushes the APP_CPU cache. (R/W)

APP_CACHE_ENABLE Enables the APP_CPU cache. (R/W)

Register 5.12: CACHE_MUX_MODE_REG (0x07C)

<
Q
?@
5 =
(AQJ \2\((/
(%) O
\@GJ 8
]ooooooo00ooooooooooooooooooooo|0 O‘Reset
CACHE_MUX_MODE The mode of the two caches sharing the memory. (R/W)
Register 5.13: IMMU_PAGE_MODE_REG (0x080)
N
OO
&7
S ¥
5 S
& NN

IMMU_PAGE_MODE Page size in the MMU for the internal SRAM 0. (R/W)

Espressif Systems 104 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.14: DMMU_PAGE_MODE_REG (0x084)

<
OQ
<7
&
?\
GQ’& 8 6‘2’&
& N
N >N @

‘31 3|2 1|1‘

‘ooooooooooooooooooooooooooooo|o o|o‘Reset

DMMU_PAGE_MODE Page size in the MMU for the internal SRAM 2. (R/W)

Register 5.15: SRAM_PD_CTRL_REG_0_REG (0x098)

‘ 0x000000000 \ Reset

SRAM_PD_CTRL_REG_0_REG Powers down the internal SRAM. (R/W)

Register 5.16: SRAM_PD_CTRL_REG_1_REG (0x09C)

© 7/
§®%®é Q\?@

SRAM_PD_1 Powers down the internal SRAM. (R/W)

Register 5.17: AHB_MPU_TABLE_0_REG (0x0B4)

‘31 O‘

‘ OXOFFFFFFFF \ Reset

AHB_MPU_TABLE_0_REG MPU for DMA. (R/W)

Espressif Systems 105 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.18: AHB_MPU_TABLE_1_REG (0x0B8)

&
e
?\
X
S
S o
p oF
& X
‘31 9|8 O‘
‘ooooooooooooooooooooooo| Ox1FF ‘Reset
AHB_ACCESS_GRANT_1 MPU for DMA. (R/W)
Register 5.19: PERIP_CLK_EN_REG (0x0C0)
\31 o‘
‘ OXOF9C1EOBF \ Reset
PERIP_CLK_EN_REG Clock gate for peripherals. (R/W)
Register 5.20: PERIP_RST_EN_REG (0x0C4)
‘31 O‘
‘ 0x000000000 ‘ Reset
PERIP_RST_EN_REG Reset for peripherals. (R/W)
Register 5.21: SLAVE_SPI_CONFIG_REG (0x0C8)
< <
I
< <
Q/\/ Q'\/
o 4
3 o~
Q
Q)& (OQ\/ 6& Q\/ Q)&
N QZF N2 S
& » & 5 &

‘31 13|12|11 9|8|15 8‘

‘ooooooooooooooooooo|o|ooo|o|oooooooo‘Reset

SLAVE_SPI_DECRYPT_ENABLE Enables decryption in the external flash. (R/W)

SLAVE_SPI_ENCRYPT_ENABLE Enables encryption in the external flash. (R/W)

Espressif Systems 106 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.22: WIFI_CLK_EN_REG (0x0CC)

‘ OXOFFFCEO30 ‘ Reset

WIFI_CLK_EN_REG Clock gate for Wi-Fi. (R/W)

Register 5.23: WIFI_RST_EN_REG (0x0D0)

[|

‘ 0x000000000 \ Reset

WIFI_RST_EN_REG Reset for Wi-Fi. (R/W)

Register 5.24: CPU_INTR_FROM_CPU_/_REG (: 0-3) (0OXDC+4*n)

E o]

‘ooooooooooooooooooooooooooooooo|o‘Reset

CPU_INTR_FROM_CPU_n Interrupt in both CPUs. (R/W)

Register 5.25: PRO_INTR_STATUS_REG_n_REG (1: 0-2) (OXEC+4*)

E |

‘ 0x000000000 \ Reset

PRO_INTR_STATUS_REG_n_REG PRO_CPU interrupt status. (RO)

Register 5.26: APP_INTR_STATUS_REG__REG (: 0-2) (0xF8+4*)

‘ 0x000000000 \ Reset

APP_INTR_STATUS_REG_n_REG APP_CPU interrupt status. (RO)

Register 5.27: PRO_MAC_INTR_MAP_REG (0x104)
Register 5.28: PRO_MAC_NMI_MAP_REG (0x108)

Espressif Systems 107 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Espressif Systems

Register 5.29: PRO_BB_INT_MAP_REG (0x10C)

Register 5.30: PRO_BT_MAC_INT_MAP_REG (0x110)
Register 5.31: PRO_BT_BB_INT_MAP_REG (0x114)
Register 5.32: PRO_BT_BB_NMI_MAP_REG (0x118)
Register 5.33: PRO_RWBT_IRQ_MAP_REG (0x11C)
Register 5.34: PRO_RWBLE_IRQ_MAP_REG (0x120)
Register 5.35: PRO_RWBT_NMI_MAP_REG (0x124)
Register 5.36: PRO_RWBLE_NMI_MAP_REG (0x128)
Register 5.37: PRO_SLCO_INTR_MAP_REG (0x12C)
Register 5.38: PRO_SLC1_INTR_MAP_REG (0x130)
Register 5.39: PRO_UHCIO_INTR_MAP_REG (0x134)
Register 5.40: PRO_UHCI1_INTR_MAP_REG (0x138)

Register 5.41: PRO_TG_TO_LEVEL_INT_MAP_REG (0x13C)
Register 5.42: PRO_TG_T1_LEVEL_INT_MAP_REG (0x140)
Register 5.43: PRO_TG_WDT_LEVEL_INT_MAP_REG (0x144)
Register 5.44: PRO_TG_LACT _LEVEL_INT_MAP_REG (0x148)
Register 5.45: PRO_TG1_TO_LEVEL_INT_MAP_REG (0x14C)
Register 5.46: PRO_TG1_T1_LEVEL_INT_MAP_REG (0x150)
Register 5.47: PRO_TG1_WDT_LEVEL_INT_MAP_REG (0x154)
Register 5.48: PRO_TG1_LACT_LEVEL_INT_MAP_REG (0x158)
Register 5.49: PRO_GPIO_INTERRUPT_MAP_REG (0x15C)
Register 5.50: PRO_GPIO_INTERRUPT_NMI_MAP_REG (0x160)
Register 5.51: PRO_CPU_INTR_FROM_CPU_0_MAP_REG (0x164)
Register 5.52: PRO_CPU_INTR_FROM_CPU_1_MAP_REG (0x168)
Register 5.53: PRO_CPU_INTR_FROM_CPU_2_MAP_REG (0x16C)
Register 5.54: PRO_CPU_INTR_FROM_CPU_3_MAP_REG (0x170)
Register 5.55: PRO_SPI_INTR_0_MAP_REG (0x174)
Register 5.56: PRO_SPI_INTR_1_MAP_REG (0x178)
Register 5.57: PRO_SPI_INTR_2_MAP_REG (0x17C)
Register 5.58: PRO_SPI_INTR_3_MAP_REG (0x180)
Register 5.59: PRO_I2S0_INT_MAP_REG (0x184)
Register 5.60: PRO_I2S1_INT_MAP_REG (0x188)

Register 5.61: PRO_UART_INTR_MAP_REG (0x18C)
Register 5.62: PRO_UART1_INTR_MAP_REG (0x190)
Register 5.63: PRO_UART2_INTR_MAP_REG (0x194)
Register 5.64: PRO_SDIO_HOST_INTERRUPT_MAP_REG (0x198)

108 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.65: PRO_EMAC_INT_MAP_REG (0x19C)
Register 5.66: PRO_PWMO0_INTR_MAP_REG (0x1A0)
Register 5.67: PRO_PWM1_INTR_MAP_REG (0x1A4)
Register 5.68: PRO_PWM2_INTR_MAP_REG (0x1A8)
Register 5.69: PRO_PWM3_INTR_MAP_REG (0x1AC)

Register 5.70: PRO_LEDC_INT_MAP_REG (0x1BO0)

Register 5.71: PRO_EFUSE_INT_MAP_REG (0x1B4)

Register 5.72: PRO_CAN_INT_MAP_REG (0x1B8)
Register 5.73: PRO_RTC_CORE_INTR_MAP_REG (0x1BC)

Register 5.74: PRO_RMT_INTR_MAP_REG (0x1C0)

Register 5.75: PRO_PCNT_INTR_MAP_REG (0x1C4)
Register 5.76: PRO_I2C_EXTO0_INTR_MAP_REG (0x1C8)
Register 5.77: PRO_I2C_EXT1_INTR_MAP_REG (0x1CC)

Register 5.78: PRO_RSA_INTR_MAP_REG (0x1DO0)

Register 5.79: PRO_SPI1_DMA_INT_MAP_REG (0x1D4)

Register 5.80: PRO_SPI2_DMA_INT_MAP_REG (0x1D8)

Register 5.81: PRO_SPI3_DMA_INT_MAP_REG (0x1DC)
Register 5.82: PRO_WDG_INT_MAP_REG (0x1EO)

Register 5.83: PRO_TIMER_INT1_MAP_REG (0x1E4)

Register 5.84: PRO_TIMER_INT2_MAP_REG (0x1E8)
Register 5.85: PRO_TG_T0_EDGE_INT_MAP_REG (0x1EC)
Register 5.86: PRO_TG_T1_EDGE_INT_MAP_REG (0x1F0)

Register 5.87: PRO_TG_WDT_EDGE_INT_MAP_REG (0x1F4)
Register 5.88: PRO_TG_LACT EDGE_INT_MAP_REG (0x1F8)
Register 5.89: PRO_TG1_T0_EDGE_INT_MAP_REG (0x1FC)
Register 5.90: PRO_TG1_T1_EDGE_INT_MAP_REG (0x200)
Register 5.91: PRO_TG1_WDT_EDGE_INT_MAP_REG (0x204)
Register 5.92: PRO_TG1_LACT_EDGE_INT_MAP_REG (0x208)
Register 5.93: PRO_MMU_IA_INT_MAP_REG (0x20C)
Register 5.94: PRO_MPU_IA_INT_MAP_REG (0x210)
Register 5.95: PRO_CACHE_IA_INT_MAP_REG (0x214)

D N
%Q’(\\ v
<

A

]ooooooooooooooooooooooooooo| 16 ‘Reset

PRO_*_MAP Interrupt map. (R/W)

Espressif Systems 109 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.96: APP_MAC_INTR_MAP_REG (0x218)
Register 5.97: APP_MAC_NMI_MAP_REG (0x21C)
Register 5.98: APP_BB_INT_MAP_REG (0x220)
Register 5.99: APP_BT_MAC_INT_MAP_REG (0x224)
Register 5.100: APP_BT_BB_INT_MAP_REG (0x228)
Register 5.101: APP_BT_BB_NMI_MAP_REG (0x22C)
Register 5.102: APP_RWBT_IRQ_MAP_REG (0x230)
Register 5.103: APP_RWBLE_IRQ_MAP_REG (0x234)
Register 5.104: APP_RWBT_NMI_MAP_REG (0x238)
Register 5.105: APP_RWBLE_NMI_MAP_REG (0x23C)
Register 5.106: APP_SLCO_INTR_MAP_REG (0x240)
Register 5.107: APP_SLC1_INTR_MAP_REG (0x244)
Register 5.108: APP_UHCIO_INTR_MAP_REG (0x248)
Register 5.109: APP_UHCI1_INTR_MAP_REG (0x24C)
Register 5.110: APP_TG_TO0_LEVEL_INT_MAP_REG (0x250)
Register 5.111: APP_TG_T1_LEVEL_INT_MAP_REG (0x254)
Register 5.112: APP_TG_WDT_LEVEL_INT_MAP_REG (0x258)
Register 5.113: APP_TG_LACT_LEVEL_INT_MAP_REG (0x25C)
Register 5.114: APP_TG1_TO_LEVEL_INT_MAP_REG (0x260)
Register 5.115: APP_TG1_T1_LEVEL_INT_MAP_REG (0x264)
Register 5.116: APP_TG1_WDT_LEVEL_INT_MAP_REG (0x268)
Register 5.117: APP_TG1_LACT_LEVEL_INT_MAP_REG (0x26C)
Register 5.118: APP_GPIO_INTERRUPT_MAP_REG (0x270)
Register 5.119: APP_GPIO_INTERRUPT_NMI_MAP_REG (0x274)
Register 5.120: APP_CPU_INTR_FROM_CPU_0_MAP_REG (0x278)
Register 5.121: APP_CPU_INTR_FROM_CPU_1_MAP_REG (0x27C)
Register 5.122: APP_CPU_INTR_FROM_CPU_2_MAP_REG (0x280)
Register 5.123: APP_CPU_INTR_FROM_CPU_3_MAP_REG (0x284)
Register 5.124: APP_SPI_INTR_0_MAP_REG (0x288)
Register 5.125: APP_SPI_INTR_1_MAP_REG (0x28C)
Register 5.126: APP_SPI_INTR_2_MAP_REG (0x290)
Register 5.127: APP_SPI_INTR_3_MAP_REG (0x294)
Register 5.128: APP_I2S0_INT_MAP_REG (0x298)
Register 5.129: APP_I2S1_INT_MAP_REG (0x29C)
Register 5.130: APP_UART_INTR_MAP_REG (0x2A0)
Register 5.131: APP_UART1_INTR_MAP_REG (0x2A4)

Espressif Systems 110 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.132: APP_UART2_INTR_MAP_REG (0x2A8)
Register 5.133: APP_SDIO_HOST_INTERRUPT_MAP_REG (0x2AC)
Register 5.134: APP_EMAC_INT_MAP_REG (0x2B0)
Register 5.135: APP_PWMO0_INTR_MAP_REG (0x2B4)
Register 5.136: APP_PWM1_INTR_MAP_REG (0x2B8)
Register 5.137: APP_PWM2_INTR_MAP_REG (0x2BC)
Register 5.138: APP_PWM3_INTR_MAP_REG (0x2C0)
Register 5.139: APP_LEDC_INT_MAP_REG (0x2C4)
Register 5.140: APP_EFUSE_INT_MAP_REG (0x2C8)
Register 5.141: APP_CAN_INT_MAP_REG (0x2CC)
Register 5.142: APP_RTC_CORE_INTR_MAP_REG (0x2D0)
Register 5.143: APP_RMT_INTR_MAP_REG (0x2D4)
Register 5.144: APP_PCNT_INTR_MAP_REG (0x2D8)
Register 5.145: APP_I2C_EXTO_INTR_MAP_REG (0x2DC)
Register 5.146: APP_I2C_EXT1_INTR_MAP_REG (0x2E0)
Register 5.147: APP_RSA_INTR_MAP_REG (0x2E4)
Register 5.148: APP_SPI1_DMA_INT_MAP_REG (0x2E8)
Register 5.149: APP_SPI2_DMA_INT_MAP_REG (0x2EC)
Register 5.150: APP_SPI3_DMA_INT_MAP_REG (0x2F0)
Register 5.151: APP_WDG_INT_MAP_REG (0x2F4)
Register 5.152: APP_TIMER_INT1_MAP_REG (0x2F8)
Register 5.153: APP_TIMER_INT2_MAP_REG (0x2FC)
Register 5.154: APP_TG_T0_EDGE_INT_MAP_REG (0x300)
Register 5.155: APP_TG_T1_EDGE_INT_MAP_REG (0x304)
Register 5.156: APP_TG_WDT_EDGE_INT_MAP_REG (0x308)
Register 5.157: APP_TG_LACT_EDGE_INT_MAP_REG (0x30C)
Register 5.158: APP_TG1_T0O_EDGE_INT_MAP_REG (0x310)
Register 5.159: APP_TG1_T1_EDGE_INT_MAP_REG (0x314)
Register 5.160: APP_TG1_WDT_EDGE_INT_MAP_REG (0x318)
Register 5.161: APP_TG1_LACT_EDGE_INT_MAP_REG (0x31C)
Register 5.162: APP_MMU_IA_INT_MAP_REG (0x320)
Register 5.163: APP_MPU_IA_INT_MAP_REG (0x324)
Register 5.164: APP_CACHE_IA_INT_MAP_REG (0x328)

S ¥
@52?\
A

]ooooooooooooooooooooooooooo| 16 ‘Reset

APP_*_MAP Interrupt map. (R/W)

Espressif Systems 111 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.165: AHBLITE_MPU_TABLE_UART_REG (0x32C)
Register 5.166: AHBLITE_MPU_TABLE_SPI1_REG (0x330)
Register 5.167: AHBLITE_MPU_TABLE_SPI0_REG (0x334)
Register 5.168: AHBLITE_MPU_TABLE_GPIO_REG (0x338)
Register 5.169: AHBLITE_MPU_TABLE_RTC_REG (0x348)

Register 5.170: AHBLITE_MPU_TABLE_IO_MUX_REG (0x34C)

Register 5.171: AHBLITE_MPU_TABLE_HINF_REG (0x354)

Register 5.172: AHBLITE_MPU_TABLE_UHCI1_REG (0x358)
Register 5.173: AHBLITE_MPU_TABLE_I2S0_REG (0x364)

Register 5.174: AHBLITE_MPU_TABLE_UART1_REG (0x368)

Register 5.175: AHBLITE_MPU_TABLE_I2C_EXTO0_REG (0x374)
Register 5.176: AHBLITE_MPU_TABLE_UHCIO_REG (0x378)
Register 5.177: AHBLITE_MPU_TABLE_SLCHOST_REG (0x37C)
Register 5.178: AHBLITE_MPU_TABLE_RMT_REG (0x380)

Register 5.179: AHBLITE_MPU_TABLE_PCNT_REG (0x384)
Register 5.180: AHBLITE_MPU_TABLE_SLC_REG (0x388)
Register 5.181: AHBLITE_MPU_TABLE_LEDC_REG (0x38C)

Register 5.182: AHBLITE_MPU_TABLE_EFUSE_REG (0x390)

Register 5.183: AHBLITE_MPU_TABLE_SPI_ENCRYPT_REG (0x394)
Register 5.184: AHBLITE_MPU_TABLE_PWMO0_REG (0x39C)
Register 5.185: AHBLITE_MPU_TABLE_TIMERGROUP_REG (0x3A0)
Register 5.186: AHBLITE_MPU_TABLE_TIMERGROUP1_REG (0x3A4)
Register 5.187: AHBLITE_MPU_TABLE_SPI2_REG (0x3A8)
Register 5.188: AHBLITE_MPU_TABLE_SPI3_REG (0x3AC)
Register 5.189: AHBLITE_MPU_TABLE_APB_CTRL_REG (0x3B0)
Register 5.190: AHBLITE_MPU_TABLE_I2C_EXT1_REG (0x3B4)
Register 5.191: AHBLITE_MPU_TABLE_SDIO_HOST_REG (0x3B8)

Register 5.192: AHBLITE_MPU_TABLE_EMAC_REG (0x3BC)

Register 5.193: AHBLITE_MPU_TABLE_PWM1_REG (0x3C4)
Register 5.194: AHBLITE_MPU_TABLE_12S1_REG (0x3C8)

Register 5.195: AHBLITE_MPU_TABLE_UART2_REG (0x3CC)

Register 5.196: AHBLITE_MPU_TABLE_PWM2_REG (0x3DO0)

Register 5.197: AHBLITE_MPU_TABLE_PWMS3_REG (0x3D4)

Espressif Systems 112 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.198: AHBLITE_MPU_TABLE_PWR_REG (0x3E4)

&
(<\
ooé
é&/
o
%/
Q%%
.
& N
& v\><‘b
‘oooooooooooooooooooooooooo|oooooo‘Reset
AHBLITE_*_ACCESS_GRANT_CONFIG MPU for peripherals. (R/W)
Register 5.199: IMMU_TABLE_REG (1: 0-15) (0x504+4*)
@'\
& 0&»
\@%@ S
‘31 7|6 O‘
‘ooooooooooooooooooooooooo| 15 ‘Reset
IMMU_TABLEn MMU for internal SRAM. (R/W)
Register 5.200: DMMU_TABLE/_REG (1: 0-15) (0x544+4*/)
@"\
N
5 &
© g
& @Q
N Q
‘31 7|6 O‘
‘ooooooooooooooooooooooooo| 15 ‘Reset
DMMU_TABLEn MMU for internal SRAM. (R/W)
Register 5.201: SECURE_BOOT_CTRL_REG (0x5A4)
K4
VO(O
)
&\/
OO
<
S ;
5° OOQ{O
& &

E -]

‘oooooooooooo00ooooooooooooooooo|o‘Reset

SECURE_SW_BOOTLOADER_SEL Mode for secure_boot. (R/W)

Espressif Systems 1183 ESP32 Technical Reference Manual V3.1

5. DPORT REGISTER

Register 5.202: SPI_DMA_CHAN_SEL_REG (0x5A8)

N N
SRS R
/ 7/ V/
N \Qf)‘w \%9& \ﬁv
58 g g g
§®‘b %Q\/ Q\/ (§\/
’ 31

SPI_SPI3_DMA_CHAN_SEL Selects DMA channel for SPI3. (R/W)
SPI_SPI2_DMA_CHAN_SEL Selects DMA channel for SPI2. (R/W)

SPI_SPIH_DMA_CHAN_SEL Selects DMA channel for SPI1. (R/W)

Espressif Systems 114 ESP32 Technical Reference Manual V3.1

6. DMA CONTROLLER

6. DMA Controller

6.1 Overview

Direct Memory Access (DMA) is used for high-speed data transfer between peripherals and memory, as well as
from memory to memory. Data can be quickly moved with DMA without any CPU intervention, thus allowing for

more efficient use of the cores when processing data.

In the ESP32, 13 peripherals are capable of using DMA for data transfer, namely, UARTO, UART1, UART2, SPI1,
SPI2, SPIB, 1280, 1251, SDIO slave, SD/MMC host, EMAC, BT, and Wi-Fi.

6.2 Features

The DMA controllers in the ESP32 feature:

e AHB bus architecture

e Support for full-duplex and half-duplex data transfers

e Programmable data transfer length in bytes

328 KB DMA address space

Support for 4-beat burst transfer

6.3 Functional Description

All high-speed communication modules powered by DMA

All modules that require high-speed data transfer in bulk contain a DMA controller. DMA addressing uses the

same data bus as the CPU to read/write to the internal RAM.

Each DMA controller features different functions. However, the architecture of the DMA engine (DMA_ENGINE) is
the same in all DMA controllers.

6.3.1 DMA Engine Architecture

Espressif Systems

RAM

DMA_ENGINE

out_linkO

v

sng” gHY

\j

out_linkn

in_link0

A

in_linkn

Figure 11: DMA Engine Architecture

115

ESP32 Technical Reference Manual V3.1

6. DMA CONTROLLER

The DMA Engine accesses SRAM over the AHB BUS. In Figure 11, the RAM represents the internal SRAM banks
available on ESP32. Further details on the SRAM addressing range can be found in Chapter System and
Memory. Software can use a DMA Engine by assigning a linked list to define the DMA operational

parameters.

The DMA Engine transmits the data from the RAM to a peripheral, according to the contents of the out_link
descriptor. Also, the DMA Engine stores the data received from a peripheral into a specified RAM location,
according to the contents of the in_link descriptor.

6.3.2 Linked List

31 30 29 23 11
DWO ‘owner‘ eof ‘ reserved | length size ‘
DW1 ‘ buffer address pointer
Dw2 ‘ next descriptor address ‘

Figure 12: Linked List Structure

The DMA descriptor’s linked lists (out_link and in_link) have the same structure. As shown in Figure 12, a
linked-list descriptor consists of three words. The meaning of each field is as follows:

e owner (DWO) [31]: The allowed operator of the buffer corresponding to the current linked list.
1’b0: the allowed operator is the CPU;
1’b1: the allowed operator is the DMA controller.

e ecof (DWO) [30]: End-Of-File character.
1’b0: the linked-list item does not mark the end of the linked list;
1’b1: the linked-list item is at the end of the linked list.

e reserved (DWO) [29:24]: Reserved bits.
Software should not write 1’s in this space.

e length (DWO0) [23:12]: The number of valid bytes in the buffer corresponding to the current linked list. The
field value indicates the number of bytes to be transferred to/from the buffer denoted by word DW1.

e size (DWO) [11:0]: The size of the buffer corresponding to the current linked list.
NOTE: The size must be word-aligned.

e puffer address pointer (DW1): Buffer address pointer. This is the address of the data buffer.
NOTE: The buffer address must be word-aligned.

e next descriptor address (DW2): The address pointer of the next linked-list item. The value is O, if the current
linked-list item is the last on the list (eof=1).

When receiving data, if the data transfer length is smaller than the specified buffer size, DMA will not use the
remaining space. This enables the DMA engine to be used for transferring an arbitrary number of data
bytes.

6.4 UART DMA (UDMA)

The ESP32 has three UART interfaces that share two UDMA (UART DMA) controllers. The UHCIlx_UART_CE (x is
0 or 1) is used for selecting the UDMA.

Espressif Systems 116 ESP32 Technical Reference Manual V3.1

6. DMA CONTROLLER

UDMA
UHCI UART

Transmitter txd_out
DMA_ENGINE J* Encoder >

Receiver ;
— Decoder rxd_in

Figure 13: Data Transfer in UDMA Mode

A4

Figure 13 shows the data transfer in UDMA mode. Before the DMA Engine receives data, software must initialize
the receive-linked-list. UHCIx_INLINK_ADDR is used to point to the first in_link descriptor. The register must be
programmed with the lower 20 bits of the address of the initial linked-list item. After UHCIx_INLINK_START is set,
the Universal Host Controller Interface (UHCI) will transmit the data received by UART to the Decoder. After being
parsed, the data will be stored in the RAM as specified by the receive-linked-list descriptor.

Before DMA transmits data, software must initialize the transmit-linked-list and the data to be transferred.
UHCI_OUTLINK_ADDR is used to point to the first out_link descriptor. The register must be programmed with
the lower 20 bits of the address of the initial transmit-linked-list item. After UHCIx_OUTLINK_START is set, the
DMA Engine will read data from the RAM location specified by the linked-list descriptor and then transfer the data
through the Encoder. The DMA Engine will then shift the data out serially through the UART transmitter.

The UART DMA follows a format of (separator + data + separator). The Encoder is used for adding separators
before and after data, as well as using special-character sequences to replace data that are the same as
separators. The Decoder is used for removing separators before and after data, as well as replacing the
special-character sequences with separators. There can be multiple consecutive separators marking the
beginning or end of data. These separators can be configured through UHCIx_SEPER_CH, with the default
values being 0xCO. Data that are the same as separators can be replaced with UHCIx_ESC_SEQO_CHARO
(OxDB by default) and UHCIx_ESC_SEQO_CHAR1 (0xDD by default). After the transmission process is complete,
a UHCIx_OUT_TOTAL_EOF_INT interrupt will be generated. After the reception procedure is complete, a
UHCIX_IN_SUC_EOF_INT interrupt will be generated.

6.5 SPI DMA Interface

ESP32 SPI modules can use DMA as well as the CPU for data exchange with peripherals. As can be seen from
Figure 14, two DMA channels are shared by SPI1, SPI2 and SPI3 controllers. Each DMA channel can be used by
any one SPI controller at any given time.

The ESP32 SPI DMA Engine also uses a linked list to receive/transmit data. Burst transmission is supported. The
minimum data length for a single transfer is one byte. Consecutive data transfer is also supported.

SPI1_DMA_CHAN_SEL[1:0], SPI2_DMA_CHAN_SEL[1:0] and SPI3_DMA_CHAN_SEL[1:0] in
DPORT_SPI_DMA_CHAN_SEL_REG must be configured to enable the SPI DMA interface for a specific SPI
controller. Each SPI controller corresponds to one domain which has two bits with values O, 1 and 2. Value 3 is
reserved and must not be configured for operation.

Considering SPI1 as an example,
if SPI SPI1_DMA_CHAN_SEL[1:0] = O, then SPI1 does not use any DMA channel;
if SPI1_DMA_CHAN_SEL[1:0] = 1, then SPI1 enables DMA channelt;

Espressif Systems 117 ESP32 Technical Reference Manual V3.1

6. DMA CONTROLLER

DMA SPIO_CHAN_SEL

chani [« > 1

<«— SPI1

chan2 [ef---€---1--%2

SPI1_CHAN_SEL

> 1
<+«— SPI2
- 2
SPI3_CHAN_SEL
<« 1
<«— SPI3
D SERRES > 2

Figure 14: SPI DMA

if SPI1_DMA_CHAN_SEL[1:0] = 2, then SPI1 enables DMA channel2.

The SPI_OUTLINK_START bit in SPI_DMA_OUT_LINK_REG and the SPI_INLINK_START bit in
SPI_DMA_IN_LINK_REG are used for enabling the DMA Engine. The two bits are self-cleared by hardware.
When SPI_OUTLINK_START is set to 1, the DMA Engine starts processing the outbound linked list descriptor
and prepares to transmit data. When SPI_INLINK_START is set to 1, then the DMA Engine starts processing the
inbound linked-list descriptor and gets prepared to receive data.

Software should configure the SPI DMA as follows:
1. Reset the DMA state machine and FIFO parameters;
2. Configure the DMA-related registers for operation;
3. Configure the SPI-controller-related registers accordingly;

4. Set SPI_USR to enable DMA operation.

6.6 12S DMA Interface

The ESP32 integrates two 12S modules, 1250 and 1251, each of which is powered by a DMA channel. The
REG_I2S_DSCR_EN bit in 12S_FIFO_CONF_REG is used for enabling the DMA operation. ESP32 12S DMA uses
the standard linked-list descriptor to configure DMA operations for data transfer. Burst transfer is supported.
However, unlike the SPI DMA channels, the data size for a single transfer is one word, or four bytes.
REG_I2S_RX_EOF_NUMI[31:0] bit in 12S_RXEOF_NUM_REG is used for configuring the data size of a single
transfer operation, in multiples of one word.

12S_OUTLINK_START bit in 12S_OUT_LINK_REG and 12S_INLINK_START bit in 12S_IN_LINK_REG are used for
enabling the DMA Engine and are self-cleared by hardware. When 12S_OUTLINK_START is set to 1, the DMA
Engine starts processing the outbound linked-list descriptor and gets prepared to send data. When
I2S_INLINK_START is set to 1, the DMA Engine starts processing the inbound linked-list descriptor and gets
prepared to receive data.

Software should configure the 12S DMA as follows:

1. Configure 12S-controller-related registers;

Espressif Systems 118 ESP32 Technical Reference Manual V3.1

6. DMA CONTROLLER

2. Reset the DMA state machine and FIFO parameters;
3. Configure DMA-related registers for operation;

4. In 12S master mode, set 12S_TX_START bit or 12S_RX_START bit to initiate an 12S operation;

In 12S slave mode, set 12S_TX_START bit or I2S_RX_START bit and wait for data transfer to be initiated by
the host device.

For more information on 12S DMA interrupts, please see Section DMA Interrupts, in Chapter 12S.

Espressif Systems 119 ESP32 Technical Reference Manual V3.1

7. SPI

7. SPI

7.1 Overview

D »lariof+ |PAD

Cache 1« + SPIO [«> /5Py IMatrixsal | L

: sl 2 }/ P

j = J(_' VO |4u

DMA - SJMUX|

chan0 > g | P2 |« HSPI 5 #_.

chan1 X ISP VSRl R

Figure 15: SPI Architecture

As Figure 15 shows, ESP32 integrates four SPI controllers which can be used to communicate with external
devices that use the SPI protocol. Controller SPIO is used as a buffer for accessing external memory. Controller
SPI1 can be used as a master. Controllers SPI2 and SPI3 can be configured as either a master or a slave. When
used as a master, each SPI controller can drive multiple CS signals (CSO ~ CS2) to activate multiple slaves.
Controllers SPI1 ~ SPI3 share two DMA channels.

The SPI signal buses consist of D, Q, CS0-CS2, CLK, WP, and HD signals, as Table 26 shows. Controllers SPIO
and SPI1 share one signal bus through an arbiter; the signals of the shared bus start with "SPI”. Controllers SPI2
and SPI3 use signal buses starting with "HSPI” and "VSPI” respectively. The I/O lines included in the
above-mentioned signal buses can be mapped to pins via either the IO_MUX module or the GPIO matrix. (Please
refer to Chapter IO_MUX for details.)

The SPI controller supports four-line half-duplex and full-duplex communication (MOSI, MISO, CS, and CLK lines)
and three-line-bit half-duplex-only communication (DATA, CS, and CLK lines) in GP-SPI mode. In QSPI mode, a
SPI controller accesses the flash or SRAM by using signal buses D, Q, CSO ~ CS2, CLK, WP, and HD as a
four-bit parallel SPI bus. The mapping between the GP-SPI signal bus and the QSPI signal bus is shown in Table

26.

Table 26: SPI Signal and Pin Signal Function Mapping

Four-line GP-SPI Three-line GP-SPI QSPI Pin function signals
Full-duplex signal | Half-duplex signal | Signal bus SPI signal | HSPI signal | VSPI signal
bus bus bus bus bus
MOSI DATA D SPID HSPID VSPID
MISO - Q SPIQ HSPIQ VSPIQ
CS CS CS SPICSO HSPICSO VSPICSO
CLK CLK CLK SPICLK HSPICLK VSPICLK
- - WP SPIWP HSPIWP VSPIWP
- - HD SPIHD HSPIHD VSPIHD
7.2 SPI Features
General Purpose SPI (GP-SPI)
Espressif Systems 120 ESP32 Technical Reference Manual V3.1

7. SPI

e Programmable data transaction length, in multiples of 1 byte

Master mode and slave mode
e Programmable CPOL and CPHA
e Programmable clock

Parallel QSPI

Four-line full-duplex communication and three-line half-duplex communication support

e Communication format support for specific slave devices such as flash

e Programmable communication format

e Six variations of flash-read operations available

e Automatic shift between flash and SRAM access

e Automatic wait states for flash access

SPI DMA Support

e Support for sending and receiving data using linked lists

SPI Interrupt Hardware
e SPlinterrupts

e SPI DMA interrupts

7.3 GP-SPI

The SPI1 ~ SPI3 controllers can communicate with other slaves as a standard SPI master. Every SPI master

can be connected to three slaves at most by default. In non-DMA mode, the maximum length of data

received/sent in one burst is 64 bytes. The data length is in multiples of 1 byte.

7.3.1 GP-SPI Master Mode

The SPI master mode supports four-line full-duplex communication and three-line half-duplex communication.

The connections needed for four-line full-duplex communications are outlined in Figure 16.

Master

SPI

MOSI

MISO

ESP32 CLK

CS

Slave

-

0

—»

MOSI

MISO
CLK

CS

Figure 16: SPI Master and Slave Full-duplex Communication

For four-line full-duplex communication, the length of received and sent data needs to be set by configuring the
SPI_MISO_DLEN_REG, SPI_MOSI_DLEN_REG registers for master mode as well as

Espressif Systems

121

ESP32 Technical Reference Manual V3.1

7. SPI

SPI_SLV_RDBUF_DLEN_REG, SPI_SLV_WRBUF_DLEN_REG registers for slave mode. The SPI_DOUTDIN bit
and SPI_USR_MOSI bit in register SPI_USER_REG should also be configured. The SPI_USR bit in register
SPI_CMD_REG needs to be configured to initialize data transfer.

If ESP32 SPI is configured as a slave using three-line half-duplex communication, the master-slave
communication should meet a certain communication format. Please refer to 7.3.2.1 for details. For example, if
ESP32 SPI acts as a slave, the communication format should be: command + address + received/sent data. The
address length of the master should be the same as that of the slave; the value of the address should be 0.

Note:
When using ESP32 as a master in half-duplex communication, the communication format "command + address + sent
data + received data” and "sent data + received data” are not applicable to DMA.

The byte order in which ESP32 SPI reads and writes is controlled by the SPI_RD_BYTE_ORDER bit and the
SPI_WR_BYTE_ORDER bit in register SPI_USER_REG. The bit order is controlled by the SPI_RD_BIT_ORDER
bit and the SPI_WR_BIT_ORDER bit in register SPI_CTRL_REG.

7.3.2 GP-SPI Slave Mode

ESP32 SPI2 ~ SPI3 can communicate with other host devices as a slave device. ESP32 SPI should use
particular protocols when acting as a slave. Data received or sent at one time can be no more than 64 bytes
when not using DMA. During a valid read/write process, the appropriate CS signal must be maintained at a low
level. If the CS signal is pulled up during transmission, the internal state of the slave will be reset.

7.3.2.1 Communication Format Supported by GP-SPI Slave

The communication format of ESP32 SPI is: command + address + read/write data. When using half-duplex
communication, the slave read and write operations use fixed hardware commands from which the address part
can not be removed. The command is specified as follows:

1. command: length: 3 ~ 16 bits; Master Out Slave In (MOSI).
2. address: length: 1 ~ 32 bits; Master Out Slave In (MOSI).
3. data read/write: length O ~ 512 bits (64 bytes); Master Out Slave In (MOSI) or Master In Slave Out (MISO).

When ESP32 SPI is used as a slave in full-duplex communication, data transaction can be directly initiated
without the master sending command and address. However, please note that the CS should be pulled low at
least one SPI clock period before a read/write process is initiated, and should be pulled high at least one SPI
clock period after the read/write process is completed.

7.3.2.2 Command Definitions Supported by GP-SPI Slave in Half-duplex Mode

The minimum length of a command received by the slave should be three bits. The lowest three bits correspond
to fixed hardware read and write operations as follows:

1. Ox1 (received by slave): Writes data sent by the master into the slave status register via MOSI.
2. 0x2 (received by slave): Writes data sent by the master into the slave data buffer.

3. 0x3 (sent by slave): Sends data in the slave buffer to master via MISO.

Espressif Systems 122 ESP32 Technical Reference Manual V3.1

7. SPI

4. 0x4 (sent by slave): Sends data in the slave status register to master via MISO.

5. 0x6 (received and then sent by slave): Writes master data on MOSI into data buffer and then sends the
date in the slave data buffer to MISO.

The master can write the slave status register SPI_SLV_WR_STATUS_REG, and decide whether to read data from
register SPI_SLV_WR_STATUS_REG or register SPI_RD_STATUS_REG via the SPI_SLV_STATUS_READBACK
bit in the register SPI_SLAVE1_REG. The SPI master can maintain communication with the slave by reading and
writing slave status register, thus realizing relatively complex communication with ease.

7.3.3 GP-SPI Data Buffer

31 0
SPI_WO_REG| | |
) low
SPI_W7_REG
SPI_W8_REG
high
SPI_W15_REG| | |

Figure 17: SPI Data Buffer

ESP32 SPI has 16 x 32 bits of data buffer to buffer data-send and data-receive operations. As is shown in Figure
17, received data is written from the low byte of SPI_WO0_REG by default and the writing ends with
SPI_W15_REG. If the data length is over 64 bytes, the extra part will be written from SPI_WO0_REG.

Data buffer blocks SPI_WO_REG ~ SPI_W7_REG and SPI_W8_REG ~ SPI_W15_REG data correspond to the
lower part and the higher part respectively. They can be used separately, and are controlled by the
SPI_USR_MOSI_HIGHPART bit and the SPI_USR_MISO_HIGHPART bit in register SPI_USER_REG. For
example, if SPI is configured as a master, when SPI_USR_MOSI_HIGHPART = 1,

SPI_W8_REG ~ SPI_W15_REG are used as buffer for sending data; when SPI_USR_MISO_HIGHPART =1,
SPI_W8_REG ~ SPI_W15_REG are used as buffer for receiving data. If SPI acts as a slave, when
SPI_USR_MOSI_HIGHPART =1, SPI_W8_REG ~ SPI_W15_REG are used as buffer for receiving data; when
SPI_USR_MISO_HIGHPART = 1, SPI_W8_REG ~ SPI_W15_REG are used as buffer for sending data.

7.4 GP-SPI Clock Control

The maximum output clock frequency of ESP32 GP-SPI master is fapn/2, and the maximum input clock
frequency of the ESP32 GP-SPI slave is fapp/8. The master can derive other clock frequencies via frequency
division.

f - fapb
P (SPI_CLKCNT_N+1)(SPI_CLKDIV_PRE+1)

SPI_CLKCNT_N and SPI_CLKDIV_PRE are two bits of register SPI_CLOCK_REG (Please refer to 7.8 Register
Description for details). When the SPI_CLK_EQU_SYSCLK bit in the register SPI_CLOCK_REG is set to 1, and
the other bits are set to 0, SPI output clock frequency is fann. For other clock frequencies,
SPI_CLK_EQU_SYSCLK needs to be O.

Espressif Systems 123 ESP32 Technical Reference Manual V3.1

7. SPI

7.4.1 GP-SPI Clock Polarity (CPOL) and Clock Phase (CPHA)

The clock polarity and clock phase of ESP32 SPI are controlled by the SPI_CK_IDLE_EDGE bit in register
SPI_PIN_REG, the SPI_CK_OUT_EDGE bit and the SPI_CK_I_EDGE bit in register SPI_USER_REG, the
SPI_MISO_DELAY_MODE[1:0] bit, the SPI_MISO_DELAY_NUM]|2:0] bit, the SPI_MOSI_DELAY_MODE[1:0] bit,
and the SPI_MOSI_DELAY_MUM]I2:0] bit in register SPI_CTRL2_REG. Table 27 and Table 28 show the clock
polarity and phase as well as the corresponding register values for ESP32 SPI master and slave,

respectively.

Table 27: Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Master

Registers mode0 mode1 mode2 mode3
SPI_CK_IDLE_EDGE 0 0 1 1
SPI_CK_OUT_EDGE 0 1 1 0
SPI_MISO_DELAY_MODE 2(0) 1(0) 1(0) 2(0)
SPI_MISO_DELAY_NUM 0 0 0 0
SPI_MOSI_DELAY_MODE 0 0 0 0
SPI_MOSI_DELAY_NUM 0 0 0 0

Table 28: Clock Polarity and Phase, and Corresponding SPI Register Values for SPI Slave

Registers mode0 mode1 mode2 mode3
SPI_CK_IDLE_EDGE 0 0 1
SPI_CK_I_EDGE 0 1 1 0
SPI_MISO_DELAY_MODE 0 0 0 0
SPI_MISO_DELAY_NUM 0 0 0 0
SPI_MOSI_DELAY_MODE 2 1 1 2
SPI_MOSI_DELAY_NUM 0 0 0 0

1. mode0 means CPOL=0, CPHA=0. When SPl is idle, the clock output is logic low; data change on the
falling edge of the SPI clock and are sampled on the rising edge;

2. mode1 means CPOL=0, CPHA=1. When SPlI is idle, the clock output is logic low; data change on the
rising edge of the SPI clock and are sampled on the falling edge;

3. mode2 means when CPOL=1, CPHA=0. When SPl is idle, the clock output is logic high; data change on
the rising edge of the SPI clock and are sampled on the falling edge;

4. mode3 means when CPOL=1, CPHA=1. When SPlI is idle, the clock output is logic high; data change on
the falling edge of the SPI clock and are sampled on the rising edge.

7.4.2 GP-SPI Timing

The data signals of ESP32 GP-SPI can be mapped to physical pins via I0_MUX or via I0_MUX and GPIO matrix.
When signals pass through the matrix, they will be delayed by two clkap, clock cycles.

When GP-SPI is used as master and the data signals are not received by the SPI controller via GPIO matrix, if
GP-SPI output clock frequency is not higher than clkapp /2, register SPI_MISO_DELAY_MODE should be set to 0
when configuring the clock polarity. If GP-SPI output clock frequency is not higher than clkapp /4, register

Espressif Systems 124 ESP32 Technical Reference Manual V3.1

7. SPI

SPI_MISO_DELAY_MODE can be set to the corresponding value in Table 27 when configuring the clock
polarity.

When GP-SPI is used in master mode and the data signals enter the SPI controller via the GPIO matrix:

1. If GP-SPI output clock frequency is clkapp /2, register SPI_MISO_DELAY_MODE should be set to 0 and the
dummy state should be enabled (SPI_USR_DUMMY = 1) for one clk; clock cycle
(SPI_USR_DUMMY_CYCLELEN = 0) when configuring the clock polarity;

2. If GP-SPI output clock frequency is clkapy /4, register SPI_MISO_DELAY_MODE should be set to O when
configuring the clock polarity;

3. If GP-SPI output clock frequency is not higher than clkapy /8, register SPI_MISO_DELAY_MODE can be set
to the corresponding value in Table 27 when configuring the clock polarity.

When GP-SPI is used in slave mode, the maximum slave input clock frequency is fapn/8. In addition, the clock
signal and the data signals should be routed to the SPI controller via the same path, i.e., neither the clock signal
nor the data signals enter the SPI controller via the GPIO matrix, or both the clock signal and the data signals
enter the SPI controller via the GPIO matrix. This is important in ensuring that the signals are not delayed by
different time periods before they reach the SPI hardware.

7.5 Parallel QSPI

ESP32 SPI controllers support SPI bus memory devices (such as flash and SRAM). The hardware connection
between the SPI pins and the memories is shown by Figure 18.

Master Slave
D |« »S|
Q" SO flash
WP« WP
HD|< »HOLD
CLK » SCK
CSo CE
s
ESP32 » SO
QSPI wp SRAM
HOLD
SCK
cs1 »CE

Figure 18: Parallel QSPI

SPI1, SPI2 and SPI3 controllers can also be configured as QSPI master to connect to external memory. The
maximum output clock frequency of the SPI memory interface is fapn, With the same clock configuration as that
of the GP-SPI master.

ESP32 QSPI supports flash-read operation in one-line mode, two-line mode, and four-line mode.

