

FCC Test Report

FCC ID : 2AV5ZGTG21
Equipment : Gen 2.1 Tracker
Model No. : GTG21
Brand Name : Cox2M
Applicant : Cox Communications, Inc.
Address : 6205 Peachtree Dunwoody Rd Attn Legal
Regulatory, Atlanta, Georgia United States.
30328
Standard : 47 CFR FCC Part 15.247
Received Date : Dec. 10, 2021
Tested Date : Jan. 05 ~ Jan. 06, 2022

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Along Chen / Assistant Manager

Approved by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information.....	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Reference Guidance	9
1.7	Deviation from Test Standard and Measurement Procedure.....	9
1.8	Measurement Uncertainty	9
2	TEST CONFIGURATION.....	10
2.1	Testing Facility	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Unwanted Emissions into Restricted Frequency Bands	11
3.2	Unwanted Emissions into Non-Restricted Frequency Bands	25
3.3	Conducted Output Power.....	28
3.4	Number of Hopping Frequency	29
3.5	20dB and Occupied Bandwidth	31
3.6	Channel Separation.....	35
3.7	Number of Dwell Time.....	39
3.8	Power Spectral Density	46
4	TEST LABORATORY INFORMATION	50

Release Record

Report No.	Version	Description	Issued Date
FR1D1001AC	Rev. 01	Initial issue	Jan. 27, 2022

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	Note	N/A
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 2725.50MHz 52.42 (Margin -1.58dB) - AV	Pass
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(2)(3)	Conducted Output Power	Power [dBm]: 19.29	Pass
15.247(a)(1)(i)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(f)	Dwell Time	Meet the requirement of limit	Pass
15.247(f)	Power spectral density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Note: The EUT consumes DC power from battery, so the test is not required.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz)	Ch. Freq. (MHz)	Channel List	Data Rate (bit/sec)	Spread Factor	Channel Bandwidth (kHz)
902 ~ 928	902.3 ~ 914.9	64 channels	980 -5470	7 ~ 10	125
Note 1: RF output power specifies that Maximum Conducted (Average) Output Power.					
Note 2: The device uses LoRa modulation.					
Note 3: The device supports hybrid mode.					

1.1.2 Antenna Details

Ant. No.	Type	Connector	Gain (dBi)
1	FPC	UFL	-3.92

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	3.6Vdc from battery
-------------------	---------------------

1.1.4 Accessories

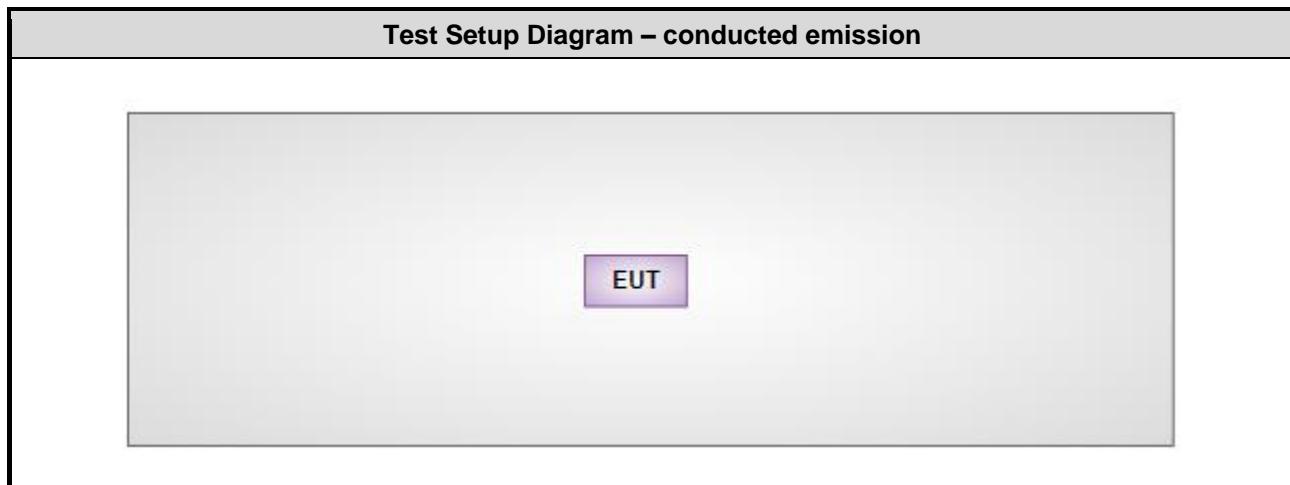
Accessories		
No.	Equipment	Description
1	Battery	Brand: EVE Model: ER14505 I/P: 3.6V/2.7Ah O/P: 3.6V