Espressif Systems 125 ESP32 Technical Reference Manual V3.1

7. SPI

7.5.1 Communication Format of Parallel QSPI

To support communication with special slave devices, ESP32 QSPI implements a specifically designed
communication protocol. The communication format of ESP32 QSPI master is command + address + read/write
data, as shown in Figure 19, with details as follows:

1. Command: length: 1 ~ 16 bits; Master Out Slave In.
2. Address: length: O ~ 64 bits; Master Out Slave In.

3. Data read/write: length: O ~ 512 bits (64 bytes); Master Out Slave In or Master In Slave Out.

HyuvuyyuuuuuvupgpuyuyyurpyUUUy

¢ Ko X 1 X2 X3 X4 X5 Xe X7 X4 X0 X4 X0 X4 X0 4 X0 X4 X0 .
‘ 5 X1 X5 X1 X5 X1 5 X1 X5 X1

. 6 X2 X6 X2 X6 X2

- 7X3X7X3X7 X3 (7 X3XTX3) .
) Command phase " Address phase B;mmy ph;se Data phase g

Figure 19: Communication Format of Parallel QSPI

When ESP32 SPI is configured as a master and communicates with slaves that use the SPI protocol, options
such as command, address, data, etc., can be adjusted as required by the specific application. When ESP32
SPI reads special devices such as Flash and SRAM, a dummy state with a programmable length can be inserted
between the address phase and the data phase.

7.6 GP-SPI Interrupt Hardware

ESP32 SPI generates two types of interrupts. One is the SPI interrupt and the other is the SPI DMA
interrupt.

ESP32 SPI reckons the completion of send and/or receive operations as the completion of one operation from
the controller and generates one interrupt. When ESP32 SPI is configured to slave mode, the slave will generate
read/write status registers and read/write buffer data interrupts according to different operations.

7.6.1 SPI Interrupts

The SPI_*_INTEN bits in the SPI_SLAVE_REG register can be set to enable SPI interrupts. When an SPI interrupt
happens, the interrupt flag in the corresponding SPI_*_DONE register will get set. This flag is writable, and an
interrupt can be cleared by setting the bit to zero.

e SPI_TRANS_DONE_INT: Triggered when a SPI operation is done.

SPI_SLV_WR_STA_INT: Triggered when a SPI slave status write is done.

SPI_SLV_RD_STA_INT: Triggered when a SPI slave status read is done.

SPI_SLV_WR_BUF_INT: Triggered when a SPI slave buffer write is done.

SPI_SLV_RD_BUD_INT: Triggered when a SPI slave buffer read is done.

Espressif Systems 126 ESP32 Technical Reference Manual V3.1

7. SPI

7.6.2 DMA Interrupts

e SPI_OUT_TOTAL_EOF_INT: Triggered when all linked lists are sent.

e SPI_OUT_EOF_INT: Triggered when one linked list is sent.

e SPI_OUT_DONE_INT: Triggered when the last linked list item has zero length.

e SPI_IN_SUC_EOF_INT: Triggered when all linked lists are received.

e SPI_IN_ERR_EOF_INT: Triggered when there is an error receiving linked lists.

e SPI_IN_DONE_INT: Triggered when the last received linked list had a length of O.

e SPI_INLINK_DSCR_ERROR_INT: Triggered when the received linked list is invalid.

e SPI_OUTLINK_DSCR_ERROR_INT: Triggered when the linked list to be sent is invalid.

e SPI_INLINK_DSCR_EMPTY_INT: Triggered when no valid linked list is available.

7.7 Register Summary

length

Name ‘ Description SPIO SPI1 SPI2 SPI3 Acc

Control and configuration registers
Bit order and

SPI_CTRL_REG QIO/DIO/QOUT/DOUT| 3FF43008 | 3FF42008 | 3FF65000 | 3FF65000 | R/W
mode settings
CS delay configura-

SPI_CTRL1_REG ion 3FF4300C| 3FF4200C| 3FF6400C| 3FF6400C| R/W
i

SPI_CTRL2_REG Timing configuration | 3FF43014 | 3FF42014 | 3FF64014 | 3FF64014 | R/W

SPI_CLOCK_REG Clock configuration 3FF43018 | 3FF42018| 3FF64018 | 3FF64018 | R/W
Polarity and CS con-

SPI_PIN_REG) i 3FF43034 | 3FF42034 | 3FF64034 | 3FF64034 | R/W
figuration

Slave mode configuration registers
Slave mode config-

SPI_SLAVE_REG uration and interrupt | 3FF43038 | 3FF42038 | 3FF64038 | 3FF64038 | R/W
status

SPI_SLAVE1_REG Slave data bit lengths | 3FF4303C| 3FF4203C| 3FF6403C| 3FF6403C| R/W
Dummy cycle length

SPI_SLAVE2_REG) ; 3FF43040 | 3FF42040 | 3FF64040 | 3FF64040| R/W
configuration
Read/write sta-

SPI_SLAVE3_REG) 3FF43044 | 3FF42044 | 3FFB4044 | 3FF64044 | R/W
tus/buffer register
Slave status/higher

SPI_SLV_WR_STATUS_REG 3FF43030 | 3FF42030 | 3FF64030 | 3FF64030| R/W
master address
Write-buffer opera-

SPI_SLV_WRBUF_DLEN_REG tion length 3FF43048 | 3FF42048 | 3FF64048 | 3FF64048 | R/W
i
Read-buffer opera-

SPI_SLV_RDBUF_DLEN_REG tion lenath 3FF4304C| 3FF4204C| 3FF6404C| 3FF6404C| R/W
ion leng
Read data operation

SPI_SLV_RD_BIT_REG 3FF43064 | 3FF42064 | 3FF64064 | 3FF64064 | R/W

Espressif Systems

127

ESP32 Technical Reference Manual V3.1

7. SPI

User-defined command mode registers

Start user-defined
SPI_CMD_REG 3FF43000 | 3FF42000| 3FF64000 | 3FF64000| R/W
command
SPI_ADDR_REG Address data 3FF43004 | 3FF42004 | 3FF64004 | 3FF64004 | R/W
User defined com-
SPI_USER_REG)) 3FF4301C| 3FF4201C| 3FF6401C| 3FF6401C| R/W
mand configuration
Address and dummy
SPI_USER1_REG) i 3FF43020 | 3FF42020 | 3FF64020 | 3FF64020| R/W
cycle configuration
Command length
SPI_USER2_REG and value configura- | 3FF43024 | 3FF42024 | 3FF64024 | 3FF64024 | R/W
tion
SPI_MOSI_DLEN_REG MOSI length 3FF43028 | 3FF42028 | 3FF64028 | 3FF64028 | R/W
SPI_WO_REG SPI data register O 3FF43080 | 3FF42080 | 3FF64080 | 3FF64080| R/W
SPI_W1_REG SPI data register 1 3FF43084 | 3FF42084 | 3FF64084 | 3FF64084 | R/W
SPI_W2_REG SPI data register 2 3FF43088 | 3FF42088 | 3FF64088 | 3FF64088 | R/W
SPI_W3_REG SPI data register 3 3FF4308C| 3FF4208C| 3FF6408C| 3FF6408C| R/W
SPI_W4_REG SPI data register 4 3FF43090 | 3FF42090 | 3FF64090 | 3FF64090 | R/W
SPI_W5_REG SPI data register 5 3FF43094 | 3FF42094 | 3FF64094 | 3FF64094 | R/W
SPI_W6_REG SPI data register 6 3FF43098 | 3FF42098 | 3FF64098 | 3FF64098 | R/W
SPI_W7_REG SPI data register 7 3FF4309C| 3FF4209C| 3FF6409C| 3FF6409C| R/W
SPI_W8_REG SPI data register 8 3FF430A0| 3FF420A0| 3FFB640A0| 3FF640A0| R/W
SPI_W9_REG SPI data register 9 3FF430A4 | 3FF420A4 | 3FFB40A4 | 3FF640A4| R/W
SPI_W10_REG SPI data register 10 3FF430A8 | 3FF420A8| 3FFB640A8| 3FF640A8| R/W
SPI_W11_REG SPI data register 11 3FF430AC| 3FF420AC| 3FFB40AC| 3FFB40AC| R/W
SPI_W12_REG SPI data register 12 3FF430B0| 3FF420B0| 3FF640B0O| 3FF640B0O| R/W
SPI_W13_REG SPI data register 13 3FF430B4| 3FF420B4| 3FF640B4| 3FF640B4| R/W
SPI_W14_REG SPI data register 14 3FF430B8| 3FF420B8| 3FF640B8| 3FF640B8| R/W
SPI_W15_REG SPI data register 15 3FF430BC| 3FF420BC| 3FF640BC| 3FF640BC| R/W
CRC32 of 256 bits of
SPI_TX_CRC_REG 3FF430C0| 3FF420C0| 3FF640C0| 3FFB40C0| R/W
data (SPI1 only)
Status registers
Slave status and fast
SPI_RD_STATUS_REG 3FF43010 | 3FF42010| 3FF64010 | 3FF64010| R/W
read mode
DMA configuration registers
DMA configuration
SPI_DMA_CONF_REG egiste 3FF43100 | 3FF42100| 3FF64100| 3FF64100| R/W
register
DMA outlink address
SPI_DMA_OUT_LINK_REG , , 3FF43104 | 3FF42104 | 3FF64104 | 3FF64104 | R/W
and configuration
DMA inlink address
SPI_DMA_IN_LINK_REG , , 3FF43108 | 3FF42108 | 3FF64108 | 3FF64108 | R/W
and configuration
SPI_DMA_STATUS_REG DMA status 3FF4310C| 3FF4210C| 3FF6410C| 3FF6410C| RO
Descriptor address
SPI_IN_ERR_EOF_DES_ADDR_REG | where an error | 3FF43120 | 3FF42120| 3FF64120| 3FF64120| RO
occurs
Espressif Systems 128 ESP32 Technical Reference Manual V3.1

7. SPI

Descriptor address

SPI_IN_SUC_EOF_DES_ADDR_REG 3FF43124 | 3FF42124 | 3FFB4124 | 3FF64124 | RO
where EOF occurs
Current descriptor

SPI_INLINK_DSCR_REG oointe 3FF43128 | 3FF42128 | 3FF64128 | 3FF64128 | RO
inter
Next descriptor data

SPI_INLINK_DSCR_BFO_REG it 3FF4312C| 3FF4212C| 3FF6412C| 3FF6412C| RO
pointer
Current descriptor

SPI_INLINK_DSCR_BF1_REG , 3FF43130 | 3FF42130| 3FF64130| 3FF64130| RO
data pointer
Relative buffer ad-

SPI_OUT_EOF_BFR_DES_ADDR_REG| dress where EOF | 3FF43134 | 3FF42134 | 3FF64134 | 3FF64134 | RO
occurs
Descriptor address

SPI_OUT_EOF_DES_ADDR_REG 3FF43138 | 3FF42138 | 3FF64138 | 3FF64138| RO
where EOF occurs
Current descriptor

SPI_OUTLINK_DSCR_REG oointe 3FF4313C| 3FF4213C| 3FF6413C| 3FF6413C| RO
inter
Next descriptor data

SPI_OUTLINK_DSCR_BFO_REG it 3FF43140 | 3FF42140| 3FF64140| 3FF64140| RO
pointer
Current descriptor

SPI_OUTLINK_DSCR_BF1_REG , 3FF43144 | 3FF42144| 3FF64144 | 3FF64144| RO
data pointer
DMA memory read

SPI_DMA_RSTATUS_REG at 3FF43148 | 3FF42148 | 3FF64148 | 3FF64148| RO
status
DMA memory write

SPI_DMA_TSTATUS_REG at 3FF4314C| 3FF4214C| 3FF6414C| 3FF6414C| RO
status

DMA interrupt registers

SPI_DMA_INT_RAW_REG Raw interrupt status | 3FF43114 | 3FF42114 | 3FF64114 | 3FF64114 | RO
Masked interrupt sta-

SPI_DMA_INT_ST_REG s 3FF43118 | 3FF42118| 3FF64118 | 3FF64118| RO
u

SPI_DMA_INT_ENA_REG Interrupt enable bits | 3FF43110 | 3FF42110| 3FF64110 | 3FF64110| R/W

SPI_DMA_INT_CLR_REG Interrupt clear bits 3FF4311C| 3FF4211C| 3FF6411C| 3FF6411C| R/W

Espressif Systems

129

ESP32 Technical Reference Manual V3.1

7. SPI

7.8 Registers

Register 7.1: SPI_CMD_REG (0x0)

IS

J
<2)°-’®6

A

’31 19|18|35 lﬁ‘

I Q
N

of N
& K

]ooooooooooooo|0|oooooooooooooooooo‘Reset

SPI_USR This bit is used to enable user-defined commands. An operation will be triggered when this
bit is set. The bit will be cleared once the operation is done. (R/W)

Register 7.2: SPI_ADDR_REG (0x4)

E]

’ 0x000000000 \ Reset

SPI_ADDR_REG Address to slave or from master. If the address length is bigger than 32 bits,
SPI_SLV_WR_STATUS_REG contains the lower 32 bits while this register contains the higher ad-
dress bits. (R/W)

Espressif Systems 130 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.3: SPI_CTRL_REG (0x8)

CE o NG
SEL P S ST
SNRIAY o7 O%&”
ee"’& &@/&@2@%@& ¢ & Q,&& &L Qezb\
§®0_> @Q\ /. C_<)2\ / Of)z\ / %Q\ /&ZJ% 0_<)2\ /. %Q\ / \@)G_) %Q\ /O_) N/ §®0_>

’31 27|26|25|24 23|22|21|20|19 15|14|13|25 13‘

]o 0 0 0 o|0|o|o|o|o|1|o|o 0 0 0 o|o|1|o 0O 00 00O O0O0UO0 0 O O‘Reset

SPI_WR_BIT_ORDER This bit determines the bit order for command, address and MOSI data writes.
1: sends LSB first; 0: sends MSB first. (R/W)

SPI_RD_BIT_ORDER This bit determines the bit order for MOSI data reads. 1: receives LSB first; O:
receives MSB first. (R/W)

SPI_FREAD_QIO This bit determines whether to use four data lines for address writes and MOSI data
reads or not. 1: enable; O: disable. (R/W)

SPI_FREAD_DIO This bit determines whether to use two data lines for address writes and MOSI data
reads or not. 1: enable; O: disable. (R/W)

SPI_WP This bit determines the write-protection signal output when SPI is idle. 1: output high; O:
output low. (R/W)

SPI_FREAD_QUAD This bit determines whether to use four data lines for MOSI data reads or not. 1:
enable; 0: disable. (R/W)

SPI_FREAD_DUAL This bit determines whether to use two data lines for MOSI data reads or not. 1:
enable; 0: disable. (R/W)

SPI_FASTRD_MODE This bit is used to enable spi_fread_gio, spi_fread_dio, spi_fread_qgout, and
spi_fread_dout. 1: enable O: disable. (R/W)

Register 7.4: SPI_CTRL1_REG (0xC)

’31 28|55 28‘

SPI_CS_HOLD_DELAY The number of SPI clock cycles by which the SPI CS signal is delayed. (R/W)

Espressif Systems 131 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.5: SPI_RD_STATUS_REG (0x10)

N i
& &
%Q\/ %Q\/
’31 24|23 16|15 O‘
’ 0x000 | 0x000 |o 0O 00 00ODOOGOTOTOUOT OO OO O‘Reset

SPI_STATUS_EXT In slave mode, this is the status for the master to read. (R/W)

SPI_STATUS In slave mode, this is the status for the master to read. (R/W)

Espressif Systems 132 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.6: SPI_CTRL2_REG (0x14)

%
< < QO
Q g S ¢ & ¢ ©
N ® A A0 4> L0 \@‘2‘/ o
W w 5 2 ~a ~a R & N
s & F O F P 9 Q7
S 9 >7 S 07 ¥ 0 R S
I &’ O O @”9 @\cQ o & O @é\
("OQ\/ (bQ 7 Q\/ Q\/ %Q\/ %Q\/ Q\/ Q"Oé %Q\/ Q\/
’31 28|27 26|25 23|22 21|20 18 | 17 16|15 12|11 8|7 4|3 O‘
] 0x00 | 0x0 | 0x0 | 0x0 | 0x0 | 0x0 | 0x00 | 0x00 | 0x01 | 0x01 ‘Reset

SPI_CS_DELAY_NUM The spi_cs signal is delayed by the number of system clock cycles configured
here. (R/W)

SPI_CS_DELAY_MODE This register field determines the way the spi_cs signal is delayed by spi_clk.
RW)
0: none.
1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, spi_cs is delayed by half a cycle, otherwise it

is delayed by one cycle.
2: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, spi_cs is delayed by one cycle, otherwise it is

delayed by half a cycle.
3: the spi_cs signal is delayed by one cycle.

SPI_MOSI_DELAY_NUM The MOSI signals are delayed by the number of system clock cycles con-
figured here. (R/W)

SPI_MOSI_DELAY_MODE This register field determines the way the MOSI signals are delayed by

spi_clk. (R/W)
0: none.
1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MOSI signals are delayed by half a cycle,

otherwise they are delayed by one cycle.
2: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MOSI signals are delayed by one cycle,

otherwise they are delayed by half a cycle.
3: the MOSI signals are delayed one cycle.

SPI_MISO_DELAY_NUM The MISO signals are delayed by the number of system clock cycles spec-
ified here. (R/W)

SPI_MISO_DELAY_MODE This register field determines the way MISO signals are delayed by spi_clk.
R/W)
0: none.
1: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MISO signals are delayed by half a cycle,

otherwise they are delayed by one cycle.
2: if SPI_CK_OUT_EDGE or SPI_CK_I_EDGE is set, the MISO signals are delayed by one cycle,

otherwise they are delayed by half a cycle.
3: the MISO signals are delayed by one cycle.

SPI_HOLD_TIME The number of spi_clk cycles by which CS pin signals are delayed. These bits are
used in conjunction with the SPI_CS_HOLD bit. (R/W)

SPI_SETUP_TIME The number of spi_clk cycles for which spi_cs is made active before the SPI data
transaction starts. This register field is used when SPI_CS_SETUP is set. (R/W)

Espressif Systems 133 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.7: SPI_CLOCK_REG (0x18)

&
Q7
9
o

0x03 | 0x01 | 0x03

‘ Reset

Espressif Systems

SPI_CLK_EQU_SYSCLK In master mode, when this bit is set to 1, spi_clk is equal to system clock;
when set to 0, spi_clk is divided from system clock. (R/W)

SPI_CLKDIV_PRE In master mode, the value of this register field is the pre-divider value for spi_clk,
minus one. (R/W)

SPI_CLKCNT_N In master mode, this is the divider for spi_clk minus one. The spi_clk frequency is
system_clock/(SPI_CLKDIV_PRE+1)/(SPI_CLKCNT_N+1). (R/W)

SPI_CLKCNT_H For a 50% duty cycle, set this to floor((SPI_CLKCNT_N+1)/2-1). (R/W)

SPI_CLKCNT_L In master mode, this must be equal to SPI_CLKCNT_N. In slave mode this must be
0. (R/W)

134 ESP32 Technical Reference Manual V3.1

Register 7.8: SPI_USER_REG (0x1C)

o
SRS B
Fo S SO I A
00®§000®®%O ¥ o‘i@i@o >’ «@’0/\‘09/&%&’ N S Q®é§0\9 >
; > >) PR S 5 O\ S S
BN NI SE S 0 LT & 4t P o
NS \9 NS ON NS NS NS O e?’é \? NS NS ONS NS ONS NS %Q)é NS \9 \9 NS c_@é N
SR KL @ ST ¢ LY ¢ K
’31|30|29|28|27|26|25|24|23 l7|16 15|14|l3|12|11 10 |9 8|7|6|5|4|3 l|0‘
]1|o|0|o|o|0|o|o|o 00 0 0 0 0|o|0|o|o|0|o|o|o 0|o|1|o|o|o 0 o|0‘Reset

SPI_USR_COMMAND This bit enables the command phase of an operation. (R/W)

SPI_USR_ADDR This bit enables the address phase of an operation. (R/\W)

SPI_USR_DUMMY This bit enables the dummy phase of an operation. (R/W)

SPI_USR_MISO This bit enables the read-data phase of an operation. (R/W)

SPI_USR_MOSI This bit enables the write-data phase of an operation. (R/W)

SPI_USR_DUMMY_IDLE The spi_clk signal is disabled in the dummy phase when the bit is set. (R/W)
SPI_USR_MOSI_HIGHPART If set, data written to the device is only read from SPI_W8-SPI_W15 of the SPI buffer. (R/W)
SPI_USR_MISO_HIGHPART If set, data read from the device is only written to SPI_W8-SPI_W15 of the SPI buffer. (R/W)

SPI_SIO Set this bit to enable three-line half-duplex communication where MOSI and MISO signals share the same pin.
(R/W)

SPI_FWRITE_QIO This bit enables the use of four data lines for address and MISO data writes. 1: enable; O: disable.
(R/W)

SPI_FWRITE_DIO This bit enables the use of two data lines for address and MISO data writes. 1: enable; O: disable.
(R/W)

SPI_FWRITE_QUAD This bit enables the use of four data lines for MISO data writes. 1: enable; O: disable. (R/W)

SPI_FWRITE_DUAL This bit determines whether to use two data lines for MISO data writes or not. 1: enable; O: disable.
(R/W)

SPI_WR_BYTE_ORDER This bit determines the byte-endianness for writing command, address, and MOSI data. 1:
big-endian; O: litte-endian. (R/W)

SPI_RD_BYTE_ORDER This bit determines the byte-endianness for reading MISO data. 1: big-endian; O: little_endian.
R/W)

SPI_CK_OUT_EDGE This bit, combined with SPI_MOSI_DELAY_MODE, sets the MOSI signal delay mode. (R/W)

SPI_CK_I_EDGE In slave mode, the bit is the same as SPI_CK_OUT_EDGE in master mode. It is combined with
SPI_MISO_DELAY_MODE. (R/W)

SPI_CS_SETUP Setting this bit enables a delay between spi_cs being active and starting data transfer, as specified in
SPI_SETUP_TIME. This bit only is valid in half-duplex mode, that is, when SPI_DOUTDIN is not set. (R/W)

SPI_CS_HOLD Setting this bit enables a delay between the end of a transmission and spi_cs being made inactive, as
specified in SPI_HOLD_TIME. (R/W)

SPI_DOUTDIN Set the bit to enable full-duplex communication, meaning that MOSI data is sent out at the same time
MISO data is received. 1: enable; O: disable. (R/W)

Espressif Systems 135 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.9: SPI_USER1_REG (0x20)

%
I~
& &
/\&\/
S S
& N
& S
¥ S
& @6‘9 $
%Q\/ \@9 %Q\/

‘ 31 26 | 25 8 | ’ 0 ‘
‘ 23 | 0 0000DO0OO0OGO OGO O O OTUOTU OO 0O OO0 0 0 | 7 ‘Reset

SPI_USR_ADDR_BITLEN The bit length of the address phase minus one. (RO)

SPI_USR_DUMMY_CYCLELEN The number of spi_clk cycles for the dummy phase, minus one.

(R/W)
Register 7.10: SPI_USER2_REG (0x24)
2 N2
&
S &
Q7 Q7
@@ @V%
N\ N\
& &
7/ \ 7/
& & S
<~OQ\/ §®%® (éz\/
‘31 28|27 16|15 O‘
‘ 7 |0 000 00 O0O0U GO0 O o|o 00000 OO OTU 0G OGO OGO 0O 0O O‘Reset

SPI_USR_COMMAND_BITLEN The bit length of the command phase minus one. (R/W)

SPI_USR_COMMAND_VALUE The value of the command. (R/W)

Register 7.11: SPI_MOSI_DLEN_REG (0x28)

e
<&
Q
Q
%\/
@)
6\ Q\/
%Q’é@ \9%
NS &
‘31 24|23 O‘
‘o 00 00 0 0 o| 0x0000000 ‘Reset

SPI_USR_MOSI_DBITLEN The bit length of the data to be written to the device minus one. (R/W)

Espressif Systems 136 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.12: SPI_MISO_DLEN_REG (0x2C)

‘31 24|23 O‘

‘o 00 0 0 0 0 o| 0x0000000 \Reset

SPI_USR_MISO_DBITLEN The bit length of the data to be read from the device, minus one. (R/W)

Register 7.13: SPI_SLV_WR_STATUS_REG (0x30)

[|

‘OOOOOOOOO0OOOOOOOOOOOOOOOOOOOOOO‘Reset

SPI_SLV_WR_STATUS_REG In the slave mode this register is the status register for the master to
write into. In the master mode, if the address length is bigger than 32 bits, this register contains
the lower 32 bits. (R/W)

Espressif Systems 137 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.14: SPI_PIN_REG (0x34)

& V v
6\\“ & & L
B o &’
/ s s S5 O O
. & o S & S\ & S gD
D S O ?%J S ?%) N D YIS
%Q’GQ\S)Q\S) %Q’é Q\/® %Q’é Q\/ Q\/ %Q’é Q\9Q\/ Q\/
¢SS N S N & N

’31|30|29|28 14|13 11|10 9|8 6|5|4 3|2|1|0‘

]o|o|0|o 000 00O OO OTU OU OGO 00 O 0|0 0 0|0 o|ooooo|o|0 o|1|1|o‘Reset

SPI_CS_KEEP_ACTIVE When set, the spi_cs will be kept active even when not in a data transaction.
(R/W)

SPI_CK_IDLE_EDGE The idle state of the spi_clk line. (R/W)
1: the spi_clk line is high when idle;
0: the spi_clk line is low when idle.

SPI_MASTER_CK_SEL This register field contains one bit per spi_cs line. When a bit is set in master
mode, the corresponding spi_cs line is made active and the spi_cs pin outputs spi_clk. (R/W)

SPI_MASTER_CS_POL This register filed selects the polarity of the spi_cs line. It contains one bit
per spi_cs line. Possible values of the bits: (R/W)
0: spi_cs is active-low;
1: spi_cs is active-high.

SPI_CK_DIS When set, output of the spi_clk signal is disabled. (R/W)

SPI_CS2_DIS This bit enables the SPI CS2 pin. 1: disables CS2; 0: spi_cs?2 is active during the data
transaction. (R/W)

SPI_CS1_DIS This bit enables the SPI CS1 pin. 1: disables CS1; 0: spi_cs1 is active during the data
transaction (R/W)

SPI_CS0_DIS This bit enables the SPI CS0 pin. 1: disables CSO0; 0: spi_cs0 is active during the data
transaction. (R/W)

Espressif Systems 138 ESP32 Technical Reference Manual V3.1

Register 7.15: SPI_SLAVE_REG (0x38)

> & S ¢ @ &
SFeRF & 5 § LERS ST TL S
TN QUL &) &) O Y R0 R0 RO RIQ
RGN S & W W) > S <ﬁ§<§§%§\§< /04 PR L
A A & & 5 P PP PRI PP PP
7 7 §®% éz\/ \/Q\/<§\/<§\/(‘OQ\/ Q\/éz\/ Q\/%Q\/ 7

SPI_SYNC_RESET This bit is used to enable software reset. When set, it resets the latched values of the SPI
clock line, cs line and data lines. (R/W)

SPI_SLAVE_MODE This bit is used to set the mode of the SPI device. (R/W)
1: slave mode;
0: master mode.

SPI_SLV_WR_RD_BUF_EN Setting this bit enables the write and read buffer commands in slave mode. (R/W)
SPI_SLV_WR_RD_STA_EN Setting this bit enables the write and read status commands in slave mode. (R/W)

SPI_SLV_CMD_DEFINE This bit is used to enable custom slave mode commands. (R/W)
1: slave mode commands are defined in SPI_SLAVES.
0: slave mode commands are fixed as: Ox1: write-status; 0x2: write-buffer, Ox3: read-buffer; and 0x4:
read-status.

SPI_TRANS_CNT The counter for operations in both the master mode and the slave mode. (RO)
SPI_SLV_LAST_STATE In slave mode, this contains the state of the SPI state machine. (RO)
SPI_SLV_LAST_COMMAND In slave mode, this contains the value of the received command. (RO)

SPI_CS_I_MODE In the slave mode, this selects the mode to synchronize the input SPI cs signal and eliminate
SPI cs jitter. (R/W)
0: configured through registers (SPI_CS_DELAY_NUM and SPI_CS_DELAY_MODE);
1: using double synchronization method and configured through registers (SPI_CS_DELAY_NUM and
SPI_CS_DELAY_MODE);
2: using double synchronization method.

SPI_TRANS_INTEN The interrupt enable bit for the SPI_TRANS_DONE_INT interrupt. (R/W)
SPI_SLV_WR_STA_INTEN The interrupt enable bit for the SPI_SLV_WR_STA_INT interrupt. (R/W)
SPI_SLV_RD_STA_INTEN The interrupt enable bit for the SPI_SLV_RD_STA_INT interrupt. (R/W)
SPI_SLV_WR_BUF_INTEN The interrupt enable bit for the SPI_SLV_WR_BUF_INT interrupt. (R/W)
SPI_SLV_RD_BUF_INTEN The interrupt enable bit for the SPI_SLV_RD_BUF_INT interrupt. (R/W)
SPI_TRANS_DONE The raw interrupt status bit for the SPI_TRANS_DONE_INT interrupt. (R/W)
SPI_SLV_WR_STA_DONE The raw interrupt status bit for the SPI_SLV_WR_STA_INT interrupt. (R/W)
SPI_SLV_RD_STA_DONE The raw interrupt status bit for the SPI_SLV_RD_STA_INT interrupt. (R/W)
SPI_SLV_WR_BUF_DONE The raw interrupt status bit for the SPI_SLV_WR_BUF_INT interrupt. (R/W)

SPI_SLV_RD_BUF_DONE The raw interrupt status bit for the SPI_SLV_RD_BUF_INT interrupt. (R/W)

Espressif Systems 139 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.16: SPI_SLAVE1_REG (0x3C)

2 /\(5’%@?0{_ 3 <\\(’<§ & g%g(ﬁ
& F& <><’\<2> QQ& SOSO
&S5 oF o SR
& 230 @ 5 U
%Q\/ %Q\/%\/ §®% %Q\/ %Q\/ %Q\/%Q\/%Q\/%Q\/
g aOag o oL nann
]o 0 0 0 o|0|1|0 00 000 0 O o| 0x00 | 0x00 |o|o|o|o‘Reset

SPI_SLV_STATUS_BITLEN In slave mode, this sets the length of the status field. (R/W)
SPI_SLV_STATUS_FAST_EN In slave mode, this enables fast reads of the status. (R/W)

SPI_SLV_STATUS_READBACK In slave mode, this selects the active status register. (R/W)
1: reads register of SPI_SLV_WR_STATUS;
0: reads register of SPI_RD_STATUS.

SPI_SLV_RD_ADDR_BITLEN In slave mode, this contains the address length in bits for a read-buffer
operation, minus one. (R/W)

SPI_SLV_WR_ADDR_BITLEN In slave mode, this contains the address length in bits for a write-buffer
operation, minus one. (R/W)

SPI_SLV_WRSTA_DUMMY_EN In slave mode, this bit enables the dummy phase for write-status
operations. (R/W)

SPI_SLV_RDSTA_DUMMY_EN In slave mode, this bit enables the dummy phase for read-status
operations. (R/W)

SPI_SLV_WRBUF_DUMMY_EN In slave mode, this bit enables the dummy phase for write-buffer
operations. (R/W)

SPI_SLV_RDBUF_DUMMY_EN In slave mode, this bit enables the dummy phase for read-buffer
operations. (R/W)

Espressif Systems 140 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.17: SPI_SLAVE2_REG (0x40)

5 > s
& ¢® o9 K2
do {O\/ G\Q\/ _\Q\/
N A/ Q7 Q7
N N N N
% N N
<<9\> & o 0‘>®
& S & A
& Q@@ & Q@%
o & o &
(bQ\/ %Q\/ %Q\/ <~OQ\/
’31 24|23 16|15 8|7 O‘
]o 00 00 0 0 o| 0x000 | 0x000 | 0x000 ‘Reset
SPI_SLV_WRBUF_DUMMY_CYCLELEN In slave mode, this contains number of spi_clk cycles for
the dummy phase for write-buffer operations, minus one. (R/W)
SPI_SLV_RDBUF_DUMMY_CYCLELEN In slave mode, this contains the number of spi_clk cycles
for the dummy phase for read-buffer operations, minus one (R/W)
SPI_SLV_WRSTA_DUMMY_CYCLELEN In slave mode, this contains the number of spi_clk cycles
for the dummy phase for write-status operations, minus one. (R/W)
SPI_SLV_RDSTA_DUMMY_CYCLELEN In slave mode, this contains the number of spi_clk cycles
for the dummy phase for read-status operations, minus one. (R/W)
Register 7.18: SPI_SLAVE3_REG (0x44)
% & "% %
O D O
QV\’ ?\9 A?\/ yy
™ o‘@/ o « ™
A \ad N %
& Q@% & QQQ’Q
&’ &’ o N
%Q\/ 032\/ %Q\/ (§\/

SPI_SLV_WRSTA_CMD_VALUE In slave mode, this contains the value of the write-status command.
(R/W)

SPI_SLV_RDSTA_CMD_VALUE In slave mode, this contains the value of the read-status command.
(R/W)

SPI_SLV_WRBUF_CMD_VALUE In slave mode, this contains the value of the write-buffer command.
(R/W)

SPI_SLV_RDBUF_CMD_VALUE In slave mode, this contains the value of the read-buffer command.
(R/W)

Espressif Systems 141 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.19: SPI_SLV_WRBUF_DLEN_REG (0x48)

%
&
Q
Q
7/
&
N
g&é N
§Q? éz\/
‘31 24|23 O‘
‘o 00 0 0 0 0 o| 0x0000000 ‘Reset

SPI_SLV_WRBUF_DBITLEN This equals to the bit length of data written into the slave buffer, minus

one. (R/W)
Register 7.20: SPI_SLV_RDBUF_DLEN_REG (0x4C)
%
é\\i‘/
©
N
&
Q)& N/
§ &
%® N/
NS &
‘ 31 24 | 23 0 ‘
‘o 00 00 0 0 o| 0x0000000 ‘Reset

SPI_SLV_RDBUF_DBITLEN This equals to the bit length of data read from the slave buffer, minus

one. (R/W)
Register 7.21: SPI_SLV_RD_BIT_REG (0x64)
&
<7
D A/Qv
& 27

‘31 24|23 O‘

‘oooooooo|oooooooooooooooooooooooo‘Reset

SPI_SLV_RDATA_BIT This equals to the bit length of data the master reads from the slave, minus
one. (R/W)

Register 7.22: SPI_Wn_REG (n: 0-15) (0x80+4*)

‘31 O‘

‘oooo0ooooooooooooooooooooooooooo‘Reset

SPI_Wn_REG Data buffer. (R/W)

Espressif Systems 142 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.23: SPI_TX_CRC_REG (0xCO0)

E]

’OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

SPI_TX_CRC_REG For SPI1, this contains the CRC32 value of 256 bits of data. (R/W)

Register 7.24: SPI_EXT2_REG (0xF8)

D

(A
\@%@

SPI_ST The current state of the SPI state machine: (RO)
0: idle state
1: preparation state

: send command state

: send data state

: read data state

. write data state

: wait state

~N O O A~ W DN

. done state

Espressif Systems 143 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.25: SPI_DMA_CONF_REG (0x100)

SLS
&/@«,
% 0 O & A
S \%\%& S & oF
S 2y? SR SKAIEN
o & vC)Q\/() (</O AN %%&
& T AT » SAREE @
®6® Q\/ Q\/ Q\S)Q)%@ Q\/ Q\> Q\/ Q\/ Q.%@ Q\YQ\/ Q\/ Q\> Q)"::Q’
N S W EEES ¢ S S
’31 17|16 15 14 13|12|11 10 9|8 6|5|4|3|2|3 2‘
]oo0ooooooooooo0|o|0|o|o|0|o|o|w|o 0 o|o|o|0|o|0 O‘Reset

SPI_DMA_CONTINUE This bit enables SPI DMA continuous data Tx/Rx mode. (R/W)
SPI_DMA_TX_STOP When in continuous Tx/Rx mode, setting this bit stops sending data. (R/W)
SPI_DMA_RX_STOP When in continuous Tx/Rx mode, setting this bit stops receiving data. (R/W)
SPI_OUT_DATA_BURST_EN SPI DMA reads data from memory in burst mode. (R/W)

SPI_INDSCR_BURST_EN SPI DMA reads descriptor in burst mode when writing data to the memory.
(R/W)

SPI_OUTDSCR_BURST_EN SPI DMA reads descriptor in burst mode when reading data from the
memory. (R/W)

SPI_OUT_EOF_MODE DMA out-EOF-flag generation mode. (R/W)
1: out-EOF-flag is generated when DMA has popped all data from the FIFO;
0: out-EOF-flag is generated when DMA has pushed all data to the FIFO.

SPI_AHBM_RST reset SPI DMA AHB master. (R/W)
SPI_AHBM_FIFO_RST This bit is used to reset SPI DMA AHB master FIFO pointer. (R/W)
SPI_OUT_RST The bit is used to reset DMA out-FSM and out-data FIFO pointer. (R/W)

SPI_IN_RST The bit is used to reset DMA in-DSM and in-data FIFO pointer. (R/W)

Register 7.26: SPI_DMA_OUT_LINK_REG (0x104)

4
e
SS &
\l_g\\t_/ \k/ Y
5 S S) ~
© O A o\) @ N
%‘2’ Q\/ Q\/ Q\/ %® Q\/
¥ S s S @ S
’ 31 30 29 28 | 27 20 | 19 0 ‘
] 0 | 0 | 0 | 0 |0 0 00 0 0 O 0| 0x000000 ‘Reset

SPI_OUTLINK_RESTART Set the bit to add new outlink descriptors. (R/W)
SPI_OUTLINK_START Set the bit to start to use outlink descriptor. (R/W)
SPI_OUTLINK_STOP Set the bit to stop to use outlink descriptor. (R/W)

SPI_OUTLINK_ADDR The address of the first outlink descriptor. (R/W)

Espressif Systems 144 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.27: SPI_DMA_IN_LINK_REG (0x108)

s ¢
{_./ \E./ \E/ \L_./ {-/
SN S S S
SIS & \é T
\@)O_; Q)Q\/G_()z\/ G_<)2\/ §®® %Q\/ Q)Q\/
’31|30|29|28|27 21|20|19 O‘
]o|o|0|o|o 00 0 0 O o|o| 0x000000 ‘Reset

SPI_INLINK_RESTART Set the bit to add new inlink descriptors. (R/W)

SPI_INLINK_START Set the bit to start to use inlink descriptor. (R/W)

SPI_INLINK_STOP Set the bit to stop to use inlink descriptor. (R/W)

SPI_INLINK_AUTO_RET when the bit is set, inlink descriptor jumps to the next descriptor when a

packet is invalid. (R/W)

SPI_INLINK_ADDR The address of the first inlink descriptor. (R/W)

Register 7.28: SPI_DMA_STATUS_REG (0x10C)

A\

D

'S
%)
ol

&
S
%
N2,

E

[1[0}

]oooooooooooooooooooooooooooooo|o|o‘Reset

SPI_DMA_TX_EN SPI DMA write-data status bit. (RO)

SPI_DMA_RX_EN SPI DMA read-data status bit. (RO)

Espressif Systems

145

ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.29: SPI_DMA_INT_ENA_REG (0x110)

KO
& SESIE
\k\Q’%@ 7Q

SPI_OUT_TOTAL_EOF_INT_ENA The interrupt enable bit for the SPI_OUT_TOTAL_EOF_INT inter-

rupt. (R/W)

SPI_OUT_EOF_INT_ENA The interrupt enable bit for the SPI_OUT_EOF_INT interrupt. (R/W)

SPI_OUT_DONE_INT_ENA The interrupt enable bit for the SPI_OUT_DONE_INT interrupt. (R/W)

SPI_IN_SUC_EOF_INT_ENA The interrupt enable bit for the SPI_IN_SUC_EOF_INT interrupt. (R/W)

SPI_IN_ERR_EOF_INT_ENA The interrupt enable bit for the SPI_IN_ERR_EOF_INT interrupt. (R/W)

Espressif Systems 146

SPI_IN_DONE_INT_ENA The interrupt enable bit for the SPI_IN_DONE_INT interrupt. (R/W)

SPI_INLINK_DSCR_ERROR_INT_ENA The interrupt enable bit for
SPILINLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_OUTLINK_DSCR_ERROR_INT_ENA The interrupt enable bit for
SPI_OUTLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_INLINK_DSCR_EMPTY_INT_ENA The interrupt enable bit for

SPLINLINK_DSCR_EMPTY_INT interrupt. (R/W)

the

the

the

ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.30: SPI_DMA_INT_RAW_REG (0x114)

Q
S &
& S5
)
S SN KOs
S SR
P T L F L N
SIS L
é&/\ Q/Q/&/Q\/% &R/
N IRV OH SEANNE RIS
S P GG T TS
S RN
@62, O\> \) 0\%/@/@/\§/ 0\\’
\k?% Q\/Q\/Q\/Q\/Q\/Q\/Q\/ \/Q\/
’31 9|8|7|6|5|4|3|2|1|0‘
[0 o 0 0000000000000 0000 00 ofoJoJo[o[oJo[o[o]o0 |Reset

SPI_OUT_TOTAL_EOF_INT_RAW The raw interrupt status bit for the SPI_OUT_TOTAL_EOF_INT in-
terrupt. (RO)

SPI_OUT_EOF_INT_RAW The raw interrupt status bit for the SPI_OUT_EOF_INT interrupt. (RO)
SPI_OUT_DONE_INT_RAW The raw interrupt status bit for the SPI_OUT_DONE_INT interrupt. (RO)

SPI_IN_SUC_EOF_INT_RAW The raw interrupt status bit for the SPI_IN_SUC_EOF_INT interrupt.
(RO)

SPI_IN_ERR_EOF_INT_RAW The raw interrupt status bit for the SPI_IN_ERR_EOF_INT interrupt.
(RO)

SPI_IN_DONE_INT_RAW The raw interrupt status bit for the SPI_IN_DONE_INT interrupt. (RO)

SPI_INLINK_DSCR_ERROR_INT_RAW The raw interrupt status bit for the
SPI_INLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_OUTLINK_DSCR_ERROR_INT_RAW The raw interrupt status bit for the
SPI_OUTLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_INLINK_DSCR_EMPTY_INT_RAW The raw interrupt status bit for the
SPI_INLINK_DSCR_EMPTY_INT interrupt. (RO)

Espressif Systems 147 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.31: SPI_DMA_INT_ST_REG (0x118)

S
'\/&éj\é\
& S
7 7 4
SK Sedibh & Qt@é
LIS KL o
Q/O&/é D) 70 /
SINY SIS
WL O S F IS
) SASSLNE TS
S SIS o s

N
@C’@

SPI_OUT_TOTAL_EOF_INT_ST The masked interrupt status bit for the
SPI_OUT_TOTAL_EOF_INT interrupt. (RO)

SPI_OUT_EOF_INT_ST The masked interrupt status bit for the
SPI_OUT_EOF_INT interrupt. (RO)

SPI_OUT_DONE_INT_ST The masked interrupt status bit for the SPI_OUT_DONE_INT interrupt.
(RO)

SPI_IN_SUC_EOF_INT_ST The masked interrupt status bit for the SPI_IN_SUC_EOF_INT interrupt.
(RO)

SPI_IN_ERR_EOF_INT_ST The masked interrupt status bit for the SPI_IN_ERR_EOF_INT interrupt.
(RO)

SPI_IN_DONE_INT_ST The masked interrupt status bit for the SPI_IN_DONE_INT interrupt. (RO)

SPI_INLINK_DSCR_ERROR_INT_ST The masked interrupt status bit for the
SPI_INLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_OUTLINK_DSCR_ERROR_INT_ST The masked interrupt status bit for the
SPI_OUTLINK_DSCR_ERROR_INT interrupt. (RO)

SPI_INLINK_DSCR_EMPTY_INT_ST The masked interrupt status bit for the
SPI_INLINK_DSCR_EMPTY_INT interrupt. (RO)

Espressif Systems 148 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.32: SPI_DMA_INT_CLR_REG (0x11C)

. %90&
«O& > & <&>$O/<<\>>§v
L2 of Fo¥e SEE
T DK TE T AL (X N
Q SRS VISR IR
CLIDT, T 7S oS
7 NSNS e
O/\VVO >O$(<’/<</O S P S
> SIS
%Q’é \O\ \O \\%’\\éf\\%/\\%\’\ \\%\/
N TS
’31 9 8 7 6 5 4 3 2 1 0 ‘

SPI_OUT_TOTAL_EOF_INT_CLR Set this bit to clear the SPI_OUT_TOTAL_EOF _INT interrupt. (R/W)
SPI_OUT_EOF_INT_CLR Set this bit to clear the SPI_OUT_EOF_INT interrupt. (R/W)

SPI_OUT _DONE_INT_CLR Set this bit to clear the SPI_OUT_DONE_INT interrupt. (R/W)
SPI_IN_SUC_EOF_INT_CLR Set this bit to clear the SPI_IN_SUC_EOF_INT interrupt. (R/W)
SPI_IN_ERR_EOF_INT_CLR Set this bit to clear the SPI_IN_ERR_EOF_INT interrupt. (R/W)
SPI_IN_DONE_INT_CLR Set this bit to clear the SPI_IN_DONE_INT interrupt. (R/W)

SPI_INLINK_DSCR_ERROR_INT_CLR Set this bit to clear the SPI_INLINK_DSCR_ERROR_INT in-
terrupt. (R/W)

SPI_OUTLINK_DSCR_ERROR_INT_CLR Set this bit to clear the
SPI_OUTLINK_DSCR_ERROR_INT interrupt. (R/W)

SPI_INLINK_DSCR_EMPTY_INT_CLR Set this bit to clear the SPI_INLINK_DSCR_EMPTY_INT in-
terrupt. (R/W)

Register 7.33: SPI_IN_ERR_EOF_DES_ADDR_REG (0x120)

E]

’OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

SPI_IN_ERR_EOF_DES_ADDR_REG The inlink descriptor address when SPI DMA encountered an
error in receiving data. (RO)

Register 7.34: SPI_IN_SUC_EOF_DES_ADDR_REG (0x124)

E]

]oooo0oooo0oooooooooooooooooooooo\Reset

SPI_IN_SUC_EOF_DES_ADDR_REG The last inlink descriptor address when SPI DMA encountered
EOF. (RO)

Espressif Systems 149 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.35: SPI_INLINK_DSCR_REG (0x128)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

SPI_INLINK_DSCR_REG The address of the current inlink descriptor. (RO)

Register 7.36: SPI_INLINK_DSCR_BF0_REG (0x12C)

‘31 O‘

‘OOOO0OOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

SPI_INLINK_DSCR_BFO0_REG The address of the next inlink descriptor. (RO)

Register 7.37: SPI_INLINK_DSCR_BF1_REG (0x130)

‘31 O‘

‘oooo0ooooooooooooooooooooooooooo‘Reset

SPI_INLINK_DSCR_BF1_REG The address of the next inlink data buffer. (RO)

Register 7.38: SPI_OUT_EOF_BFR_DES_ADDR_REG (0x134)

‘31 O‘

‘oooo0ooooooooo0ooooooooooooooooo‘Rese»c

SPI_OUT_EOF_BFR_DES_ADDR_REG The buffer address corresponding to the outlink descriptor
that produces EOF. (RO)

Register 7.39: SPI_OUT_EOF_DES_ADDR_REG (0x138)

‘31 O‘

‘OOO0OOOO0OOOOOOOOOOOOOOOOOOOOOOO‘Reset

SPI_OUT_EOF_DES_ADDR_REG The last outlink descriptor address when SPI DMA encountered
EOF. (RO)

Register 7.40: SPI_OUTLINK_DSCR_REG (0x13C)

‘31 O‘

‘OOOO0OOO0OOOOOOOOOOOOOOOOOOOOOOO‘Reset

SPI_OUTLINK_DSCR_REG The address of the current outlink descriptor. (RO)

Espressif Systems 150 ESP32 Technical Reference Manual V3.1

7. SPI

Register 7.41: SPI_OUTLINK_DSCR_BFO0_REG (0x140)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

SPI_OUTLINK_DSCR_BFO0_REG The address of the next outlink descriptor. (RO)

Register 7.42: SPI_OUTLINK_DSCR_BF1_REG (0x144)

‘31 O‘

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘Reset

SPI_OUTLINK_DSCR_BF1_REG The address of the next outlink data buffer. (RO)

Register 7.43: SPI_DMA_RSTATUS_REG (0x148)

©
< &
Q/@QQ\)\V §
7/ O 7 ®® % Y\
K & N
Q\‘/ d./ §Q, 'Q\" 7

‘31|30|29 20|19 O‘

‘o|o|ooooo0ooo0|oooooooooooooooooooo‘Reset

TX_FIFO_EMPTY The SPI DMA Tx FIFO is empty. (RO)
TX_FIFO_FULL The SPI DMA Tx FIFO is full. (RO)

TX_DES_ADDRESS The LSB of the SPI DMA outlink descriptor address. (RO)

Register 7.44: SPI_DMA_TSTATUS_REG (0x14C)

©
Q &
®§2<< > §O
007 I joXd
<<<< <<<< Q\QJ Q(O
KD, & A7
QR N <

‘31|30|29 20|19 O‘

‘o|o|ooooooo0oo|oooooooooooooooooooo‘Reset

RX_FIFO_EMPTY The SPI DMA Rx FIFO is empty. (RO)
RX_FIFO_FULL The SPI DMA Rx FIFO is full. (RO)

RX_DES_ADDRESS The LSB of the SPI DMA inlink descriptor address. (RO)

Espressif Systems 151 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

8. SDIO Slave

8.1 Overview

The ESP32 features hardware support for the industry-standard Secure Digital (SD) device interface that
conforms to the SD Input/Output (SDIO) Specification Version 2.0. This allows a host controller to access the
ESP32 via an SDIO bus protocol, enabling high-speed data transfer.

The SDIO interface may be used to read ESP32 SDIO registers directly and access shared memory via Direct
Memory Access (DMA), thus reducing processing overhead while maintaining high performance.

8.2 Features
e Meets SDIO V2.0 specification
e Supports SDIO SPI, 1-bit, and 4-bit transfer modes
e Full host clock range of 0 ~ 50 MHz
e Configurable sample and drive clock edge
¢ Integrated, SDIO-accessible registers for information interaction
e Supports SDIO interrupt mechanism
e Automatic data padding
e Block size of up to 512 bytes
e Interrupt vector between Host and Slave for bidirectional interrupt

e Supports DMA for data transfer

8.3 Functional Description

8.3.1 SDIO Slave Block Diagram

The functional block diagram of the SDIO slave module is shown in Figure 20.

ESP32

AHB BUS

Internal BUS SDIO Device L SDIOBUS Host SDIO
DMA Interface Interface " Interface

Host System

Figure 20: SDIO Slave Block Diagram
The Host System represents any SDIO specification V2.0-compatible host device. The Host System interacts

with the ESP32 (configured as the SDIO slave) via the standard SDIO bus implementation.

The SDIO Device Interface block enables effective communication with the external Host by directly providing
SDIO interface registers and enabling DMA operation for high-speed data transfer over the Advanced
High-performance Bus (AHB) without engaging the CPU.

Espressif Systems 152 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

8.3.2 Sending and Receiving Data on SDIO Bus

Data is transmitted between Host and Slave through the SDIO bus I/O Functioni. After the Host enables the 1/0
Function1 in the Slave, according to the SDIO protocol, data transmission will begin.

ESP32 segregates data into packets sent to/from the Host. To achieve high bus utilization and data transfer
rates, we recommend the single block transmission mode. For detailed information on this mode, please refer to
the SDIO V2.0 protocol specification. When Host and Slave exchange data as blocks on the SDIO bus, the Slave
automatically pads data-when sending data out-and automatically strips padding data from the incoming data
block.

Whether the Slave pads or discards the data depends on the data address on the SDIO bus. When the data
address is equal to, or greater than, 0x1F800, the Slave will start padding or discarding data. Therefore, the
starting data address should be 0x1F800 - Packet_length, where Packet_length is measured in bytes. Data flow
on the SDIO bus is shown in Figure 21.

Packet Pajding
block 0 [CRC block 1 |CRC| :-- block n [CRC
Addr:0x1F800 - Packet_length Addr:0x1F800

Figure 21: SDIO Bus Packet Transmission

The standard I0_RW_EXTENDED (CMD53) command is used to initiate a packet transfer of an arbitrary length.
The content of the CMD53 command used in data transmission is as illustrated in Figure 22 below. For detailed
information on CMD53, please refer to the SDIO protocol specifications.

Command Function Block OoP "
s D Index AW | Number | Mode Code oxiodister Address CRC7 E
11010b 9 001b 1b 1b —eng
1 1 6 1 3 1 1 17 7 1

Figure 22: CMD53 Content

8.3.3 Register Access

For effective interaction between Host and Slave, the Host can access certain registers in the Slave via the SDIO
bus I/O Functioni. These registers are in continuous address fields from SLCOHOST_TOKEN_RDATA to
SLCHOST_INF_ST. The Host device can access these registers by simply setting the register addresses of
CMD52 or CMD53 to the low 10 bits of the corresponding register address. The Host can access several
consecutive registers at one go with CMD53, thus achieving a higher effective transfer rate.

There are 54 bytes of field between SLCHOST_CONF_WO_REG and SLCHOST_CONF_W15_REG. Host and
Slave can access and change these fields, thus facilitating the information interaction between Host and
Slave.

Espressif Systems 153 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

8.3.4 DMA

The SDIO Slave module uses dedicated DMA to access data residing in the RAM. As shown in Figure 20, the
RAM is accessed over the AHB. DMA accesses RAM through a linked-list descriptor. Every linked list is
composed of three words, as shown in Figure 23.

1 1 6 12 12

Owner| Eof |Reserved| Length Size

Buffer Address Pointer

Next Descriptor Address

Figure 23: SDIO Slave DMA Linked List Structure

e Owner: The allowed operator of the buffer that corresponds to the current linked list. 0: CPU is the allowed
operator; 1: DMA is the allowed operator.

e Eof: End-of-file marker, indicating that this linked-list element is the last element of the data packet.

¢ | ength: The number of valid bytes in the buffer, i.e., the number of bytes that should be accessed from the
buffer for reading/writing.

e Size: The maximum number of available buffers.

e Buffer Address Pointer: The address of the data buffer as seen by the CPU (according to the RAM address
space).

e Next Descriptor Address: The address of the next linked-list element in the CPU RAM address space. If the
current linked list is the last one, the Eof bit should be 1, and the last descriptor address should be 0.

The Slave’s linked-list chain is shown in Figure 24:

Descriptor 0 Data Buffer 0 ‘

[=]

—>
Descriptor 1 Data Buffer 1 ‘
Descriptor n-1 44 Data Buffer n-1 ‘

—>
Descriptor n 44 Data Buffer n ‘

Figure 24: SDIO Slave Linked List

Espressif Systems 154 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

8.3.5 Packet-Sending/-Receiving Procedure

The SDIO Host and Slave devices need to follow specific data transfer procedures to successfully exchange data
over the SDIO interface.

8.3.5.1 Sending Packets to SDIO Host

The transmission of packets from Slave to Host is initiated by the Slave. The Host will be notified with an interrupt
(for detailed information on interrupts, please refer to SDIO protocol). After the Host reads the relevant
information from the Slave, it will initiate an SDIO bus transaction accordingly. The whole procedure is illustrated
in Figure 25.

Host § Slave

CPU prepares linked
list chain

Waits for the last
transmission completed

CPU refreshes
SLCHOST_PKT_LEN

CPU initiates DMA
Slave sends interrupt to
Host

Host responds to interrupt
Reads Slave register

including SLCOHOST_INT_ST :
SLCHOST_PKT_LEN) |

Sends CMD53

Slave clears interrupt
automatically

DMA transfers data

@

Transmission completed
Discards padding data

Packet processing

ISDIO Physical Bus sends data

Transmission completed

Slave sends interrupt to
CPU
CPU retrieves buffer

Figure 25: Packet Sending Procedure (Initiated by Slave)

When the Host is interrupted, it reads relevant information from the Slave by visiting registers SLCOHOST_INT

and SLCHOST_PKT_LEN.

Espressif Systems

155

ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

e SL.COHOST_INT: Interrupt status register. If the value of SLCO_RX_NEW_PACKET_INT_ST is 1, this
indicates that the Slave has a packet to send.

e SLCHOST_PKT_LEN: Packet length accumulator register. The current value minus the value of last time
equals the packet length sent this time.

In order to start DMA, the CPU needs to write the low 20 bits of the address of the first linked-list element to the
SLCO_RXLINK_ADDR bit of SLCORX_LINK, then set the SLCO_RXLINK_START bit of SLCORX_LINK. The DMA
will automatically complete the data transfer. Upon completion of the operation, DMA will interrupt the CPU so
that the buffer space can be freed or reused.

8.3.5.2 Receiving Packets from SDIO Host

Transmission of packets from Host to Slave is initiated by the Host. The Slave receives data via DMA and stores it
in RAM. After transmission is completed, the CPU will be interrupted to process the data. The whole procedure is
demonstrated in Figure 26.

Host Slave

Obtains the number of available
Slave buffers

‘ Waits for enough Slave buffers
‘ Fills packet ‘

’

‘ Sends CMD53 ‘

Slave returns Response(R5)

. 4’KeivessmoF’hysica Bus data
‘ SDIO Physical Bus sends data H DMA transfers data

R

‘ END ‘ H ‘ Sends interrupt to CPU ‘

‘ CPU processes data ‘

Figure 26: Packet Receiving Procedure (Initiated by Host)

The Host obtains the number of available receiving buffers from the Slave by accessing register
SLCOHOST_TOKEN_RDATA. The Slave CPU should update this value after the receiving DMA linked list is
prepared.

HOSTREG_SLCO_TOKEN1 in SLCOHOST_TOKEN_RDATA stores the accumulated number of available
buffers.

The Host can figure out the available buffer space, using HOSTREG_SLCO_TOKEN1 minus the number of
buffers already used.

Espressif Systems 156 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

If the buffers are not enough, the Host needs to constantly poll the register until there are enough buffers
available.

To ensure sufficient receiving buffers, the Slave CPU must constantly load buffers on the receiving linked list. The
process is shown in Figure 27.

CPU loads available buffers
on Iinll<ed list

CPU notifies DMA of
refreshed linked list

CPU refreshes available buffers

Figure 27: Loading Receiving Buffer

The CPU first needs to append new buffer segments at the end of the linked list that is being used by DMA and is
available for receiving data.

The CPU then needs to notify the DMA that the linked list has been modified. This can be done by setting bit
SLCO_TXLINK_RESTART of the SLCOTX_LINK register. Please note that when the CPU initiates DMA to receive
packets for the first time, SLCO_TXLINK_RESTART should be set to 1.

Lastly, the CPU refreshes any available buffer information by writing to the SLCOTOKENT register.

8.3.6 SDIO Bus Timing

The SDIO bus operates at a very high speed and the PCB trace length usually affects signal integrity by
introducing latency. To ensure that the timing characteristics conform to the desired bus timing, the SDIO Slave
module supports configuration of input sampling clock edge and output driving clock edge.

When the incoming data changes near the rising edge of the clock, the Slave will perform sampling on the falling
edge of the clock, or vice versa, as Figure 28 shows.

Posedge sampling Negedge sampling

CLK CLK

CMD X X cMD X X
DAT[3:0] DAT([3:0]

Figure 28: Sampling Timing Diagram

Sampling edges are configured via the FRC_POS_SAMP and FRC_NEG_SAMP bitfields in the SLCHOST_CONF
register. Each field is five bits wide, with bits corresponding to the CMD line and four DATA lines (0-3). Setting a
bit in FRC_POS_SAMP causes the corresponding line to be sampled for input at the rising clock edge, whereas
setting a bit in FRC_NEG_SAMP causes the corresponding line to be sampled for input at the falling clock

edge.

Espressif Systems 157 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

The Slave can also select the edge at which data output lines are driven to accommodate for any latency caused
by the physical signal path, as shown in Figure 29.

Posedge driving | ; Posedge driving |

CLK CLK

CMD | | CMD
DAT([3:0] | | DATI[3:0]

Figure 29: Output Timing Diagram

Driving edges are configured via the FRC_SDIO20 and FRC_SDIO11 bitfields in the SLCHOST_CONF register.
Each field is five bits wide, with bits corresponding to the CMD line and four DATA lines (0-3). Setting a bit in
FRC_SDIO20 causes the corresponding line to output at the rising clock edge, whereas setting a bit in
FRC_SDIO11 causes the corresponding line to output at the falling clock edge.

8.3.7 Interrupt

Host and Slave can interrupt each other via the interrupt vector. Both Host and Slave have eight interrupt
vectors. The interrupt is enabled by configuring the interrupt vector register (setting the enable bit to 1). The
interrupt vector registers can clear themselves automatically, which means one interrupt at a time and no other
configuration is required.

8.3.7.1 Host Interrupt

SLCOHOST_SLCO_RX_NEW_PACKET_INT Slave has a packet to send.

SLCOHOST_SLCO_TX_OVF_INT Slave receiving buffer overflow interrupt.

SLCOHOST_SLCO_RX_UDF_INT Slave sending buffer underflow interrupt.

SLCOHOST_SLCO_TOHOST_BITn_INT (n: O ~ 7) Slave interrupts Host.

8.3.7.2 Slave Interrupt

e SLCOINT_SLCO_RX_DSCR_ERR_INT Slave sending descriptor error.

e SLCOINT_SLCO_TX_DSCR_ERR_INT Slave receiving descriptor error.

e SLCOINT_SLCO_RX_EOF_INT Slave sending operation is finished.

e SLCOINT_SLCO_RX_DONE_INT A single buffer is sent by Slave.

e SLCOINT_SLCO_TX_SUC_EOF_INT Slave receiving operation is finished.

e SLCOINT_SLCO_TX_DONE_INT A single buffer is finished during receiving operation.
e SLCOINT_SLCO_TX_OVF_INT Slave receiving buffer overflow interrupt.

e SLCOINT_SLCO_RX_UDF_INT Slave sending buffer underflow interrupt.

e SLCOINT_SLCO_TX_START_INT Slave receiving interrupt initialization.

e SLCOINT_SLCO_RX_START_INT Slave sending interrupt initialization.

Espressif Systems 158 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

e SLCOINT_SLC_FRHOST_BITn_INT (n: O ~ 7) Host interrupts Slave.

8.4 Register Summary

Name ‘ Description Address Access
SDIO DMA (SLC) configuration registers
SLCCONFO_REG SLCCONFO_SLC configuration O0x3FF58000 | R/W
SLCOINT_RAW_REG Raw interrupt status Ox3FF58004 | RO
SLCOINT_ST_REG Interrupt status Ox3FF58008 | RO
SLCOINT_ENA_REG Interrupt enable Ox3FF5800C | R/W
SLCOINT_CLR_REG Interrupt clear Ox3FF58010 | WO
SLCORX_LINK_REG Transmitting linked list configuration Ox3FF5803C | R/W
SLCOTX_LINK_REG Receiving linked list configuration Ox3FF58040 | R/W
SLCINTVEC_TOHOST_REG Interrupt sector for Slave to interrupt Host Ox3FF5804C | WO
SLCOTOKEN1_REG Number of receiving buffer Ox3FF58054 | WO
SLCCONF1_REG Control register Ox3FF58060 | R/W
SLC_RX_DSCR_CONF_REG DMA transmission configuration Ox3FF58098 | R/W
SLCO_LEN_CONF_REG Length control of the transmitting packets Ox3FF580E4 | R/W
SLCO_LENGTH_REG Length of the transmitting packets Ox3FF580E8 | R/W
Name Description Address Access
SDIO SLC Host registers
SLCOHOST_INT_RAW_REG Raw interrupt Ox3FF55000 | RO
SLCOHOST_TOKEN_RDATA The accumulated number of Slave’s receiving | Ox3FF55044 | RO
buffers
SLCOHOST_INT_ST_REG Masked interrupt status Ox3FF55058 | RO
SLCHOST_PKT_LEN_REG Length of the transmitting packets Ox3FF55060 | RO
SLCHOST_CONF_WO_REG Host and Slave communication registerO Ox3FF5506C | R/W
SLCHOST_CONF_W1_REG Host and Slave communication register1 Ox3FF55070 | R/W
SLCHOST_CONF_W2_REG Host and Slave communication register2 Ox3FF55074 | R/W
SLCHOST_CONF_W3_REG Host and Slave communication register3 Ox3FF55078 | R/W
SLCHOST_CONF_W4_REG Host and Slave communication register4 Ox3FF5507C | R/W
SLCHOST_CONF_W6_REG Host and Slave communication register6 Ox3FF55088 | R/W
SLCHOST_CONF_W7_REG Interrupt vector for Host to interrupt Slave Ox3FF5508C | WO
SLCHOST_CONF_W8_REG Host and Slave communication register8 Ox3FF5509C | R/W
SLCHOST_CONF_W9_REG Host and Slave communication register9 Ox3FF550A0 | R/W
SLCHOST_CONF_W10_REG Host and Slave communication register10 Ox3FF550A4 | R/W
SLCHOST_CONF_W11_REG Host and Slave communication register11 Ox3FF550A8 | R/W
SLCHOST_CONF_W12_REG Host and Slave communication register12 Ox3FF550AC | R/W
SLCHOST_CONF_W13_REG Host and Slave communication register13 Ox3FF550B0 | R/W
SLCHOST_CONF_W14_REG Host and Slave communication register14 Ox3FF550B4 | R/W
SLCHOST_CONF_W15_REG Host and Slave communication register15 Ox3FF550B8 | R/W
SLCOHOST_INT_CLR_REG Interrupt clear Ox3FF550D4 | WO
SLCOHOST_FUNC1_INT_ENA_REG Interrupt enable Ox3FF550DC | R/W
Espressif Systems 159 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

SLCHOST_CONF_REG | Edge configuration | Ox3FF551F0 | RW |
Name ‘ Description ‘ Address ‘ Access
SDIO HINF registers

HINF_CFG_DATA1_REG | SDIO specification configuration | Ox3FF4B004 | R/W

Espressif Systems 160 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

8.5 SLC Registers

The first block of SDIO control registers starts at Ox3FF5_8000.

Register 8.1: SLCCONFO0_REG (0x0)

Q> Q‘E
o’ XA A
» 088’
o LEST sa
NA VY NSRS
«O Q—\\s/—\./,d_/ Q‘/ 7
o/ XX (AP
& S g
Ve 7/ Ve
Q)& OeQ QJ& Oé< O$<< O$<< QJ& O$<< OeQ
%Qé RS S RS %Q)é RS
@ &7 N >y ¢ oY
’31 15|14|13 7|6|5|4|3 2|l|0‘
]ooooooooooooooooo|1|ooooooo|0|1|1|o o|o|o‘Reset

SLCCONFO0_SLCO_TOKEN_AUTO_CLR Please initialize to 0. Do not modify it. (R/W)

SLCCONFO0_SLC0_RX_AUTO_WRBACK Allows changing the owner bit of the transmitting buffer’s
linked list when transmitting data. (R/W)

SLCCONFO0_SLCO0_RX_LOOP_TEST Loop around when the slave buffer finishes sending packets.
When set to 1, hardware will not change the owner bit in the linked list. (R/W)

SLCCONFO0_SLCO_TX_LOOP_TEST Loop around when the slave buffer finishes receiving packets.
When set to 1, hardware will not change the owner bit in the linked list. (R/W)

SLCCONFO0_SLCO0_RX_RST Set this bit to reset the transmitting FSM. (R/W)

SLCCONFO_SLCO_TX_RST Set this bit to reset the receiving FSM. (R/W)

Espressif Systems 161 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.2: SLCOINT_RAW_REG (0x4)

] 0x00

SLCOINT_SLCO0_RX_DSCR_ERR_INT_RAW The raw interrupt bit for Slave sending descriptor error

(RO)

SLCOINT_SLCO_TX_DSCR_ERR_INT_RAW The raw interrupt bit for Slave receiving descriptor error.

(RO)

SLCOINT_SLCO_RX_EOF_INT_RAW The interrupt mark bit when Slave sending operation is finished.

(RO)

SLCOINT_SLCO_RX_DONE_INT_RAW The raw interrupt bit to mark single buffer as sent by Slave.

(RO)

SLCOINT_SLCO_TX_SUC_EOF_INT_RAW The raw interrupt bit to mark Slave receiving operation as

finished. (RO)

SLCOINT_SLCO_TX_DONE_INT_RAW The raw interrupt bit to mark a single buffer as finished during

Slave receiving operation. (RO)

SLCOINT_SLCO_TX_OVF_INT_RAW The raw interrupt bit to mark Slave receiving buffer overflow.

(RO)

SLCOINT_SLCO_RX_UDF_INT_RAW The raw interrupt bit for Slave sending buffer underflow. (RO)

SLCOINT_SLCO_TX_START_INT_RAW The raw interrupt bit for registering Slave receiving initializa-

tion interrupt. (RO)

SLCOINT_SLCO_RX_START_INT_RAW The raw interrupt bit to mark Slave sending initialization in-

terrupt. (RO)
SLCOINT_SLC_FRHOST BIT7_INT_RAW
SLCOINT_SLC_FRHOST _BIT6_INT_RAW
SLCOINT_SLC_FRHOST _BIT5_INT_RAW
SLCOINT_SLC_FRHOST BIT4_INT_RAW
SLCOINT_SLC_FRHOST_BIT3_INT_RAW
SLCOINT_SLC_FRHOST BIT2_INT_RAW
SLCOINT_SLC_FRHOST_BIT1_INT_RAW

SLCOINT_SLC_FRHOST_BITO_INT_RAW

Espressif Systems

The interrupt mark bit 7 for Host to interrupt Slave.
The interrupt mark bit 6 for Host to interrupt Slave.
The interrupt mark bit 5 for Host to interrupt Slave.
The interrupt mark bit 4 for Host to interrupt Slave.
The interrupt mark bit 3 for Host to interrupt Slave.
The interrupt mark bit 2 for Host to interrupt Slave.
The interrupt mark bit 1 for Host to interrupt Slave.

The interrupt mark bit O for Host to interrupt Slave.

162

(RO)
(RO)
(RO)
(RO)
(RO)
(RO)
(RO)

(RO)

ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.3: SLCOINT_ST_REG (0x8)

<A
Eoe) A
Q7K 7 S
S AR L &
PNV AP & &2«
& AV ZIA R e
ISR R SO TR RS
S SIS SOS AR,
Q & QTS O & O

PP PRSP SOOI
& 2SSOSR SO SRR SS
& & FIEN Y & Y S S
’31 27|26 21|20|19 18|17 16 15|14|13 12|11|10|9|8|7|6|5|4|3|2|l|0‘
] 0x00 |o 0 0 0 o0 o|o|o|0|o|o|o|o|0 o|o|o|0|o|o|0|o|o|o|o|o|o‘Reset

SLCOINT_SLCO0_RX_DSCR_ERR_INT_ST The interrupt status bit for Slave sending descriptor error.

(RO)

SLCOINT_SLCO_TX_DSCR_ERR_INT_ST The interrupt status bit for Slave receiving descriptor error.

(RO)

SLCOINT_SLCO_RX_EOF_INT_ST The interrupt status bit for finished Slave sending operation. (RO)

SLCOINT_SLCO_RX_DONE_INT_ST The interrupt status bit for finished Slave sending operation.

(RO)

SLCOINT_SLCO_TX_SUC_EOF_INT_ST The interrupt status bit for marking Slave receiving opera-

tion as finished. (RO)

SLCOINT_SLCO_TX_DONE_INT_ST The interrupt status bit for marking a single buffer as finished

during the receiving operation. (RO)

SLCOINT_SLCO_TX_OVF_INT_ST The interrupt status bit for Slave receiving overflow interrupt. (RO)

SLCOINT_SLCO_RX_UDF_INT_ST The interrupt status bit for Slave sending buffer underflow. (RO)

SLCOINT_SLCO_TX_START_INT_ST The interrupt status bit for Slave receiving interrupt initialization.

(RO)

SLCOINT_SLCO_RX_START_INT_ST The interrupt status bit for Slave sending interrupt initialization.

(RO)
SLCOINT_SLC_FRHOST_BIT7_INT_ST
SLCOINT_SLC_FRHOST_BIT6_INT_ST
SLCOINT_SLC_FRHOST_BIT5_INT_ST
SLCOINT_SLC_FRHOST_BIT4_INT_ST
SLCOINT_SLC_FRHOST_BIT3_INT_ST
SLCOINT_SLC_FRHOST_BIT2_INT_ST
SLCOINT_SLC_FRHOST_BIT1_INT_ST

SLCOINT_SLC_FRHOST_BITO_INT_ST

Espressif Systems

The interrupt status bit 7 for Host to interrupt Slave.
The interrupt status bit 6 for Host to interrupt Slave.
The interrupt status bit 5 for Host to interrupt Slave.
The interrupt status bit 4 for Host to interrupt Slave.
The interrupt status bit 3 for Host to interrupt Slave.
The interrupt status bit 2 for Host to interrupt Slave.
The interrupt status bit 1 for Host to interrupt Slave.

The interrupt status bit O for Host to interrupt Slave.

(RO)
(RO)
(RO)
(RO)
(RO)
(RO)
(RO)

(RO)

163 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.4: SLCOINT_ENA_REG (0xC)

ol gy RIS
&8 e 8% ot T T T T T TS
LY oS I ¥ S OCIIIIISIILY
KR (LK Dk S A o DN IAN D
SO SIS LTk o KOOI DA (O
R OIS PRORSECIES IS I I b
OO A KK LREAR AP FATATA AT AT KT
FF L P PSP PP EFFFI I EE
gt\-f\./ /~\- g:\~///<\§/,§_/ SF/?//SF/?F(ZQ\?QQ‘@QQQ‘QQ‘?QQ\?\Q‘?Q?Q@
\/C)QC) PR/ SRR OO OO OOl O

» EES SR SS IS SIS
& IR REE XN RN R SRS RER SR
’31 27|26 21|20|19|18|17|16|15|14|13 12|11|10|9|8|7|6|5|4|3|2|1|0‘
] 0x00 |o 0 0 0 O o|o|o|0|o|o|0|o|0 o|o|o|0|o|o|0|o|o|0|o|o|o‘Reset

SLCOINT_SLCO0_RX_DSCR_ERR_INT_ENA The interrupt enable bit for Slave sending linked list de-
scriptor error. (R/W)

SLCOINT_SLCO_TX_DSCR_ERR_INT_ENA The interrupt enable bit for Slave receiving linked list de-
scriptor error. (R/W)

SLCOINT_SLCO_RX_EOF_INT_ENA The interrupt enable bit for Slave sending operation completion.
(R/W)

SLCOINT_SLCO_RX_DONE_INT_ENA The interrupt enable bit for single buffer’s sent interrupt, in
Slave sending mode. (R/W)

SLCOINT_SLCO_TX_SUC_EOF_INT_ENA The interrupt enable bit for Slave receiving operation com-
pletion. (R/W)

SLCOINT_SLCO_TX_DONE_INT_ENA The interrupt enable bit for single buffer’s full event, in Slave
receiving mode. (R/W)

SLCOINT_SLCO_TX_OVF_INT_ENA The interrupt enable bit for Slave receiving buffer overflow. (R/W)

SLCOINT_SLCO_RX_UDF_INT_ENA The interrupt enable bit for Slave sending buffer underflow.
(R/W)

SLCOINT_SLCO_TX_START_INT_ENA The interrupt enable bit for Slave receiving operation initial-
ization. (R/W)

SLCOINT_SLCO_RX_START_INT_ENA The interrupt enable bit for Slave sending operation initializa-
tion. (R/W)

SLCOINT_SLC_FRHOST_BIT7_INT_ENA The interrupt enable bit 7 for Host to interrupt Slave. (R/W)
SLCOINT_SLC_FRHOST_BIT6_INT_ENA The interrupt enable bit 6 for Host to interrupt Slave. (R/W)
SLCOINT_SLC_FRHOST_BIT5_INT_ENA The interrupt enable bit 5 for Host to interrupt Slave. (R/W)
SLCOINT_SLC_FRHOST_BIT4_INT_ENA The interrupt enable bit 4 for Host to interrupt Slave. (R/W)
SLCOINT_SLC_FRHOST_BIT3_INT_ENA The interrupt enable bit 3 for Host to interrupt Slave. (R/W)
SLCOINT_SLC_FRHOST_BIT2_INT_ENA The interrupt enable bit 2 for Host to interrupt Slave. (R/W)
SLCOINT_SLC_FRHOST_BIT1_INT_ENA The interrupt enable bit 1 for Host to interrupt Slave. (R/W)

SLCOINT_SLC_FRHOST_BITO_INT_ENA The interrupt enable bit O for Host to interrupt Slave. (R/W)

Espressif Systems 164 ESP32 Technical Reference Manual V3.1

Register 8.5: SLCOINT_CLR_REG (0x10)

] 0x00 |oooooo

SLCOINT_SLCO0_RX_DSCR_ERR_INT_CLR Interrupt clear bit for Slave sending linked list descriptor error. (WO)

SLCOINT_SLCO_TX_DSCR_ERR_INT_CLR Interrupt clear bit for Slave receiving linked list descriptor error. (WO)

SLCOINT_SLCO_RX_EOF_INT_CLR Interrupt clear bit for Slave sending operation completion. (WO)

SLCOINT_SLCO_RX_DONE_INT_CLR Interrupt clear bit for single buffer’s sent interrupt, in Slave sending mode. (WO)

SLCOINT_SLCO_TX_SUC_EOF_INT_CLR Interrupt clear bit for Slave receiving operation completion. (WO)

SLCOINT_SLCO_TX_DONE_INT_CLR Interrupt clear bit for single buffer’s full event, in Slave receiving mode. (WO)

SLCOINT_SLCO_TX_OVF_INT_CLR Set this bit to clear the Slave receiving overflow interrupt. (WO)

SLCOINT_SLCO_RX_UDF_INT_CLR Set this bit to clear the Slave sending underflow interrupt. (WO)

SLCOINT_SLCO_TX_START_INT_CLR Set this bit to clear the interrupt for Slave receiving operation initialization. (WO)

SLCOINT_SLCO_RX_START_INT_CLR Set this bit to clear the interrupt for Slave sending operation initialization. (WO)

SLCOINT_SLC_FRHOST_BIT7_INT_CLR
SLCOINT_SLC_FRHOST_BIT6_INT_CLR
SLCOINT_SLC_FRHOST_BIT5_INT_CLR
SLCOINT_SLC_FRHOST_BIT4_INT_CLR
SLCOINT_SLC_FRHOST_BIT3_INT_CLR
SLCOINT_SLC_FRHOST_BIT2_INT_CLR
SLCOINT_SLC_FRHOST_BIT1_INT_CLR

SLCOINT_SLC_FRHOST_BITO_INT_CLR

Set this bit to clear the SLCOINT_SLC_FRHOST_BIT7_INT interrupt.
Set this bit to clear the SLCOINT_SLC_FRHOST_BIT6_INT interrupt.
Set this bit to clear the SLCOINT_SLC_FRHOST_BIT5_INT interrupt.
Set this bit to clear the SLCOINT_SLC_FRHOST_BIT4_INT interrupt.
Set this bit to clear the SLCOINT_SLC_FRHOST_BIT3_INT interrupt.
Set this bit to clear the SLCOINT_SLC_FRHOST_BIT2_INT interrupt.
Set this bit to clear the SLCOINT_SLC_FRHOST_BIT1_INT interrupt.

Set this bit to clear the SLCOINT_SLC_FRHOST_BITO_INT interrupt.

(WO)
(WO)

(WO)

8. SDIO SLAVE

Register 8.6: SLCORX_LINK_REG (0x3C)

27 20|19 O‘

|
]o|o|0|o|0 0 00 0 0 O 0| 0x000000 ‘Reset

SLCORX_SLCO_RXLINK_RESTART Set this bit to restart and continue the linked list operation for
sending packets. (R/W)

SLCORX_SLCO_RXLINK_START Set this bit to start the linked list operation for sending packets.
Sending will start from the address indicated by SLCO_RXLINK_ADDR. (R/W)

SLCORX_SLCO_RXLINK_STOP Set this bit to stop the linked list operation. (R/W)

SLCORX_SLCO_RXLINK_ADDR The lowest 20 bits in the initial address of Slave’s sending linked list.

(R/W)
Register 8.7: SLCOTX_LINK_REG (0x40)
<
Q\
INGES Q&
& S §°
S G S
AR &
P Y
NP N 5
o s

N R N oY
’31|30|29|28|27 20|19 O‘
]o|o|o|o|o 0 0 00 0 0 0| 0x000000 \Reset

SLCOTX_SLCO_TXLINK_RESTART Set this bit to restart and continue the linked list operation for
receiving packets. (R/W)

SLCOTX_SLCO_TXLINK_START Set this bit to start the linked list operation for receiving packets.
Receiving will start from the address indicated by SLCO_TXLINK_ADDR. (R/W)

SLCOTX_SLCO_TXLINK_STOP Set this bit to stop the linked list operation for receiving packets.
(R/W)

SLCOTX_SLCO_TXLINK_ADDR The lowest 20 bits in the initial address of Slave’s receiving linked
list. (R/W)

Espressif Systems 166 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.8: SLCINTVEC_TOHOST_REG (0x4C)

o
éjo
N
é\ 7
Q\O
<O
Q7
(O\/
&’
@é\ Q)& Q)b\ ’é
& & & S
N N N &’

’31 24|23 16|15 8|7 O‘

] 0x000 |o 00 0 0 0 0 o| 0x000 | 0x000 ‘Reset
SLCINTVEC_SLCO_TOHOST_INTVEC The interrupt vector for Slave to interrupt Host. (WO)
Register 8.9: SLCOTOKEN1_REG (0x54)
<
Q\
W© &
N \\%O ’\$Q
N X7 N
e & &
o0 o o
%O %\/C) \/C)
é\ 7/ é\ Ve é\ Ve
S O{S/ S O\g{/ S O\{g/
& S S s S
& & e @ o’

’31 28|27 16|15|14|13 12|11 O‘

] 0x00 | 0x0000 | 0 | 0 |0 o| 0x0000 ‘Reset

SLCOTOKEN1_SLCO_TOKEN1 The accumulated number of buffers for receiving packets. (RO)

SLCOTOKEN1_SLCO_TOKEN1_INC_MORE Set this bit to add the value of
SLCOTOKEN1_SLCO_TOKEN1_WDATA to that of SLCOTOKEN1_SLCO_TOKENT1. (WO)

SLCOTOKEN1_SLCO_TOKEN1_WDATA The number of available receiving buffers. (WO)

Espressif Systems 167 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.10: SLCCONF1_REG (0x60)

S
QRO 7
é\<\0/\\0 5
EAS
SRS
NN N7
S S S SIS
Q)ég Q,éQ) S (AQ) QC)OOOOQC)O
& & & S>>

’31 23|22 16|15 7|6|5|4‘

’ 0x000 |ooooooo|o00000000|1|1|1‘Reset
SLCCONF1_SLCO_RX_STITCH_EN Please initialize to 0. Do not modify it. (R/W)
SLCCONF1_SLCO_TX_STITCH_EN Please initialize to 0. Do not modify it. (R/W)
SLCCONF1_SLCO_LEN_AUTO_CLR Please initialize to 0. Do not modify it. (R/W)

Register 8.11: SLC_RX_DSCR_CONF_REG (0x98)
<
©
(8\?
O/
S
&
<0
S 7
5 ?
& >

SLC_SLCO_TOKEN_NO_REPLACE Please initialize to 1. Do not modify it. (R/W)

Register 8.12: SLCO_LEN_CONF_REG (0xE4)

&
Q\
¥ &
éC) Ve $Q?‘
Q)& QJb\ §> Q)& §/
%Q,c\ %Q)G 7 %Q)(“ &7
N N o7 @ &
’31 29|28 23|22|21 20|19 O‘
] 0x0 | 0 0 0 0 0 0 | 0 | 0o o | 0x000000 ‘Reset

SLCO_LEN_INC_MORE Set this bit to add the value of SLCO_LEN to that of SLCO_LEN_WDATA.
(WQO)

SLCO_LEN_WDATA The packet length sent. (WO)

Espressif Systems 168 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.13: SLCO_LENGTH_REG (0xE8)

(@b\ o\/(’o%
@%@ %\9
’ 31 20 | 19 0 ‘
’ 0x0000 | 0x000000 ‘ Reset

SLCO_LEN Indicates the packet length sent by the Slave. (RO)

8.6 SLC Host Registers

The second block of SDIO control registers starts at Ox3FF5_5000.

Register 8.14: SLCOHOST_TOKEN_RDATA (0x44)

Q,%
o
@)
S @@?V S
QY\Q) %&Q\ QJQ\@
N L N
’31 28|27 16|15 0‘
’ 0x000 | 0x000 | 0x000 ‘ Reset

HOSTREG_SLCO_TOKEN1 The accumulated number of Slave’s receiving buffers. (RO)

Espressif Systems 169 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.15: SLCOHOST_INT_RAW_REG (0x50)

| | |
’ 0x00 |o oo|o0oooo|ooooooooo|ooo|ooo|oo‘Reset

SLCOHOST_SLCO_RX_NEW_PACKET_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_RX_NEW_PACKET_INT interrupt. (RO)

SLCOHOST_SLCO_TX_OVF_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TX_OVF_INT interrupt. (RO)

SLCOHOST_SLCO_RX_UDF_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_RX_UDF_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT7_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT7_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT6_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT6_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT5_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT5_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT4_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT4_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT3_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT3_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT2_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT2_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT1_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT1_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BITO_INT_RAW The raw interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BITO_INT interrupt. (RO)

Espressif Systems 170 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.16: SLCOHOST_INT_ST_REG (0x58)

O
?V > S > S S S

| L [ee]efe]2]]
’ 0x00 |o o|o|o 0 0 0 o|o|o|o 0 0 00 0 0 0|o|0|o|o|o|o|o|o‘Reset

SLCOHOST_SLCO_RX_NEW_PACKET_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_RX_NEW_PACKET_INT interrupt. (RO)

SLCOHOST_SLCO_TX_OVF_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TX_OVF_INT interrupt. (RO)

SLCOHOST_SLCO_RX_UDF_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_RX_UDF_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT7_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT7_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT6_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT6_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT5_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT5_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT4_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT4_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT3_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT3_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT2_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT2_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BIT1_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BIT1_INT interrupt. (RO)

SLCOHOST_SLCO_TOHOST_BITO_INT_ST The masked interrupt status bit for the
SLCOHOST_SLCO_TOHOST_BITO_INT interrupt. (RO)

Espressif Systems 171 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.17: SLCHOST_PKT_LEN_REG (0x60)

\L_
O
<
N N
o o
%VO %\9
Q/ 7/
& &
))
Q @)
Y NS
A/ A/
©)
\2\0 \2\0
O O
& >/
’ 31 20 | 19 0 ‘
’ 0x000 | 0x000 ‘ Reset

SLCHOST_HOSTREG_SLCO_LEN_CHECK lts value is HOSTREG_SLCO_LEN[9:0] plus
HOSTREG_SLCO_LEN[19:10]. (RO)

SLCHOST_HOSTREG_SLCO_LEN The accumulated value of the data length sent by the Slave. The
value gets updated only when the Host reads it.

Register 8.18: SLCHOST_CONF_WO0_REG (0x6C)

) a9 N Q
r 8 e E
é\ Y %& / C_’)\ 7 é\ ’
& &° &° &
=>4 =4 =4 &7
’31 24|23 16|15 8|7 O‘
’ 0x000 | 0x000 | 0x000 | 0x000 \ Reset

SLCHOST_CONF3 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF2 Theinformation interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF1 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONFO0 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

Espressif Systems 172 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.19: SLCHOST_CONF_W1_REG (0x70)

A © o) I
r e r r
Gj} 7 é& 7 é\ 7 %’\ /
@) QO Q QO
& & S &
=>4 =>4 =4 S
’31 24|23 16|15 8|7 0‘
’ 0x000 | 0x000 | 0x000 | 0x000 ‘ Reset

SLCHOST_CONF7 Theinformation interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF6 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF5 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF4 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

Register 8.20: SLCHOST_CONF_W2_REG (0x74)

N S
<<\ <<\ <<Q) <<‘b
& > > &
A/ A 7 A 7 A7
)) ©)
0 © $© 5°
@) O O O
=4 =24 =24 &7

’31 24|23 16|15 8|7 0‘
’ 0x000 | 0x000 | 0x000 | 0x000 ‘ Reset

SLCHOST_CONF11 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF10 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF9 The information interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

SLCHOST_CONF8 Theinformation interaction register between Host and Slave. Both Host and Slave
can access it. (R/W)

Espressif Systems 173 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.21: SLCHOST_CONF_W3_REG (0x78)

’ 0x000 | 0x000 \ Reset

SLCHOST_CONF15 The information interaction register between Host and Slave. Both Host and
Slave can be read from and written to this. (R/W)

SLCHOST_CONF14 The information interaction register between Host and Slave. Both Host and
Slave can be read from and written to this. (R/W)

Register 8.22: SLCHOST_CONF_W4_REG (0x7C)

QO $<<\q OO %Q\Q)
Oé ‘ Oé ’
N N
’ 31 24 | 23 16 ‘
] 0x000 | 0x000 ‘ Reset

SLCHOST_CONF19 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF18 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 174 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.23: SLCHOST_CONF_W6_REG (0x88)

’ 0x000 | 0x000 | 0x000 | 0x000 \ Reset

SLCHOST_CONF27 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF26 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF25 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF24 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.24: SLCHOST_CONF_W?7_REG (0x8C)

%QQ;\ éﬁ?—)
& &
& D & S
0\2\ %Q)c\ C)\z\ 966
> N & N
’31 24|23 16|15 S|7 O‘
] 000 00 0 0 O | 0x000 | 0000000 O | 0x000 ‘Reset

SLCHOST_CONF31 The interrupt vector used by Host to interrupt Slave. This bit will not be cleared
automatically. (WO)

SLCHOST_CONF29 The interrupt vector used by Host to interrupt Slave. This bit will not be cleared
automatically. (WO)

Espressif Systems 175 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.25: SLCHOST_CONF_W8_REG (0x9C)

’ 0x000 | 0x000 | 0x000 | 0x000 \ Reset

SLCHOST_CONF35 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF34 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF33 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF32 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.26: SLCHOST_CONF_W9_REG (0xA0)

’31 24|23 16|15 S|7 O‘

] 0x000 | 0x000 | 0x000 | 0x000 |Reset

SLCHOST_CONF39 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF38 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF37 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF36 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 176 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.27: SLCHOST_CONF_W10_REG (0xA4)

’ 0x000 | 0x000 | 0x000 | 0x000 \ Reset

SLCHOST_CONF43 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF42 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF41 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF40 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.28: SLCHOST_CONF_W11_REG (0xA8)

’31 24|23 16|15 S|7 O‘

] 0x000 | 0x000 | 0x000 | 0x000 |Reset

SLCHOST_CONF47 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF46 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF45 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF44 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 177 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.29: SLCHOST_CONF_W12_REG (0xAC)

’ 0x000 | 0x000 | 0x000 | 0x000 \ Reset

SLCHOST_CONF51 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF50 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF49 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF48 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.30: SLCHOST_CONF_W13_REG (0xB0)

’31 24|23 16|15 S|7 O‘

] 0x000 | 0x000 | 0x000 | 0x000 |Reset

SLCHOST_CONF55 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF54 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF53 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF52 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 178 ESP32 Technical Reference Manual V3.1

8. SDIO SLAVE

Register 8.31: SLCHOST_CONF_W14_REG (0xB4)

’ 0x000 | 0x000 | 0x000 | 0x000 \ Reset

SLCHOST_CONF59 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF58 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF57 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF56 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Register 8.32: SLCHOST_CONF_W15_REG (0xB8)

’31 24|23 16|15 S|7 O‘

] 0x000 | 0x000 | 0x000 | 0x000 |Reset

SLCHOST_CONF63 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF62 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF61 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

SLCHOST_CONF60 The information interaction register between Host and Slave. Both Host and
Slave can access it. (R/W)

Espressif Systems 179 ESP32 Technical Reference Manual V3.1

Register 8.33: SLCOHOST_INT_CLR_REG (0xD4)

&
o RIS
SH RAAAAAAA
/) > AN/ A/ AN/ A7/ K77 K7
O KRS $ 58S SIS S
o P YOy OQ\&OQ\ X KX
o7 N DA A E DAY
& S S
A 7 A7 A7 NN PN NN
S N S &S S SIS SIS SIS S S
¢ & «° ¢ SR ¢ P PPL PP K
& F & ONeX & F PP PP PP S
@ NI @ =X N S S S
’31 26|25 24 | 23 |22 18| 17 | 16 | 15 8| 7 6 5 | 4 3 2 | 1 0 ‘
] 0x00 |o oo|o 0 0 0 oo|oo 0 0 00 0 O 0|ooo|ooo|o O‘Reset

SLCOHOST_SLCO_RX_NEW_PACKET_INT_CLR Set this bit to clear the SLCOHOST_SLCO_RX_NEW_PACKET_INT
interrupt. (WO)

SLCOHOST_SLCO_TX_OVF_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TX_OVF_INT interrupt. (WO)
SLCOHOST_SLCO_RX_UDF_INT_CLR Set this bit to clear the SLCOHOST_SLCO_RX_UDF_INT interrupt. (WO)

SLCOHOST_SLCO_TOHOST_BIT7_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TOHOST_BIT7_INT interrupt.
(WO)

SLCOHOST_SLCO_TOHOST_BIT6_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TOHOST_BIT6_INT interrupt.
(WO)

SLCOHOST_SLCO_TOHOST_BIT5_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TOHOST_BIT5_INT interrupt.
(WO)

SLCOHOST_SLCO_TOHOST_BIT4_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TOHOST_BIT4_INT interrupt.
(WO)

SLCOHOST_SLCO_TOHOST_BIT3_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TOHOST_BIT3_INT interrupt.
(WO)

SLCOHOST_SLCO_TOHOST_BIT2_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TOHOST_BIT2_INT interrupt.
(WO)

SLCOHOST_SLCO_TOHOST_BIT1_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TOHOST_BIT1_INT interrupt.
(WO)

SLCOHOST_SLCO_TOHOST_BITO_INT_CLR Set this bit to clear the SLCOHOST_SLCO_TOHOST_BITO_INT interrupt.
(WO)

Register 8.34: SLCOHOST_FUNC1_INT_ENA_REG (0xDC)

é?‘
GRS N S
s RAXNRNA
@’ RN FFrsre e
S 2N ANV IS
i S$ O DD QD > D
$/ <</<</ AN/ A/ KN/ KKK A7 7
2 NS FEFPEE LR
+/ 7 7 &OOOO&O O&O&O
% NP PN E PR DE DI PAD)
o NG N L
e\/ é\/é\/ é\/é\/é\/é\/é\/@/%\/é\/
K 8 XA AR K
S S S) S NN NN
@‘A@ Q;é@ 00\2\ @‘A@ 00\2\062\ ®/‘A® Q&Q&O&OQ\Q\O&O&Q@O&
& Y & Y & 7S S
’31 26|25 24| 23 |22 18| 17 | 16 | 15 B| 7 6 5 | 4 3 2 | 1 0 ‘
] 0x00 |o oo|o 0 0 0 oo|oo 0 00 0 0 O 0|ooo|ooo|o O‘Reset
SLCOHOST_FN1_SLCO_RX_NEW_PACKET_INT_ENA The interrupt enable bit for the

SLCOHOST_FN1_SLCO_RX_NEW_PACKET_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TX_OVF_INT_ENA The interrupt enable bit for the SLCOHOST_FN1_SLCO_TX_OVF_INT in-
terrupt. (R/W)

SLCOHOST_FN1_SLCO_RX_UDF_INT_ENA The interrupt enable bit for the SLCOHOST_FN1_SLCO_RX_UDF_INT in-
terrupt. (R/W)

SLCOHOST_FN1_SLCO_TOHOST _BIT7_INT_ENA The interrupt enable bit for the
SLCOHOST_FN1_SLCO_TOHOST_BIT7_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TOHOST_BIT6_INT_ENA The interrupt enable bit for the
SLCOHOST_FN1_SLCO_TOHOST_BIT6_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TOHOST_BIT5_INT_ENA The interrupt enable bit for the
SLCOHOST_FN1_SLCO_TOHOST_BIT5_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TOHOST_BIT4_INT_ENA The interrupt enable bit for the
SLCOHOST_FN1_SLCO_TOHOST_BIT4_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TOHOST BIT3_INT_ENA The interrupt enable bit for the
SLCOHOST_FN1_SLCO_TOHOST_BIT3_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TOHOST_BIT2_INT_ENA The interrupt enable bit for the
SLCOHOST_FN1_SLCO_TOHOST_BIT2_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TOHOST_BIT1_INT_ENA The interrupt enable bit for the
SLCOHOST_FN1_SLCO_TOHOST_BIT1_INT interrupt. (R/W)

SLCOHOST_FN1_SLCO_TOHOST BITO_INT_ENA The interrupt enable bit for the
SLCOHOST_FN1_SLCO_TOHOST_BITO_INT interrupt. (R/W)

8. SDIO SLAVE

Register 8.35: SLCHOST_CONF_REG (0x1F0)

’31 28|27 20|19 15|14 10|9

]oooo|00000000|o0ooo|ooooo|ooooo|ooooo‘Reset

SLCHOST_FRC_POS_SAMP Set this bit to sample the corresponding signal at the rising clock edge.