1.1.5 Channel List

Channel Bandwidth: 125KHz							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	902.3	17	905.5	33	908.7	49	911.9
2	902.5	18	905.7	34	908.9	50	912.1
3	902.7	19	905.9	35	909.1	51	912.3
4	902.9	20	906.1	36	909.3	52	912.5
5	903.1	21	906.3	37	909.5	53	912.7
6	903.3	22	906.5	38	909.7	54	912.9
7	903.5	23	906.7	39	909.9	55	913.1
8	903.7	24	906.9	40	910.1	56	913.3
9	903.9	25	907.1	41	910.3	57	913.5
10	904.1	26	907.3	42	910.5	58	913.7
11	904.3	27	907.5	43	910.7	59	913.9
12	904.5	28	907.7	44	910.9	60	914.1
13	904.7	29	907.9	45	911.1	61	914.3
14	904.9	30	908.1	46	911.3	62	914.5
15	905.1	31	908.3	47	911.5	63	914.7
16	905.3	32	908.5	48	911.7	64	914.9

1.1.6 Test Tool and Duty Cycle

Test Tool	CMD, Version: V6.1.7601	
Duty Cycle and Duty Factor	Duty Cycle (%)	Duty Factor (dB)
Channel Bandwidth: 125KHz	92.37%	0.34


1.1.7 Power Index of Test Tool

Channel Bandwidth: 125KHz	
Test Frequency (MHz)	Power Index
902.3	20
908.5	20
914.9	20

1.2 Local Support Equipment List

Support Equipment List					
No.	Equipment	Brand	Model	FCC ID	Remarks
1	console board with cable	---	---	---	Provided by applicant.
2	Notebook	DELL	Latitude E5470	3J5JVF2	---

1.3 Test Setup Chart

Note: The console board with cable and notebook is disconnected from EUT and removed from test table after sending command from notebook to control EUT to transmit continuously.

1.4 The Equipment List

Test Item	Radiated Emission				
Test Site	966 chamber3 / (03CH03-WS)				
Tested Date	Jan. 05 ~ Jan. 06, 2022				
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until
Receiver	R&S	ESR3	101657	Mar. 12, 2021	Mar. 11, 2022
Spectrum Analyzer	R&S	FSV40	101499	Mar. 02, 2021	Mar. 01, 2022
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 08, 2021	Nov. 07, 2022
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	May 06, 2021	May 05, 2022
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Dec. 20, 2021	Dec. 19, 2022
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2021	Nov. 03, 2022
Preamplifier	EMC	EMC02325	980187	Jul. 26, 2021	Jul. 25, 2022
Preamplifier	Agilent	83017A	MY39501309	Sep. 06, 2021	Sep. 05, 2022
Preamplifier	EMC	EMC184045B	980192	Jul. 14, 2021	Jul. 13, 2022
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 05, 2021	Oct. 04, 2022
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Sep. 24, 2021	Sep. 23, 2022
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Sep. 24, 2021	Sep. 23, 2022
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Sep. 24, 2021	Sep. 23, 2022
RF cable-3M	HUBER+SUHNE R	SUCOFLEX104	MY22620/4	Sep. 24, 2021	Sep. 23, 2022
RF cable-8M	EMC	EMC104-SM-SM-8000	181107	Sep. 24, 2021	Sep. 23, 2022
Measurement Software	AUDIX	e3	6.120210g	NA	NA
Note: Calibration Interval of instruments listed above is one year.					

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Tested Date	Jan. 05, 2022				
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Apr. 19, 2021	Apr. 18, 2022
Power Meter	Anritsu	ML2495A	1241002	Nov. 07, 2021	Nov. 06, 2022
Power Sensor	Anritsu	MA2411B	1207366	Nov. 07, 2021	Nov. 06, 2022
Measurement Software	Sporton	SENSE-15247_FS	V5.10.7.11	NA	NA
Note: Calibration Interval of instruments listed above is one year.					