(R/W)

SLCHOST_FRC_NEG_SAMP Set this bit to sample the corresponding signal at the falling clock edge.

(R/W)

SLCHOST_FRC_SDIO20 Set this bit to output the corresponding signal at the rising clock edge.

(R/W)

SLCHOST_FRC_SDIO11 Set this bit to output the corresponding signal at the falling clock edge.

(R/W)

8.7 HINF Registers

The third block of SDIO control registers starts at Ox3FF4_B000.

Register 8.36: HINF_CFG_DATA1_REG (0x4)

g

&
&

2]]

’OOO0OOOOOOOOOOOOOOOOOOOOOOOO

0| 0 | 0 ‘Reset

HINF_HIGHSPEED_ENABLE Please initialize to 1. Do not modify it. (R/W)

HINF_SDIO_IOREADY1 Please initialize to 1. Do not modify it. (R/W)

9. SD/MMC HOST CONTROLLER

9. SD/MMC Host Controller

9.1 Overview

The ESP32 memory card interface controller provides a hardware interface between the Advanced Peripheral
Bus (APB) and an external memory device. The memory card interface allows the ESP32 to be connected to
SDIO memory cards, MMC cards and devices with a CE-ATA interface. It supports two external cards (CardO
and Card1).

9.2 Features
This module has the following features:
e Two external cards
e Supports SD Memory Card standard: versions 3.0 and 3.01
e Supports MMC: versions 4.41, 4.5, and 4.51
e Supports CE-ATA: version 1.1
e Supports 1-bit, 4-bit, and 8-bit (Card0 only) modes

The SD/MMC controller topology is shown in Figure 30. The controller supports two peripherals which cannot be
functional at the same time.

Host

Controller
Data width 1/4/8 bits Data width 1/4 bits
SD Mem SD Mem
SDIO SDIO
EMMC EMMC
CE-ATA CE-ATA

Figure 30: SD/MMC Controller Topology

9.3 SD/MMC External Interface Signals

The primary external interface signals, which enable the SD/MMC controller to communicate with an external
device, are clock (clk), command (cmd) and data signals. Additional signals include the card interrupt, card
detect, and write-protect signals. The direction of each signal is shown in Figure 31. The direction and
description of each pin are listed in Table 33.

Espressif Systems 183 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

cclk_out
ccmd_out
ccmd_in
_ cdata_in
cdata_out N
SDIO_HOST SD'OI—FHOST | External
SDIO
SLAVE
card_int_n
card_detect_n
card_write_prt
ISD/MMC core
Figure 31: SD/MMC Controller External Interface Signals
Table 33: SD/MMC Signal Description
Pin Direction Description
cclk_out Output Clock signals for slave device
ccmd Duplex Duplex command/response lines
cdata Duplex Duplex data read/write lines
card_detect_n Input Card detection input line
card_write_prt Input Card write protection status input

9.4 Functional Description

9.4.1 SD/MMC Host Controller Architecture
The SD/MMC host controller consists of two main functional blocks, as shown in Figure 32:

e Bus Interface Unit (BIU): It provides APB interfaces for registers, data read and write operation by FIFO and
DMA.

e Card Interface Unit (CIU): It handles external memory card interface protocols. It also provides clock control.

BIU Clu

Int Ctrl
int Int Card Detect nt Gt CLK
— Ctrl Power pull-up

Mux/
De-Mux

RxFC
Host Register <:> X <::>
APB interface Interface

Unit Data Path

Input sample unit
Output hold unit

DMA Ram Cmd Path

Ctrl Ctrl <:E:>

F

EMAG-CORE Rx/Tx Ram

Figure 32: SDIO Host Block Diagram

o
©
=
@

Espressif Systems 184 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

94.1.1 BIU

The BIU provides the access to registers and FIFO data through the Host Interface Unit (HIU). Additionally, it
provides FIFO access to independent data through a DMA interface. The host interface can be configured as an
APB interface. Figure 32 illustrates the internal components of the BIU. The BIU provides the following
functions:

e Host interface

DMA interface

Interrupt control

® Register access

FIFO access

Power/pull-up control and card detection

9.41.2 CIU

The CIU module implements the card-specific protocols. Within the CIU, the command path control unit and
data path control unit prompt the controller to interface with the command and data ports, respectively, of the
SD/MMC/CE-ATA cards. The CIU also provides clock control. Figure 32 illustrates the internal structure of the
CIU, which consists of the following primary functional blocks:

e Command path

Data path

SDIO interrupt control

Clock control

Mux/demux unit

9.4.2 Command Path
The command path performs the following functions:
e Configures clock parameters
e Configures card command parameters
e Sends commands to card bus (ccmd_out line)
e Receives responses from card bus (ccmd_in line)
e Sends responses to BIU
¢ Drives the P-bit on the command line

The command path State Machine is shown in Figure 33.

Espressif Systems 185 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Command
Idle
tNCC done
response_expected=0 .
wait_tnnc

Response done/
Response timeout

load_new_cmd

Transmit
command

Send IRQ
Response
equest

response_expected=1

Receive
response

Figure 33: Command Path State Machine

9.4.3 Data Path

The data path block pops FIFO data and transmits them on cdata_out during a write-data transfer, or it receives
data on cdata_in and pushes them into FIFO during a read-data transfer. The data path loads new data
parameters, i.e., expected data, read/write data transfer, stream/block transfer, block size, byte count, card type,
timeout registers, etc., whenever a data transfer command is not in progress.

If the data_expected bit is set in the Command register, the new command is a data-transfer command and the
data path starts one of the following operations:

e Transmitting data if the read/write bit = 1

e Receiving data if read/write bit = 0

9.4.3.1 Data Transmit Operation

The data transmit state machine is illustrated in Figure 34. The module starts data transmission two clock cycles
after a response for the data-write command is received. This occurs even if the command path detects a
response error or a cyclic redundancy check (CRC) error in a response. If no response is received from the card
until the response timeout, no data are transmitted. Depending on the value of the transfer_mode bit in the
Command register, the data-transmit state machine adds data to the card’s data bus in a stream or in block(s).
The data transmit state machine is shown in Figure 34.

Tx Data
Idle

load_new_cmd and
data_expected
and write data and

Block transfer.

Stop data
command

Stop data load_new_cmd

command and
data_expected
and write data

and stream transfre

Byte count Byte count
Remaining != 0 remaining =0
Data not busy or suspend/stop
data command

Rx
CRC status

Figure 34: Data Transmit State Machine

Block done

Espressif Systems 186 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

9.4.3.2 Data Receive Operation

The data-receive state machine is illustrated in Figure 35. The module receives data two clock cycles after the

end bit of a data-read command, even if the command path detects a response error or a CRC error. If no

response is received from the card and a response timeout occurs, the BIU does not receive a signal about the

completion of the data transfer. If the command sent by the CIU is an illegal operation for the card, it would

prevent the card from starting a read-data transfer, and the BIU will not receive a signal about the completion of
the data transfer.

If no data are received by the data timeout, the data path signals a data timeout to the BIU, which marks an end

to the data transfer. Based on the value of the transfer_mode bit in the Command register, the data-receive state

machine gets data from the card’s data bus in a stream or block(s). The data receive state machine is shown in

Figure 35.
load_new_cmd and R REE
dailafgvﬂ)er:‘:ted ldle Stop data
and read data and command
block transfer
Stop data load_new_cmd
command and
data_expected
and read data
and stream transfre Rx Data
stream
Byte count Byte count
Remaining 1= 0 remaining =0
or stop
data command
Block done
Figure 35: Data Receive State Machine
9.5 Software Restrictions for Proper CIU Operation

Only one card at a time can be selected to execute a command or data transfer. For example, when data
are being transferred to or from a card, a new command must not be issued to another card. A new
command, however, can be issued to the same card, allowing it to read the device status or stop the
transfer.

Only one command at a time can be issued for data transfers.

During an open-ended card-write operation, if the card clock is stopped due to FIFO being empty, the
software must fill FIFO with data first, and then start the card clock. Only then can it issue a stop/abort
command to the card.

During an SDIO/COMBO card transfer, if the card function is suspended and the software wants to resume
the suspended transfer, it must first reset FIFO, and then issue the resume command as if it were a new
data-transfer command.

When issuing card reset commands (CMDO, CMD15 or CMD52_reset), while a card data transfer is in
progress, the software must set the stop_abort_cmd bit in the Command register, so that the CIU can stop
the data transfer after issuing the card reset command.

When the data’s end bit error is set in the RINTSTS register, the CIU does not guarantee SDIO interrupts. In
such a case, the software ignores SDIO interrupts and issues a stop/abort command to the card, so that
the card stops sending read-data.

Espressif Systems 187 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

If the card clock is stopped due to FIFO being full during a card read, the software will read at least two
FIFO locations to restart the card clock.

e Only one CE-ATA device at a time can be selected for a command or data transfer. For example, when
data are transferred from a CE-ATA device, a new command should not be sent to another CE-ATA device.

e |f a CE-ATA device’s interrupts are enabled (nNIEN=0), a new RW_BLK command should not be sent to the
same device if the execution of a RW_BLK command is already in progress (the RW_BLK command used
in this databook is the RW_MULTIPLE_BLOCK MMC command defined by the CE-ATA specifications).
Only the CCSD can be sent while waiting for the CCS.

e [f, however, a CE-ATA device’s interrupts are disabled (nNIEN=1), a new command can be issued to the
same device, allowing it to read status information.

e Open-ended transfers are not supported in CE-ATA devices.

e The send_auto_stop signal is not supported (software should not set the send_auto_stop bit) in CE-ATA
transfers.

After configuring the command start bit to 1, the values of the following registers cannot be changed before a
command has been issued:

e CMD - command

¢ CMDARG - command argument
e BYTCNT - byte count

e BLKSIZ - block size

e CLKDIV - clock divider

e CKLENA - clock enable

e CLKSRC - clock source

e TMOUT - timeout

e CTYPE - card type

9.6 RAM for Receiving and Sending Data

The submodule RAM is a buffer area for sending and receiving data. It can be divided into two units: the one is for
sending data, and the other is for receiving data. The process of sending and receiving data can also be achieved
by the CPU and DMA for reading and writing. The latter method is described in detail in Section 9.8.

9.6.1 Transmit RAM Module

There are two ways to enable a write operation: DMA and CPU read/write.

If SDIO-sending is enabled, data can be written to the transferred RAM module by APB interface or DMA. Data
will be written from register EMAC_FIFO to the CPU, directly, by an APB interface.

Espressif Systems 188 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

9.6.2 Receive RAM Module
There are two ways to enable a read operation: DMA and CPU read/write.

When a subunit of the data path receives data, the subdata will be written onto the receive-RAM. Then, these
subdata can be read either with the APB or the DMA method at the reading end. Register EMAC_FIFO can be
read by the APB directly.

9.7 Descriptor Chain

Each linked list module consists of two parts: the linked list itself and a data buffer. In other words, each module
points to a unique data buffer and the linked list that follows the module. Figure 36 shows the descriptor
chain.

Descriptor 0 Data Buffer

Descriptor 1 Data Buffer

t> Descriptor 2 Data Buffer

Figure 36: Descriptor Chain

9.8 The Structure of a Linked List

Each linked list consists of four words. As is shown below, Figure 37 demonstrates the linked list’s structure, and
Table 34, Table 35, Table 36, Table 37 provide the descriptions of linked lists.

31 30 5 4 3 2 1 0
RDESO | own|CES Reserved[29:6] ER|CH|FS |LD |DIC|RVD
RDESO Reserved Reserved Buffer 1 Size[12:0]
RDESO Buffer1 Address Pointer 1[31:0]
RDESO Next Descriptor Address[31:0]

Figure 37: The Structure of a Linked List

Espressif Systems 189 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

The DESO element contains control and status information.

Table 34: DESO

Bits

Name

Description

31

OWN

When set, this bit indicates that the descriptor is
owned by the DMAC. When reset, it indicates that the
descriptor is owned by the Host. The DMAC clears
this bit when it completes the data transfer.

30

CES (Card Error Summary)

These error bits indicate the status of the transition to
or from the card.
The following bits are also present in RINTSTS, which
indicates their digital logic OR gate.
e EBE: End Bit Error
e RTO: Response Time out
e RCRC: Response CRC
e SBE: Start Bit Error
DRTO: Data Read Timeout
e DCRC: Data CRC for Receive
e RE: Response Error

29:6

Reserved

Reserved

ER (End of Ring)

When set, this bit indicates that the descriptor list has
reached its final descriptor. The DMAC then returns
to the base address of the list, creating a Descriptor
Ring.

CH
(Second Address Chained)

When set, this bit indicates that the second address in
the descriptor is the Next Descriptor address. When
this bit is set, BS2 (DES1[25:13]) should be all zeros.

FD (First Descriptor)

When set, this bit indicates that this descriptor con-
tains the first buffer of the data. If the size of the first
buffer is O, the Next Descriptor contains the beginning
of the data.

LD (Last Descriptor)

This bit is associated with the last block of a DMA
transfer. When set, the bit indicates that the buffers
pointed by this descriptor are the last buffers of the
data. After this descriptor is completed, the remain-
ing byte countis O. In other words, after the descriptor
with the LD bit set is completed, the remaining byte
count should be 0.

DIC (Disable Interrupt
on Completion)

When set, this bit will prevent the setting of the TI/RI
bit of the DMAC Status Register (IDSTS) for the data
that ends in the buffer pointed by this descriptor.

Reserved

Reserved

The DES1 element contains the buffer size.

Espressif Systems

190 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Table 35: DES1

Bits Name Description
31:26 Reserved Reserved
25:13 Reserved Reserved

Indicates the data buffer byte size, which must be a
) multiple of four. In the case where the buffer size is not
12:0 BS1 (Buffer 1 Size) ,) L)
a multiple of four, the resulting behavior is undefined.

This field should not be zero.

The DES2 element contains the address pointer to the data buffer.

Table 36: DES2

Bits Name Description
) These bits indicate the physical address of the data
31:0 Buffer Address Pointer 1 buft
uffer.

The DES3 element contains the address pointer to the next descriptor if the present descriptor is not the last one
in a chained descriptor structure.

Table 37: DES3

Bits Name Description

If the Second Address Chained (DESO[4]) bit is set,
then this address contains the pointer to the physical
31:0 Next Descriptor Address memory where the Next Descriptor is present.

If this is not the last descriptor, then the Next Descrip-
tor address pointer must be DES3[1:0] = 0.

9.9 Initialization

9.9.1 DMAC Initialization
The DMAC initialization should proceed as follows:
e Write to the DMAC Bus Mode Register (BMOD_REG) will set the Host bus’s access parameters.
e Write to the DMAC Interrupt Enable Register (IDINTEN) will mask any unnecessary interrupt causes.

e The software driver creates either the transmit or the receive descriptor list. Then, it writes to the DMAC
Descriptor List Base Address Register (DBADDR), providing the DMAC with the starting address of the list.

e The DMAC engine attempts to acquire descriptors from descriptor lists.

Espressif Systems 191 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

9.9.2 DMAC Transmission Initialization

The DMAC transmission occurs as follows:

1.

The Host sets up the elements (DES0-DESS) for transmission, and sets the OWN bit (DES0[31]). The Host
also prepares the data buffer.

. The Host programs the write-data commmand in the CMD register in BIU.
. The Host also programs the required transmit threshold (TX_WMARK field in FIFOTH register).

. The DMAC engine fetches the descriptor and checks the OWN bit. If the OWN bit is not set, it means that

the host owns the descriptor. In this case, the DMAC enters a suspend-state and asserts the Descriptor
Unable interrupt in the IDSTS register. In such a case, the host needs to release the DMAC by writing any
value to PLDMND_REG.

. It then waits for the Command Done (CD) bit and no errors from BIU, which indicates that a transfer can be

done.

. Subsequently, the DMAC engine walits for a DMA interface request (dw_dma_req) from BIU. This request

will be generated, based on the programmed transmit-threshold value. For the last bytes of data which
cannot be accessed using a burst, single transfers are performed on the AHB Master Interface.

. The DMAC fetches the transmit data from the data buffer in the Host memory and transfers them to FIFO

for transmission to card.

. When data span across multiple descriptors, the DMAC fetches the next descriptor and extends its

operation using the following descriptor. The last descriptor bit indicates whether the data span multiple
descriptors or not.

. When data transmission is complete, the status information is updated in the IDSTS register by setting the

Transmit Interrupt, if it has already been enabled. Also, the OWN bit is cleared by the DMAC by performing
a write transaction to DESO.

9.9.3 DMAC Reception Initialization

The DMAC reception occurs as follows:

1

The Host sets up the element (DES0O-DESS) for reception, and sets the OWN bit (DESO[31]).

. The Host programs the read-data command in the CMD register in BIU.
. Then, the Host programs the required level of the receive-threshold (RX_WMARK field in FIFOTH register).

. The DMAC engine fetches the descriptor and checks the OWN bit. If the OWN bit is not set, it means that

the host owns the descriptor. In this case, the DMA enters a suspend-state and asserts the Descriptor
Unable interrupt in the IDSTS register. In such a case, the host needs to release the DMAC by writing any
value to PLDMND_REG.

. It then waits for the Command Done (CD) bit and no errors from BIU, which indicates that a transfer can be

done.

. The DMAC engine then waits for a DMA interface request (dw_dma_req) from BIU. This request will be

generated, based on the programmed receive-threshold value. For the last bytes of the data which cannot
be accessed using a burst, single transfers are performed on the AHB.

. The DMAC fetches the data from FIFO and transfers them to the Host memory.

Espressif Systems 192 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

8. When data span across multiple descriptors, the DMAC will fetch the next descriptor and extend its
operation using the following descriptor. The last descriptor bit indicates whether the data span multiple
descriptors or not.

9. When data reception is complete, the status information is updated in the IDSTS register by setting
Receive-Interrupt, if it has already been enabled. Also, the OWN bit is cleared by the DMAC by performing
a write-transaction to DESO.

9.10 Clock Phase Selection

If the setup time requirements for the input or output data signal are not met, users can specify the clock phase,
as shown in the figure below.

bit[0] bit[2]
Y
clock_phase0
MUX0 > 0
clock_phase90
w1
\ clk_out
] Muxe ™
clock_phase180 o
—_—
MUX1 1
clock_phase270
—_— 1

By
Tbit[ﬂ

sdio_host clock phase select

Figure 38: Clock Phase Selection

Please find detailed information on the clock phase selection register CLK_EDGE_SEL in Section
Registers.

9.11 Interrupt

Interrupts can be generated as a result of various events. The IDSTS register contains all the bits that might
cause an interrupt. The IDINTEN register contains an enable bit for each of the events that can cause an
interrupt.

There are two groups of summary interrupts, "Normal” ones (bit8 NIS) and "Abnormal” ones (bit9 AlS), as
outlined in the IDSTS register. Interrupts are cleared by writing 1 to the position of the corresponding bit. When all
the enabled interrupts within a group are cleared, the corresponding summary bit is also cleared. When both
summary bits are cleared, the interrupt signal dmac_intr_o is de-asserted (stops signalling).

Espressif Systems 193 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Interrupts are not queued up, and if a new interrupt-event occurs before the driver has responded to it, no
additional interrupts are generated. For example, the Receive Interrupt IDSTS[1] indicates that one or more data
were transferred to the Host buffer.

An interrupt is generated only once for concurrent events. The driver must scan the IDSTS register for the
interrupt cause.

9.12 Register Summary

Name Description Address Access
CTRL_REG Control register 0x0000 R/W
CLKDIV_REG Clock divider configuration register 0x0008 R/W
CLKSRC_REG Clock source selection register 0x000C R/W
CLKENA_REG Clock enable register 0x0010 R/W
TMOUT_REG Data and response timeout configuration register | 0x0014 R/W
CTYPE_REG Card bus width configuration register 0x0018 R/W
BLKSIZ_REG Card data block size configuration register 0x001C R/W
BYTCNT_REG Data transfer length configuration register 0x0020 R/W
INTMASK_REG SDIO interrupt mask register 0x0024 R/W
CMDARG_REG Command argument data register 0x0028 R/W
CMD_REG Command and boot configuration register 0x002C R/W
RESPO_REG Response data register 0x0030 RO
RESP1_REG Long response data register 0x0034 RO
RESP2_REG Long response data register 0x0038 RO
RESP3_REG Long response data register 0x003C RO
MINTSTS_REG Masked interrupt status register 0x0040 RO
RINTSTS_REG Raw interrupt status register 0x0044 R/W
STATUS_REG SD/MMC status register 0x0048 RO
FIFOTH_REG FIFO configuration register 0x004C R/W
CDETECT_REG Card detect register 0x0050 RO
WRTPRT_REG Card write protection (WP) status register 0x0054 RO
TCBCNT_REG Transferred byte count register 0x005C RO
TBBCNT_REG Transferred byte count register 0x0060 RO
DEBNCE_REG Debounce filter time configuration register 0x0064 R/W
USRID_REG User ID (scratchpad) register 0x0068 R/W
RST_N_REG Card reset register 0x0078 R/W
BMOD_REG Burst mode transfer configuration register 0x0080 R/W
PLDMND_REG Poll demand configuration register 0x0084 WO
DBADDR_REG Descriptor base address register 0x0088 R/W
IDSTS_REG IDMAC status register 0x008C R/W
IDINTEN_REG IDMAC interrupt enable register 0x0090 R/W
DSCADDR_REG Host descriptor address pointer 0x0094 RO
BUFADDR_REG Host buffer address pointer register 0x0098 RO
CLK_EDGE_SEL Clock phase selection register 0x0800 R/W

Espressif Systems 194 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

9.13 Registers

SD/MMC controller registers can be accessed by the APB bus of the CPU.

Register 9.1: CTRL_REG (0x0000)

K2
P
L 7
L0
& &
A} &O \al <Q
Q\OQ// ?Q VQ/Q{O%« < é é <<§\/
> > 5 FSE FLW @ S5
© ® ¢ v LSS ST Y @ L
%Q’é %Q‘Q\ ro‘z"\\ <<§ OO OO0 S (© g NSl
@ & & Oéoéo&%@ @ X7
’31 25|24 131 120 11|10 9 8|7 6 5|4 3 2|1 0‘
] 0x00 |1 0x00 o|ooo|ooo|ooo|o O‘Reset

CEATA_DEVICE_INTERRUPT_STATUS Software should appropriately write to this bit after the
power-on reset or any other reset to the CE-ATA device. After reset, the CE-ATA device’s interrupt
is usually disabled (NIEN = 1). If the host enables the CE-ATA device’s interrupt, then software
should set this bit. (R/W)

SEND_AUTO_STOP_CCSD Always set send_auto_stop_ccsd and send_ccsd bits together;
send_auto_stop_ccsd should not be set independently of send_ccsd. When set, SD/MMC au-
tomatically sends an internally-generated STOP command (CMD12) to the CE-ATA device. After
sending this internally-generated STOP command, the Auto Command Done (ACD) bit in RINTSTS
is set and an interrupt is generated for the host, in case the ACD interrupt is not masked. Af-
ter sending the Command Completion Signal Disable (CCSD), SD/MMC automatically clears the
send_auto_stop_ccsd bit. (R/W)

SEND_CCSD When set, SD/MMC sends CCSD to the CE-ATA device. Software sets this bit only
if the current command is expecting CCS (that is, RW_BLK), and if interrupts are enabled for the
CE-ATA device. Once the CCSD pattern is sent to the device, SD/MMC automatically clears the
send_ccsd bit. It also sets the Command Done (CD) bit in the RINTSTS register, and generates
an interrupt for the host, in case the Command Done interrupt is not masked. NOTE: Once the
send_ccsd bit is set, it takes two card clock cycles to drive the CCSD on the CMD line. Due to this,
within the boundary conditions the CCSD may be sent to the CE-ATA device, even if the device
has signalled CCS. (R/W)

ABORT_READ_DATA After a suspend-command is issued during a read-operation, software polls the
card to find when the suspend-event occurred. Once the suspend-event has occurred, software
sets the bit which will reset the data state machine that is waiting for the next block of data. This
bit is automatically cleared once the data state machine is reset to idle. (R/\W)

SEND_IRQ_RESPONSE Bit automatically clears once response is sent. To wait for MMC card inter-
rupts, host issues CMD40 and waits for interrupt response from MMC card(s). In the meantime, if
host wants SD/MMC to exit waiting for interrupt state, it can set this bit, at which time SD/MMC
command state-machine sends CMD40 response on bus and returns to idle state. (R/W)

Espressif Systems 195 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.2:

g

&
&

CTRL_REG (continued) (0x0000)

] 0x00

0x00

READ_WAIT For sending read-wait to

SDIO cards. (R/W)

INT_ENABLE Global interrupt enable/disable bit. O: Disable; 1: Enable. (R/W)

DMA_RESET To reset DMA interface, firmware should set bit to 1. This bit is auto-cleared after two

AHB clocks. (R/W)

FIFO_RESET To reset FIFO, firmware should set bit to 1. This bit is auto-cleared after completion of

reset operation. Note: FIFO pointers will be out of reset after 2 cycles of system clocks in addition

to synchronization delay (2 cycles of card clock), after the fifo_reset is cleared. (R/W)

CONTROLLER_RESET To reset controller, firmware should set this bit. This bit is auto-cleared after
two AHB and two cclk_in clock cycles. (R/W)

Espressif Systems

196 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.3: CLKDIV_REG (0x0008)

& & & &
> Q > >
Q\\/t_/ Q\\’b/ C)\\/L_/ C)\\/L_/
’31 24|23 16|15 8|7 O‘
’ 0x000 | 0x000 | 0x000 | 0x000 ‘ Reset

CLK_DIVIDER3 Clock divider-3 value. Clock division factor is 2*n, where n=0 bypasses the divider
(division factor of 1). For example, a value of 1 means divide by 21 = 2, a value of OxFF means
divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented
because only one clock divider is supported. (R/W)

CLK_DIVIDER2 Clock divider-2 value. Clock division factor is 2*n, where n=0 bypasses the divider
(division factor of 1). For example, a value of 1 means divide by 21 = 2, a value of OxFF means
divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented
because only one clock divider is supported. (R/W)

CLK_DIVIDER1 Clock divider-1 value. Clock division factor is 2*n, where n=0 bypasses the divider
(division factor of 1). For example, a value of 1 means divide by 21 = 2, a value of OxFF means
divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented
because only one clock divider is supported. (R/W)

CLK_DIVIDERO Clock divider-0 value. Clock division factor is 2*n, where n=0 bypasses the divider
(division factor of 1). For example, a value of 1 means divide by 2*1 = 2, a value of OxFF means
divide by 2*255 = 510, and so on. In MMC-Ver3.3-only mode, these bits are not implemented
because only one clock divider is supported. (R/W)

Register 9.4: CLKSRC_REG (0x000C)

)

S
Q)%@é

A

E [

’ 0x000000 | 0x0 |Reset

CLKSRC_REG Clock divider source for two SD cards is supported. Each card has two bits assigned
to it. For example, bit[1:0] are assigned for card 0, bit[3:2] are assigned for card 1. Card 0 maps
and internally routes clock divider[0:3] outputs to cclk_out[1:0] pins, depending on bit value.

00 : Clock divider 0;

01 : Clock divider 1;

10 : Clock divider 2;

11 : Clock divider 3.

In MMC-Ver3.3-only controller, only one clock divider is supported. The cclk_out is always from
clock divider O, and this register is not implemented. (R/W)

Espressif Systems 197 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.5: CLKENA_REG (0x0010)

N
S @v@‘o
\@%Q}A OO&/
’ 3 2 | 1 0 ‘
’ 0x00000 |Ox00000\ Reset

CCLK_ENABEL Clock-enable control for two SD card clocks and one MMC card clock is supported.
0: Clock disabled;
1: Clock enabled.
In MMC-Ver3.3-only mode, since there is only one cclk_out, only cclk_enable[0] is used. (R/W)

Register 9.6: TMOUT_REG (0x0014)

N
s £
QO »
N O@%
el %Q
X &

’ 31 8 | 7 0 ‘
’ OXOFFFFFF | 0x040 ‘ Reset

DATA_TIMEOUT Value for card data read timeout. This value is also used for data starvation by host
timeout. The timeout counter is started only after the card clock is stopped. This value is specified
in number of card output clocks, i.e. cclk_out of the selected card.

NOTE: The software timer should be used if the timeout value is in the order of 100 ms. In this
case, read data timeout interrupt needs to be disabled. (R/W)

RESPONSE_TIMEOUT Response timeout value. Value is specified in terms of number of card output
clocks, i.e., cclk_out. (R/W)

Espressif Systems 198 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.7: CTYPE_REG (0x0018)

& &
Q)& @Q QJ& \Q
%Q)@ ??\Q/ %Q)(A ?99 p:
@ o @ O
’31 18|17 16|15 2|1 O‘
’ 0x00000 |0xooooo| 0x00000 |0xooooo‘ Reset

CARD_WIDTH8 One bit per card indicates if card is in 8-bit mode.
0: Non 8-bit mode;
1: 8-bit mode.
Bit[17:16] correspond to card[1:0] respectively. (R/W)

CARD_WIDTH4 One bit per card indicates if card is 1-bit or 4-bit mode.

0: 1-bit mode;
1: 4-bit mode.
Bit[1:0] correspond to card[1:0] respectively. Only NUM_CARDS*2 number of bits are imple-
mented. (R/W)
Register 9.8: BLKSIZ_REG (0x001C)
2
N S
§© o
o o)
N o
]oooooooooooooooo| 0x00200 ‘Reset
BLOCK_SIZE Block size. (R/W)
Register 9.9: BYTCNT_REG (0x0020)
’ 0x000000200 \ Reset

BYTCNT_REG Number of bytes to be transferred, should be an integral multiple of Block Size for
block transfers. For data transfers of undefined byte lengths, byte count should be set to 0. When
byte count is set to 0, it is the responsibility of host to explicitly send stop/abort command to
terminate data transfer. (R/W)

Espressif Systems 199 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.10: INTMASK_REG (0x0024)

v@b
O & &
@?QJ@ o_,Q\O/ é g
N
’31 18 |17 16| 15 0
’ 0x00000 |0xooooo| 0x00000 \ Reset

SDIO_INT_MASK SDIO interrupt mask, one bit for each card. Bit[17:16] correspond to card[15:0] re-

spectively. When masked, SDIO interrupt detection for that card is disabled. O masks an interrupt,

and 1 enables an interrupt. In MMC-Ver3.3-only mode, these bits are always 0. (R/W)

of 1 enables the interrupt. (R/W)

Bit 15 (EBE): End-bit error, read/write (no CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt
Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation-by-host timeout/Volt_switch_int
Bit 9 (DRTO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit O (CD): Card detect

Register 9.11: CMDARG_REG (0x0028)

INT_MASK These bits used to mask unwanted interrupts. A value of O masks interrupt, and a value

E

0x000000000

‘ Reset

CMDARG_REG Value indicates command argument to be passed to the card. (R/W)

Espressif Systems 200 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.12: CMD_REG (0x002C)

O
'\((’ ae)
O O AN
O F s p S PP SELI
RPAS o7 O/ 15O 7P P O
FFEEL SO L ST CL N

’31|30 29 28|27 26|25|24 23|22|21 20 16 | 15 14|13 12 11|10 9 8|7 6 |5 O‘

]o|o1 o|o 0|o|o o|o|o 0x00 oo|ooo|ooooo 0x00 ‘Reset

START_CMD Start command. Once command is served by the CIU, this bit is automatically cleared.
When this bit is set, host should not attempt to write to any command registers. If a write is
attempted, hardware lock error is set in raw interrupt register. Once command is sent and a
response is received from SD_MMC_CEATA cards, Command Done bit is set in the raw interrupt
Register. (R/W)

USE_HOLE Use Hold Register. (R/W) 0: CMD and DATA sent to card bypassing HOLD Register; 1:
CMD and DATA sent to card through the HOLD Register.

CCS_EXPECTED Expected Command Completion Signal (CCS) configuration. (R/W)
O: Interrupts are not enabled in CE-ATA device (nIEN = 1 in ATA control register), or command
does not expect CCS from device.
1: Interrupts are enabled in CE-ATA device (nIEN = 0), and RW_BLK command expects command
completion signal from CE-ATA device.
If the command expects Command Completion Signal (CCS) from the CE-ATA device, the software
should set this control bit. SD/MMC sets Data Transfer Over (DTO) bit in RINTSTS register and
generates interrupt to host if Data Transfer Over interrupt is not masked.

READ_CEATA_DEVICE Read access flag. (R/W)
0: Host is not performing read access (RW_REG or RW_BLK)towards CE-ATA device
1: Host is performing read access (RW_REG or RW_BLK) towards CE-ATA device.
Software should set this bit to indicate that CE-ATA device is being accessed for read transfer.
This bit is used to disable read data timeout indication while performing CE-ATA read transfers.
Maximum value of 1/O transmission delay can be no less than 10 seconds. SD/MMC should not
indicate read data timeout while waiting for data from CE-ATA device. (R/W)

Espressif Systems 201 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.13: CMD_REG (continued) (0x002C)

4
v
oS
&
¥ & SO O Q> A
O LR PR« SN
LI £ RS O K
S & <<§\VQ\, K ST S sEE 7% &
<9 QJ&Q\O\/ S S S z&dg T&” S PE é<<<’ CF 5 > &
/\VQ\ 6@‘“%@/ éz;@ %e;é G_,e's @Q)G %e;éo%Q{yQ X X7 %Q/:OQ ;\& A QYQ &VQ\QS)Q@Q (532 K\
NEFEEEEEFEK < SNV LEF S S
’31|30 29 28|27 26|25|24 23|22|21 20 16| 15 14|13 12 11|10 9 8|7 6 5 O‘
[oJo]1]o]JoJofofoJo]o]o 0x00 ofoJoJoJoJoJo]o]o]o 0x00 |Reset

UPDATE_CLOCK_REGISTERS_ONLY (R/W)
0: Normal command sequence.
1: Do not send commands, just update clock register value into card clock domain
Following register values are transferred into card clock domain: CLKDIV, CLRSRC, and CLKENA.
Changes card clocks (change frequency, truncate off or on, and set low-frequency mode). This
is provided in order to change clock frequency or stop clock without having to send command to
cards.
During normal command sequence, when update_clock_registers_only = O, following control reg-
isters are transferred from BIU to CIU: CMD, CMDARG, TMOUT, CTYPE, BLKSIZ, and BYTCNT.
CIU uses new register values for new command sequence to card(s). When bit is set, there are no
Command Done interrupts because no command is sent to SD_MMC_CEATA cards.

CARD_NUMBER Card number in use. Represents physical slot number of card being accessed. In
MMC-Ver3.3-only mode, up to two cards are supported. In SD-only mode, up to two cards are
supported. (R/W)

SEND_INITIALIZATION (R/W)
0: Do not send initialization sequence (80 clocks of 1) before sending this command.
1: Send initialization sequence before sending this command.
After power on, 80 clocks must be sent to card for initialization before sending any commands to
card. Bit should be set while sending first command to card so that controller will initialize clocks
before sending command to card.

STOP_ABORT_CMD (R/W)
0: Neither stop nor abort command can stop current data transfer. If abort is sent to function-
number currently selected or not in data-transfer mode, then bit should be set to 0.
1: Stop or abort command intended to stop current data transfer in progress. When open-ended
or predefined data transfer is in progress, and host issues stop or abort command to stop data
transfer, bit should be set so that command/data state-machines of CIU can return correctly to idle
state.

Espressif Systems 202 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.14: CMD_REG (continued) (0x002C)

G‘)/
& & o
s & so S
K T 7 QN
& 960 g & & : /%9 O@oo@ «@Qo&é’ &
@0 < & &VO\Q & /&\?\/OQ\ AO?‘&O/ > ’\\Q’Q(OO & A% &
SRRSO o 9%@/ 7 oﬁz 5 Q\oy\)é& 5 Q}o\L’QO%O& s
7 /, s
o_')\éi@%@\)é’ 1@“52)@%@@G-’QJ@@Q)@%@OO%Q\QY \\)QQ C)??\ é<§ é0\$v<\%/(<§ «Q\?‘ngo é\%\@ GC& @@
’31|30|29|28|27|26|25|24|23|22|21|20 16|15|14|13|12|11|10|9|8|7|6|5 O‘
]o|o|1|o|o|0|o|o|o|o|o| 0x00 |0|o|o|0|o|o|0|o|o|0| 0x00 ‘Reset

WAIT_PRVDATA_COMPLETE (R/W)
0: Send command at once, even if previous data transfer has not completed;
1: Wait for previous data transfer to complete before sending Command.
The wait_prvdata_complete = O option is typically used to query status of card during data transfer
or to stop current data transfer. card_number should be same as in previous command.

SEND_AUTO_STOP (R/W)
0: No stop command is sent at the end of data transfer;
1: Send stop command at the end of data transfer.

TRANSFER_MODE (R/W)
0: Block data transfer command;
1: Stream data transfer command. Don’t care if no data expected.

READ/WRITE (R/W)
0: Read from card;
1: Write to card.
Don’t care if no data is expected from card.

DATA_EXPECTED (R/W)
0: No data transfer expected.
1: Data transfer expected.

CHECK_RESPONSE_CRC (R/W)
0: Do not check;
1: Check response CRC.
Some of command responses do not return valid CRC bits. Software should disable CRC checks
for those commands in order to disable CRC checking by controller.

RESPONSE_LENGTH (R/W)
0: Short response expected from card;
1: Long response expected from card.

RESPONSE_EXPECT (R/W)
0: No response expected from card;
1. Response expected from card.

CMD_INDEX Command index. (R/W)

Espressif Systems 203 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.15: RESP0_REG (0x0030)

‘ 0x000000000 ‘ Reset

RESPO_REG Bit[31:0] of response. (RO)

Register 9.16: RESP1_REG (0x0034)

‘31 O‘

‘ 0x000000000 ‘ Reset

RESP1_REG Bit[63:32] of long response. (RO)

Register 9.17: RESP2_REG (0x0038)

‘31 O‘

‘ 0x000000000 \ Reset

RESP2_REG Bit[95:64] of long response. (RO)

Register 9.18: RESP3_REG (0x003C)

‘ 0x000000000 \ Reset

RESP3_REG Bit[127:96] of long response. (RO)

Espressif Systems 204 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.19: MINTSTS_REG (0x0040)

\t_.
S
& o
@@ S >
N K <
Q?QJ@Q) O\O>$ é&é\v
A) N\
’31 18|17 16|15 O‘
] 0 | 0x0 | 0x00000

‘ Reset

SDIO_INTERRUPT_MSK Interrupt from SDIO card, one bit for each card. Bit[17:16] correspond
to card1 and cardO, respectively. SDIO interrupt for card is enabled only if corresponding

sdio_int_mask bit is set in Interrupt mask register (Setting mask bit enables interrupt). (RO)

INT_STATUS_MSK Interrupt enabled only if corresponding bit in interrupt mask register is set. (RO)
Bit 15 (EBE): End-bit error, read/write (no CRC)
Bit 14 (ACD): Auto command done
Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt

(
Bit 12 (HLE
Bit 11 (
(

): Hardware locked write error
FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation by host timeout (HTO)
Bit 9 (DTRO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error
(

Bit O (CD): Card detect

Espressif Systems

205 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.20: RINTSTS_REG (0x0044)

&
I
& &
& Sl
z& \%& &é
%?}A O &?
@ 2% =
’31 16|17 16|31 13‘
’ 000000 | 0x0 | 000000 \Reset

SDIO_INTERRUPT_RAW Interrupt from SDIO card, one bit for each card. Bit[17:16] correspond to
card1 and card0, respectively. Setting a bit clears the corresponding interrupt bit and writing O has
no effect. (R/W)
0: No SDIO interrupt from card;
1: SDIO interrupt from card.
In MMC-Ver3.3-only mode, these bits are always 0. Bits are logged regardless of interrupt-mask
status. (R/W)

INT_STATUS_RAW Setting a bit clears the corresponding interrupt and writing O has no effect. Bits
are logged regardless of interrupt mask status. (R/W)
Bit 15 (EBE): End-bit error, read/write (no CRC)

Bit 14 (ACD): Auto command done

Bit 13 (SBE/BCI): Start Bit Error/Busy Clear Interrupt
Bit 12 (HLE): Hardware locked write error

Bit 11 (FRUN): FIFO underrun/overrun error

Bit 10 (HTO): Data starvation by host timeout (HTO)
Bit 9 (DTRO): Data read timeout

Bit 8 (RTO): Response timeout

Bit 7 (DCRC): Data CRC error

Bit 6 (RCRC): Response CRC error

Bit 5 (RXDR): Receive FIFO data request

Bit 4 (TXDR): Transmit FIFO data request

Bit 3 (DTO): Data transfer over

Bit 2 (CD): Command done

Bit 1 (RE): Response error

Bit O (CD): Card detect

Espressif Systems 206 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.21: STATUS_REG (0x0048)

g & Q\‘L‘ Q‘\L“
%QQL NN %‘& ‘3‘%@@?
S S & & \’é@\;%"\ é‘é\ EOIRY & i
ée'bc\@b 90 Qoé o v? f/b/ @@?‘ <§0 (5/@ §\~/ g\\-/
’31|3o|29 17|16 11|1o|9|s|7 4|3|2|1|0‘
’O|O| 0x000 | 0x00 |1|1|1| 0x01 |0|1|1|0‘Reset

FIFO_COUNT FIFO count, number of filled locations in FIFO. (RO)
RESPONSE_INDEX Index of previous response, including any auto-stop sent by core. (RO)
DATA_STATE_MC_BUSY Data transmit or receive state-machine is busy. (RO)

DATA_BUSY Inverted version of raw selected card_data[0]. (RO)
0: Card data not busy;
1: Card data busy.

DATA_3_STATUS Raw selected card_data[3], checks whether card is present. (RO)
0: card not present;
1: card present.

COMMAND_FSM_STATES Command FSM states. (RO)
0: Idle
1: Send init sequence

: Send cmd start bit

: Send cmd tx bit

: Send cmd index + arg

: Send cmd crc7

: Send cmd end bit

: Receive resp start bit

. Receive resp IRQ response

9: Receive resp tx bit

O N O O B~ W DN

10: Receive resp cmd idx

11: Receive resp data

12: Receive resp crc7

13: Receive resp end bit

14: Cmd path wait NCC

15: Wait, cmd-to-response turnaround

FIFO_FULL FIFO is full status. (RO)
FIFO_EMPTY FIFO is empty status. (RO)
FIFO_TX_WATERMARK FIFO reached Transmit watermark level, not qualified with data transfer. (RO)

FIFO_RX_WATERMARK FIFO reached Receive watermark level, not qualified with data transfer. (RO)

Espressif Systems 207 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.22: FIFOTH_REG (0x004C)

<&
&
&
%&Q\?\
Q ‘
D & D @*\L D QS\L
ey 7 I § ey AN
NS N & @ <3
’31|30 28|27|26 16|15 12|11 O‘
’O| 0x0 |O|>< X X X X X X X X X ><|O 0 0 O| 0x0000 ‘Reset

DMA_MULTIPLE_TRANSACTION_SIZE Burst size of multiple transaction, should be programmed
same as DMA controller multiple-transaction-size SRC/DEST_MSIZE. 000: 1-byte transfer; 001:
4-byte transfer; 010: 8-byte transfer; 011: 16-byte transfer; 100: 32-byte transfer; 101: 64-byte
transfer; 110: 128-byte transfer; 111: 256-byte transfer. (R/W)

RX_WMARK FIFO threshold watermark level when receiving data to card.When FIFO data count
reaches greater than this number (FIFO_RX_WATERMARK), DMA/FIFO request is raised. During
end of packet, request is generated regardless of threshold programming in order to complete any
remaining data.In non-DMA mode, when receiver FIFO threshold (RXDR) interrupt is enabled, then
interrupt is generated instead of DMA request.During end of packet, interrupt is not generated if
threshold programming is larger than any remaining data. It is responsibility of host to read remain-
ing bytes on seeing Data Transfer Done interrupt.In DMA mode, at end of packet, even if remaining
bytes are less than threshold, DMA request does single transfers to flush out any remaining bytes
before Data Transfer Done interrupt is set. (R/W)

TX_WMARK FIFO threshold watermark level when transmitting data to card. When FIFO data count
is less than or equal to this number (FIFO_TX_WATERMARK), DMA/FIFO request is raised. If In-
terrupt is enabled, then interrupt occurs. During end of packet, request or interrupt is generated,
regardless of threshold programming.In non-DMA mode, when transmit FIFO threshold (TXDR) in-
terrupt is enabled, then interrupt is generated instead of DMA request. During end of packet, on
last interrupt, host is responsible for filling FIFO with only required remaining bytes (not before FIFO
is full or after CIU completes data transfers, because FIFO may not be empty). In DMA mode, at
end of packet, if last transfer is less than burst size, DMA controller does single cycles until required
bytes are transferred. (R/W)

Register 9.23: CDETECT_REG (0x0050)

Q/é§
S §
Q?Q)é ?99 ’
A @)
’ 31 2 | 1 0 ‘
’ 0x0 | 0x0 ‘Reset

CARD_DETECT_N Value on card_detect_n input ports (1 bit per card), read-only bits.O represents
presence of card. Only NUM_CARDS number of bits are implemented. (RO)

Espressif Systems 208 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.24: WRTPRT_REG (0x0054)

N
&
O
GQ)& Q//Q\
& Aé\
E T
‘ 0x0 | 0x0 ‘Reset
WRITE_PROTECT Value on card_write_prt input ports (1 bit per card).1 represents write protection.
Only NUM_CARDS number of bits are implemented. (RO)
Register 9.25: TCBCNT_REG (0x005C)
E |
‘ 0x000000000 \ Reset
TCBCNT_REG Number of bytes transferred by CIU unit to card. (RO)
Register 9.26: TBBCNT_REG (0x0060)
E |
‘ 0x000000000 \ Reset
TBBCNT_REG Number of bytes transferred between Host/DMA memory and BIU FIFO. (RO)
Register 9.27: DEBNCE_REG (0x0064)
&
i~
O
&
S 0%
@é Q)O
2 N
N Q
‘o 0 00 0 0 O o| 0x0000000 \Reset

DEBOUNCE_COUNT Number of host clocks (clk) used by debounce filter logic. The typical de-
bounce time is 5 ~ 25 ms to prevent the card instability when the card is inserted or removed.
(R/W)

Espressif Systems 209 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.28: USRID_REG (0x0068)

E]

’ 0x000000000 ‘ Reset

USRID_REG User identification register, value set by user. Default reset value can be picked by user
while configuring core before synthesis. Can also be used as a scratchpad register by user. (R/W)

Register 9.29: RST_N_REG (0x0078)

Q/%é
Q/
& S
"oQ’ A 7
N &
’ 31 2 | 1 0 ‘
’ 0 | Ox1 ‘Reset
RST_CARD_RESET Hardware reset.1: Active mode; 0: Reset. These bits cause the cards to enter
pre-idle state, which requires them to be re-initialized. CARD_RESET[0] should be set to 1’b0 to
reset card0, CARD_RESET][1] should be set to 1'b0 to reset card1.The number of bits implemented
is restricted to NUM_CARDS. (R/W)
Register 9.30: BMOD_REG (0x0080)
Q\
S SRS S XN
& Q7 Q7 N Q7 Q7
\&Q)%e Q;@O Q;QO @@QJ QO QO
’31 11|10 8|7|6 2|1|0‘
’ooooooooooooooooooooo| 0x0 |o| 0x00 |0|0‘Reset

BMOD_PBL Programmable Burst Length. These bits indicate the maximum number of beats to be
performed in one IDMAC transaction. The IDMAC will always attempt to burst as specified in PBL
each time it starts a burst transfer on the host bus. The permissible values are 1, 4, 8, 16, 32, 64,
128 and 256. This value is the mirror of MSIZE of FIFOTH register. In order to change this value,
write the required value to FIFOTH register. This is an encode value as follows:

000: 1-byte transfer; 001: 4-byte transfer; 010: 8-byte transfer; 011: 16-byte transfer; 100: 32-
byte transfer; 101: 64-byte transfer; 110: 128-byte transfer; 111: 256-byte transfer.

PBL is a read-only value and is applicable only for data access, it does not apply to descriptor
access. (R/W)

BMOD_DE IDMAC Enable. When set, the IDMAC is enabled. (R/W)

BMOD_FB Fixed Burst. Controls whether the AHB Master interface performs fixed burst transfers or
not. When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal
burst transfers. When reset, the AHB will use SINGLE and INCR burst transfer operations. (R/W)

BMOD_SWR Software Reset. When set, the DMA Controller resets all its internal registers. It is
automatically cleared after one clock cycle. (R/W)

Espressif Systems 210 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.31: PLDMND_REG (0x0080)

E]

’ 0x000000000 ‘ Reset

PLDMND_REG Poll Demand. If the OWN bit of a descriptor is not set, the FSM goes to the Suspend
state. The host needs to write any value into this register for the IDMAC FSM to resume normal
descriptor fetch operation. This is a write only register, PD bit is write-only. (WO)

Register 9.32: DBADDR_REG (0x0088)

E]

’ 0x000000000 \ Reset

DBADDR_REG Start of Descriptor List. Contains the base address of the First Descriptor. The LSB
bits [1:0] are ignored and taken as all-zero by the IDMAC internally. Hence these LSB bits may be
treated as read-only. (R/W)

Espressif Systems 211 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.33: IDSTS_REG (0x008C)

QQ/
QO
) 2 & P 5 s Foa
IS X o 94 € 0200000000
®® AN A AN @Q) A2 K @Q)’\ ALK
& & F OCF € FFEFCEE
’31 17|16 13|12 10|9|8|7 6|5|4|3|2|1|0‘
’ooooooooooooooo| 0x00 | 0x0 |0|o|0 o|o|o|o|o|o|o‘Reset

IDSTS_FSM DMAC FSM present state: (RO)
0: DMA_IDLE; 1: DMA_SUSPEND; 2: DESC_RD; 3: DESC_CHK; 4: DMA_RD_REQ_WAIT
5: DMA_WR_REQ_WAIT; 6: DMA_RD; 7: DMA_WR; 8: DESC_CLOSE.

IDSTS_FBE_CODE Fatal Bus Error Code. Indicates the type of error that caused a Bus Error. Valid
only when the Fatal Bus Error bit IDSTS[2] is set. This field does not generate an interrupt. (RO)
3b001: Host Abort received during transmission;
3b010: Host Abort received during reception;

Others: Reserved.

IDSTS_AIS Abnormal Interrupt Summary. Logical OR of the following: IDSTS[2] : Fatal Bus Interrupt,
IDSTS[4] : DU bit Interrupt. Only unmasked bits affect this bit. This is a sticky bit and must be
cleared each time a corresponding bit that causes AIS to be set is cleared. Writing 1 clears this

bit. (R/W)

IDSTS_NIS Normal Interrupt Summary. Logical OR of the following: IDSTS[0] : Transmit Interrupt,
IDSTS[1] : Receive Interrupt. Only unmasked bits affect this bit. This is a sticky bit and must be
cleared each time a corresponding bit that causes NIS to be set is cleared. Writing 1 clears this

bit. (R/W)

IDSTS_CES Card Error Summary. Indicates the status of the transaction to/from the card, also
present in RINTSTS. Indicates the logical OR of the following bits: EBE : End Bit Error, RTO :
Response Timeout/Boot Ack Timeout, RCRC : Response CRC, SBE : Start Bit Error, DRTO : Data
Read Timeout/BDS timeout, DCRC : Data CRC for Receive, RE : Response Error.

Writing 1 clears this bit. The abort condition of the IDMAC depends on the setting of this CES bit.
If the CES bit is enabled, then the IDMAC aborts on a response error. (R/W)

IDSTS_DU Descriptor Unavailable Interrupt. This bit is set when the descriptor is unavailable due to
OWN bit = 0 (DES0[31] =0). Writing 1 clears this bit. (R/W)

IDSTS_FBE Fatal Bus Error Interrupt. Indicates that a Bus Error occurred (IDSTS[12:10]) . When this
bit is set, the DMA disables all its bus accesses. Writing 1 clears this bit. (R/W)

IDSTS_RI Receive Interrupt. Indicates the completion of data reception for a descriptor. Writing 1
clears this bit. (R/W)

IDSTS_TI Transmit Interrupt. Indicates that data transmission is finished for a descriptor. Writing 1
clears this bit. (R/W)

Espressif Systems 212 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.34: IDINTEN_REG (0x0090)

5 <

N A < AN OV A

S TS s I8 KL

s LE 4 SLHLLE
@ L ¢ OO ELOE

IDINTEN_AI Abnormal Interrupt Summary Enable. (R/W)
When set, an abnormal interrupt is enabled. This bit enables the following bits:
IDINTEN([2]: Fatal Bus Error Interrupt;
IDINTEN[4]: DU Interrupt.

IDINTEN_NI Normal Interrupt Summary Enable. (R/W)
When set, a normal interrupt is enabled. When reset, a normal interrupt is disabled. This bit enables
the following bits:
IDINTENIO]: Transmit Interrupt;
IDINTEN([1]: Receive Interrupt.

IDINTEN_CES Card Error summary Interrupt Enable. When set, it enables the Card Interrupt sum-
mary. (R/W)

IDINTEN_DU Descriptor Unavailable Interrupt. When set along with Abnormal Interrupt Summary
Enable, the DU interrupt is enabled. (R/W)

IDINTEN_FBE Fatal Bus Error Enable. When set with Abnormal Interrupt Summary Enable, the Fatal
Bus Error Interrupt is enabled. When reset, Fatal Bus Error Enable Interrupt is disabled. (R/W)

IDINTEN_RI Receive Interrupt Enable. When set with Normal Interrupt Summary Enable, Receive
Interrupt is enabled. When reset, Receive Interrupt is disabled. (R/W)

IDINTEN_TI Transmit Interrupt Enable. When set with Normal Interrupt Summary Enable, Transmit
Interrupt is enabled. When reset, Transmit Interrupt is disabled. (R/W)

Register 9.35: DSCADDR_REG (0x0094)

E]

’ 0x000000000 \ Reset

DSCADDR_REG Host Descriptor Address Pointer, updated by IDMAC during operation and cleared
on reset. This register points to the start address of the current descriptor read by the IDMAC.
(RO)

Espressif Systems 213 ESP32 Technical Reference Manual V3.1

9. SD/MMC HOST CONTROLLER

Register 9.36: BUFADDR_REG (0x0098)

E]

’ 0x000000000 ‘ Reset

BUFADDR_REG Host Buffer Address Pointer, updated by IDMAC during operation and cleared on
reset. This register points to the current Data Buffer Address being accessed by the IDMAC. (RO)

Register 9.37: CLK_EDGE_SEL (0x0800)

v < Q7
2
<> 24 % o7 % <
0 0 0 0 S e
N\ < £% < <
& & & & & N N
\&@%Q’ OO\/ QC)\/ QO\/ OO\/ QO\/ N\
’31 21|20 17H16 13H12 QHS EHS 3”2 0‘
’ 0x000 | Ox1 ‘ ’ 0x0 ‘ ’ Ox1 ‘ ’ 0x0 ‘ ’ 0x0 ‘ ’ 0x0 ‘ Reset

CCLKIN_EDGE_N This value should be equal to CCLKIN_EDGE_L. (R/W)

CCLKIN_EDGE_L The low level of the divider clock. The value should be larger than
CCLKIN_EDGE_H. (R/W)

CCLKIN_EDGE_H The high level of the divider clock. The value should be smaller than
CCLKIN_EDGE_L. (R/W)

CCLKIN_EDGE_SLF_SEL It is used to select the clock phase of the internal signal from phase90,
phase180, or phase270. (R/W)

CCLKIN_EDGE_SAM_SEL It is used to select the clock phase of the input signal from phase90,
phase180, or phase270. (R/W)

CCLKIN_EDGE_DRV_SEL It is used to select the clock phase of the output signal from phase90,
phase180, or phase270. (R/W)

Espressif Systems 214 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

10. Ethernet MAC

10.1 Overview
Features of Ethernet

By using the external Ethernet PHY (physical layer), ESP32 can send and receive data via Ethernet MAC (Media
Access Controller) according to the IEEE 802.3 standard, as Figure 39 shows. Ethernet is currently the most
commonly used network protocol that controls how data is transmitted over local- and wide-area networks,
abbreviated as LAN and WAN, respectively.

Ethernet Ethernet EWLWEH
Media Access Controller K)| Physical Layer

(MAC)
RJ45

Figure 39: Ethernet MAC Functionality Overview

ESP32 MAC Ethernet complies with the following criteria:
e |EEE 802.3-2002 for Ethernet MAC
e |EEE 1588-2008 standard for specifying the accuracy of networked clock synchronization

e Two industry-standard interfaces conforming with IEEE 802.3-2002: Media-Independent Interface (Mll) and
Reduced Media-Independent Interface (RMII).

Features of MAC Layer
e Support for a data transmission rate of 10 Mbit/s or 100 Mbit/s through an external PHY interface
e Communication with an external Fast Ethernet PHY through IEEE 802.3-compliant MIl and RMII interfaces
e Support for:

— Carrier Sense Multiple Access / Collision Detection (CSMA/CD) protocol in half-duplex mode

IEEE 802.3x flow control in full-duplex mode

operations in full-duplex mode, forwarding the received pause-control frame to the user application

backpressure flow control in half-duplex mode

If the flow control input signal disappears during a full-duplex operation, a pause frame with zero
pause time value is automatically transmitted.

e The Preamble and the Start Frame Delimiter (SFD) are inserted in the Transmit path, and deleted in the
Receive path.

e Cyclic Redundancy Check (CRC) and Pad can be controlled on a per-frame basis.

e The Pad is generated automatically, if data is below the minimum frame length.

Espressif Systems 215 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

e Programmable frame length supporting jumbo frames of up to 16 KB
e Programmable Inter-frame Gap (IFG) (40-96 bit times in steps of 8)
e Support for a variety of flexible address filtering modes:
- Up to eight 48-bit perfect address filters to mask each byte
- Up to eight 48-bit SA address comparison checks to mask each byte
- All multicast address frames can be transmitted
— All frames in mixed mode can be transmitted without being filtered for network monitoring
— A status report is attached each time all incoming packets are transmitted and filtered.
e Returning a 32-bit status for transmission and reception of packets respectively
e Separate transmission, reception, and control interfaces for the application
e Use of the Management Data Input/Output (MDIO) interface to configure and manage PHY devices

e Support for the offloading of received IPv4 and TCP packets encapsulated by an Ethernet frame in the
reception function

e Support for checking IPv4 header checksums, as well as TCP, UDP, or ICMP (Internet Control Message
Protocol) checksums encapsulated in IPv4/IPv6 packets in the enhanced reception function

e Support for Ethernet frame timestamps. (For details please refer to IEEE 1588-2008.) Each frame has a
64-bit timestamp when transmitted or received.

e Two sets of FIFOs: one 2 KB Tx FIFO with programmable threshold and one 2 KB Rx FIFO with
configurable threshold (64 bytes by default)

¢ When Rx FIFO stores multiple frames, the Receive Status Vector is inserted into the Rx FIFO after
transmitting an EOF (end of frame), so that the Rx FIFO does not need to store the Receive Status of these
frames.

¢ |n store-and-forward mode, all error frames can be filtered during reception, but not forwarded to the
application.

e Under-sized good frames can be forwarded.

e Support for data statistics by generating pulses for lost or corrupted frames in the Rx FIFO due to an
overflow

e Support for store-and-forward mechanism when transmitting data to the MAC core

e Automatic re-transmission of collided frames during transmission (subject to certain conditions, see section
10.2.1.2)

e Discarding frames in cases of late collisions, excessive collisions, excessive deferrals, and under-run
conditions

e The Tx FIFO is flushed by software control.

e Calculating the IPv4 header checksum, as well as the TCP, UDP, or ICMP checksum, and then inserting
them into frames transmitted in store-and-forward mode.

Ethernet Block Diagram

Figure 40 shows the block diagram of the Ethernet.

Espressif Systems 216 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

NS

5 AHB %
<:::> MasterIF<:\l> i N\ R A <:>
Optional
{ M e]
i IF —

(MI/RMII)
MAC
APB | —A| bma | omR : CSR
- Slave IF [\,—/] CSR | Register .
| EMACMITL ; EMAC-CORE

EMAC-DMA

Figure 40: Ethernet Block Diagram

Ethernet MAC consists of the MAC-layer configuration register module and three layers: EMAC_CORE (MAC
Core Layer), EMAC_MTL (MAC Transition Layer), and EMAC_DMA (Direct Memory Access). Each of these three
layers has two directions: Tx and Rx. They are connected to the system through the Advanced
High-Performance Bus (AHB) and the Advanced Peripheral Bus (APB) on the chip. Off the chip, they
communicate with the external PHY through the MIl and RMII interfaces to materialize an Ethernet

connection.

10.2 EMAC_CORE

The MAC supports many interfaces with the PHY chip. The PHY interface can be selected only once after reset.
The MAC communicates with the application side (DMA side), using the MAC Transmit Interface (MTI), MAC
Receive Interface (MRI) and the MAC Control Interface (MCI).

10.2.1 Transmit Operation

A transmit operation is initiated when the MTL Application pushes in data at the time a response signal is
asserted. When the SOF (start of frame) signal is detected, the MAC accepts the data and begins transmitting to
the RMII or MIl. The time required to transmit the frame data to the RMII or MII, after the application initiates
transmission, varies, depending on delay factors like IFG delay, time to transmit Preamble or SFD (Start Frame
Delimiter), and any back-off delays in half-duplex mode. Until then, the MAC does not accept the data received
from MTL by de-asserting the ready signal.

After the EOF (end of frame) is transmitted to the MAC, the MAC completes the normal transmission and yields
the Transmit Status to the MTL. If a normal collision (in half-duplex mode) occurs during transmission, the MAC
makes valid the Transmit Status in the MTL. It then accepts and drops all further data until the next SOF is
received. The MTL block should retransmit the same frame from SOF upon observing a retry request (in the
Status) from the MAC.

The MAC issues an underflow status if the MTL is not able to provide the data continuously during transmission.
During the normal transmission of a frame from MTL, if the MAC receives an SOF without getting an EOF for the
previous frame, it ignores the SOF and considers the new frame as a continuation of the previous one.

Espressif Systems 217 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

10.2.1.1 Transmit Flow Control

In full-duplex mode, when the Transmit Flow Control Enable bit (TFE bit in the Flow Control Register) is set to 1,
the MAC will generate and send a pause frame, as needed. The pause frame is added and transmitted together
with the calculated CRC. The generation of pause frames can be initiated in two ways.

When the application sets the Flow Control Busy bit (FCB bit in the Flow Control Register) to 1, or when the Rx
FIFO is full, a pause frame is transmitted.

e |f an application has requested flow control by setting the FCB bit in the Flow Control Register to 1, the MAC
will generate and send a single pause frame. The pause time value in the generated frame is the pause time
value programmed in the Flow Control Register. To extend or end the pause time before the time specified
in the previously transmitted pause frame, the application program must configure the pause time value in
the Flow Control Register to the appropriate value and, then, request another pause frame transmission.

e |f the application has requested flow control when the Rx FIFO is full, the MAC will generate and transmit a
pause frame. The value of the pause time of the generated frame is the pause time value programmed in
the Flow Control Register. If the Rx FIFO remains full during the configurable interval, which is determined
by the Pause Low Threshold bit (PLT) in the Flow Control Register before the pause time expires, a second
pause frame will be transmitted. As long as the Rx FIFO remains full, the process repeats itself. If the FIFO
is no longer full before the sample time, the MAC will send a pause frame with zero pause time, indicating
to the remote end that the Rx buffer is ready to receive the new data frame.

10.2.1.2 Retransmission During a Collision

In half-duplex mode, a collision may occur on the MAC line interface when frames are transmitted to the MAC.
The MAC may even give a status to indicate a retry before the end of the frame is received. The retransmission is
then enabled and the frame is popped out from the FIFO. When more than 96 bytes are transmitted to the MAC
core, the FIFO controller frees the space in the FIFO, allowing the DMA to push more data into FIFO. This means
that data cannot be retransmitted after the threshold is exceeded or when the MAC core indicates that a late
collision has occurred.

The MAC transmitter may abort the transmission of a frame because of collision, Tx FIFO underflow, loss of
carrier, jabber timeout, no carrier, excessive deferral, and late collision. When frame transmission is aborted
because of collision, the MAC requests retransmission of the frame.

10.2.2 Receive Operation

A receive operation is initiated when the MAC detects an SFD on the RMII or MIl. The MAC strips the Preamble
and SFD before processing the frame. The header fields are checked for the filtering and the FCS (Frame Check
Sequence) field used to verify the CRC for the frame. The received frame is stored in a shallow buffer until the
address filtering is performed. The frame is dropped in the MAC if it fails the address filtering.

The frame received by the MAC will be pushed into the Rx FIFO. Once the FIFO status exceeds the Receive
Threshold, configured by the Receive Threshold Control (RTC) bit in the Operation Mode register, the DMA can
initiate a preconfigured burst transmission to the AHB interface.

In the default pass-through mode, when the FIFO receives a complete packet or 64 bytes configured by the RTC
bit in the Operation Mode Register, the data pops up and its availability is notified to the DMA. After the DMA
initiates the transmission to the AHB interface, the data transmission continues from the FIFO until the complete

Espressif Systems 218 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

packet is transmitted. Upon completing transmitting the EOF, the status word will pop up and be transmitted to
the DMA controller.

In the Rx FIFO Store-and-Forward mode (configured through the RSF or Receive Store and Forward bit in the

Operation Mode Register), only the valid frames are read and forwarded to the application. In the passthrough
mode, error frames are not discarded because the error status is received at the end of the frame. The start of
frame will have been read from the FIFO at that point.

10.2.2.1 Reception Protocol

After the receive module receives the packets, the Preamble and SFD of the received frames are removed. When
the SFD is detected, the MAC starts sending Ethernet frame data to the Rx FIFO, starting at the first byte
(destination address) following the SFD. This timestamp is passed on to the application, unless the MAC filters
out and drops the frame.

If the received frame length/type is less than 0x600 and the automatic CRC/Pad removal option is programmed
for the MAC, the MAC will send frame data to the Rx FIFO (the amount of data does not exceed the number
specified in the length/type field). Then MAC begins discarding the remaining section, including the FCS field. If
the frame length/type is greater than, or equal to, 0x600, the MAC will send all received Ethernet frame data to
the Rx FIFO, regardless of the programmed value of the automatic CRC removal option. By default, the MAC
watchdog timer is enabled, meaning that frames, including DA, SA, LT, data, pad and FCS, which exceed 2048
bytes, are cut off. This function can be disabled by programming the Watchdog Disable (WD) bit in the MAC
Configuration Register. However, even if the watchdog timer is disabled, frames longer than 16 KB will be cut off
and the watchdog timeout status will be given.

10.2.2.2 Receive Frame Controller

If the RA (Receive All) bit in the MAC Frame Filter Register is reset, the MAC will filter frames based on the
destination and source addresses. If the application decides not to receive any bad frames, such as runt frames
and CRC error frames, another level of filtering is needed. When a frame fails the filtering, the frame is discarded
and is not transmitted to the application. When the filter parameters are changed dynamically, if a frame fails the
DA and SA filterings, the remaining part of the frame is discarded and the Receive Status word is updated
immediately and, therefore, the zero frame length bit, CRC error bit, and runt frame error bit are set to 1. This
indicates that the frame has failed the filtering.

10.2.2.3 Receive Flow Control

The MAC will detect the received pause frame and pause transmission of frames for a specified delay within the
received pause frame (in full-duplex mode only). The Pause Frame Detect Function can be enabled or disabled
by the RFCE (Receive Flow Control Enable) bit in the Flow Control Register. When receive flow control is enabled,
it starts monitoring whether the destination address of the received frame matches the multicast address of the
control frame (0x0180 G200 0001). If a match is detected (i.e. the destination address of the received frame
matches the destination address of the reserved control frame), the MAC will determine whether to transmit the
received control frame to the application, according to the PCF (Pass Control Frames) bit in the Frame Filter
Register.

Espressif Systems 219 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

The MAC will also decode the type, the opcode, and the pause timer field of the Receive Control Frame. If the
value of the status byte counter is 64 bits and there are no CRC errors, the MAC transmitter will halt the
transmission of any data frame. The duration of the pause is the decoded pause time value multiplied by the
interval (which is 64 bytes for both 10 Mbit/s and 100 Mb/s modes). At the same time, if another pause frame of
zero pause time is detected, the MAC will reset the pause time to manage the new pause request.

If the type field (0x8808), the opcode (0x00001), and the byte length (64 bytes) of the received control frame are
not 0x8808, 0x00001, and 64 bytes, respectively, or if there is a CRC error, the MAC will not generate a
pause.

If a pause frame has a multicast destination address, the MAC filters the frame, according to the address
matching.

For pause frames with a unicast destination address, the MAC checks whether the DA matches the content of
the EMACADDRO Register, and whether the Unicast Pause Frame Detect (UPFD) bit in the Flow Control Register
is set to 1. The Pass Control Frames (PCF) bits in the Frame Filter Register [7:6] control the filtering of frames and
addresses.

10.2.2.4 Reception of Multiple Frames

Since the status is available immediately after the data is received. Frames can be stored there, as long as the
FIFO is not full.

10.2.2.5 Error Handling

If the Rx FIFO is full before receiving the EOF data from the MAC, an overflow will be generated and the entire
frame will be discarded. In fact, status bit RDESO[11] will indicate that this frame is partial due to an overflow, and
that it should be discarded.

If the function that corresponds to the Flush Transmit FIFO (FTF) bit and the Forward Undersized Good Frames
(FUGF) bit in the Operation Mode Register is enabled, the Rx FIFO can filter error frames and runt frames. If the
receive FIFO is configured to operate in store-and-forward mode, all error frames will be filtered and

discarded.

In passthrough mode, if a frame’s status and length are available when reading a SOF from the Rx FIFO, the
entire error frame can be discarded. DMA can clear the error frame being read from the FIFO by enabling the
Receive Frame Clear bit. The data transmission to the application (DMA) will then stop, and the remaining frames
will be read internally and discarded. If FIFO is available, the transmission of the next frame will be initiated.

10.2.2.6 Receive Status Word

After receiving the Ethernet frames, the MAC outputs the receive status to the application. The detailed
description of the receive status is the same as that which is configured by bit [31:0] in RDESO.

10.3 MAC Interrupt Controller

The MAC core can generate interrupts due to various events.

Espressif Systems 220 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

The interrupt register bits only indicate various interrupt events. To clear the interrupts, the corresponding status
register and other registers must be read. An Interrupt Status Register describes the events that prompt the MAC
core to generate interrupts. Each interrupt event can be prevented by setting the corresponding mask bit in the
Interrupt Mask Register to 1. For example, if bit3 of the interrupt register is set high, it indicates that a magic
packet or Wake-on-LAN frame has been received in Power-down mode. The PMT Control and Status register
must be read to clear this interrupt event.

10.4 MAC Address Filtering

Address filtering will check the destination and source addresses of all received frames and report the address
filtering status accordingly. For example, filtered frames can be identified either as multicast or broadcast. The
address check, then, is based on the parameters selected by the application (Frame Filter Registers).

Physical (MAC) addresses are used for address checking during address filtering.

10.4.1 Unicast Destination Address Filtering

The MAC supports up to 8 MAC addresses for perfect filtering of unicast addresses. If a perfect filtering is
selected (by resetting bit[1] in the Frame Filter Register), the MAC compares all 48 bits of the received unicast
address with the programmed MAC address to determine if there is a match. By default, EMACADDRO is always
enabled, and the other addresses (EMACADDRO ~ EMACADDRY) are selected by a separate enable bit. When
the individual bytes of the other addresses (EMACADDRO ~ EMACADDRY) are compared with the DA bytes
received, the latter can be masked by setting the corresponding Mask Byte Control bit in the register to 1. This
facilitates the DA group address filtering.

10.4.2 Multicast Destination Address Filtering

The MAC can be programmed to pass all multicast frames by setting the Pass All Multicast (PAM) bit in the
Frame Filter Register to 1. If the PAM bit is reset, the MAC will filter multicast addresses, according to Bit[2] in the
Frame Filter Register.

In perfect filtering mode, the multicast address is compared with the programmed MAC Destination Address
Registers (EMACADDRO ~ EMACADDRY). Group address filtering is also supported.

10.4.3 Broadcast Address Filtering

The MAC does not filter any broadcast frames in the default mode. However, if the MAC is programmed to reject
all broadcast frames, which can happen by setting the Disable Broadcast Frames (DBF) bit in the Frame Filter
Register to 1, all broadcast frames will be discarded.

10.4.4 Unicast Source Address Filtering

The MAC may also perform a perfect filtering based on the source address field of the received frame. By default,
the Address Filtering Module (AFM) compares the Source Address (SA) field with the values programmed in the
SA register. By setting Bit[30] in the SA register to 1, the MAC Address Register EMACADDRO - EMACADDRY)
can be configured to contain SA, instead of Destination Address (DA), for filtering. Group filtering with SA is also
supported. If the Source Address Filter (SAF) enable bit in the Frame Filter Register is set to 1, the MAC discards
frames that do not pass the SA filtering. Otherwise, the result of SA filtering is given as a status bit in the Receive
Status word (Please refer to Table 47).

Espressif Systems 221 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

When the SAF enable bit is set to 1, the result of the SA filtering and DA filtering is AND’ed to determine whether
or not to forward the frame. Any frame that fails to pass will be discarded. Frames need to pass both filterings in
order to be forwarded to the application.

10.4.5 Inverse Filtering Operation

For both destination address (DA) and source address (SA) filtering, you can invert the results matched through
the filtering at the final output. The inverse filtering of DA and SA are controlled by the DAIF and SAIF bits,
respectively, in the Frame Filter Register. The DAIF bit applies to both unicast and multicast DA frames. When
DAIF is set to 1, the result of unicast or multicast destination address filtering will be inverted. Similarly, when the
SAIF bit is set to 1, the result of unicast SA filtering is reversed.

The following two tables summarize the destination address and source address filtering, based on the type of
the frames received.

Table 39: Destination Address Filtering

Frame Type | PM | PF DAIF | PAM | DB DA Filter Result
1 X X X X Pass
Broadcast 0 X X X 0 Pass
0 X X X 1 Fail
1 X X X X All frames pass.
0 X 0 X X Pass when results of perfect/group filtering match.
Unicast 0 X 1 X X Fail when results of perfect/group filtering match.
0 1 0 X X Pass when results of perfect/group filtering match.
0 1 1 X X Fail when results of perfect/group filtering match.
1 X X X X All frames pass.
X X X 1 X All frames pass.
Pass when results of perfect/group filtering match and
0 X 0 0 X pause control frame is discarded, if PCF = Ox.
Multicast Pass when results of perfect/group filtering match and
0 1 0 0 X pause control frame is discarded, if PCF = Ox.
Fail when results of perfect/group filtering match and
0 X 1 0 X pause control frame is discarded, if PCF = Ox.
Fail when results of perfect/group filtering match and
0 1 1 0 X pause control frame is discarded, if PCF = Ox.

The filtering parameters in the MAC Frame Filter Register described in Table 39 are as follows.

Parameter name: Parameter setting:
PM: Pass All Multicast 1: Set
PF: Perfect Filter 0: Cleared

DAIF: Destination Address Inverse Filtering
PAM: Pass All Multicast
DB: Disable Broadcast Frames

Espressif Systems 222 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Table 40: Source Address Filtering

Frame Type PM SAIF | SAF | Source Address Filter Operation
1 X X Pass all frames
0 0 0 Pass when results of perfect/group filtering match. Frames not passed are
not discarded.
0 1 0 Fail when results of perfect/group filtering match. Frames not passed are
Unicast not discarded.
0 0 1 Pass when results of perfect/group filtering match. Frames not passed are
discarded.
a ; 1 Fail when results of perfect/group filtering match. Frames not passed are
discarded.

The filtering parameters in the MAC Frame Filter Register described in Table 40 are as follows.

Parameter name: Parameter setting:
PM: Pass All Multicast 1: Set
SAF: Source Address Filtering 0: Cleared

SAIF: Source Address Inverse Filtering X: Don’t care

10.4.6 Good Transmitted Frames and Received Frames

A frame successfully transmitted is considered a "good frame”. In other words, a transmitted frame is considered
to be good, if the frame transmission is not aborted due to the following errors:

e Jabber timeout

e No carrier or loss of carrier

Late collision
e Frame underflow
e Excessive deferral
e Excessive collision
The received frames are considered "good frames”, if there are not any of the following errors:
e CRC error

e Runt frames (frames shorter than 64 bytes)

Alignment error (in 10/100 Mbps modes only)

Length error (non-type frames only)

e Frame size over the maximum size (for non-type frames over the maximum frame size only)

MII_RXER input error
The maximum frame size depends on the frame type:
e The maximum size of untagged frames = 1518 bytes

e The maximum size of VLAN frames = 1522 bytes

Espressif Systems 223 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

10.5 EMAC_MTL (MAC Transaction Layer)

The MAC Transaction Layer provides FIFO memory to buffer and regulates the frames between the application
system memory and the MAC. It also enables the data to be transmitted between the application clock domain
and the MAC clock domains. The MTL layer has two data paths, namely the Transmit path and the Receive path.
The data path for both directions is 32-bit wide and operates with a simple FIFO protocol.

10.6 PHY Interface

The DMA and the Host driver communicate through two data structures:
e Control and Status Registers (CSR)
e Descriptor lists and data buffers

For details please refer to Register Summary and Linked List Descriptors.

10.6.1 MIl (Media Independent Interface)

Media Independent Interface (MIl) defines the interconnection between MAC sublayers and PHYs at the data
transmission rate of 10 Mbit/s and 100 Mbit/s.

10.6.1.1 Interface Signals Between MIl and PHY

Interface signals between MIl and PHY are shown in Figure 41.

< TX _CLK

TXD[3:0] >

TX_EN ,

) RX_CLK
g RXD[3:0]
RMII «— BXDV 1 Exernal

EMAC IF PHY

e CRS
e coL
MDC »
e MDIO ,

Figure 41: MIl Interface

MiIl Interface Signal Description:

e MII_TX_CLK: TX clock signal. This signal provides the reference timing for TX data transmission. The
frequencies are divided into two types: 2.5 MHz at a data transmission rate of 10 Mbit/s, and 25 MHz at
100 Mbit/s.

e MII_TXD[3:0]: Transmit data signal in groups of four, syn-driven by the MAC sub-layer, and valid only when
the MII_TX_EN signal is valid. MII_TXDI[Q] is the lowest significant bit and MII_TXD[3] is the highest
significant bit. When the signal MII_TX_EN is pulled low, sending data does not have any effect on the PHY.

Espressif Systems 224 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

e MII_TX_EN: Transmit data enable signal. This signal indicates that the MAC is currently sending nibbles (4
bits) for the MIl. This signal must be synchronized with the first nibble of the header (MII_TX_CLK) and must
be synchronized when all nibbles to be transmitted are sent to the M.

e MII_RX_CLK: RX clock signal. This signal provides the reference timing for RX data transmission. The
frequencies are divided into two types: 2.5 MHz at the data transmission rate of 10 Mbit/s, and 25 MHz at
100 Mbit/s.

e MII_RXD[3:0]: Receive data signal in groups of four, syn-driven by the PHY, and valid only when MII_RX_DV
signal is valid. MII_RXDI[0] is the lowest significant bit and MII_RXDI[3] is the highest significant bit. When
MII_RX_DV is disabled and MII_RX_ER is enabled, the specific MII_RXD[3:0] value represents specific
information from the PHY.

e MII_RX_DV: Receive data valid signal. This signal indicates that the PHY is currently receiving the recovered
and decoded nibble that will be transmitted to the MIl. This signal must be synchronized with the first nibble
of the recovered frame (MII_RX_CLK) and remain synchronized till the last nibble of the recovered frame.
This signal must be disabled before the first clock cycle following the last nibble. In order to receive the
frame correctly, the MII_RX_DV signal must cover the frame to be received over the time range, starting no
later than when the SFD field appears.

e MII_CRS: Carrier sense signal. When the transmitting or receiving medium is in the non-idle state, the
signal is enabled by the PHY. When the transmitting or receiving medium is in the idle state, the signal is
disabled by the PHY. The PHY must ensure that the MII_CRS signal remains valid under conflicting
conditions. This signal does not need to be synchronized with the TX and RX clocks. In full-duplex mode,
this signal is insignificant.

e MII_COL.: Collision detection signal. After a collision is detected on the medium, the PHY must immediately
enable the collision detection signal, and the collision detection signal must remain active as long as a
condition for collision exists. This signal does not need to be synchronized with the TX and RX clocks. In
full-duplex mode, this signal is meaningless.

e MII_RX_ER: Receive error signal. The signal must remain for one or more cycles (MII_RX_CLK) to indicate
to the MAC sublayer that an error has been detected somewhere in the frame.

e MDIO and MDC: Management Data Input/Output and Management Data Clock. The two signals constitute
a serial bus defined for the Ethernet family of IEEE 802.3 standards, used to transfer control and data
information to the PHY, see section Station Management Agent (SMA) Interface.

10.6.1.2 MIl Clock

In MIl mode, there are two directions of clock, Tx and Rx clocks in the interface between MIl and the PHY.
MII_TX_CLK is used to synchronize the TX data, and MII_RX_CLK is used to synchronize the RX data. The
MII_RX_CLK clock is provided by the PHY. The MII_TX_CLK is provided by the chip’s internal PLL or external
crystal oscillator. For details regarding Figure 42, please refer to the clock-related registers in Register
Summary.

Espressif Systems 225 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

< Clk ix < o Clk ix MIL_TX_CLK
Tx T
TX MIl >
<«clk < clk rx MII_RX_CLK
i i Rx T
< Rx Ml External
PHY
mdc
MAC >
CSR SMA mdio .
MII_TX_CLK
i mac_portselect_o
{ EMAC-CORE
| EMAC-AHB
e uueessen s emsaueoe e s s e e R e e sr s nan st e naes H 0OSC
Figure 42: Ml Clock
10.6.2 RMII (Reduced Media-Independent Interface)
RMIl interface signals are shown in figure 43.
XO
TX_EN ,
« RXD[10]
e RX_DV
External
_ MDG PHY
EMAC Al f MDIO
_ clk_mii
b A
0sC

Figure 43: RMII Interface

10.6.2.1 RMIl Interface Signal Description

The Reduced Media-Independent Interface (RMII) specification reduces the number of pins between the
microcontroller’s external peripherals and the external PHY at a data transmission rate of 10 Mbit/s or 100 Mbit/s.
According to the IEEE 802.3u standard, Ml includes 16 pins that contain data and control signals. The RMII
specification reduces 62.5% of the pins to the number of seven.

RMII has the following features:
e Support for an operating rate of 10 Mbit/s or 100 Mbit/s

¢ The reference clock frequency must be 50 MHz.

Espressif Systems 226 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

e The same reference clock must be provided externally both to the MAC and the external Ethernet PHY. It
provides independent 2-bit-wide Tx and Rx data paths.

10.6.2.2 RMII Clock

The configuration of the RMII clock is as figure 44 shows.

Dk o clk_tx

ML |

H : 7
o clk_rx_q o clk_rx | External
* Kea] Cmmmr |

p I

4 clk_mii g
MAC P
CSh SMA
: | EMAC-CORE mac portselect o
EMAC-AHB mac_speed_o
divider
2/20 0sc

Figure 44: RMII Clock

10.6.3 Station Management Agent (SMA) Interface

As Figure 42 shows, the MAC uses MDC and MDIO signals to transfer control and data information to the PHY.
The maximum clock frequency is 2.5 MHz. The clock is generated from the application clock by a clock divider.
The PHY transmits register data during a write/read operation through the MDIO. This signal is driven
synchronously to the MDC clock.

Please refer to Register Summary for details about the EMII Address Register and the EMII Data Register.

10.7 Ethernet DMA Features

The DMA has independent Transmit and Receive engines, and a CSR (Control and Status Registers) space. The
Transmit engine transfers data from the system memory to the device port (MTL), while the Receive engine
transmits data from the device port to the system memory. The controller uses descriptors to efficiently move
data from source to destination with minimal Host CPU intervention. The DMA is designed for packet-oriented
data transmission, such as frames in Ethernet. The controller can be programmed to interrupt the Host CPU for
normal situations, such as the completion of frame transmission or reception, or when errors occur.

Espressif Systems 227 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

10.8 Linked List Descriptors

This section shows the structure of the linked lists and the descriptors. Every linked list consists of eight

words.
10.8.1 Transmit Descriptors
The structure of the transmitter linked lists is shown in Figure 45. Table 41 to Table 46 show the description of the
linked lists.
31 0
ToESO 5| ctigoze) || cripang |8 Status[16:7] | o | e
TDES1 [3?29] Reserved | Transmit Buffer Size[12:0]
TDES2 Buffer Address [31:0]
TDES3 Next Descriptor Address[31:0]
TDES4 Reserved
TDES5 Reserved
TDES6 Transmit Frame Timestamp Low[31:0]
TDES7 Transmit Frame Timestamp High[31:0]
Figure 45: Transmit Descriptor
Table 41: Transmit Descriptor 0 (TDESOQ)
Bits Name Description
When set, this bit indicates that the descriptor is owned by the DMA.
When this bit is reset, it indicates that the descriptor is owned by the
Host. The DMA clears this bit, either when it completes the frame
) transmission or when the buffers allocated to the descriptor are
[31] OWN: Own Bit o))
empty. The ownership bit of the First Descriptor of the frame should
be set after all subsequent descriptors belonging to the same frame
have been set. This avoids a possible race condition between fetch-
ing a descriptor and the driver setting an ownership bit.
When set, this bit sets the Transmit Interrupt (Register 5[0]) after the
[30] IC: Interrupt on Completion | present frame has been transmitted. This bit is valid only when the
last segment bit (TDESO[29)]) is set.
When set, this bit indicates that the buffer contains the last segment
[29] LS: Last Segment of the frame. When this bit is set, the TBS1 or TBS2 field in TDEST
should have a non-zero value.
) When set, this bit indicates that the buffer contains the first segment
[28] FS: First Segment
of a frame.
When this bit is set, the MAC does not append a cyclic redundancy
[27] DC: Disable CRC check (CRC) to the end of the transmitted frame. This is valid only
when the first segment (TDES0[28]) is set.

Espressif Systems

228 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Bits

Name

Description

(26]

DP: Disable Pad

When set, the MAC does not automatically add padding to a frame
shorter than 64 bytes. When this bit is reset, the DMA automatically
adds padding and CRC to a frame shorter than 64 bytes, and the
CRC field is added despite the state of the DC (TDESO0[27]) bit. This
is valid only when the first segment (TDES0[28]) is set.

[25]

TTSE: Transmit Timestamp
Enable

When set, this bit enables IEEE1588 hardware timestamping for the
transmit frame referenced by the descriptor. This field is valid only
when the First Segment control bit (TDES0[28)) is set.

(24]

CRCR: CRC Replacement
Control

When set, the MAC replaces the last four bytes of the transmitted
packet with recalculated CRC bytes. The host should ensure that
the CRC bytes are present in the frame being transmitted from the
Transmit Buffer. This bit is valid when the First Segment control bit
(TDESOQ[28]) is set. In addition, CRC replacement is done only when
Bit TDESO[27] is set to 1.