1.5 Test Standards

47 CFR FCC Part 15.247

ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.130 Hz
Conducted power	±0.808 dB
Power density	±0.583 dB
Radiated emission ≤ 1GHz	±3.96 dB
Radiated emission > 1GHz	±4.51 dB

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corporation
Test Site	CO01-WS, TH01-WS
Address of Test Site	No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)
Test Site	03CH03-WS
Address of Test Site	No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.)

- FCC Designation No.: TW0009
- FCC site registration No.: 207696
- ISED#: 10807A
- CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Channel Bandwidth (kHz)	Test Frequency (MHz)	Separating Factor
Conducted Emissions			
Radiated Emissions			
Conducted Output Power			
Hopping Channel Separation	125	902.3 / 908.5 / 914.9	SF10
20dB and Occupied bandwidth			
Power Spectral Density			
Unwanted Emissions into Non-Restricted Frequency Bands			
Number of Hopping Channels	125	902.3 ~ 914.9	SF10
Dwell Time	125	902.3	SF10, 9, 8, 7
NOTE:			
1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.			
2. The EUT comes in two sources of buck-boost regulator (Ricoh, and TI), and found that Ricoh was the worst case and was selected for final test.			

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

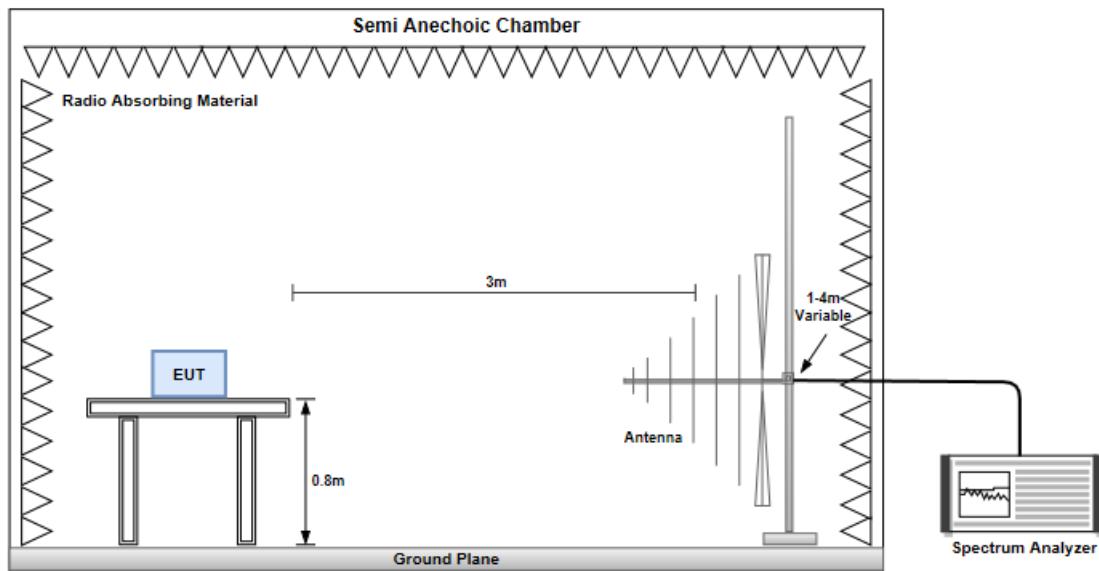
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

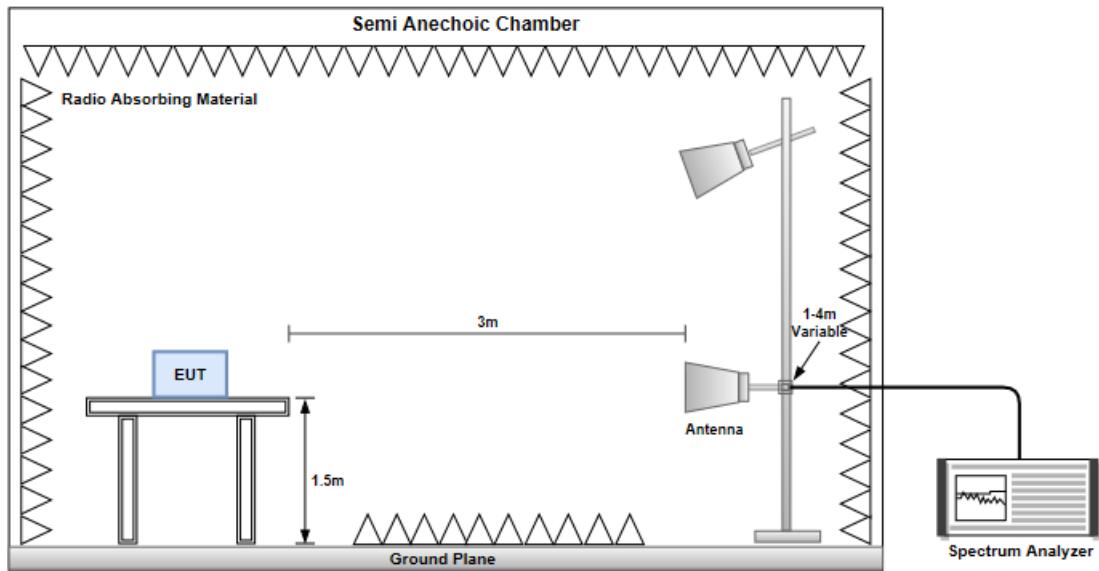
Note 2:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

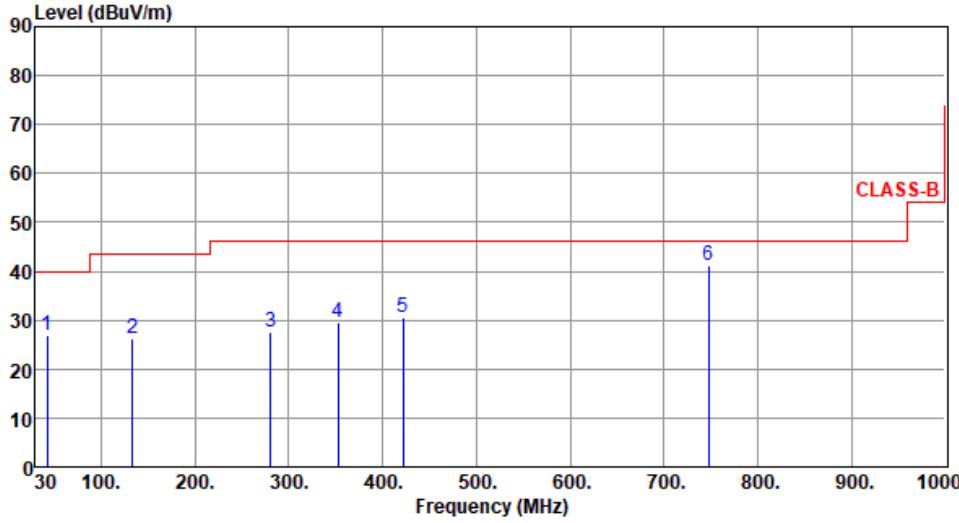
3.1.2 Test Procedures

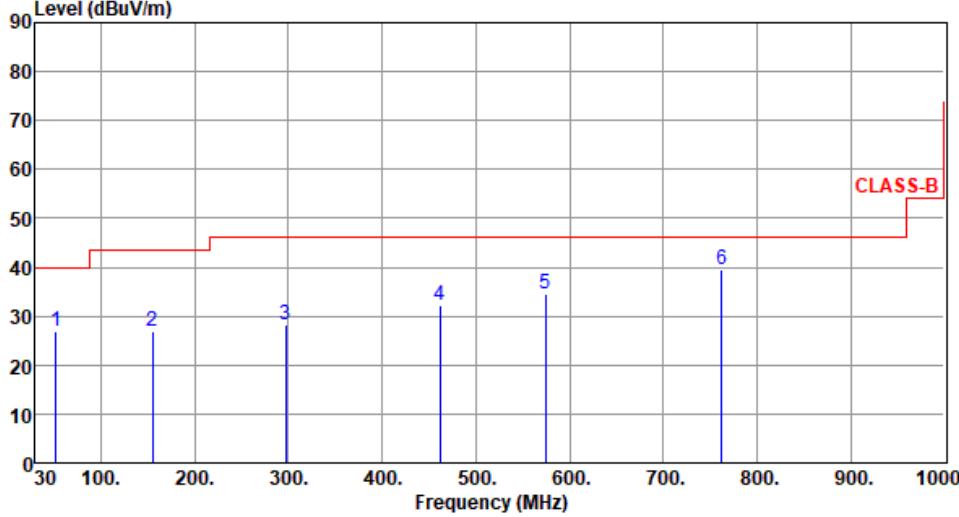

1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:


1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

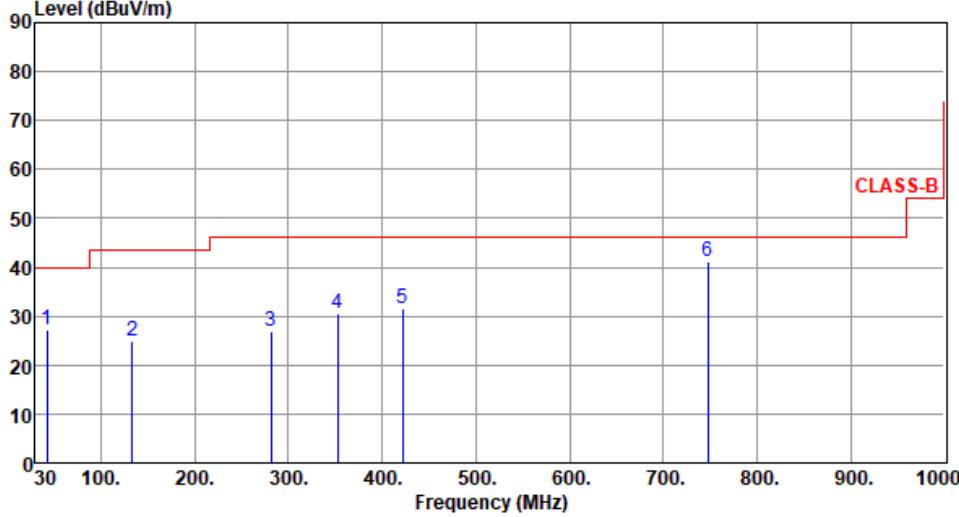
3.1.3 Test Setup


Radiated Emissions below 1 GHz



Radiated Emissions above 1 GHz

3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)


Modulation / SF	CSS / 10	Test Freq. (MHz)	902.3																																																																										
Polarization	Horizontal																																																																												
Test By	: Roger Lu	Temperature(°C):24	Humidity(%):65																																																																										
<table border="1"> <thead> <tr> <th>Freq.</th> <th>Emission Limit</th> <th>Margin</th> <th>SA Factor</th> <th>Remark</th> <th>ANT High</th> <th>Turn Table</th> </tr> <tr> <th>MHz</th> <th>level</th> <th>dBuV/m</th> <th>dB</th> <th>reading</th> <th>dB/m</th> <th>deg</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>42.61</td> <td>26.85</td> <td>40.00</td> <td>-13.15</td> <td>35.75</td> <td>-8.90</td> <td>Peak</td> <td>---</td> <td>---</td> </tr> <tr> <td>2</td> <td>133.79</td> <td>26.37</td> <td>43.50</td> <td>-17.13</td> <td>35.82</td> <td>-9.45</td> <td>Peak</td> <td>---</td> <td>---</td> </tr> <tr> <td>3</td> <td>280.26</td> <td>27.73</td> <td>46.00</td> <td>-18.27</td> <td>36.31</td> <td>-8.58</td> <td>Peak</td> <td>---</td> <td>---</td> </tr> <tr> <td>4</td> <td>353.01</td> <td>29.43</td> <td>46.00</td> <td>-16.57</td> <td>36.30</td> <td>-6.87</td> <td>Peak</td> <td>---</td> <td>---</td> </tr> <tr> <td>5</td> <td>421.88</td> <td>30.44</td> <td>46.00</td> <td>-15.56</td> <td>35.20</td> <td>-4.76</td> <td>Peak</td> <td>---</td> <td>---</td> </tr> <tr> <td>6</td> <td>747.80</td> <td>41.20</td> <td>46.00</td> <td>-4.80</td> <td>38.34</td> <td>2.86</td> <td>Peak</td> <td>---</td> <td>---</td> </tr> </tbody> </table>				Freq.	Emission Limit	Margin	SA Factor	Remark	ANT High	Turn Table	MHz	level	dBuV/m	dB	reading	dB/m	deg	1	42.61	26.85	40.00	-13.15	35.75	-8.90	Peak	---	---	2	133.79	26.37	43.50	-17.13	35.82	-9.45	Peak	---	---	3	280.26	27.73	46.00	-18.27	36.31	-8.58	Peak	---	---	4	353.01	29.43	46.00	-16.57	36.30	-6.87	Peak	---	---	5	421.88	30.44	46.00	-15.56	35.20	-4.76	Peak	---	---	6	747.80	41.20	46.00	-4.80	38.34	2.86	Peak	---	---
Freq.	Emission Limit	Margin	SA Factor	Remark	ANT High	Turn Table																																																																							
MHz	level	dBuV/m	dB	reading	dB/m	deg																																																																							
1	42.61	26.85	40.00	-13.15	35.75	-8.90	Peak	---	---																																																																				
2	133.79	26.37	43.50	-17.13	35.82	-9.45	Peak	---	---																																																																				
3	280.26	27.73	46.00	-18.27	36.31	-8.58	Peak	---	---																																																																				
4	353.01	29.43	46.00	-16.57	36.30	-6.87	Peak	---	---																																																																				
5	421.88	30.44	46.00	-15.56	35.20	-4.76	Peak	---	---																																																																				
6	747.80	41.20	46.00	-4.80	38.34	2.86	Peak	---	---																																																																				
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).																																																																													