[23:22]

CIC: Checksum Insertion
Control

These bits control the checksum calculation and insertion. The fol-
lowing list describes the bit encoding:

e 2’b00: Checksum insertion is disabled.

e 2’p01: Only IP header checksum calculation and insertion are
enabled.

e 2’b10: IP header checksum and payload checksum calcula-
tion and insertion are enabled, but pseudo-header checksum
is not calculated in hardware.

e 2'b11: IP Header checksum and payload checksum calcula-
tion and insertion are enabled, and pseudo-header checksum
is calculated in hardware.

This field is valid when the First Segment control bit (TDESO[28]) is
set.

(21]

TER: Transmit End of Ring

When set, this bit indicates that the descriptor list reached its final
descriptor. The DMA returns to the base address of the list, creating
a Descriptor Ring.

(20]

TCH: Second Address
Chained

When set, this bit indicates that the second address in the descrip-
tor is the Next Descriptor address, rather than the second buffer
address. When TDESO[20] is set, TBS2 (TDES1[28:16]) is a “don’t
care” value. TDESO[21] takes precedence over TDESO[20]. This bit
should be set to 1.

Espressif Systems

229

ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Bits Name Description
When set, these bits request the MAC to perform VLAN tagging or

untagging before transmitting the frames. If the frame is modified
for VLAN tags, the MAC automatically recalculates and replaces the
CRC bytes. The following list describes the values of these bits:
e 2’pb00: Do not add a VLAN tag.
, e 2’pb01: Remove the VLAN tag from the frames before trans-
VLIC: VLAN Insertion o ,) ,
[19:18] mission. This option should be used only with the VLAN
Control
frames.
e 2’b10: Insert a VLAN tag with the tag value programmed in
VLAN Tag Inclusion or Replacement Register.
e 2’b1: Replace the VLAN tag in frames with the Tag value
programmed in VLAN Tag Inclusion or Replacement Regis-
ter. This option should be used only with the VLAN frames.

This field is used as a status bit to indicate that a timestamp was
) captured for the described transmit frame. When this bit is set,
TTSS: Transmit)
[17] , TDES2 and TDES3 have a timestamp value captured for the trans-
Timestamp Status i o ,)
mit frame. This field is only valid when the descriptor’s Last Segment
control bit (TDES0[29)]) is set.

When set, this bit indicates that the MAC transmitter detected an

error in the IP datagram header. The transmitter checks the header

length in the IPv4 packet against the number of header bytes re-
ceived from the application, and indicates an error status if there
is a mismatch. For IPv6 frames, a header error is reported if the
main header length is not 40 bytes. Furthermore, the Ethernet
Length/Type field value for an IPv4 or IPv6 frame must match the IP
[16] IHE: IP Header Error)))
header version received with the packet. For IPv4 frames, an error
status is also indicated if the Header Length field has a value less
than 0x5.
Indicates the logical OR of the following bits:

e TDESO[14]: Jabber Timeout

e TDESO[13]: Frame Flush

e TDESO[11]: Loss of Carrier

e TDESO[10]: No Carrier
[15] ES: Error Summary e TDESO[9]: Late Collision

e TDESO[8]: Excessive Collision

e TDESO[2]: Excessive Deferral

e TDESO[1]: Underflow Error

e TDESO[16]: IP Header Error

e TDESO[12]: IP Payload Error
When set, this bit indicates the MAC transmitter has experienced a
[14] JT. Jabber Timeout jabber timeout. This bit is only set when EMACCONFIG_REG'’s bit
EMACJABBER is not set.
When set, this bit indicates that the DMA or MTL flushed the frame
because of a software Flush command given by the CPU.

[13] FF: Frame Flushed

Espressif Systems 230 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Bits Name Description

When set, this bit indicates that MAC transmitter detected an error
in the TCP, UDP, or ICMP IP datagram payload.

The transmitter checks the payload length received in the IPv4 or
IPv6 header against the actual number of TCP, UDP, or ICMP packet
bytes received from the application, and issues an error status in

[12] IPE: IP Payload Error

case of a mismatch.

When set, this bit indicates that a loss of carrier occurred during
frame transmission (that is, the MII_CRS signal was inactive for one
[11] LOC: Loss of Carrier or more transmit clock periods during frame transmission). This is
valid only for the frames transmitted without collision when the MAC
operates in the half-duplex mode.

) When set, this bit indicates that the Carrier Sense signal from the
[10] NC: No Carrier . .
PHY was not asserted during transmission.

When set, this bit indicates that frame transmission is aborted be-
cause of a collision occurring after the collision window (64 byte-
9] LC: Late Collision times including Preamble in MIl mode, and 512 byte-times including
Preamble and Carrier Extension). This bit is not valid if the Under-
flow Error bit is set.

When set, this bit indicates that the transmission was aborted after
16 successive collisions while attempting to transmit the current

[8] EC: Excessive Collision frame. If bit EMACRETRY of EMACCONFIG_REG is set, this bit
is set after the first collision, and the transmission of the frame is
aborted.

When set, this bit indicates that the transmitted frame is a VLAN-

[7] VF: VLAN Frame
type frame.

These status bits indicate the number of collisions that occurred
before the frame was transmitted. This count is not valid when the
[6:3] Ctrl/status)
Excessive Collisions bit (TDESO[8]) is set. The core updates this

status field only in the half-duplex mode.

When set, this bit indicates that the transmission has ended be-
cause of excessive deferral of over 24,288 bit times (if Jumbo Frame
is enabled) if bit EMACDEFERRAL of EMACCONFIG_REG is set
high.

When set, this bit indicates that the MAC aborted the frame be-
cause the data arrived late from the Host memory. Underflow Er-

2] ED: Excessive Deferral

ror indicates that the DMA encountered an empty transmit buffer
[1] UF: Underflow Error while transmitting the frame. The transmission process enters the
Suspended state and sets both Bit[5] in Transmit Underflow Regis-
ter (Status Register) and Bit[0] in Transmit Interrupt Register (Status
Register).

When set, this bit indicates that the MAC defers before transmission
[0] DB: Deferred Bit because of the presence of a carrier. This bit is valid only in the half-
duplex mode.

Espressif Systems 231 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Table 42: Transmit Descriptor 1 (TDES1)

Bits

Name

Description

[31:29]

SAIC: SA Insertion Control

These bits request the MAC to add or replace the Source Address
field in the Ethernet frame with the value given in the MAC Address
0O register. If the Source Address field is modified in a frame, the
MAC automatically recalculates and replaces the CRC bytes. The
Bit[31] specifies the MAC Address Register value (1 or 0) that is
used for Source Address insertion or replacement. The following
list describes the values of Bits[30:29]:

e 2’p00: Do not include the source address.

e 2'pb01: Include orinsert the source address. For reliable trans-
mission, the application must provide frames without source
addresses.

e 2'b10: Replace the source address. For reliable transmission,
the application must provide frames with source addresses.

e 2’b11: Reserved

These bits are valid when the First Segment control bit (TDESO[28])
is set.

[28:16]

Reserved

Reserved

[15:13]

Reserved

Reserved

[12:0]

TBS1: Transmit Buffer 1
Size

These bits indicate the data buffer byte size in bytes. If this field is O,
the DMA ignores this buffer and uses Buffer 2 or the next descriptor.

Table 43: Transmit Descriptor 2 (TDES2)

Bits

Name

Description

[31:0]

Buffer 1 Address Pointer

These bits indicate the physical address of Buffer 1.

Table 44: Transmit Descriptor 3 (TDESS3)

Bits

Name

Description

[31:0]

Next Descriptor Address

This address contains the pointer to the physical memory where the
Next Descriptor is present.

Table 45: Transmit Descriptor 6 (TDES6)

Bits

Name

Description

[31:0]

TTSL: Transmit Frame
Timestamp Low

This field is updated by DMA with the least significant 32 bits of the
timestamp captured for the corresponding transmit frame. This field
has the timestamp only if the Last Segment (LS) bit in the descriptor
is set, and the Timestamp Status (TTSS) bit is set too.

Espressif Systems

232

ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Table 46: Transmit Descriptor 7 (TDES?)

Bits Name Description
This field is updated by DMA with the most significant 32 bits of the
310] TTSH: Transmit Frame timestamp captured for the corresponding receive frame. This field

Timestamp High

has the timestamp only if the Last Segment (LS) bit in the descriptor
is set, and the Timestamp Status (TTSS) bit is set too.

Espressif Systems

233 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

10.8.2 Receive Descriptors

The structure of the receiver linked lists is shown in Figure 46. Table 47 to Table 53 provide the description of the

linked lists.

31 0
RDESO | £ Status(30:0]

— . Ctl | o . . i
RDEST |5 Reserved[30:16] (514 & Receive Buffer 1 Size[12:0]
RDES2 Buffer1 Address [31:0]
RDES3 Next Descriptor Address[31:0]
RDES4 Extended Status[31:0]
RDES5 Reserved
RDES6 Receive Frame Timestamp Low[31:0]
RDES7 Receive Frame Timestamp High[31:0]

Figure 46: Receive Descriptor
Table 47: Receive Descriptor 0 (RDESO0)
Bits Name Description

When set, this bit indicates that the descriptor is owned by the DMA
of the DWC_gmac. When this bit is reset, it indicates that the de-
[31] OWN: Own Bit scriptor is owned by the Host. The DMA clears this bit either when
it completes the frame reception or when the buffers that are asso-
ciated with this descriptor are full.

AFM: Destination Address | When set, this bit indicates a frame that failed in the DA Filter in the

(30] . .
Filter Fail MAC.
These bits indicate the byte length of the received frame that was
transmitted to host memory. This field is valid when Last Descrip-
tor (RDESO[8)) is set and either the Descriptor Error (RDESO[14]) or
[29:16] | FL: Frame Length Overflow Error bits is reset. The frame length also includes the two

bytes appended to the Ethernet frame when IP checksum calcula-
tion (Type 1) is enabled and the received frame is not a MAC control
frame.

Indicates the logical OR of the following bits:

e RDESO[1]: CRC Error

e RDESOI[3]: Receive Error

e RDESO[4]: Watchdog Timeout

e RDESO[6]: Late Collision

e RDESO[7]: Giant Frame

e RDES4[4:3]: IP Header or Payload Error

e RDESO[11]: Overflow Error

e RDESOQ[14]: Descriptor Error
This field is valid only when the Last Descriptor (RDESO0[8]) is set.
When set, this bit indicates a frame truncation caused by a frame

[15] ES: Error Summary

) that does not fit within the current descriptor buffers, and that the
[14] DE: Descriptor Error) ,
DMA does not own the Next Descriptor. The frame is truncated.

This field is valid only when the Last Descriptor (RDESO[8]) is set.

Espressif Systems 234 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Bits

Name

Description

[13]

SAF: Source Address Filter
Fail

When set, this bit indicates that the SA field of frame failed the SA
Filter in the MAC.

[12]

LE: Length Error

When set, this bit indicates that the actual length of the frame re-
ceived and that the Length/Type field does not match. This bit is
valid only when the Frame Type (RDESO[9]) bit is reset.

(1]

OE: Overflow Error

When set, this bit indicates that the received frame was damaged
because of buffer overflow in MTL.

(10]

VLAN: VLAN Tag

When set, this bit indicates that the frame to which this descriptor
is pointing is a VLAN frame tagged by the MAC. The VLAN tagging
depends on checking the VLAN fields of the received frame based
on the Register (VLAN Tag Register) settings.

(9]

FS: First Descriptor

When set, this bit indicates that this descriptor contains the first
buffer of the frame. If the size of the first buffer is O, the second
buffer contains the beginning of the frame. If the size of the second
buffer is also O, the next Descriptor contains the beginning of the
frame.

(8l

LS: Last Descriptor

When set, this bit indicates that the buffers pointed to by this de-
scriptor are the last buffers of the frame.

[7]

Timestamp Available,
IP Checksum Error (Type),
or Giant Frame

When the Advanced Timestamp feature is present, and when this
bit set, it indicates that a snapshot of the Timestamp is written in
descriptor words 6 (RDES6) and 7 (RDES?7). This is valid only when
the Last Descriptor bit (RDESO[8]) is set.
When IP Checksum Engine (Type 1) is selected, this bit, if set, indi-
cates one of the following:
e The 16-bit IPv4 header checksum calculated by the core did
not match the received checksum bytes.
e The header checksum checking is bypassed for non-IPv4
frames.
Otherwise, this bit, when set, indicates the Giant Frame Status. Gi-
ant frames are larger than 1,518 bytes (or 1,522 bytes for VLAN or
2,000 bytes when Bit[27] of the MAC Configuration register is set),
normal frames and larger-than-9,018-byte (9,022-byte for VLAN)
frames when Jumbo Frame processing is enabled.

(6]

LC: Late Collision

When set, this bit indicates that a late collision has occurred while
receiving the frame in the half-duplex mode.

(5]

FT: Frame Type

When set, this bit indicates that the Receive Frame is an Ethernet-
type frame (the LT field is greater than, or equal to, 1,536). When
this bit is reset, it indicates that the received frame is an IEEE 802.3
frame. This bit is not valid for Runt frames which are less than 14
bytes.

[4]

RWT: Receive
Watchdog Timeout

When set, this bit indicates that the Receive Watchdog Timer has
expired while receiving the current frame and the current frame is
truncated after the Watchdog Timeout.

(3]

RE: Receive Error

When set, this bit indicates that the MII_RXER signal is asserted
while MII_RXDV is asserted during frame reception.

Espressif Systems

235 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Bits Name Description

When set, this bit indicates that the received frame has a non-
2] DE: Dribble Bit Error integer multiple of bytes (odd nibbles). This bit is valid only in the

MIl Mode.

When set, this bit indicates that a Cyclic Redundancy Check (CRC)
[1] CE: CRC Error Error occurred on the received frame. This field is valid only when

the Last Descriptor (RDES0[8]) is set.
When either Advanced Timestamp or IP Checksum Offload (Type

2) is present, this bit, when set, indicates that the extended status
is available in descriptor word 4 (RDES4). This is valid only when
the Last Descriptor bit (RDESO[8]) is set. This bit is invalid when Bit
30 is set.

, When IP Checksum Offload (Type 2) is present, this bit is set even
Extended Status Available/))
0] when the IP Checksum Offload engine bypasses the processing of
Rx MAC Address ,)
the received frame. The bypassing may be because of a non-IP
frame or an IP frame with a non-TCP/UDP/ICMP payload.
When the Advance Timestamp Feature or the IPC Full Offload is not
selected, this bit indicates an Rx MAC Address status. When set,
this bit indicates that the Rx MAC Address registers value (1 to 15)
matched the frame’s DA field. When reset, this bit indicates that the
Rx MAC Address Register 0 value matched the DA field.

Table 48: Receive Descriptor 1 (RDES1)

Bits Name Description
When set, this bit prevents setting the Status Register’s RI bit
(CSR5[6)) for the received frame that ends in the buffer indicated

[31] Ctrl))
by this descriptor. This, in turn, disables the assertion of the inter-
rupt to Host because of the Rl for that frame.

[30:29] | Reserved Reserved

[28:16] | Reserved Reserved

When set, this bit indicates that the descriptor list reached its final
[15] RER: Receive End of Ring | descriptor. The DMA returns to the base address of the list, creating
a Descriptor Ring.

When set, this bit indicates that the second address in the descrip-

(4] RCH: Second Address tor is the Next Descriptor address rather than the second buffer ad-
Chained dress. When this bit is set, RBS2 (RDES1[28:16)) is a “don’t care”
value. RDES1[15] takes precedence over RDES1[14].
[13] Reserved Reserved
Indicates the first data buffer size in bytes. The buffer size must be a
multiple of 4, even if the value of RDES2 (buffer1 address pointer) is
[12:0] RBS1: Receive Buffer 1 not aligned to bus width. When the buffer size is not a multiple of 4,
Size the resulting behavior is undefined. If this field is O, the DMA ignores

this buffer and uses Buffer 2 or the next descriptor depending on
the value of RCH (Bit[14]).

Espressif Systems 236 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Table 49: Receive Descriptor 2 (RDES2)

Bits Name Description
[31:0] | Buffer 1 Address Pointer These bits indicate the physical address of Buffer 1.

Table 50: Receive Descriptor 3 (RDES3)

Bits Name Description

) This address contains the pointer to the physical memory where the
[31:0] | Next Descriptor Address

Next Descriptor is present.

Table 51: Receive Descriptor 4 (RDES4)

Bits Name Description
[31:28] | Reserved Reserved
[27:26] | Reserved Reserved
[25] Reserved Reserved
[24] Reserved Reserved
[23:21] | Reserved Reserved
[20:18] | Reserved Reserved
17 Reserved Reserved
[16] Reserved Reserved
[19] Reserved Reserved

, When set, this bit indicates that the timestamp was captured for this
[14] Timestamp Dropped)
frame but got dropped in the MTL Rx FIFO because of an overflow.
When set, this bit indicates that the received PTP message is having
[13] PTP Version the IEEE 1588 version 2 format. When reset, it has the version 1

format.

When set, this bit indicates that the PTP message is sent directly
over the Ethernet. When this bit is not set and the message type is
[12] PTP Frame Type non-zero, it indicates that the PTP message is sent over UDP-IPv4
or UDP-IPv6. The information about IPv4 or IPv6 can be obtained
from Bits 6 and 7.

Espressif Systems 237 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Bits Name Description
These bits are encoded to give the type of the message received.
e 3’b0000: No PTP message received
e 3'p0001: SYNC (all clock types)
e 3'b0010: Follow_Up (all clock types)
e 3'b0011: Delay_Req (all clock types)

e 3'b0100: Delay_Resp (all clock types)

e 3'b0101: Pdelay_Req (in peer-to-peer transparent clock)

[11:8] Message Type ,

e 3'b0110: Pdelay_Resp (in peer-to-peer transparent clock)

e 3'b0111: Pdelay_Resp_Follow_Up (in peer-to-peer transpar-
ent clock)

e 3’b1000: Announce

e 3’b1001: Management

e 3'b1010: Signaling

e 3'b1011-3'b1110: Reserved

e 3’b1111: PTP packet with Reserved message type

When set, this bit indicates that the received packet is an IPv6
[7] IPv6 Packet Received packet. This bit is updated only when Bit[10] (IPC) of Register (MAC
Configuration Register) is set.

When set, this bit indicates that the received packet is an IPv4
[6] IPv4 Packet Received packet. This bit is updated only when Bit[10] (IPC) of Register (MAC
Configuration Register) is set.

When set, this bit indicates that the checksum offload engine is
bypassed.

When set, this bit indicates that the 16-bit IP payload checksum
(that is, the TCP, UDP, or ICMP checksum) that the core calculated
does not match the corresponding checksum field in the received

5] IP Checksum Bypassed

[4] IP Payload Error)
segment. Itis also set when the TCP, UDP, or ICMP segment length

does not match the payload length value in the IP Header field. This
bit is valid when either Bit 7 or Bit 6 is set.

When set, this bit indicates that either the 16-bit IPv4 header check-
sum calculated by the core does not match the received checksum

[3] IP Header Error L . .
bytes, or the IP datagram version is not consistent with the Ethernet

Type value. This bit is valid when either Bit[7] or Bit[6] is set.
These bits indicate the type of payload encapsulated in the IP data-
gram processed by the Receive Checksum Offload Engine (COE).
The COE also sets these bits to 2’b00 if it does not process the IP
datagram’s payload due to an IP header error or fragmented IP.

e 3’b000: Unknown or did not process IP payload
e 3’b001: UDP
e 3’b010: TCP
3’b011: ICMP
e 3’b1xx: Reserved
This bit is valid when either Bit[7] or Bit[6] is set.

[2:0] IP Payload Type

Espressif Systems 238 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Table 52: Receive Descriptor 6 (RDES6)

Bits Name Description
This field is updated by DMA with the least significant 32 bits of the
310] RTSH: Receive Frame timestamp captured for the corresponding receive frame. This field
Timestamp Low is updated by DMA only for the last descriptor of the receive frame
which is indicated by the Last Descriptor status bit (RDESO[8]).

Table 53: Receive Descriptor 7 (RDES7)

Bits Name Description
This field is updated by DMA with the most significant 32 bits of the
310] RTSH: Receive Frame timestamp captured for the corresponding receive frame. This field
Timestamp High is updated by DMA only for the last descriptor of the receive frame
which is indicated by the Last Descriptor status bit (RDESQ[8]).

10.9 Register Summary

Note that specific fields or bits of a given register may have different access attributes. Below is the list of all
attributes together with the abbreviations used in register descriptions.

e Read Only (RO)

e Write Only (WO)

e Read and Write (R/W)

e Read, Write, and Self Clear (R/W/SC)

e Read, Self Set, and Write Clear (R/SS/WC)

* Read, Write Set, and Self Clear (R/WS/SC)

e Read, Self Set, and Self Clear or Write Clear (R/SS/SC/WC)
e Read Only and Write Trigger (RO/WT)

e Read, Self Set, and Read Clear (R/SS/RC)

e Read, Write, and Self Update (R/W/SU)

e |Latched-low (LL)

Latched-high (LH)

Name Description Address Access
DMA configuration and control registers
DMABUSMODE_REG Bus mode configuration 0x60029000 | R/WS/SC
DMATXPOLLDEMAND_REG Pull demand for data transmit 0x60029004 | RO/WT
DMARXPOLLDEMAND_REG Pull demand for data receive 0x60029008 | RO/WT
DMARXBASEADDR_REG Base address of the first receive descrip- | 0x6002900C | R/W

tor

Espressif Systems 239 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Name Description Address Access
DMATXBASEADDR_REG Base address of the first transmit de- | 0x60029010 | R/W
scriptor
DMASTATUS_REG State of interrupts, errors and other | 0x60029014 | R/SS/WC
events
DMAIN_EN_REG Enable / disable interrupts 0x6002901C | R/W
DMARINTWDTIMER_REG Watchdog timer count on receive 0x60029024 | R/W
DMATXCURRDESC_REG Pointer to current transmit descriptor 0x60029048 | RO
DMARXCURRDESC_REG Pointer to current receive descriptor 0x6002904C | RO
DMATXCURRADDR_BUF_REG Pointer to current transmit buffer 0x60029050 | RO
DMARXCURRADDR_BUF_REG Pointer to current receive buffer 0x60029054 | RO
MAC configuration and control registers
EMACCONFIG_REG MAC configuration 0x6002A000 | R/W
EMACFF_REG Frame filter settings 0xB6002A004 | R/W
EMACMIIADDR_REG PHY configuration access 0x6002A010 | R/WS/SC
EMACMIIDATA_REG PHY data read write 0x6002A014 | R/W
EMACFC_REG frame flow control 0x6002A018 RAWS/SCFCB)
R/W(BPA)
EMACDEBUG_REG Status debugging bits 0x6002A024 | RO
EMACINTS_REG Interrupt status 0x6002A038 | RO
EMACINTMASK_REG Interrupt mask 0x6002A03C | R/W
EMACADDROHIGH_REG Upper 16 bits of the first 6-byte MAC ad- | Ox6002A040 | R/W
dress
EMACADDROLOW_REG Lower 32 bits of the first 6-byte MAC ad- | 0x6002A044 | R/W
dress
EMACADDR1THIGH_REG MAC address filtering and upper 16 bits | 0x6002A048 | R/W
of the second 6-byte MAC address
EMACADDR1LOW_REG Lower 32 bits of the second 6-byte MAC | Ox6002A04C | R/W
address
EMACADDR2HIGH_REG MAC address filtering and upper 16 bits | 0x6002A050 | R/W
of the third 6-byte MAC address
EMACADDR2LOW_REG Lower 32 bits of the third 6-byte MAC | Ox6002A054 | R/W
address
EMACADDRSBHIGH_REG MAC address filtering and upper 16 bits | 0x6002A058 | R/W
of the fourth 6-byte MAC address
EMACADDR3LOW_REG Lower 32 bits of the fourth 6-byte MAC | 0x6002A05C | R/W
address
EMACADDR4HIGH_REG MAC address filtering and upper 16 bits | 0x6002A060 | R/W
of the fifth 6-byte MAC address
EMACADDR4LOW_REG Lower 32 bits of the fifth 6-byte MAC ad- | 0x6002A064 | R/W
dress
EMACADDRSHIGH_REG MAC address filtering and upper 16 bits | 0x6002A068 | R/W
of the sixth 6-byte MAC address
EMACADDR5LOW_REG Lower 32 bits of the sixth 6-byte MAC | Ox6002A06C | R/W

address

Espressif Systems

240

ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Name Description Address Access

EMACADDRGBHIGH_REG MAC address filtering and upper 16 bits | 0x6002A070 | R/W
of the seventh 6-byte MAC address

EMACADDRBLOW_REG Lower 32 bits of the seventh 6-byte | Ox6002A074 | R/W
MAC address

EMACADDR7HIGH_REG MAC address filtering and upper 16 bits | 0x6002A078 | R/W
of the eighth 6-byte MAC address

EMACADDR7LOW_REG Lower 32 bits of the eighth 6-byte MAC | Ox6002A07C | R/W
address

EMAC_AN_CONTROL_REG Auto negotiation control 0x6002A0C0O | R/WS/SC

EMAC_AN_STATUS_REG Auto negotiation status 0x6002A0C4 | RO

EMACCSTATUS_REG Link communication status 0x6002A0D8 | RO

EMACWDOGTO_REG Watchdog timeout control 0x6002A0DC | R/W

Clock configuration registers

EMAC_EX_CLKOUT_CONF_REG | RMII clock divider setting 0x60029800 | R/W

EMAC_EX_OSCCLK_CONF_REG| RMIl clock half and whole divider set- | 0x60029804 | R/W
tings

EMAC_EX CLK_CTRL_REG Clock enable and external / internal | 0x60029808 | R/W
clock selection

PHY type and SRAM configuration registers

EMAC_EX_PHYINF_CONF_REG | Selection of MIl / RMII phy 0x6002980C | R/W

EMAC_PD_SEL_REG Ethernet RAM power-down enable 0x60029810 | R/W

10.10 Registers

Note: The value of all reset registers must be set to the reset value.

Espressif Systems

241

ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.1: DMABUSMODE_REG (0x0000)

A S
@)Q\%\}@%@ v Y & é\\/ %\/\(’O § %62‘
) S SO0 s SIPS & S I
5° N & > 5f of P’ & o7 IS
& SR & &7 g O & e
’31 27|26|25|24|23|22 17|16|15 14|13 8|7|6 2|1|0‘
]o 0 0 0 o|0|o|o|o| 0x01 |O|Ox0| 0x01 |o| 0x00 |o|1‘Reset

DMAMIXEDBURST When this bit is set high and the FB bit is low, the AHB master interface starts
all bursts of a length more than 16 with INCR (undefined burst), whereas it reverts to fixed burst
transfers (INCRx and SINGLE) for burst length of 16 and less. (R/W)

DMAADDRALIBEA When this bit is set high and the FB bit is 1, the AHB interface generates all bursts
aligned to the start address LS bits. If the FB bit is 0, the first burst (accessing the start address of
data buffer) is not aligned, but subsequent bursts are aligned to the address. (R/W)

PBLX8_MODE When set high, this bit multiplies the programmed PBL value (Bits[22:17] and
Bits[13:8]) eight times. Therefore, the DMA transfers the data in 8, 16, 32, 64, 128, and 256
beats depending on the PBL value. (R/W)

USE_SEP_PBL When set high, this bit configures the Rx DMA to use the value configured in
Bits[22:17] as PBL. The PBL value in Bits[13:8] is applicable only to the Tx DMA operations. When
reset to low, the PBL value in Bits[13:8] is applicable for both DMA engines. (R/W)

RX_DMA_PBL This field indicates the maximum number of beats to be transferred in one Rx DMA
transaction. This is the maximum value that is used in a single block Read or Write.The Rx DMA
always attempts to burst as specified in the RPBL bit each time it starts a burst transfer on the
host bus. You can program RPBL with values of 1, 2, 4, 8, 16, and 32. Any other value results in
undefined behavior. This field is valid and applicable only when USP is set high. (R/W)

FIXED_BURST This bit controls whether the AHB master interface performs fixed burst transfers or
not. When set, the AHB interface uses only SINGLE, INCR4, INCR8, or INCR16 during start of
the normal burst transfers. When reset, the AHB interface uses SINGLE and INCR burst transfer
operations. (R/W)

PRI_RATIO These bits control the priority ratio in the weighted round-robin arbitration between the
Rx DMA and Tx DMA. These bits are valid only when Bit 1 (DA) is reset. The priority ratio Rx:Tx
represented by each bit: (R/W)

* 2600 — 1: 1
e 2601 —2: 0
e 2010 —3: 1
o 2'b11 —4: 1

Continued on the next page...

Espressif Systems 242 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.1: DMABUSMODE_REG (0x0000)

Continued from the previous page ...

PROG_BURST_LEN These bits indicate the maximum number of beats to be transferred in one DMA
transaction. If the number of beats to be transferred is more than 32, then perform the following
steps: 1. Set the PBLx8 mode; 2. Set the PBL. (R/W)

ALT_DESC_SIZE When set, the size of the alternate descriptor increases to 32 bytes. (R/W)

DESC_SKIP_LEN This bit specifies the number of Word to skip between two unchained descriptors.
The address skipping starts from the end of current descriptor to the start of next descriptor. When
the DSL value is equal to zero, the descriptor table is taken as contiguous by the DMA in Ring mode.
R/W)

DMA_ARB_SCH This bit specifies the arbitration scheme between the transmit and receive
paths.1’b0: weighted round-robin with RX:TX or TX:RX, priority specified in PR (bit[15:14]); 1’b1
Fixed priority (Rx priority to Tx). (R/W)

SW_RST When this bit is set, the MAC DMA Controller resets the logic and all internal registers of the
MAC. It is cleared automatically after the reset operation is complete in all of the ETH_MAC clock
domains. Before reprogramming any register of the ETH_MAC, you should read a zero (0) value in
this bit. (R/WS/SC)

Register 10.2: DMATXPOLLDEMAND_REG (0x0004)

£]

’ 0x000000000 \ Reset

DMATXPOLLDEMAND_REG When these bits are written with any value, the DMA reads the current
descriptor to which the Register (Current Host Transmit Descriptor Register) is pointing. If that
descriptor is not available (owned by the Host), the transmission returns to the suspend state and
Bit[2] (TU) of Status Register is asserted. If the descriptor is available, the transmission resumes.

(ROWT)

Register 10.3: DMARXPOLLDEMAND_REG (0x0008)

E]

’ 0x000000000 \ Reset

DMARXPOLLDEMAND_REG When these bits are written with any value, the DMA reads the current
descriptor to which the Current Host Receive Descriptor Register is pointing. If that descriptor is
not available (owned by the Host), the reception returns to the Suspended state and Bit[7] (RU) of
Status Register is asserted. If the descriptor is available, the Rx DMA returns to the active state.

(RO/WT)

Espressif Systems 243 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.4: DMARXBASEADDR_REG (0x000C)

E]

’ 0x000000000 ‘ Reset

DMARXBASEADDR_REG This field contains the base address of the first descriptor in the Receive
Descriptor list. The LSB Bits[1:0] are ignored and internally taken as all-zero by the DMA. Therefore,
these LSB bits are read-only. (R/W)

Register 10.5: DMATXBASEADDR_REG (0x0010)

E]

’ 0x000000000 \ Reset

DMATXBASEADDR_REG This field contains the base address of the first descriptor in the Transmit
Descriptor list. The LSB Bits[1:0] are ignored and are internally taken as all-zero by the DMA.
Therefore, these LSB bits are read-only. (R/W)

Register 10.6: DMASTATUS_REG (0x0014)

<& & S v o0 (K
<X & QoS S FF D 8O
/\\é\ © &7 5 g\%@i@é $ &z&o o §&§@®@<0$00?
/ 7 J N ¢
NN S < O LLUIE 5 S E TR &S
& X @ Q7 o7 RN SIS A AR PR RD N AP R TP
£ SN F S s 5 SR S S TEASHSHS
& QY& & & & IPFE ¢

]o o|0|o|o o| 0x0 | 0x0 | 0x0

TS_TRI_INT This bit indicates an interrupt event in the Timestamp Generator block of the ETH_MAC.
The software must read the corresponding registers in the ETH_MAC to get the exact cause of the
interrupt and clear its source to reset this bit to 1'b0. (RO)

EMAC_PMT_INT This bit indicates an interrupt event in the PMT module of the ETH_MAC. The soft-
ware must read the PMT Control and Status Register in the MAC to get the exact cause of interrupt
and clear its source to reset this bit to 1’b0. (RO)

Continued on the next page...

Espressif Systems 244 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.6: DMASTATUS_REG (0x0014)

Continued from the previous page ...

ERROR_BITS This field indicates the type of error that caused a Bus Error, for example, error response
on the AHB interface. This field is valid only when Bit[13] (FBI) is set. This field does not generate
an interrupt. (RO)

e 3’'b000: Error during Rx DMA Write Data Transfer.

3’b011: Error during Tx DMA Read Data Transfer.

3’b100: Error during Rx DMA Descriptor Write Access.

3’b101: Error during Tx DMA Descriptor Write Access.

3’b110: Error during Rx DMA Descriptor Read Access.

3’b111: Error during Tx DMA Descriptor Read Access.

TRANS_PROC_STATE This field indicates the Transmit DMA FSM state. This field does not generate
an interrupt. (RO)

e 3'b000: Stopped. Reset or Stop Transmit Command issued.

e 3'b001: Running. Fetching Transmit Transfer Descriptor.

e 3’b010: Reserved for future use.

e 3'b011: Running. Waiting for TX packets.

e 3’b100: Suspended. Receive Descriptor Unavailable.

e 3’b101: Running. Closing Transmit Descriptor.

e 3'b110: TIME_STAMP write state.

e 3’b111: Running. Transferring the TX packets data from transmit buffer to host memory.

RECV_PROC_STATE This field indicates the Receive DMA FSM state. This field does not generate
an interrupt. (RO)

e 3’'b000: Stopped. Reset or Stop Receive Command issued.

e 3'b001: Running. Fetching Receive Transfer Descriptor.

e 3'b010: Reserved for future use.

e 3'b011: Running. Waiting for RX packets.

e 3'b100: Suspended. Receive Descriptor Unavailable.

e 3’b101: Running. Closing Receive Descriptor.

e 3'p110: TIME_STAMP write state.

e 3’'b111: Running. Transferring the TX packets data from receive buffer to host memory.

Continued on the next page...

Espressif Systems 245 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.6: DMASTATUS_REG (0x0014)

Continued from the previous page ...

NORM_INT_SUMM Normal Interrupt Summary bit value is the logical OR of the following bits when
the corresponding interrupt bits are enabled in Interrupt Enable Register:(R/SS/WC)

Bit[0]: Transmit Interrupt.

Bit[2]: Transmit Buffer Unavailable.

Bit[6]: Receive Interrupt.

Bit[14]: Early Receive Interrupt. Only unmasked bits affect the Normal Interrupt Summary bit.
This is a sticky bit and must be cleared (by writing 1 to this bit) each time a corresponding bit,
which causes NIS to be set, is cleared.

ABN_INT_SUMM Abnormal Interrupt Summary bit value is the logical OR of the following when the
corresponding interrupt bits are enabled in Interrupt Enable Register: (R/SS/WC)

e Bit[1]: Transmit Process Stopped.

e Bit[3]: Transmit Jabber Timeout.

e Bit[4]: Receive FIFO Overflow.

e Bit[5]: Transmit Underflow.

e Bit[7]: Receive Buffer Unavailable. Bit[8]: Receive Process Stopped.
e Bit[9]: Receive Watchdog Timeout.

e Bit[10]: Early Transmit Interrupt.

e Bit[13]: Fatal Bus Error. Only unmasked bits affect the Abnormal Interrupt Summary bit. This
is a sticky bit and must be cleared (by writing 1 to this bit) each time a corresponding bit,
which causes AlS to be set, is cleared.

EARLY_RECV_INT This bit indicates that the DMA filled the first data buffer of the packet. This bit is
cleared when the software writes 1 to this bit or when Bit[6] (RI) of this register is set (whichever
occurs earlier). (R/SS/WC)

FATAL_BUS_ERR_INT This bit indicates that a bus error occurred, as described in Bits [25:23]. When
this bit is set, the corresponding DMA engine disables all of its bus accesses. (R/SS/WC)

EARLY_TRANS_INT This bit indicates that the frame to be transmitted is fully transferred to the MTL
Transmit FIFO. (R/SS/WC)

RECV_WDT_TO When set, this bit indicates that the Receive Watchdog Timer expired while receiving
the current frame and the current frame is truncated after the watchdog timeout. (R/SS/WC)

Continued on the next page...

Espressif Systems 246 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.6: DMASTATUS_REG (0x0014)

Continued from the previous page ...

RECV_PROC_STOP This bit is asserted when the Receive Process enters the Stopped state.
(R/SS/WC)

RECV_BUF_UNAVAIL This bit indicates that the host owns the Next Descriptor in the Receive List and
the DMA cannot acquire it. The Receive Process is suspended. To resume processing Receive
descriptors, the host should change the ownership of the descriptor and issue a Receive Poll
Demand command. If no Receive Poll Demand is issued, the Receive Process resumes when
the next recognized incoming frame is received. This bit is set only when the previous Receive
Descriptor is owned by the DMA. (R/SS/WC)

RECV_INT This bit indicates that the frame reception is complete. When reception is complete, the
Bit[31] of RDES1 (Disable Interrupt on Completion) is reset in the last Descriptor, and the specific
frame status information is updated in the descriptor. The reception remains in the Running state.
(R/SS/WC)

TRANS_UNDFLOW This bit indicates that the Transmit Buffer had an Underflow during frame trans-
mission. Transmission is suspended and an Underflow Error TDESQ[1] is set. (R/SS/WC)

RECV_OVFLOW This bit indicates that the Receive Buffer had an Overflow during frame recep-
tion. If the partial frame is transferred to the application, the overflow status is set in RDESO[11].
(R/SS/WC)

TRANS_JABBER_TO This bit indicates that the Transmit Jabber Timer expired, which happens when
the frame size exceeds 2,048 (10,240 bytes when the Jumbo frame is enabled). When the Jabber
Timeout occurs, the transmission process is aborted and placed in the Stopped state. This causes
the Transmit Jabber Timeout TDESO[14] flag to assert. (R/SS/WC)

TRANS_BUF_UNAVAIL This bit indicates that the host owns the Next Descriptor in the Transmit
List and the DMA cannot acquire it. Transmission is suspended. Bits[22:20] explain the Transmit
Process state transitions. To resume processing Transmit descriptors, the host should change
the ownership of the descriptor by setting TDESO[31] and then issue a Transmit Poll Demand
command. (R/SS/WC)

TRANS_PROC_STOP This bit is set when the transmission is stopped. (R/SS/WC)

TRANS_INT This bit indicates that the frame transmission is complete. When transmission is com-
plete, Bit[31] (OWN) of TDESO is reset, and the specific frame status information is updated in the
descriptor. (R/SS/WC)

Espressif Systems 247 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.7: DMAIN_EN_REG (0x001C)

$ & RN R I
FPLL N R X § SRS

®é®® ?\é/?\éz;\%/?\é/ Q,’\AQ)& ?\\%/?\é/?\é/?\%/?\é/?\é/?\e/?\e/v\é/v\e/?\%/

& FFFTF € FTFFTFTFTFNFT N

’31 17|16|15|14|13|12 11|10|9|8|7|6|5|4|3|2|1|0‘
]ooooooooooooooo|o|0|o|o|o 0|o|0|o|o|0|o|o|0|o|o|o‘Reset

DMAIN_NISE When this bit is set, normal interrupt summary is enabled. When this bit is reset, normal
interrupt summary is disabled. This bit enables the following interrupts in Status Register: (R/W)

e Bit[0]: Transmit Interrupt.

e Bit[2]: Transmit Buffer Unavailable.
e Bit[6]: Receive Interrupt.

e Bit[14]: Early Receive Interrupt.

DMAIN_AISE When this bit is set, abnormal interrupt summary is enabled. When this bit is reset,
the abnormal interrupt summary is disabled. This bit enables the following interrupts in Status
Register:(R/W)

e Bit[1]: Transmit Process Stopped.
e Bit[3]: Transmit Jabber Timeout.

e Bit[4]: Receive Overflow.

e Bit[5]: Transmit Underflow.

e Bit[7]: Receive Buffer Unavailable.
e Bit[8]: Receive Process Stopped.
e Bit[9]: Receive Watchdog Timeout.
e Bit[10]: Early Transmit Interrupt.

e Bit[13]: Fatal Bus Error.

DMAIN_ERIE When this bit is set with Normal Interrupt Summary Enable (Bit[16]), the Early Receive
Interrupt is enabled. When this bit is reset, the Early Receive Interrupt is disabled. (R/W)

Continued on the next page...

Espressif Systems 248 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.7: DMABUSMODE_REG (0x0000)

Continued from the previous page ...

DMAIN_FBEE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Fatal Bus
Error Interrupt is enabled. When this bit is reset, the Fatal Bus Error Enable Interrupt is disabled.
(R/W)

DMAIN_ETIE When this bit is set with an Abnormal Interrupt Summary Enable (Bit[15]), the Early
Transmit Interrupt is enabled. When this bit is reset, the Early Transmit Interrupt is disabled. (R/W)

DMAIN_RWTE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive
Watchdog Timeout Interrupt is enabled. When this bit is reset, the Receive Watchdog Timeout
Interrupt is disabled. (R/W)

DMAIN_RSE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive
Stopped Interrupt is enabled. When this bit is reset, the Receive Stopped Interrupt is disabled.
(R/W)

DMAIN_RBUE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive
Buffer Unavailable Interrupt is enabled. When this bit is reset, the Receive Buffer Unavailable Inter-
rupt is disabled. (R/W)

DMAIN_RIE When this bit is set with Normal Interrupt Summary Enable (Bit[16]), the Receive Interrupt
is enabled. When this bit is reset, the Receive Interrupt is disabled. (R/W)

DMAIN_UIE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Transmit Un-
derflow Interrupt is enabled. When this bit is reset, the Underflow Interrupt is disabled. (R/W)

DMAIN_OIE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Receive Over-
flow Interrupt is enabled. When this bit is reset, the Overflow Interrupt is disabled. (R/W)

DMAIN_TJTE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Transmit
Jabber Timeout Interrupt is enabled. When this bit is reset, the Transmit Jabber Timeout Interrupt
is disabled. (R/W)

DMAIN_TBUE When this bit is set with Normal Interrupt Summary Enable (Bit 16), the Transmit Buffer
Unavailable Interrupt is enabled. When this bit is reset, the Transmit Buffer Unavailable Interrupt is
disabled. (R/W)

DMAIN_TSE When this bit is set with Abnormal Interrupt Summary Enable (Bit[15]), the Transmission
Stopped Interrupt is enabled. When this bit is reset, the Transmission Stopped Interrupt is disabled.
RW)

DMAIN_TIE When this bit is set with Normal Interrupt Summary Enable (Bit[16]), the Transmit Interrupt
is enabled. When this bit is reset, the Transmit Interrupt is disabled. (R/W)

Espressif Systems 249 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.8: DMARINTWDTIMER_REG (0x0024)

& &
\@%@ <%\§
’31 s|7 0‘
’OOOOOOOOOOOOOOOOOOOOOOOO| 0x000 ‘Reset

RIWTC This bit indicates the number of system clock cycles multiplied by 256 for which the watchdog
timer is set. The watchdog timer gets triggered with the programmed value after the Rx DMA
completes the transfer of a frame for which the Rl status bit is not set because of the setting in the
corresponding descriptor RDES1[31]. When the watchdog timer runs out, the Rl bit is set and the
timer is stopped. The watchdog timer is reset when the RI bit is set high because of automatic
setting of Rl as per RDES1[31] of any received frame. (R/W)

Register 10.9: DMATXCURRDESC_REG (0x0048)

E]

’ 0x000000000 \ Reset

DMATXCURRDESC_REG The address of the current receive descriptor list. Cleared on Reset.
Pointer updated by the DMA during operation. (RO)

Register 10.10: DMARXCURRDESC_REG (0x004C)

E]

’ 0x000000000 \ Reset

DMARXCURRDESC_REG The address of the current receive descriptor list. Cleared on Reset.
Pointer updated by the DMA during operation. (RO)

Register 10.11: DMATXCURRADDR_BUF_REG (0x0050)

E]

’ 0x000000000 \ Reset

DMATXCURRADDR_BUF_REG The address of the current receive descriptor list. Cleared on Reset.
Pointer updated by the DMA during operation. (RO)

Espressif Systems 250 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.12: DMARXCURRADDR_BUF_REG (0x0054)

‘31 O‘

‘ 0x000000000 ‘ Reset

DMARXCURRADDR_BUF_REG The address of the current receive descriptor list. Cleared on Reset.
Pointer updated by the DMA during operation. (RO)

Espressif Systems 251 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.13: EMACCONFIG_REG (0x1000)

Q ok
Z X »© R KN X
o34 & & £ S NS
P & L& ¥ Lo FdF L &K &
S % »a Q IR APN P Oen O &
S ¢ & SRS L I ERPSFRLD X o Fat ot
&L F St & FPOFFITFEHE F FOE

6 5|4 3 2|1 O‘

o] oxo |o 0 o| 0x0 ‘Reset

SAIRC This field controls the source address insertion or replacement for all transmitted frames.
Bit[30] specifies which MAC Address register (0 or 1) is used for source address insertion or re-
placement based on the values of Bits [29:28]: (R/W)

e 2’bOx: The input signals mti_sa_ctrl_i and ati_sa_ctrl_i control the SA field generation.

e 2’b10: If Bit[30] is set to O, the MAC inserts the content of the MAC Address O registers in
the SA field of all transmitted frames. If Bit[30] is set to 1 the MAC inserts the content of the
MAC Address 1 registers in the SA field of all transmitted frames.

e 2’b11: If Bit[30] is set to O, the MAC replaces the content of the MAC Address O registers in
the SA field of all transmitted frames. If Bit[30] is set to 1, the MAC replaces the content of
the MAC Address 1 registers in the SA field of all transmitted frames.

ASS2KP When set, the MAC considers all frames, with up to 2,000 bytes length, as normal packets.
When Bit[20] (JE) is not set, the MAC considers all received frames of size more than 2K bytes
as Giant frames. When this bit is reset and Bit[20] (JE) is not set, the MAC considers all received
frames of size more than 1,518 bytes (1,522 bytes for tagged) as Giant frames. When Bit[20] is
set, setting this bit has no effect on Giant Frame status. (R/W)

EMACWATCHDOG When this bit is set, the MAC disables the watchdog timer on the receiver. The
MAC can receive frames of up to 16,383 bytes. When this bit is reset, the MAC does not allow a
receive frame which more than 2,048 bytes (10,240 if JE is set high) or the value programmed in
Register (Watchdog Timeout Register). The MAC cuts off any bytes received after the watchdog
limit number of bytes. (R/W)

EMACJABBER When this bit is set, the MAC disables the jabber timer on the transmitter. The MAC
can transfer frames of up to 16,383 bytes. When this bit is reset, the MAC cuts off the trans-
mitter if the application sends out more than 2,048 bytes of data (10,240 if JE is set high) during
transmission. (R/W)

EMACJUMBOFRAME When this bit is set, the MAC allows Jumbo frames of 9,018 bytes (9,022
bytes for VLAN tagged frames) without reporting a giant frame error in the receive frame status.
(R/W)

Continued on the next page...

Espressif Systems 252 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.13: EMACCONFIG_REG (0x1000)

Continued from the previous page ...

EMACINTERFRAMEGAP These bits control the minimum IFG between frames during transmission.
(R/W)

3’b000: 96 bit times.

3’b001: 88 bit times.

3'b010: 80 bit times.

3’b111: 40 bit times. In the half-duplex mode, the minimum IFG can be configured only for
64 bit times (IFG = 100). Lower values are not considered.

EMACDISABLECRS When set high, this bit makes the MAC transmitter ignore the MIl CRS signal
during frame transmission in the half-duplex mode. This request results in no errors generated
because of Loss of Carrier or No Carrier during such transmission. When this bit is low, the MAC
transmitter generates such errors because of Carrier Sense and can even abort the transmissions.
(R/W)

EMACMII This bit selects the Ethernet line speed. It should be set to 1 for 10 or 100 Mbps operations.
In 10 or 100 Mbps operations, this bit, along with FES bit, it selects the exact linespeed. In the
10/100 Mbps-only operations, the bit is always 1. (R/W)

EMACFESPEED This bit selects the speed in the MIl, RMIl interface. 0: 10 Mbps; 1: 100 Mbps.
(R/W)

EMACRXOWN When this bit is set, the MAC disables the reception of frames when the TX_EN is
asserted in the half-duplex mode. When this bit is reset, the MAC receives all packets that are
given by the PHY while transmitting. This bit is not applicable if the MAC is operating in the full-
duplex mode. (R/W)

EMACLOOPBACK When this bit is set, the MAC operates in the loopback mode MIl. The MIl Receive
clock input (CLK_RX) is required for the loopback to work properly, because the transmit clock is
not looped-back internally. (R/W)

EMACDUPLEX When this bit is set, the MAC operates in the full-duplex mode where it can transmit
and receive simultaneously. This bit is read only with default value of 1’b1 in the full-duplex-mode.
R/W)

EMACRXIPCOFFLOAD When this bit is set, the MAC calculates the 16-bit one’s complement of the
one’s complement sum of all received Ethernet frame payloads. It also checks whether the IPv4
Header checksum (assumed to be bytes 25/26 or 29/30 (VLAN-tagged) of the received Ethernet
frame) is correct for the received frame and gives the status in the receive status word. The MAC
also appends the 16-bit checksum calculated for the IP header datagram payload (bytes after the
IPv4 header) and appends it to the Ethernet frame transferred to the application (when Type 2 COE
is deselected). When this bit is reset, this function is disabled. (R/W)

Continued on the next page...

Espressif Systems 253 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.13: EMACCONFIG_REG (0x1000)

Continued from the previous page ...

EMACRETRY When this bit is set, the MAC attempts only one transmission. When a collision occurs
on the MIl interface, the MAC ignores the current frame transmission and reports a Frame Abort
with excessive collision error in the transmit frame status. When this bit is reset, the MAC attempts
retries based on the settings of the BL field (Bits [6:5]). This bit is applicable only in the half-duplex
mode. (R/W)

EMACPADCRCSTRIP When this bit is set, the MAC strips the Pad or FCS field on the incoming
frames only if the value of the length field is less than 1,536 bytes. All received frames with length
field greater than or equal to 1,536 bytes are passed to the application without stripping the Pad
or FCS field. When this bit is reset, the MAC passes all incoming frames, without modifying them,
to the Host. (R/W)

EMACBACKOFFLIMIT The Back-Off limit determines the random integer number (r) of slot time de-
lays (512 bit times for 10/100 Mbps) for which the MAC waits before rescheduling a transmission
attempt during retries after a collision. This bit is applicable only in the half-duplex mode.

e 00: k= min (n, 10).
e 01: k=min (n, 8).
e 10: k=min (n, 4).

e 11: k =min (n, 1), n = retransmission attempt. The random integer r takes the value in the
range O ~ 2000.

EMACDEFERRALCHECK Deferral Check. (R/W)

EMACTX When this bit is set, the transmit state machine of the MAC is enabled for transmission on
the MIl. When this bit is reset, the MAC transmit state machine is disabled after the completion of
the transmission of the current frame, and does not transmit any further frames. (R/W)

EMACRX When this bit is set, the receiver state machine of the MAC is enabled for receiving frames
from the MIl. When this bit is reset, the MAC receive state machine is disabled after the completion
of the reception of the current frame, and does not receive any further frames from the Mil. (R/W)

PLTF These bits control the number of preamble bytes that are added to the beginning of every Trans-
mit frame. The preamble reduction occurs only when the MAC is operating in the full-duplex mode.
2’b00: 7 bytes of preamble. 2’b01: 5 bytes of preamble. 2’'b10: 3 bytes of preamble. (R/W)

Espressif Systems 254 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.14: EMACFF_REG (0x1004)

I)
%Q’/\AQJ
&

N

. 1]

[+] [oe]r ofs]s]5]
]o|ooooooooooooooooooooo|0|o|0xo|o|o|0|o o|0‘Reset

RECEIVE_ALL When this bit is set, the MAC Receiver module passes all received frames, irrespective
of whether they pass the address filter or not, to the Application. The result of the SA or DA filtering
is updated (pass or fail) in the corresponding bits in the Receive Status Word. When this bit is reset,
the Receiver module passes only those frames to the Application that pass the SA or DA address

filter. (R/W)

SAFE When this bit is set, the MAC compares the SA field of the received frames with the values
programmed in the enabled SA registers. If the comparison fails, the MAC drops the frame. When
this bit is reset, the MAC forwards the received frame to the application with updated SAF bit of
the Rx Status depending on the SA address comparison. (R/W)

SAIF When this bit is set, the Address Check block operates in inverse filtering mode for the SA
address comparison. The frames whose SA matches the SA registers are marked as failing the
SA Address filter. When this bit is reset, frames whose SA does not match the SA registers are
marked as failing the SA Address filter. (R/W)

PCF These bits control the forwarding of all control frames (including unicast and multicast Pause
frames). (R/W)

e 2’b00: MAC filters all control frames from reaching the application.

e 2’b01: MAC forwards all control frames except Pause frames to application even if they fail
the Address filter.

e 2'b10: MAC forwards all control frames to application even if they fail the Address Filter.
e 2’b11: MAC forwards control frames that pass the Address Filter.
The following conditions should be true for the Pause frames processing:

e Condition 1: The MAC is in the full-duplex mode and flow control is enabled by setting Bit 2
(RFE) of Register (Flow Control Register) to 1.

e Condition 2: The destination address (DA) of the received frame matches the special multicast
address or the MAC Address O when Bit 3 (UP) of the Register(Flow Control Register) is set.

e Condition 3: The Type field of the received frame is 0x8808 and the OPCODE field is 0x0001.

DBF When this bit is set, the AFM module blocks all incoming broadcast frames. In addition, it over-
rides all other filter settings. When this bit is reset, the AFM module passes all received broadcast
frames. (R/W)

PAM When set, this bit indicates that all received frames with a multicast destination address (first bit
in the destination address field is '1’) are passed. When reset, filtering of multicast frame depends
on HMC bit. (R/W)

Continued on the next page...

Espressif Systems 255 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.14: EMACFF_REG (0x1004)

Continued from the previous page ...

DAIF When this bit is set, the Address Check block operates in inverse filtering mode for the DA
address comparison for both unicast and multicast frames. When reset, normal filtering of frames
is performed. (R/W)

PMODE When this bit is set, the Address Filter module passes all incoming frames irrespective of the
destination or source address. The SA or DA Filter Fails status bits of the Receive Status Word are
always cleared when PR is set. (R/W)

Register 10.15: EMACMIIADDR_REG (0x1010)

NS
e}“@b\ & & ERNG
’31 16|15 11|10 6|5 2|1|0‘
]o 0 00 00ODOOGO OGO OGO OTU OTU OO 0O o| 0x00 | 0x00 | 0x00 |o|0‘Reset

MIIDEV This field indicates which of the 32 possible PHY devices are being accessed. (R/W)
MIIREG These bits select the desired MIl register in the selected PHY device. (R/W)
MIICSRCLK CSR clock range: 1.0 MHz ~ 2.5 MHz. (R/W)

e 4’b0000: When the APB clock frequency is 80 MHz, the MDC clock frequency is APB
CLK/42;

e 4’pb0000: When the APB clock frequency is 40 MHz, the MDC clock frequency is APB
CLK/26.

MIIWRITE When set, this bit indicates to the PHY that this is a Write operation using the MIl Data
register. If this bit is not set, it indicates that this is a Read operation, that is, placing the data in the
MIl Data register. (R/W)

MIIBUSY This bit should read logic O before writing to PHY Addr Register and PHY data Register.
During a PHY register access, the software sets this bit to 1’b1 to indicate that a Read or Write
access is in progress. PHY data Register is invalid until this bit is cleared by the MAC. Therefore,
PHY data Register (MIl Data) should be kept valid until the MAC clears this bit during a PHY Write
operation. Similarly for a read operation, the contents of Register 5 are not valid until this bit is
cleared. The subsequent read or write operation should happen only after the previous operation
is complete. Because there is no acknowledgment from the PHY to MAC after a read or write
operation is completed, there is no change in the functionality of this bit even when the PHY is not
present. (R/WS/SC)

Espressif Systems 256 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.16: EMACMIIDATA_REG (0x1014)

I Qe
@f@ ®9v
’31 16|15 0‘
]o 0 0000ODOOGO OGO OGO OTU OTG OO0 O o| 0x00000 ‘Reset

MII_DATA This field contains the 16-bit data value read from the PHY after a Management Read
operation or the 16-bit data value to be written to the PHY before a Management Write operation.
(R/W)

Espressif Systems 257 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.17: EMACFC_REG (0x1018)

&
© & Q & & S
& & & LS
’31 16 | 15 6|5 4 3 2 | 1 0 ‘
’ 0x00000 0O 00 00 0O 0 0 0] oxo]olo | oo ‘Reset

PAUSE_TIME This field holds the value to be used in the Pause Time field in the transmit control
frame. If the Pause Time bits is configured to be double-synchronized to the MIl clock domain,
then consecutive writes to this register should be performed only after at least four clock cycles in
the destination clock domain. (R/W)

PLT This field configures the threshold of the Pause timer automatic retransmission of the Pause frame.
The threshold values should be always less than the Pause Time configured in Bits[31:16]. For
example, if PT = 100H (256 slot-times), and PLT = 01, then a second Pause frame is automatically
transmitted at 228 (256-28) slot times after the first Pause frame is transmitted. The following list
provides the threshold values for different values: (R/W)

2’pb00: The threshold is Pause time minus 4 slot times (PT-4 slot times).

2’b01: The threshold is Pause time minus 28 slot times (PT-28 slot times).

2’pb10: The threshold is Pause time minus 144 slot times (PT-144 slot times).

2’b11: The threshold is Pause time minus 256 slot times (PT-256 slot times). The slot time is
defined as the time taken to transmit 512 bits (64 bytes) on the Mll interface.

UPFD A pause frame is processed when it has the unique multicast address specified in the IEEE
Std 802.3. When this bit is set, the MAC can also detect Pause frames with unicast address of
the station. This unicast address should be as specified in the EMACADDRO High Register and
EMACADDRO Low Register. When this bit is reset, the MAC only detects Pause frames with unique
multicast address. (R/W)

RFCE When this bit is set, the MAC decodes the received Pause frame and disables its transmitter for
a specified (Pause) time. When this bit is reset, the decode function of the Pause frame is disabled.
(R/W)

TFCE In the full-duplex mode, when this bit is set, the MAC enables the flow control operation to
transmit Pause frames. When this bit is reset, the flow control operation in the MAC is disabled,
and the MAC does not transmit any Pause frames. In the half-duplex mode, when this bit is set,
the MAC enables the backpressure operation. When this bit is reset, the backpressure feature is
disabled. (R/W)

FCBBA This bit initiates a Pause frame in the full-duplex mode and activates the backpressure function
in the half-duplex mode if the TFE bit is set. In the full-duplex mode, this bit should be read as 1'b0
before writing to the Flow Control register. To initiate a Pause frame, the Application must set this
bit to 1’b1. During a transfer of the Control Frame, this bit continues to be set to signify that a
frame transmission is in progress. After the completion of Pause frame transmission, the MAC
resets this bit to 1’b0. The Flow Control register should not be written to until this bit is cleared. In
the half-duplex mode, when this bit is set (and TFE is set), then backpressure is asserted by the
MAC. During backpressure, when the MAC receives a new frame, the transmitter starts sending
a JAM pattern resulting in a collision. When the MAC is configured for the full-duplex mode, the

BPA is automatically disabled. (R/WS/SC)(FCB)/(R/W)(BPA)
Espressif Systems 258 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.18: EMACDEBUG_REG (0x1024)

(&)
S X %
S & LD S N G N
@ S @ /\<<<<\ R &L @ L P L &P L L
(%) O (@) O)) Q @) O
%) &\/&\/‘b&\/ N e N) K) KL N e el
N SEEE & ¥ ¢ o N @& NN
3 2 1|0‘

’31 26|25|24|23|22|21 20|19|18 17|16|15 10|9 8|7|6 5| |

|
’o 0 0 0 0 o|o|o|o|o| 0x0 |o| 0x0 |o|o 0 0 0 0 o| OxO|O|OxO|O 0|0xo|o‘Reset

MTLTSFFS When high, this bit indicates that the MTL TxStatus FIFO is full. Therefore, the MTL cannot
accept any more frames for transmission. (RO)

MTLTFNES When high, this bit indicates that the MTL Tx FIFO is not empty and some data is left for
transmission. (RO)

MTLTFWCS When high, this bit indicates that the MTL Tx FIFO Write Controller is active and is trans-
ferring data to the Tx FIFO. (RO)

MTLTFRCS This field indicates the state of the Tx FIFO Read Controller: (RO)
e 2'p00: IDLE state.
e 2’b01: READ state (transferring data to the MAC transmitter).
e 2’pb10: Waiting for TxStatus from the MAC transmitter.
e 2’b11: Writing the received TxStatus or flushing the Tx FIFO.

MACTP When high, this bit indicates that the MAC transmitter is in the Pause condition (in the full-
duplex-mode) and hence does not schedule any frame for transmission. (RO)

MACTFCS This field indicates the state of the MAC Transmit Frame Controller module: (RO)
e 2'p00: IDLE state.
e 2’pb01: Waiting for status of previous frame or IFG or backoff period to be over.
e 2’b10: Generating and transmitting a Pause frame (in the full-duplex mode).
e 2’b11: Transferring input frame for transmission.

MACTPES When high, this bit indicates that the MAC MII transmit protocol engine is actively trans-
mitting data and is not in the IDLE state. (RO)

MTLRFFLS This field gives the status of the fill-level of the Rx FIFO: (RO)
e 2’b00: Rx FIFO Empty.
e 2’b01: Rx FIFO fill-level below flow-control deactivate threshold.
e 2'b10: Rx FIFO fill-level above flow-control activate threshold.
e 2'b11: Rx FIFO Full.

Continued on the next page...

Espressif Systems 259 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.18: EMACDEBUG_REG (0x1024)

Continued from the previous page ...
MTLRFRCS This field gives the state of the Rx FIFO read Controller: (RO)
2’pb00: IDLE state.
2’b01: Reading frame data.
2’b10: Reading frame status (or timestamp).
2’pb11: Flushing the frame data and status.

MTLRFWCAS When high, this bit indicates that the MTL Rx FIFO Write Controller is active and is
transferring a received frame to the FIFO. (RO)

MACRFFCS When high, this field indicates the active state of the FIFO Read and Write controllers
of the MAC Receive Frame Controller Module. RFCFCSTS[1] represents the status of FIFO Read
controller. RFCFCSTSJ0] represents the status of small FIFO Write controller. (RO)

MACRPES When high, this bit indicates that the MAC Ml receive protocol engine is actively receiving
data and not in IDLE state. (RO)

Register 10.19: EMACINTS_REG (0x1038)

)) &)
© Co 5@ Sl
& NS & S &
N NI\ @ Q N

’31 11|10|9|8 4|3|2 O‘

0 0 0 0 0[0][0 0 O0]Reset

LPIINTS When the Energy Efficient Ethernet feature is enabled, this bit is set for any LPI state entry or
exit in the MAC Transmitter or Receiver. This bit is cleared on reading Bit[0] of Register (LPI Control
and Status Register). (RO)

TINTS this bit is set when any of the following conditions is true: The system time value equals or
exceeds the value specified in the Target Time High and Low registers. There is an overflow in the
seconds register. The Auxiliary snapshot trigger is asserted. This bit is cleared on reading Bit[0]
of Register (Timestamp Status Register). If default Timestamping is enabled, when set, this bit
indicates that the system time value is equal to or exceeds the value specified in the Target Time
registers. In this mode, this bit is cleared after the completion of the read of this bit. (RO/R/SS/RC)

PMTINTS This bit is set when a magic packet or remote wake-up frame is received in the power-down
mode (see Bit[5] and Bit[6] in the PMT Control and Status Register). This bit is cleared when both
Bits[6:5] are cleared because of a read operation to the PMT Control and Status register. This bit
is valid only when you select the optional PMT module during core configuration. (RO)

Espressif Systems 260 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.20: EMACINTMASK_REG (0x103C)

\k.
5 S > SN
@ & & & @
§ Q § S
2 NS K S 2
@ NSNS @ Q @

E o [T

]ooooooooooooooooooooo|o|o|ooooo|0|ooo‘Reset

LPIINTMASK When set, this bit disables the assertion of the interrupt signal because of the setting
of the LPI Interrupt Status bit in Register (Interrupt Status Register). (R/W)

TINTMASK When set, this bit disables the assertion of the interrupt signal because of the setting of
Timestamp Interrupt Status bit in Register (Interrupt Status Register). This bit is valid only when
IEEE1588 timestamping is enabled. In all other modes, this bit is reserved. (R/W)

PMTINTMASK When set, this bit disables the assertion of the interrupt signal because of the setting
of PMT Interrupt Status bit in Register (Interrupt Status Register). (R/W)

Register 10.21: EMACADDROHIGH_REG (0x1040)

Q N
Q7\(/</ Q\/z\
s =
Q{o
&7 S 9
& & ¥
0() 5 ?@/
v ¢ -
’ 31 | 30 16 | 15 0 ‘
] 0 |0 0O 000 OO OO O0G OGO 0 0 O o| OXOFFFF \Reset

ADDRESS_ENABLEO This bit is always set to 1. (RO)

MAC_ADDRESSO0_HI This field contains the upper 16 bits (47:32) of the first 6-byte MAC address.
The MAC uses this field for filtering the received frames and inserting the MAC address in the

Transmit Flow Control (Pause) Frames. (R/W)

Register 10.22: EMACADDROLOW_REG (0x1044)

d

] OXOFFFFFFFF |Reset

EMACADDROLOW_REG This field contains the lower 32 bits of the first 6-byte MAC address. This
is used by the MAC for filtering the received frames and inserting the MAC address in the Transmit

Flow Control (Pause) Frames. (R/W)

Espressif Systems 261 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.23: EMACADDR1HIGH_REG (0x1048)

3
N N
Ve QQ\ O ey
S % &
Y5 ¢ &
P’ S Q) Q
I + ¥ ¥
e v & 7
WO N W
’31|30|29 24|23 16|15 O‘
] 0 | 0 | 0x00 |o 00 0 0 0 0 o| OXOFFFF \Reset

ADDRESS_ENABLE1 When this bit is set, the address filter module uses the second MAC address
for perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.
(R/W)

SOURCE_ADDRESS When this bit is set, the EMACADDR1[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDR1[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL These bits are mask control bits for comparison of each of the
EMACADDR1 bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDR1 registers. Each bit controls the masking of the
bytes as follows:

* Bit[29]: EMACADDR1 High [15:8].
¢ Bit[28]: EMACADDR1 High [7:0].
¢ Bit[27]: EMACADDR1 Low [31:24].
* Bit[24]: EMACADDR1 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS1_HI This field contains the upper 16 bits, Bits[47:32] of the second 6-byte MAC
address. (R/W)

Register 10.24: EMACADDR1LOW_REG (0x104C)

E]

’ OXOFFFFFFFF |Reset

EMACADDR1LOW_REG This field contains the lower 32 bits of the second 6-byte MAC address.
The content of this field is undefined, so the register needs to be configured after the initialization
process. (R/W)

Espressif Systems 262 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.25: EMACADDR2HIGH_REG (0x1050)

9 QO&
N
Q/%%/ &’ 8) Q)b\ ?90
S & & 7
™o N A\
’31|30|29 24|23 16|15 O‘
’ 0 | 0 | 0x00 |o 00 0 0 0 O o| OXOFFFF ‘Reset

ADDRESS_ENABLE2 When this bit is set, the address filter module uses the third MAC address for
perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.
RW)

SOURCE_ADDRESS2 \When this bit is set, the EMACADDR2[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDR2[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL2 These bits are mask control bits for comparison of each of the
EMACADDR?2 bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDR2 registers. Each bit controls the masking of the
bytes as follows:

* Bit[29]: EMACADDR2 High [15:8].
¢ Bit[28]: EMACADDR2 High [7:0].
* Bit[27]: EMACADDR2 Low [31:24].
e Bit[24]: EMACADDR2 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS2_HI This field contains the upper 16 bits, Bits[47:32] of the third 6-byte MAC ad-
dress. (R/W)

Register 10.26: EMACADDR2LOW_REG (0x1054)

E]

’ OXOFFFFFFFF |Reset

EMACADDR2LOW_REG This field contains the lower 32 bits of the third 6-byte MAC address. The
content of this field is undefined, so the register needs to be configured after the initialization pro-

cess. (R/W)

Espressif Systems 263 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.27: EMACADDR3HIGH_REG (0x1058)

N
S P QK N
%2’&&%% ooé %(bg\
>y % &
%%’Q}\ @4& I QQ
& @ b
QQQ%O\)Q\ ?(:O\P/ Q)%Q)é @ ?@ 7
Ky 8
’31|30|29 24|23 16|15 O‘
’ 0 | 0 | 0x00 |o 00 0 0 0 O o| OXOFFFF ‘Reset

ADDRESS_ENABLE3 When this bit is set, the address filter module uses the fourth MAC address for
perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.
RW)

SOURCE_ADDRESS3 \When this bit is set, the EMACADDR3[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDRS[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL3 These bits are mask control bits for comparison of each of the
EMACADDRS bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRS registers. Each bit controls the masking of the
bytes as follows:

* Bit[29]: EMACADDRS High [15:8].
* Bit[28]: EMACADDRS High [7:0].
* Bit[27]: EMACADDRS Low [31:24].
¢ Bit[24]: EMACADDRS Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS3_HI This field contains the upper 16 bits, Bits[47:32] of the fourth 6-byte MAC ad-
dress. (R/W)

Register 10.28: EMACADDR3LOW_REG (0x105C)

E]

’ OXOFFFFFFFF |Reset

EMACADDR3LOW_REG This field contains the lower 32 bits of the fourth 6-byte MAC address.
The content of this field is undefined, so the register needs to be configured after the initialization
process. (R/W)

Espressif Systems 264 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.29: EMACADDR4HIGH_REG (0x1060)

o\’v
[&K N
?@&Q@% OO%& %v\f\
S < &
5 X\ S)
& 5 S W
QQQ%O\)Q\ ?(:O\P/ Q)%Q)é @ ?@ 7
Ky 8
’31|30|29 24|23 16|15 O‘
’ 0 | 0 | 0x00 |o 00 0 0 0 O o| OXOFFFF ‘Reset

ADDRESS_ENABLE4 When this bit is set, the address filter module uses the fifth MAC address for
perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.
RW)

SOURCE_ADDRESS4 \When this bit is set, the EMACADDR4[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDR4[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL4 These bits are mask control bits for comparison of each of the
EMACADDR4 bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRA4 registers. Each bit controls the masking of the
bytes as follows:

* Bit[29]: EMACADDR4 High [15:8].
¢ Bit[28]: EMACADDR4 High [7:0].
* Bit[27]: EMACADDR4 Low [31:24].
e Bit[24]: EMACADDR4 Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS4_HI This field contains the upper 16 bits, Bits[47:32] of the fifth 6-byte MAC ad-
dress. (R/W)

Register 10.30: EMACADDR4LOW_REG (0x1064)

E]

’ OXOFFFFFFFF |Reset

EMACADDR4LOW_REG This field contains the lower 32 bits of the fifth 6-byte MAC address. The
content of this field is undefined, so the register needs to be configured after the initialization pro-

cess. (R/W)

Espressif Systems 265 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.31: EMACADDR5HIGH_REG (0x1068)

)
o S &
e K
N > o7
P S &
S % 4
b S
> 3 S ©
Q¥ N N ;
P> 4 £ ©
S N © W
’ 31 30 |29 24 | 23 16 | 15 0 ‘
’ 0 | 0 | 0x00 |o 00 0 0 0 O o| OXOFFFF ‘Reset

ADDRESS_ENABLE5 When this bit is set, the address filter module uses the sixth MAC address for
perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.
RW)

SOURCE_ADDRESS5 \When this bit is set, the EMACADDR5[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDRS5[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROLS5 These bits are mask control bits for comparison of each of the
EMACADDRS bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRS registers. Each bit controls the masking of the
bytes as follows:

* Bit[29]: EMACADDRS High [15:8].
* Bit[28]: EMACADDRS High [7:0].
* Bit[27]: EMACADDRS Low [31:24].
¢ Bit[24]: EMACADDRS Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS5_HI This field contains the upper 16 bits, Bits[47:32] of the sixth 6-byte MAC ad-
dress. (R/W)

Register 10.32: EMACADDR5LOW_REG (0x106C)

E]

’ OXOFFFFFFFF |Reset

EMACADDRS5LOW_REG This field contains the lower 32 bits of the sixth 6-byte MAC address. The
content of this field is undefined, so the register needs to be configured after the initialization pro-

cess. (R/W)

Espressif Systems 266 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.33: EMACADDR6HIGH_REG (0x1070)

O\S’
o o &K N
?@&Q@% OO%& %@\f\
>y % &
%%’Q}\ @4& I QQ
& @ b
QQQ%O\)Q\ ?(:O\P/ Q)%Q)é @ ?@ 7
Ky 8
’31|30|29 24|23 16|15 O‘
’ 0 | 0 | 0x00 |o 00 0 0 0 O o| OXOFFFF ‘Reset

ADDRESS_ENABLE6 When this bit is set, the address filter module uses the seventh MAC address
for perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.
RW)

SOURCE_ADDRESS6 \When this bit is set, the EMACADDRG[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDRG6[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL6 These bits are mask control bits for comparison of each of the
EMACADDRS bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRE registers. Each bit controls the masking of the
bytes as follows:

* Bit[29]: EMACADDRS High [15:8].
¢ Bit[28]: EMACADDRS High [7:0].
* Bit[27]: EMACADDRG Low [31:24].
e Bit[24]: EMACADDRS Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS6_HI This field contains the upper 16 bits, Bits[47:32] of the seventh 6-byte MAC
address. (R/W)

Register 10.34: EMACADDRG6LOW_REG (0x1074)

E]

’ OXOFFFFFFFF |Reset

EMACADDR6LOW_REG This field contains the lower 32 bits of the seventh 6-byte MAC address.
The content of this field is undefined, so the register needs to be configured after the initialization
process. (R/W)

Espressif Systems 267 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.35: EMACADDR7HIGH_REG (0x1078)

A
A O N
NS &
Q>\<’</Q{</% Oe é\g\
e?‘ Q O %o}
S & &
o7 S Q
&S 5 3 ?9
Q¥ N N ;
QQ O\> ?(:O “OQ) ?g)
WO N W
’31|30|29 24|23 16|15 O‘
’ 0 | 0 | 0x00 |o 00 0 0 0 O o| OXOFFFF ‘Reset

ADDRESS_ENABLE7 When this bit is set, the address filter module uses the eighth MAC address
for perfect filtering. When this bit is reset, the address filter module ignores the address for filtering.
RW)

SOURCE_ADDRESS7 When this bit is set, the EMACADDR7[47:0] is used to compare with the SA
fields of the received frame. When this bit is reset, the EMACADDRT7[47:0] is used to compare with
the DA fields of the received frame. (R/W)

MASK_BYTE_CONTROL7 These bits are mask control bits for comparison of each of the
EMACADDRY bytes. When set high, the MAC does not compare the corresponding byte of re-
ceived DA or SA with the contents of EMACADDRY registers. Each bit controls the masking of the
bytes as follows:

* Bit[29]: EMACADDRY High [15:8].
¢ Bit[28]: EMACADDR? High [7:0].
* Bit[27]: EMACADDRY Low [31:24].
e Bit[24]: EMACADDRY? Low [7:0].

You can filter a group of addresses (known as group address filtering) by masking one or more
bytes of the address. (R/W)

MAC_ADDRESS7_HI This field contains the upper 16 bits, Bits[47:32] of the eighth 6-byte MAC
address. (R/W)

Register 10.36: EMACADDR7LOW_REG (0x107C)

E]

’ OXOFFFFFFFF |Reset

EMACADDR7LOW_REG This field contains the lower 32 bits of the eighth 6-byte MAC address.
The content of this field is undefined, so the register needs to be configured after the initialization
process. (R/W)

Espressif Systems 268 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.37: EMAC_AN_CONTROL_REG (0x10CO0)

%
D S s D
IS or &2 o/ o
& Nl 2\'e &
N S & N

’31 13|12|11 10|9|17 9‘

’ooooooooooooooooooo|o|o o|0|ooooooooo‘Reset

EMAC_ANEN When set, this bit enables the MAC to perform auto-negotiation with the link partner.
Clearing this bit disables the auto-negotiation. (R/W)

EMAC_RAN When set, this bit causes auto-negotiation to restart if Bit[12](ANE) is set. This bit is self-
clearing after auto-negotiation starts. This bit should be cleared for normal operation. (R/WS/SC)

Register 10.38: EMAC_AN_STATUS_REG (0x10C4)

5 s & s

S 0 gP 0l &
& v & &
& W F &

EMAC_ANC When set, this bit indicates that the auto-negotiation process is complete. This bit is
cleared when auto-negotiation is reinitiated. (RO)

EMAC_ANA This bit is always high because the MAC supports auto-negotiation. (RO)

EMAC_LS This bit decides whether the data link is established. Setting this bit to 1 means not es-
tablishing the link. (R/WS/SC)

Espressif Systems 269 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.39: EMACCSTATUS_REG (0x10D8)

@O\@
N
S © > (8\/‘?)& %QQ/ @O
@Q’é & eQ’é ¥ 8 T
& A & X \>$ 0%
’31 17|16|15 5|4|3|2 1|0‘
]oo0ooooo0oooooo|o|ooooooooooo|o|0| 0 |0‘Reset

JABBER_TIMEOUT This bit indicates whether there is jabber timeout error (1’b1) in the received
frame. (RO)

LINK_SPEED This bit indicates the current speed of the link: (RO)
e 2'b00: 2.5 MHz.
e 2’p01: 25 MHz.
e 2’b10: 125 MHz.
LINK_MODE This bit indicates the current mode of operation of the link: (RO)
e 1’b0: Half-duplex mode.

e 1’b1: Full-duplex mode.

Register 10.40: EMACWDOGTO_REG (0x10DC)

& choé & <©
& Q*@ & $QO
g ol e]
[o o o o0 o0o00o000 000 ofofo o 0x0000 |Reset

PWDOGEN When this bit is set and Bit[23] (WD) of EMACCONFIG_REG is reset, the WTO field
(Bits[13:Q]) is used as watchdog timeout for a received frame. When this bit is cleared, the watch-
dog timeout for a received frame is controlled by the setting of Bit[23] (WD) and Bit[20] (JE) in
EMACCONFIG_REG. (R/W)

WDOGTO When Bit[16] (PWE) is set and Bit[23] (WD) of EMACCONFIG_REG is reset, this field is used
as watchdog timeout for a received frame. If the length of a received frame exceeds the value of
this field, such frame is terminated and declared as an error frame. (R/W)

Espressif Systems 270 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.41: EMAC_EX_CLKOUT_CONF_REG (0x0000)

Q\
& & &

EMAC_CLK_OUT_H_DIV_NUM RMIlI CLK using internal PLLA CLK, the half divider number, when
using RMII PHY. (R/W)

EMAC_CLK_OUT_DIV_NUM RMIl CLK using internal PLLA CLK, the whole divider number, when
using RMII PHY. (R/W)

Register 10.42: EMAC_EX_OSCCLK_CONF_REG (0x0004)

EMAC_OSC_CLK_SEL Ethernet work using external PHY output clock or not for RMIl CLK, when
using RMII PHY. When this bit is set to 1, external PHY CLK is used. When this bit is set to O, PLLA

CLK'is used. (R/W)

EMAC_OSC_H_DIV_NUM_100M RMII/MII half-integer divider, when register
EMAC_EX_CLKOUT_CONF clock divider’s speed is 100M. (R/W)

EMAC_OSC_DIV_NUM_100M RMII/MII whole-integer divider, when register
EMAC_EX_CLKOUT_CONF clock divider's speed is 100M. (R/W)

EMAC_OSC_H_DIV_NUM_10M RMiII/MII half-integer divider, when register
EMAC_EX_CLKOUT_CONF clock divider’s speed is 10M. (R/W)

EMAC_OSC_DIV_NUM_10M RMII/MI| whole-integer divider, when register
EMAC_EX_CLKOUT_CONF clock divider’s speed is 10M. (R/W)

Espressif Systems 271 ESP32 Technical Reference Manual V3.1

10. ETHERNET MAC

Register 10.43: EMAC_EX_CLK_CTRL_REG (0x0008)

%
o8 so
7 = 77
S R AN
<€ Q)é‘bvoio/@é‘bvc)vo/
& NN E X
]31 5|5|4|3|2|1|0‘
’oooooooooooooooooo0ooooooo|o|o|0|o|o|o‘Reset
EMAC_MII_CLK_RX_EN Enable Ethernet RX CLK. (R/W)
EMAC_MII_CLK_TX_EN Enable Ethernet TX CLK. (R/W)
EMAC_INT_OSC_EN Using internal PLLA CLK in RMII PHY mode. (R/W)
EMAC_EXT_OSC_EN Using external PLLA CLK in RMII PHY mode. (R/W)
Register 10.44: EMAC_EX_PHYINF_CONF_REG (0x000c)
ot
&
.S
S X S
s° &7 sF
& > &
’31 16|15 l3|25 13‘
]oooooooooooooooo|ooo|ooooooooooooo‘Reset
EMAC_PHY_INTF_SEL The PHY interface selected. Ox0: PHY MiIl, Ox4: PHY RMII. (R/W)
Register 10.45: EMAC_PD_SEL_REG (0x0010)
S
O/
<
N &
G X%

’oooooooooooooooooooooooooooooo|0‘Reset

EMAC_RAM_PD_EN Ethernet RAM power-down enable signal. Bit[0]: TX SRAM; Bit[1]: RX SRAM.
Setting the bit to 1 powers down the RAM. (R/W)

Espressif Systems 272 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

11. 12C Controller

11.1 Overview

An 12C (Inter-Integrated Circuit) bus can be used for communication with several external devices connected to
the same bus as ESP32. The ESP32 has dedicated hardware to communicate with peripherals on the 12C
bus.

11.2 Features
The 12C controller has the following features:
e Supports both master mode and slave mode
e Supports multi-master and multi-slave communication

e Supports standard mode (100 kbit/s)

Supports fast mode (400 kbit/s)

Supports 7-bit addressing and 10-bit addressing
e Supports continuous data transmission with disabled Serial Clock Line (SCL)

e Supports programmable digital noise filter

11.3 Functional Description

11.3.1 Introduction

12C is a two-wire bus, consisting of an SDA and an SCL line. These lines are configured to open the drain output.
The lines are shared by two or more devices: usually one or more masters and one or more slaves.

Communication starts when a master sends out a start condition: it will pull the SDA line low, and will then pull
the SCL line high. It will send out nine clock pulses over the SCL line. The first eight pulses are used to shift out a
byte consisting of a 7-bit address and a read/write bit. If a slave with this address is active on the bus, the slave
can answer by pulling the SDA low on the ninth clock pulse. The master can then send out more 9-bit clock
pulse clusters and, depending on the read/write bit sent, the device or the master will shift out data on the SDA
line, with the other side acknowledging the transfer by pulling the SDA low on the ninth clock pulse. During data
transfer, the SDA line changes only when the SCL line is low. When the master has finished the communication, it
will send a stop condition on the bus by raising SDA, while SCL will already be high.

The ESP32 12C peripheral can handle the 12C protocol, freeing up the processor cores for other tasks.

Espressif Systems 273 ESP32 Technical Reference Manual V3.1

11.

12C CONTROLLER

11.3.2 Architecture

12C_Master cmdo

cmd1

cmd_rd
cmd_done

cmdi15

lcmd_content

CMD_Controller

SCL_LOW_PERIOD
SCL_HIGH_PERIOD

12C_TRANS_START
32x8

APBBUS| RAM
r/w

rdata/wdata

SDA
>

-

DATA_Shifter

12C_RX_LSB_FIRST
12C_TX_LSB_FIRST

Figure 47: 12C Master Architecture

SCL_LOW_PERIOD

12C_Slave SCL_HIGH_PERIOD 12C_SCL_FILTER_EN

32x8 SCL_FSM 12C_SCL_FILTER_THRES
12C_SAMPLE_SCL_LEVEL
APB_BUS| SCL_Filter

RAM|
SDA _Filter

T

12C_SDA FILTER_THRES

Start_Detect

L]

rdata/wdata

DATA_Shifter

12C_RX_LSB_FIRST
12C_TX_LSB_FIRST

12C_SDA _FILTER_EN

Figure 48: 12C Slave Architecture

An 12C controller can operate either in master mode or slave mode. The 12C_MS_MODE register is used to select
the mode. Figure 47 shows the 12C Master architecture, while Figure 48 shows the 12C Slave architecture. The
12C controller contains the following units:

e RAM, the size of which is 32 x 8 bits, and it is directly mapped onto the address space of the CPU cores,

starting at address REG_I2C_BASE+0x100. Each byte of I2C data is stored in a 32-bit word of memory
(so, the first byte is at +0x100, the second byte at +0x104, the third byte at +Ox108, etc.) Users need to
set register I2C_NONFIFO_EN.

A CMD_Controller and 16 command registers (cmdO ~ cmd15), which are used by the 12C Master to
control data transmission. One command at a time is executed by the 12C controller.

SCL_FSM: A state machine that controls the SCL clock. The 12C_SCL_HIGH_PERIOD_REG and
12C_SCL_LOW_PERIOD_REG registers are used to configure the frequency and duty cycle of the signal on
the SCL line.

SDA_FSM: A state machine that controls the SDA data line.

DATA_Shifter which converts the byte data to an outgoing bitstream, or converts an incoming bitstream to
byte data. 12C_RX_LSB_FIRST and 12C_TX_LSB_FIRST can be used for configuring whether the LSB or
MSB is stored or transmitted first.

Espressif Systems 274 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

e SCL_Filter and SDA_Filter: Input noise filter for the 12C_Slave. The filter can be enabled or disabled by
configuring 12C_SCL_FILTER_EN and 12C_SDA_FILTER_EN. The filter can remove line glitches with pulse
width less than 12C_SCL_FILTER_THRES and 12C_SDA_FILTER_THRES ABP clock cycles.

11.3.3 12C Bus Timing

SDA_START_HOLD_TIME
I . SCL_LOW_PERIOD

-

SDA_HOLD_TIME SCL_RSTART_SETUP_TIME STOP_SETUP_TIME
H - | | - H

I ——

SCL | 4| — s
AT 3 3 3 N | STOP_HOLD_TIME
<= SCLHIGH_PERIOD ~ «—» : : SCL_START:HOLD_TIME i
SDAJ—!OLD}?T!ME | | SDA_SAMPLE_TIME | . .
SDA | [! ! ! : : !

Figure 49: 12C Sequence Chart

Figure 49 is an 12C sequence chart. When the 12C controller works in master mode, SCL is an output signal. In
contrast, when the 12C controller works in slave mode, the SCL becomes an input signal. The values assigned to
12C_SDA_HOLD_REG and 12C_SDA_SAMPLE_REG are still valid in slave mode. Users need to configure the
values of 12C_SDA_HOLD_TIME and 12C_SDA_SAMPLE_TIME, according to the host characteristics, for the 12C
slave to receive data properly.

According to the 12C protocol, each transmission of data begins with a START condition and ends with a STOP
condition. Data is transmitted by one byte at a time, and each byte has an ACK bit. The receiver informs the
transmitter to continue transmission by pulling down SDA, which indicates an ACK. The receiver can also
indicate it wants to stop further transmission by pulling up the SDA line, thereby not indicating an ACK.

Figure 49 also shows the registers that can configure the START bit, STOP bit, SDA hold time, and SDA sample
time.

If the 12C pads are configured in open-drain mode, it will take longer for the signal lines to transition from a low
level to a high level. This will result in a poorly performing 12C bus. Proper external pull-up resistors are required
on 12C signal lines for bus operation when 12C pads are configured in open-drain mode. Typically, a stronger
pull-up is required for a higher frequency 12C bus operation.

11.3.4 12C cmd Structure

31 13:11 10 9 8 7:0
a0 CMD_DONE op_code ack_value| ack_exp |ack_check_en byte_num
cm
31 13:11 10 9 8 7:0
omd15 CMD_DONE op_code ack_value| ack_exp |ack_check_en byte_num

Figure 50: Structure of The 12C Command Register

The Command register is active only in 12C master mode, with its internal structure shown in Figure 50.

Espressif Systems 275 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

CMD_DONE: The CMD_DONE bit of every command can be read by software to tell if the command has been
handled by hardware.

op_code: op_code is used to indicate the command. The 12C controller supports four commands:

e RSTART: op_code = 0 is the RSTART command to control the transmission of a START or RESTART 12C
condition.

WRITE: op_code = 1 is the WRITE command for the 12C Master to transmit data.

READ: op_code = 2 is the READ command for the 12C Master to receive data.

STOP: op_code = 3 is the STOP command to control the transmission of a STOP 12C condition.

END: op_code = 4 is the END command for continuous data transmission. When the END command is
given, SCL is temporarily disabled to allow software to reload the command and data registers for
subsequent events before resuming. Transmission will then continue seamlessly.

A complete data transmission process begins with an RSTART command, and ends with a STOP
command.

ack_value: When receiving data, this bit is used to indicate whether the receiver will send an ACK after this byte
has been received.

ack_exp: This bit is to set an expected ACK value for the transmitter.

ack_check_en: When transmitting a byte, this bit enables checking the ACK value received against the ack_exp
value. Checking is enabled by 1, while O disables it.

byte_num: This register specifies the length of data (in bytes) to be read or written. The maximum length is 255,
while the minimum is 1. When the op_code is RSTART, STOP or END, this value is meaningless.

11.3.5 12C Master Writes to Slave

Master
cmd op_code byte_num
cmdo‘ RSTART ‘ ‘
cmd1‘ WRITE ‘ N+1 ‘
cmd2‘ STOP ‘ ‘ scL Slave
RAM
at.i.t:er byte(N-1) addr(N-1) byte(N-1)

Figure 51: 12C Master Writes to Slave with 7-bit Address
In all subsequent figures that illustrate 12C transactions and behavior, both the 12C Master and Slave devices are
assumed to be ESP32 12C peripheral controllers for ease of demonstration.

Figure 51 shows the 12C Master writing N bytes of data to an 12C Slave. According to the 12C protocol, the first
byte is the Slave address. As shown in the diagram, the first byte of the RAM unit has been populated with the
Slave’s 7-bit address plus the 1-bit read/write flag. In this case, the flag is zero, indicating a write operation. The

Espressif Systems 276 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

rest of the RAM unit holds N bytes of data ready for transmission. The cmd unit has been populated with the
sequence of commands for the operation.

For the 12C master to begin an operation, the bus must not be busy, i.e. the SCL line must not be pulled low by
another device on the 12C bus. The 12C operation can only begin when the SCL line is released (made high) to
indicate that the 12C bus is free. After the cmnd unit and data are prepared, 12C_TRANS_START bit in
12C_CTR_REG must be set to begin the configured 12C Master operation. The 12C Master then initiates a START
condition on the bus and progresses to the WRITE command which will fetch N+1 bytes from RAM and send
them to the Slave. The first of these bytes is the address byte.

When the transmitted data size exceeds 12C_NONFIFO_TX_THRES, an 12C_TX_SEND_EMPTY_INT interrupt will
be generated. After detecting the interrupt, software can read TXFIFO_END_ADDR in register RXFIFO_ST_REG,
get the last address of the data in the RAM and refresh the old data in the RAM. TXFIFO_END_ADDR will be
refreshed each time interrupt 1I2C_TX_SEND_EMPTY_INT or I2C_TRANS_COMPLETE_INT occurs.

When ack_check_en is set to 1, the Master will check the ACK value each time it sends a data byte. If the ACK
value received does not match ack_exp (the expected ACK value) in the WRITE command, then the Master will
generate an 12C_ACK_ERR_INT interrupt and stop the transmission.

During transmission, when the SCL is high, if the input value and output value of SDA do not match, then the
Master will generate an 1I2C_ARBITRATION_LOST_INT interrupt. When the transmission is finished, the Master
will generate an 12C_TRANS_COMPLETE_INT interrupt.

After detecting the START bit sent from the Master, the Slave will start receiving the address and comparing it to
its own. If the address does not match 12C_SLAVE_ADDR, then the Slave will ignore the rest of the transmission.
If they do match, the Slave will store the rest of the data into RAM in the receiving order. When the data size
exceeds [2C_NONFIFO_RX_THRES, an 12C_RX_REC_FULL_INT interrupt is generated. After detecting the
interrupt, software will get the starting and ending addresses in the RAM by reading RXFIFO_START_ADDR and
RXFIFO_END_ADDR bits in register RXFIFO_ST_REG, and fetch the data for further processing. Register
RXFIFO_START_ADDR is refreshed only once during each transmission, while RXFIFO_END_ADDR gets
refreshed every time when either 12C_RX_REC_FULL_INT or 12C_TRANS_COMPLETE_INT interrupt is
generated.

When the END command is not used, the 12C master can transmit up to (14*255-1) bytes of valid data, and the
cmd unit is populated with RSTART + 14 WRITE + 1 STOP.

There are several special cases to be noted:

e |f the Master fails to send a STOP bit, because the SDA is pulled low by other devices, then the Master
needs to be reset.

e |f the Master fails to send a START bit, because the SDA or SCL is pulled low by other devices, then the
Master needs to be reset. It is recommended that the software uses a timeout period to implement the
reset.

e |f the SDA is pulled low by the Slave during transmission, the Master can simply release it by sending it nine
SCL clock signals at the most.

It is important to note that the behaviour of another I2C master or slave device on the bus may not always be
similar to that of the ESP32 12C peripheral in the master- or slave-mode operation described above. Please
consult the datasheets of the respective 12C devices to ensure proper operation under all bus conditions.

Espressif Systems 277 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Master

emd op_code byte_num
cme‘ RSTART ‘ ‘
cmd1‘ WRITE ‘ N+2 ‘
cde‘ STOP ‘ ‘ sSCL Siave

RAM addr0 | (slave_addr_first_7bits<<1| r/w)‘ SDA RAM addr0
addri slave_addr_second_byte ‘ addr1
addr2 ‘ byte0 ‘ addr2 |:|

addr;l.\l.ﬂ) byte(N-1) ‘ addr(N-1) byte(N-1)

Figure 52: 12C Master Writes to Slave with 10-bit Address

The ESP32 12C controller uses 7-bit addressing by default. However, 10-bit addressing can also be used. In the
master, this is done by sending a second 12C address byte after the first address byte. In the slave, the
12C_SLAVE_ADDR_10BIT_EN bit in I2C_SLAVE_ADDR_REG can be set to activate a 10-bit addressing mode.
I2C_SLAVE_ADDR is used to configure the 12C Slave address, as per usual. Figure 52 shows the equivalent of
12C Master operation writing N-bytes of data to an 12C Slave with a 10-bit address. Since 10-bit Slave addresses
require an extra address byte, both the byte_num field of the WRITE command and the number of total bytes in
RAM increase by one.

When the END command is not used, the 12C master can transmit up to (14*255-2) bytes of valid data to Slave
with 10-bit address.

Master
emd op_code byte_num
cmdo‘ RSTART ‘ ‘
cmd1‘ WRITE ‘ N+2 ‘
cmd2 STOP ‘
SCL » Slave
RAM
addr0 (slave_addr<<1| r/w) SDA addr0
P
addr(N+1) byte(N-1) addr(N+M-1 byte(N-1)

Figure 53: 12C Master Writes to addrM in RAM of Slave with 7-bit Address

One way many 12C Slave devices are designed is by exposing a register block containing various settings. The
12C Master can write one or more of these registers by sending the Slave a register address. The ESP32 12C
Slave controller has hardware support for such a scheme.

Specifically, on the Slave, 12C_FIFO_ADDR_CFG_EN can be set so that the 12C Master can write to a specified
register address inside the 12C Slave memory block. Figure 53 shows the 12C Master writing N-bytes of data
byteO ~ byte(N-1) from the RAM unit to register address M (determined by addrM in RAM unit) with the Slave. In
this mode, 12C Slave can receive up to 32 bytes of valid data. When 12C Master needs to transmit extra amount
of data, segmented transmission can be enabled.

Espressif Systems 278 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Master

cmd op_code byte_num

12C_NONFIFO_RX_THRES
C'"do 12C_RXFIFO_START ADDR
12G_RXFIFO_END_ADDR
SCL | Slave
RAM
RAM 2dro | (slave_addr<<1] riw) SDA addr0 byte0
- -
addr1 byte0 addr1 byte1
addr2 byte1 addr2
Segment0
Segment1
Master
op_code byte_num
cmd
i wre T ow] || s o
-
SDA addr(N-1) Byte(N-1)
- -
addrN byteN
RAM Ldaro byteN
addr2
addr1 byte(N+1)
Master Segment2
op_code byte_num
cmd

Figure 54: 12C Master Writes to Slave with 7-bit Address in Three Segments

If the data size exceeds the capacity of a 14-byte read/write cmd, the END command can be called to enable
segmented transmission. Figure 54 shows the 12C Master writing data to the Slave, in three segments. The first
segment shows the configuration of the Master’s commands and the preparation of data in the RAM unit. When
the I2C_TRANS_START bit is enabled, the Master starts transmission. After executing the END command, the
Master will turn off the SCL clock and pull the SCL low to reserve the 12C bus and prevent any other device from
transacting on the bus. The controller will generate an 12C_END_DETECT_INT interrupt to notify the

software.

After detecting an 12C_END_DETECT_INT interrupt, the software can refresh the contents of the cmd and RAM
blocks, as shown in the second segment. Subsequently, it should clear the I2C_END_DETECT_INT interrupt and
resume the transaction by setting the 12C_TRANS_START bit. To stop the transaction, it should configure the
cmd, as the third segment shows, and enable the I2C_TRANS_START bit to generate a STOP bit, after detecting
the I2C_END_DETECT_INT interrupt.

Please note that the other masters on the 12C bus will be starved of bus time between two segments. The bus is
only released after a STOP signal is sent.

Note: When there are more than three segments, the address of an END command in the cmd should not be
altered into another command by the next segment.

Espressif Systems 279 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

11.3.6 12C Master Reads from Slave

Master

cmd op_code byte_num
cmdo| RSTART

cmd1 WRITE

IELNEEE
4 SDA FAM a0 byte0

e |]| 2

addri byte1

addr2

RAM

addr0 | (slave_addr<<1| r/w) byte0 addr(N-1)
addr1 byte1
addr2 byte2

addr(N-1) byte(N-1)

Figure 55: 12C Master Reads from Slave with 7-bit Address

Figure 55 shows the 12C Master reading N-bytes of data from an 12C Slave with a 7-bit address. At first, the 12C
Master needs to send the address of the 12C Slave, so cmd1 is a WRITE command. The byte that this command
sends is the 12C slave address plus the R/W flag, which in this case is 1 and, therefore, indicates that this is going
to be a read operation. The 12C Slave starts to send data to the Master if the addresses match. The Master will
return ACK, according to the ack_value in the READ command, upon receiving every byte. As can be seen from
Figure 55, READ is divided into two segments. The 12C Master replies ACK to N-1 bytes in cmd2 and does not
reply ACK to the single byte READ command in cmd3, i.e., the last transmitted data. Users can configure it as
they wish.

When storing the received data, 12C Master will start from the first address in RAM. ByteO (Slave address + 1-bit
R/W marker bit) will be overwritten.

When the END command is not used, the 12C Master can transmit up to (13*255) bytes of valid data. The cmd
unit is populated with RSTART + 1 WRITE + 13 READ + 1 STOP.

Master
cmd

code byte_num

cmd0| RSTART

I

cmd1 WRITE

II

cmd2 READ N:

cmd3| READ

SCL Slave
>
M - RAM
addr0 | (slave_addr_first_7bits<<1| r/w) byte0 SDA addr0 byte0
- >
addr1 slave_addr_second_byte byte1 addr1 byte1
addr2 byte2 addr2
addr(N-1) ‘ byte(N-1) ‘ addr(N-1) byte(N-1)

Figure 56: 12C Master Reads from Slave with 10-bit Address

Figure 56 shows the 12C Master reading data from a slave with a 10-bit address. This mode can be enabled by
setting 1I2C_SLAVE_ADDR_10BIT_EN bit and preparing data to be sent in the slave RAM. In the Master, two
bytes of RAM are used for a 10-bit address. Finally, the 12C _TRANS_START bit must be set to enable one
transaction.

Espressif Systems 280 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Master

cmd

cmd0

cmd1

cmd2

cmd3|

cmd4

op_code
RSTART

byte_num

WRITE

READ N

READ

SCL

Slave

STOP

E

SDA

RAM

addr0

RAM

addr0 (slave_addr<<1| r/w) byteO

addr1

addr2

M

bytet

byte2

addrM|

byte0

addr(M+1)

byte1

addr(N+M-1

byte(N-1)

Figure 57: 12C Master Reads N Bytes of Data from addrM in Slave with 7-bit Address

Figure 57 shows the 12C Master reading data from a specified address in the 12C Slave. This mode can be
enabled by setting 1I2C_FIFO_ADDR_CFG_EN and preparing the data to be read by the master in the Slave RAM
block. Subsequently, the address of the Slave and the address of the specified register (that is, M) have to be
determined by the master. Finally, the I2C_TRANS_START bit must be set in the Master to initiate the read
operation, following which the 12C Slave will fetch N bytes of data from RAM and send them to the Master.

Figure 58: 12C Master Reads from Slave with 7-bit Address in Three Segments

Espressif Systems

12C_NONFIFO_RX_THRES
Master |«a—— 12C_RXFIFO_START_ADDR
12C_RXFIFO_END_ADDR
emd op-code _byle num 12C_NONFIFO_TX_THRES
cmd0| RSTART - 12C_TXFIFO_START_ADDR
12C_TXFIFO_END_ADDR
SCL Slave
>
RAM
g SDA addr0 byte0
RAM 4dr0 | (slave_addr<<1] riw) byte0 addrt bytet
addr1 bytet addr2
addr2 byte2 addr(N-1) byte(N-1)
addr(N-1) byte(N-1)
Segment0
Segment1
Master
cmd op_code byte_num
>
cmd1| READ RAM
4 SDA addr(N-1) Byte(N-1)
END
emd2 addiN byteN
addr2
RAM. oddrn byteN
addr(M+N-1) byte(M+N-1)
addr(N+1) byte(N+1)
addr(N+2) byte(N+2)
addr(M+N-1) byte(M+N-1)
Master Segment2
cmd op_code byte_num
cmdo| ~ STOP M-1

281

ESP32 Technical Reference Manual V3.1

11.

12C CONTROLLER

Figure 58 shows the 12C Master reading N+M bytes of data in three segments from the 12C Slave. The first

segment shows the configuration of the cmd and the preparation of data in the Slave RAM. When the
[2C_TRANS_START bit is enabled, the 12C Master starts the operation. The 12C Master will refresh the cmd after
executing the END command. It will clear the I2C_END_DETECT_INT interrupt, set the I2C_TRANS_START bit
and resume the transaction. To stop the transaction, the 12C Master will configure the cmd, as the third segment
shows, after detecting the 1I2C_END_DETECT_INT interrupt. After setting the 1I2C_TRANS_START bit, 12C Master
will send a STOP bit to stop the transaction.

11.3.7 Interrupts

12C_TX_SEND_EMPTY_INT: Triggered when the 12C has sent nonfifo_tx_thres bytes of data.
12C_RX_REC_FULL_INT: Triggered when the 12C has received nonfifo_rx_thres bytes of data.

12C_ACK_ERR_INT: Triggered when the 12C Master receives an ACK that is not as expected, or when the
12C Slave receives an ACK whose value is 1.

I2C_TRANS_START_INT: Triggered when the 12C sends the START bit.

[2C_TIME_OUT_INT: Triggered when the SCL stays high or low for more than 12C_TIME_OUT clocks.
I2C_TRANS_COMPLETE_INT: Triggered when the 12C detects a STOP bit.
12C_MASTER_TRAN_COMP_INT: Triggered when the 12C Master sends or receives a byte.

12C_ARBITRATION_LOST_INT: Triggered when the 12C Master’s SCL is high, while the output value and
input value of the SDA do not match.

12C_SLAVE_TRAN_COMP_INT: Triggered when the 12C Slave detects a STOP bit.

I2C_END_DETECT_INT: Triggered when the 12C deals with the END command.

Espressif Systems 282 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

11.4 Register Summary

Name ‘ Description 12C0O 12C1 Acc
Configuration registers
[2C_SLAVE_ADDR_REG Configures the 12C slave address Ox3FF53010| Ox3FF67010| R/W
I2C_RXFIFO_ST_REG FIFO status register Ox3FF53014 | Ox3FF67014 | RO
[2C_FIFO_CONF_REG FIFO configuration register Ox3FF53018 | Ox3FF67018| R/W
Timing registers
Configures the hold time after a negative
12C_SDA_HOLD_REG Ox3FF53030 | Ox3FF67030| R/W
SCL edge
Configures the sample time after a positive
12C_SDA_SAMPLE_REG Ox3FF53034 | Ox3FF67034 | R/W
SCL edge
Configures the low level width of the SCL
12C_SCL_LOW_PERIOD_REG clock Ox3FF53000 | 0x3FF67000| R/W
Configures the high level width of the SCL
12C_SCL_HIGH_PERIOD_REG lock Ox3FF53038 | Ox3FF67038| R/W
clocl
Configures the delay between the SDA and
12C_SCL_START_HOLD_REG) N Ox3FF53040 | Ox3FF67040| R/W
SCL negative edge for a start condition
Configures the delay between the positive
12C_SCL_RSTART_SETUP_REG) Ox3FF53044 | 0x3FF67044 | R/W
edge of SCL and the negative edge of SDA
Configures the delay after the SCL clock
[2C_SCL_STOP_HOLD_REG - Ox3FF53048 | Ox3FF67048| R/W
edge for a stop condition
Configures the delay between the SDA and
12C_SCL_STOP_SETUP_REG N . Ox3FF5304C| 0x3FF6704C| R/W
SCL positive edge for a stop condition
Filter registers
|12C_SCL_FILTER_CFG_REG SCL filter configuration register Ox3FF53050 | Ox3FF67050| R/W
[2C_SDA_FILTER_CFG_REG SDA filter configuration register Ox3FF53054 | Ox3FF67054 | R/W
Interrupt registers
[2C_INT_RAW_REG Raw interrupt status Ox3FF53020 | Ox3FF67020| RO
[2C_INT_ENA_REG Interrupt enable bits Ox3FF53028 | Ox3FF67028| R/W
[2C_INT_CLR_REG Interrupt clear bits Ox3FF53024 | Ox3FF67024 | WO
Command registers
[2C_COMDO_REG 12C command register 0 Ox3FF53058 | Ox3FF67058 | R/W
12C_COMD1_REG I12C command register 1 Ox3FF5305C| Ox3FF6705C| R/W
[2C_COMD2_REG 12C command register 2 Ox3FF53060 | Ox3FF67060| R/W
12C_COMDS_REG I12C command register 3 Ox3FF53064 | Ox3FF67064 | R/W
12C_COMD4_REG 12C command register 4 Ox3FF53068 | 0x3FF67068| R/W
12C_COMD5_REG 12C command register 5 Ox3FF5306C| O0x3FF6706C| R/W
12C_COMD6_REG 12C command register 6 Ox3FF53070 | Ox3FF67070| R/W
12C_COMD7_REG 12C command register 7 Ox3FF53074 | Ox3FF67074| R/W
12C_COMDS8_REG 12C command register 8 Ox3FF53078 | Ox3FF67078| R/W
12C_COMD9_REG 12C command register 9 Ox3FF5307C| 0x3FF6707C| R/W
12C_COMD10_REG 12C command register 10 Ox3FF53080 | Ox3FF67080| R/W
12C_COMD11_REG 12C command register 11 Ox3FF53084 | 0x3FF67084 | R/W
12C_COMD12_REG I2C command register 12 Ox3FF53088 | Ox3FF67088| R/W

Espressif Systems

283

ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Name Description 12C0 12C1 Acc
[2C_COMD13_REG I12C command register 13 Ox3FF5308C| Ox3FF6708C| R/W
12C_COMD14_REG |12C command register 14 Ox3FF53090 | Ox3FF67090| R/W
12C_COMD15_REG 12C command register 15 Ox3FF53094 | 0x3FF67094 | R/W

Espressif Systems

284

ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

11.5 Registers

Register 11.1: 12C_SCL_LOW_PERIOD_REG (0x0000)

’31 14|13 O‘

]oooooooooooooooooo|oooooooooooooo‘Reset

12C_SCL_LOW_PERIOD This register is used to configure for how long SCL remains low in master
mode, in APB clock cycles. (R/W)

Register 11.2: 12C_CTR_REG (0x0004)

N
AN
Qé\ &é\ «§<<, %0\%0”00@9
2Oy o) <7 XL
& AN I e
& EEEEEEEEL
’31 8|7|6|5|4|3|2|1|0‘
]o O 0000 OODOO0OGOG OGO OGO OO OO0GO OGO OGO OGO OO 00 O 0|o|0|o|o|0|o|1|1‘Reset

12C_RX_LSB_FIRST This bit is used to control the storage mode for received data. (R/W)
1: receive data from the least significant bit;
0: receive data from the most significant bit.

12C_TX_LSB_FIRST This bit is used to control the sending mode for data needing to be sent. (R/W)
1: send data from the least significant bit;
0: send data from the most significant bit.

12C_TRANS_START Set this bit to start sending the data in txfifo. (R/W)

12C_MS_MODE Set this bit to configure the module as an 12C Master. Clear this bit to configure the
module as an 12C Slave. (R/W)

12C_SAMPLE_SCL_LEVEL 1: sample SDA data on the SCL low level; O: sample SDA data on the
SCL high level. (R/W)

12C_SCL_FORCE_OUT O0: direct output; 1: open drain output. (R/W)

12C_SDA_FORCE_OUT O0: direct output; 1: open drain output. (R/W)

Espressif Systems 285 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.3: 12C_SR_REG (0x0008)

<
S
N3 O
A %% 2%
<
&7 7 é&?‘ S é& %(O QQ\QE A
& ®§/ Oc)% o9 ,\Q\ZQQ)\\)% & O&@q&i{(g)
% 7/ 7] \/ i
N A <& S <& NI
%Q)c\@ Q%)Q Q’é@ Q?O QS\— %Q’é@ Q/+ %Q’(AQ()‘) /ﬁ?\zg}\z)/ Q&i /\EYQ
NS N N % N N % NIV N N ey

’31|30 28|27|26 24|23 18|17 14|13 S|7|6|5|4|3|2|1|0‘

]o|0 0 o|o|o 0 o|o 00 0 o0 o|o 0 o 0|0 0 0 0 O 0|o|0|o|o|o|o|o|o‘Reset

12C_SCL_STATE_LAST This field indicates the states of the state machine used to produce SCL.
(RO)
0O: Idle; 1: Start; 2: Negative edge; 3: Low; 4: Positive edge; 5: High; 6: Stop

12C_SCL_MAIN_STATE_LAST This field indicates the states of the 12C module state machine. (RO)
0: Idle; 1: Address shift; 2: ACK address; 3: Rx data; 4: Tx data; 5: Send ACK; 6: Wait ACK

12C_TXFIFO_CNT This field stores the amount of received data in RAM. (RO)
12C_RXFIFO_CNT This field represents the amount of data needed to be sent. (RO)
12C_BYTE_TRANS This field changes to 1 when one byte is transferred. (RO)

12C_SLAVE_ADDRESSED When configured as an 12C Slave, and the address sent by the master is
equal to the address of the slave, then this bit will be of high level. (RO)

12C_BUS_BUSY 1: the 12C bus is busy transferring data; 0: the 12C bus is in idle state. (RO)
12C_ARB_LOST When the 12C controller loses control of SCL line, this register changes to 1. (RO)

12C_TIME_OUT When the 12C controller takes more than 1I2C_TIME_QOUT clocks to receive a data bit,
this field changes to 1. (RO)

12C_SLAVE_RW When in slave mode, 1: master reads from slave; O: master writes to slave. (RO)

12C_ACK_REC This register stores the value of the received ACK bit. (RO)

Register 11.4: 12C_TO_REG (0x000c)

5 «
52 N
\§

’31 20|19 O‘

]oooo00oooo00|oooooooooooooooooooo‘Reset

I2C_TIME_OUT_REG This register is used to configure the timeout for receiving a data bit in APB
clock cycles. (R/W)

Espressif Systems 286 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.5: 12C_SLAVE_ADDR_REG (0x0010)

Ne
&
4 N N
%\Y Q)GQ’C) /\Y

\Q/C)

’31|30 15|14 O‘

]o|oooooooo0ooooooo|ooooooooooooooo‘Reset

12C_SLAVE_ADDR_10BIT_EN This field is used to enable the slave 10-bit addressing mode in master
mode. (R/W)

12C_SLAVE_ADDR When configured as an 12C Slave, this field is used to configure the slave address.
(R/W)

Register 11.6: 12C_RXFIFO_ST_REG (0x0014)

Q\
$ S
Q X
oF &7 &
3 g¥ s ©
L7 &7 of &7
o&< odﬁ(o<$ o) il
N &L’ &L’ &L &L’
@@Q‘b ~§<\ Qt\g\ _\g\ Q\g\
\@ \Q,O/ \q/ox {1/0/ \Q,C)/

’31 20|19 15|14 10|9 5|4 O‘

]oooooooooooo|o0ooo|ooooo|ooooo|ooooo‘Reset

I2C_TXFIFO_END_ADDR This is the offset address of the last sent data, as described
in nonfifo_tx_thres register. The value refreshes when 12C_TX_SEND _EMPTY_INT or
12C_TRANS_COMPLETE_INT interrupt is generated. (RO)

12C_TXFIFO_START_ADDR This is the offset address of the first sent data, as described in non-
fifo_tx_thres register. (RO)

I2C_RXFIFO_END_ADDR This is the offset address of the last received data, as de-
scribed in nonfifo_rx_thres_register. This value refreshes when 12C_RX_REC_FULL_INT or
I2C_TRANS_COMPLETE_INT interrupt is generated. (RO)

12C_RXFIFO_START_ADDR This is the offset address of the last received data, as described in non-
fifo_rx_thres_register. (RO)

Espressif Systems 287 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.7: 12C_FIFO_CONF_REG (0x0018)

S & ~
OSF Qg\ QQQ\E)%
> & & 5 o
5© <5 <5 &S
& &7 &7 & £’
’ 31 26 | 25 20 | 19 14 | 13 12 | 11 | 10 ‘
]o 0 0 0 o0 o| ox15 | 0x15 |o o|0|o‘Reset

12C_NONFIFO_TX_THRES When I12C sends more than nonfifo_tx_thres bytes of data, it will generate
a tx_send_empty_int_raw interrupt and update the current offset address of the sent data. (R/W)

12C_NONFIFO_RX_THRES When 12C receives more than nonfifo_rx_thres bytes of data, it will gen-
erate a rx_send_full_int_raw interrupt and update the current offset address of the received data.
(R/W)

12C_FIFO_ADDR_CFG_EN When this bit is set to 1, the byte received after the 12C address byte
represents the offset address in the 12C Slave RAM. (R/W)

12C_NONFIFO_EN Set this bit to enble APB nonfifo access. (R/W)

Espressif Systems 288 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.8: 12C_INT_RAW_REG (0x0020)

D

@
%)
& FEPLPEPLLPEE

B sl o o[- [[+

-]
[0 0o 0o 0 0000000000000 o0 ofoJo[oJo[ofof[o]o]o]Reset

12C_TX_SEND_EMPTY_INT_RAW The raw interrupt status bit for the 12C_TX_SEND_EMPTY_INT
interrupt. (RO)

12C_RX_REC_FULL_INT_RAW The raw interrupt status bit for the I2C_RX_REC_FULL_INT interrupt.
(RO)

I2C_ACK_ERR_INT_RAW The raw interrupt status bit for the 12C_ACK_ERR_INT interrupt. (RO)

12C_TRANS_START_INT_RAW The raw interrupt status bit for the I2C_TRANS_START_INT interrupt.
(RO)

12C_TIME_OUT_INT_RAW The raw interrupt status bit for the 1I2C_TIME_OUT_INT interrupt. (RO)

I2C_TRANS_COMPLETE_INT_RAW The raw interrupt status bit for the
12C_TRANS_COMPLETE_INT interrupt. (RO)

12C_MASTER_TRAN_COMP_INT_RAW The raw interrupt status bit for the
12C_MASTER_TRAN_COMP_INT interrupt. (RO)

12C_ARBITRATION_LOST_INT_RAW The raw interrupt status bit for the
12C_ARBITRATION_LOST_INT interrupt. (RO)

I2C_END_DETECT_INT_RAW The raw interrupt status bit for the 12C_END_DETECT_INT interrupt.
(RO)

Espressif Systems 289 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.9: 12C_INT_CLR_REG (0x0024)

L
S
S & <
Q,é@b d”@*"vd_/&v«\
& P PLEPLLLEE

’31 13|12|11|10|9|8|7|6|5|3‘

]o 0000 0ODOO0OGO OGO OGO OTUOGO0OGO OGO OGO 0O0 O 0|o|0|o|o|0|o|o|0|o‘Reset

N

I2C_TX_SEND_EMPTY_INT_CLR Set this bit to clear the 12C_TX_SEND_EMPTY_INT interrupt.
(WO)

12C_RX_REC_FULL_INT_CLR Set this bit to clear the I2C_RX_REC_FULL_INT interrupt. (WO)
12C_ACK_ERR_INT_CLR Set this bit to clear the 12C_ACK_ERR_INT interrupt. (WO)
12C_TRANS_START_INT_CLR Set this bit to clear the 12C_TRANS_START_INT interrupt. (WO)
12C_TIME_OUT_INT_CLR Set this bit to clear the I2C_TIME_OUT_INT interrupt. (WO)

I2C_TRANS_COMPLETE_INT_CLR Set this bit to clear the 2C_TRANS_COMPLETE_INT interrupt.
(WO)

12C_MASTER_TRAN_COMP_INT_CLR Set this bit to clear the 1I2C_MASTER_TRAN_COMP_INT in-
terrupt. (WO)

I2C_ARBITRATION_LOST_INT_CLR Set this bit to clear the 12C_ARBITRATION_LOST_INT inter-
rupt. (WO)

I2C_END_DETECT_INT_CLR Set this bit to clear the 1I2C_END_DETECT_INT interrupt. (WO)

Espressif Systems 290 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.10: 12C_INT_ENA_REG (0x0028)

)
%Q’(@
&

N

S

?\

S 4 3
% %2 A <o>eo‘§//\>e 5

QS ST S T

FE L L LEG

B

[[e]=]:]
[0 0o 0 0000000000000 o0 o0 ofofo[oJo[ofof[o]o]o0]Reset

12C_TX_SEND_EMPTY_INT_ENA The interrupt enable bit for the 12C_TX_SEND_EMPTY_INT inter-

rupt. (R/W)

12C_RX_REC_FULL_INT_ENA The interrupt enable bit for the 12C_RX_REC_FULL_INT interrupt.

(R/W)

12C_ACK_ERR_INT_ENA The interrupt enable bit for the 12C_ACK_ERR_INT interrupt. (R/W)

12C_TRANS_START_INT_ENA The interrupt enable bit for the 12C_TRANS_START_INT interrupt.

(R/W)

1I2C_TIME_OUT_INT_ENA The interrupt enable bit for the 1I2C_TIME_OUT_INT interrupt. (R/W)

I2C_TRANS_COMPLETE_INT_ENA The interrupt enable bit for the I2C_TRANS_COMPLETE_INT

interrupt. (R/W)

12C_MASTER_TRAN_COMP_INT_ENA The
12C_MASTER_TRAN_COMP_INT interrupt. (R/W)

interrupt enable bit for the

I2C_ARBITRATION_LOST_INT_ENA The interrupt enable bit for the 12C_ARBITRATION_LOST_INT

interrupt. (R/W)

I2C_END_DETECT_INT_ENA The interrupt enable bit for the 1I2C_END_DETECT_INT interrupt. (R/W)

Espressif Systems

291

ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.11: I12C_INT_STATUS_REG (0x002c)

S
N K7
= S A XS4
SOOI
OLa $8 KPP
SRILIQER >,/\>$

S 2L
8?\0&\@/\@ PR

O
< 7 K7 /&\((/
QL /Qg‘?o 9Q\/?~€\
) O C O ORI RS

) / S @\ Q
s° QGO QI QW s
Q)(o (],O/

& FEPLELPLLE
’31 13|12|11|10|9|8|7|6|5|3‘
[o]

]o 0000 0ODOO0OGO OGO OGO OTUOGO0GOTO0TO0O0 O 0|o|0|o|o|o|o|o|o 0 |Reset

I2C_TX_SEND_EMPTY_INT_ST The masked interrupt status bit for the 12C_TX_SEND_EMPTY_INT
interrupt. (RO)

12C_RX_REC_FULL_INT_ST The masked interrupt status bit for the 12C_RX_REC_FULL_INT inter-
rupt. (RO)

12C_ACK_ERR_INT_ST The masked interrupt status bit for the 12C_ACK_ERR_INT interrupt. (RO)

I2C_TRANS_START_INT_ST The masked interrupt status bit for the I2C_TRANS_START_INT inter-
rupt. (RO)

12C_TIME_OUT_INT_ST The masked interrupt status bit for the 12C_TIME_OUT_INT interrupt. (RO)

12C_TRANS_COMPLETE_INT_ST The masked interrupt status bit for the
12C_TRANS_COMPLETE_INT interrupt. (RO)

12C_MASTER_TRAN_COMP_INT_ST The masked interrupt status bit for the
I2C_MASTER_TRAN_COMP_INT interrupt. (RO)

12C_ARBITRATION_LOST_INT_ST The masked interrupt status bit for the
12C_ARBITRATION_LOST_INT interrupt. (RO)

12C_END_DETECT_INT_ST The masked interrupt status bit for the 12C_END_DETECT_INT interrupt.
(RO)

Register 11.12: 12C_SDA_HOLD_REG (0x0030)

& $
§Q)

12C_SDA_HOLD_TIME This register is used to configure the time to hold the data after the negative
edge of SCL, in APB clock cycles. (R/W)

Espressif Systems 292 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.13: 12C_SDA_SAMPLE_REG (0x0034)

S X7
Q)G"Qé
A

’31 10|9 O‘

]oooooooooooooooooooooo|oooooooooo‘Reset

12C_SDA_SAMPLE_TIME This register is used to configure for how long SDA is sampled, in APB
clock cycles. (R/W)

Register 11.14: 12C_SCL_HIGH_PERIOD_REG (0x0038)

I
Q@
Q?Q)é
A

’31 14|13 O‘

’oooooooooooooooooo|oooooooooooooo‘Reset

12C_SCL_HIGH_PERIOD This register is used to configure for how long SCL remains high in master
mode, in APB clock cycles. (R/W)

Register 11.15: 12C_SCL_START_HOLD_REG (0x0040)

<
N
O\/O/
Y
Q'\\/
e
Q)b\ C)\/?
"o@é Q?
N N
’31 10|9 O‘
]oooooooooooooooooooooo|oooooo1ooo‘Reset

12C_SCL_START_HOLD_TIME This register is used to configure the time between the negative edge
of SDA and the negative edge of SCL for a START condition, in APB clock cycles. (R/W)

Espressif Systems 293 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.16: 12C_SCL_RSTART_SETUP_REG (0x0044)

%
N
&
A 7
&
Q‘:o
S o’
%Q’Q\ Q(;O
N o
’31 10|9 O‘
]oooooooooooooooooooooo|oooooo1ooo‘Reset

I2C_SCL_RSTART_SETUP_TIME This register is used to configure the time between the positive
edge of SCL and the negative edge of SDA for a RESTART condition, in APB clock cycles. (R/W)

Register 11.17: 12C_SCL_STOP_HOLD_REG (0x0048)

S
%‘2)(\\@6 %)Q\/
@

’ 31 14 | 13 0 ‘

]oooooooooooooooooo|oooooooooooooo‘Reset

12C_SCL_STOP_HOLD_TIME This register is used to configure the delay after the STOP condition,
in APB clock cycles. (R/W)

Register 11.18: 12C_SCL_STOP_SETUP_REG (0x004C)

’31 10|9 O‘

’oooooooooooooooooooooo|oooooooooo‘Reset

12C_SCL_STOP_SETUP_TIME This register is used to configure the time between the positive edge
of SCL and the positive edge of SDA, in APB clock cycles. (R/W)

Espressif Systems 294 ESP32 Technical Reference Manual V3.1

11. 12C CONTROLLER

Register 11.19: 12C_SCL_FILTER_CFG_REG (0x0050)

&
e &
<<<,2\/ é/g\/
\ &K
Q}@b EOdF g
@’9 \Q/ \Q/O/
[T
]oooooooooooooooooooooooooooo|1|ooo‘Reset
12C_SCL_FILTER_EN This is the filter enable bit for SCL. (R/W)
12C_SCL_FILTER_THRES When a pulse on the SCL input has smaller width than this register value
in APB clock cycles, the 12C controller will ignore that pulse. (R/W)
Register 11.20: 12C_SDA_FILTER_CFG_REG (0x0054)
&
> &
& &
\ &S
s s
& \Q/Q/ \q/O/

A

4|3|2 O‘

o[1]o 0 oReset

I2C_SDA_FILTER_EN This is the filter enable bit for SDA. (R/W)

12C_SDA_FILTER_THRES When a pulse on the SDA input has smaller width than this register value
in APB clock cycles, the 12C controller will ignore that pulse. (R/W)

Register 11.21: 12C_COMDr_REG (1: 0-15) (0x58+4*n)

l4|13

ooooooooo|oooooooooooooo‘Reset

’o|oooooooo

12C_COMMAND_DONE When command n is done in 12C Master mode, this bit changes to high
level. (R/W)

12C_COMMAND: This is the content of command n. It consists of three parts: (R/W)
op_code is the command, 0: RSTART; 1: WRITE; 2: READ; 3: STOP; 4: END.
Byte_num represents the number of bytes that need to be sent or received.
ack_check_en, ack_exp and ack are used to control the ACK bit. See 12C cmd structure for more

information.

Espressif Systems 295 ESP32 Technical Reference Manual V3.1

12. 125

12. 12S

12.1 Overview

The 12S bus provides a flexible communication interface for streaming digital data in multimedia applications,
especially digital audio applications. The ESP32 includes two 12S interfaces: 1250 and 12S1.

The 12S standard bus defines three signals: a clock signal, a channel selection signal, and a serial data signal. A
basic 12S data bus has one master and one slave. The roles remain unchanged throughout the communication.
The 12S modules on the ESP32 provide separate transmit and receive channels for high performance.

CPU DMA
ﬁ Data and Address Bus ﬁ
< >
A __
l2sn i iADC:
PDM ig N SR
i Rx i : — - 12Sn_CLK
"""""" i - 2sniBCKn Rx!
< : < » 1250 BCK out in
Rx FIFO |« Rx | : < p 12SnI_WS_in :
Compress : /12SnI_WS_out
; <i———=12Snl_Data_in
Decompress :
Tx FIFO »| TX 2 |JO |--m-mmemmm ey
4 : sync F———>12Sn0_Data_out Ty :
o : 12Sn0_BCK in |
: : P_PM 1 < » 12500 BCK out
; oTx : 12Sn0_WS_in :
Vo LT S Tiesowsou |
! | BCK > [&——125n_H_SYNC
H : l@———12Sn_V_SYNC
PLL_D2_CLK +——] :
: Clock Generator > l@———12Sn_H_ENABLE
——»
APLL_CLK 4 I2S CLK | b—— ...

Figure 59: 12S System Block Diagram

Figure 59 is the system block diagram of the ESP32 12S module. In the figure above, the value of ”’n” can be
either O or 1. There are two independent 12S modules embedded in ESP32, namely 12S0 and 12S1. Each 125
module contains a Tx (transmit) unit and a Rx (receive) unit. Both the Tx unit and the Rx unit have a three-wire
interface that includes a clock line, a channel selection line and a serial data line. The serial data line of the Tx unit
is fixed as output, and the serial data line of the receive unit is fixed as input. The clock line and the channel
selection line of the Tx and Rx units can be configured to both master transmitting mode and slave receiving
mode. In the LCD mode, the serial data line extends to the parallel data bus. Both the Tx unit and the Rx unit
have a 32-bit-wide FIFO with a depth of 64. Besides, only 12S0 supports on-chip DAC/ADC modes, as well as
receiving and transmitting PDM signals.

The right side of Figure 59 shows the signal bus of the 12S module. The signal naming rule of the Rx and Tx units
is 12SnA_B_C, where "n” stands for either 12S0 or 12S1; "A” represents the direction of 12S module’s data bus
signal, ”I” represents input, "O” represents output; "B” represents signal function; "C” represents the signal
direction, "in” means that the signal is input into the 12S module, while “out” means that the 12S module outputs
the signal. For a detailed description of the 12S signal bus, please refer to Table 56.

Espressif Systems 296 ESP32 Technical Reference Manual V3.1

12. 125

Table 56: 12S Signal Bus Description

Signal Bus Signal Direction Data Signal Direction

[2SnI_BCK_in In slave mode, 12S module accepts signals. I2S module receives data.
12Snl_BCK_out In master mode, 12S module outputs signals. I2S module receives data.
[2Snl_WS_in In slave mode, 12S module accepts signals. I2S module receives data.
12SnI_WS_out In master mode, 12S module outputs signals. I2S module receives data.

In 12S mode, 12Snl_Data_in[15] is the
)) serial data bus of 12S. In LCD mode,
12Sn1_Data_in 12S module accepts signals. , ,
the data bus width can be configured
as needed.

In 12S mode, 125n0O_Data_out[23] is
the serial data bus of 12S. In LCD

mode, the data bus width can be

12Sn0O_Data_out | 12S module outputs signals.

configured as needed.

12SnO_BCK_in In slave mode, 12S module accepts signals. I2S module sends data.
12SnO_BCK_out | In master mode, 12S module outputs signals. I2S module sends data.
12SnO_WS_in In slave mode, 12S module accepts signals. I2S module sends data.
12SnO_WS_out In master mode, 12S module outputs signals. 12S module sends data.

) It is used as a clock source for pe-
12Sn_CLK I2S module outputs signals.) .

ripheral chips.

12Sn_H_SYNC
12Sn_V_SYNC In Camera mode, 12S module accepts signals. | The signals are sent from the Camera

12Sn_H_ENABLE

Table 56 describes the signal bus of the 12S module. Except for the 1251_CLK signal, all other signals are
mapped to the chip pin via the GPIO matrix and IO MUX. The 12Sn_CLK signal is mapped to the chip pin via the
IO_MUX. For details, please refer to the chapter about I0_MUX and the GPIO Matrix.

12.2 Features
12S mode

e Configurable high-precision output clock

Full-duplex and half-duplex data transmit and receive modes

Supports multiple digital audio standards

Embedded A-law compression/decompression module

Configurable clock signal
e Supports PDM signal input and output
e Configurable data transmit and receive modes
LCD mode
e Supports multiple LCD modes, including external LCD

e Supports external Camera

Espressif Systems 297 ESP32 Technical Reference Manual V3.1

12. 125

e Supports on-chip DAC/ADC modes
12S interrupts
e Standard 12S interface interrupts

e |2S DMA interface interrupts

12.3 The Clock of 12S Module

As is shown in Figure 60, 12Sn_CLK, as the master clock of 12S module, is derived from the 160 MHz clock
PLL_D2_CLK or the configurable analog PLL output clock APLL_CLK. The serial clock (BCK) of the 12S module
is derived from 12S1_CLK. The 12S_CLKA_ENA bit of register 12S_CLKM_CONF_REG is used to select either
PLL_D2_CLK or APLL_CLK as the clock source for 12Sn. PLL_D2_CLK is used as the clock source for 12Sn, by
default.

Notice:

e When using PLL_D2_CLK as the clock source, it is not recommended to divide it using decimals. For high
performance audio applications, the analog PLL output clock source APLL_CLK must be used to acquire
highly accurate 12Sn_CLK and BCK. For further details, please refer to the chapter entitled Reset and Clock.

e When ESP32 12S works in slave mode, the master must use 125n_CLK as the master clock and fips >= 8 *

faek-
12S_CLKA_ENA
| 12SnO_BCK_out
> —
PLL_D2_CLK X M

—» 0 1
—p b >
APLL CLK I, N+ 12Sn_CLK

Figure 60: 12S Clock

The relation between 125n_CLK frequency fis and the divider clock source frequency fy can be seen in the
equation below:

fol
N+ 2

ﬁQS =
"N”, whose value is >=2, corresponds to the REG _CLKM_DIV_NUM [7: Q] bits of register
12S_CLKM_CONF_REG , "b” is the 12S_CLKM_DIV_BJ[5:0] bit and "a” is the 12S_CLKM_DIV_A[5:0] bit.

In master mode, the serial clock BCK in the 12S module is derived from 12Sn_CLK, that is:

_ Jas
fack = M

In master transmitting mode, "M”, whose value is >=2, is the 12S_TX_BCK_DIV_NUM][5:0] bit of register
12S_SAMPLE_RATE_CONF_REG. In master receiving mode, "M” is the 12S_RX_BCK_DIV_NUM][5:0] bit of
register 12S_SAMPLE_RATE_CONF_REG.

Espressif Systems 298 ESP32 Technical Reference Manual V3.1

12. 125

12.4 12S Mode

The ESP32 12S module integrates an A-law compression/decompression module to enable
compression/decompression of the received audio data. The RX_PCM_BYPASS bit and the TX_PCM_BYPASS
bit of register 12S_CONF1_REG should be cleared when using the A-law compression/decompression

module.

12.4.1 Supported Audio Standards

In the 12S bus, BCK is the serial clock, WS is the left- /right-channel selection signal (also called word select
signal), and SD is the serial data signal for transmitting/receiving digital audio data. WS and SD signals in the 12S
module change on the falling edge of BCK, while the SD signal can be sampled on the rising edge of BCK. If the
12S_RX_RIGHT_FIRST bit and the 12S_TX_RIGHT_FIRST bit of register 12S_CONF_REG are set to 1, the 12S
module is configured to receive and transmit right-channel data first. Otherwise, the 12S module receives and
transmits left-channel data first.

12.4.1.1 Philips Standard

L R
BCK /__/__/W_/W_
ws —\
-
SO ——— K MSB , LsB X MsB . LSB >»—
Data0 Datal

Figure 61: Philips Standard

As is shown in Figure 61, the Philips 12S bus specifications require that the WS signal starts to change a BCK
clock cycle earlier than the SD signal, which means that the WS signal takes effect a clock cycle before the first
bit of the current channel-data transmission, while the WS signal continues until the end of the current
channel-data transmission. The SD signal line transmits the most significant bit of audio data first. If the
12S_RX_MSB_SHIFT bit and the 12S_TX_MSB_SHIFT bit of register 12S_CONF_REG are set to 1, respectively,
the 12S module will use the Philips standard when receiving and transmitting data.

12.4.1.2 MSB Alignment Standard

L . R
Bok /SN /N W T\
WS ——
/ N —
sb —< MSB ’ LsB X MSB ’ LSB »—
77 l' 7t
Data0 ' Datal

Figure 62: MSB Alignment Standard

Espressif Systems 299 ESP32 Technical Reference Manual V3.1

12. 125

The MSB alignment standard is shown in Figure 62. WS and SD signals both change simultaneously on the
falling edge of BCK under the MSB alignment standard. The WS signal continues until the end of the current
channel-data transmission, and the SD signal line transmits the most significant bit of audio data first. If the
12S_RX_MSB_SHIFT and 12S_TX_MSB_SHIFT bits of register 12S_CONF_REG are cleared, the 12S module will
use the MSB alignment standard when receiving and transmitting data.

12.4.1.3 PCM Standard

As is shown in Figure 63, under the short frame synchronization mode of the PCM standard, the WS signal starts
to change a BCK clock cycle earlier than the SD signal, which means that the WS signal takes effect a clock
cycle earlier than the first bit of the current channel-data transmission and continues for one extra BCK clock
cycle. The SD signal line transmits the most significant bit of audio data first. If the 12S_RX_SHORT_SYNC and
12S_TX_SHORT_SYNC bits of register 12S_CONF_REG are set, the 12S module will receive and transmit data in
the short frame synchronization mode.

BCK ﬁ_/__f”_/__/__f*_/__

SD ﬁ MSB >§<LSB>; MSB X
Data '

Figure 63: PCM Standard

12.4.2 Module Reset

The four low-order bits in register 12S_CONF_REG, that is, 125_TX_RESET, 12S_RX_RESET,
12S_TX_FIFO_RESET and 12S_RX_FIFO_RESET reset the receive module, the transmit module and the
corresponding FIFO buffer, respectively. In order to finish a reset operation, the corresponding bit should be set
and then cleared by software.

12.4.3 FIFO Operation

The data read/write packet length for a FIFO operation is 32 bits. The data packet format for the FIFO buffer can
be configured using configuration registers. As shown in Figure 59, both sent and received data should be
written into FIFO first and then read from FIFO. There are two approaches to accessing the FIFO; one is to
directly access the FIFO using a CPU, the other is to access the FIFO using a DMA controller.

Generally, both the 12S_RX_FIFO_MOD_FORCE_EN bit and 12S_TX_FIFO_MOD_FORCE_EN bits of register
12S_FIFO_CONF_REG should be set to 1. 12S_TX_DATA_NUM][5:0] bit and 12S_RX_DATA_NUM][5:0] are used to
control the length of the data that have been sent, received and buffered. Hardware inspects the received-data
length RX_LEN and the transmitted-data length TX_LEN. Both the received and the transmitted data are buffered
in the FIFO method.

When RX_LEN is greater than 12S5_RX_DATA_NUM[5:0], the received data, which is buffered in FIFO, has
reached the set threshold and needs to be read out to prevent an overflow. When TX_LEN is less than
12S_TX_DATA_NUM][5:0], the transmitted data, which is buffered in FIFO, has not reached the set threshold and
software can continue feeding data into FIFO.

Espressif Systems 300 ESP32 Technical Reference Manual V3.1