Modulation / SF	CSS / 10	Test Freq. (MHz)	902.3						
Polarization	Vertical								
Test By	: Roger Lu	Temperature (°C): 24	Humidity (%): 65						
Test By : Roger Lu Temperature (°C) : 24 Humidity (%) : 65									
Freq. MHz	Emission level dBuV/m	Margin dB	SA reading dBuV	Factor dB/m	Remark	ANT High cm	Turn Table deg		
1	52.31	26.85	40.00	-13.15	36.01	-9.16	Peak	---	---
2	155.13	27.04	43.50	-16.46	35.55	-8.51	Peak	---	---
3	296.75	28.20	46.00	-17.80	36.44	-8.24	Peak	---	---
4	461.65	32.06	46.00	-13.94	35.48	-3.42	Peak	---	---
5	574.17	34.41	46.00	-11.59	35.46	-1.05	Peak	---	---
6	762.35	39.66	46.00	-6.34	36.61	3.05	Peak	---	---

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

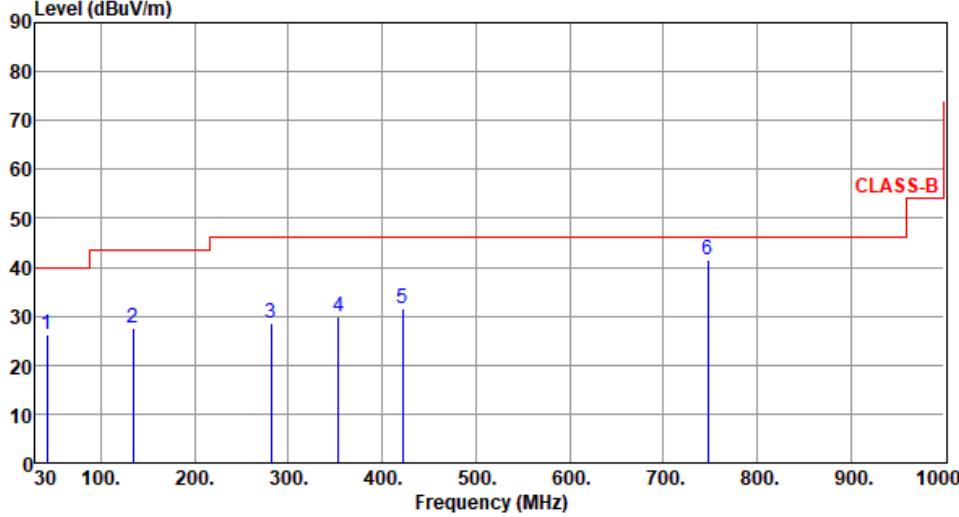
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Modulation / SF	CSS / 10	Test Freq. (MHz)	908.5					
Polarization	Horizontal							
Test By	:Roger Lu	Temperature(°C):24	Humidity(%):65					
Test By :Roger Lu Temperature(°C):24 Humidity(%):65								
Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB/m	Remark	ANT High cm	Turn Table deg
1	42.85	27.36	40.00	-12.64	36.29	-8.93	Peak	---
2	133.56	24.86	43.50	-18.64	34.39	-9.53	Peak	---
3	281.35	26.89	46.00	-19.11	35.44	-8.55	Peak	---
4	352.46	30.58	46.00	-15.42	37.47	-6.89	Peak	---
5	421.65	31.56	46.00	-14.44	36.33	-4.77	Peak	---
6	747.56	41.03	46.00	-4.97	38.17	2.86	Peak	---

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
 *Factor includes antenna factor , cable loss and amplifier gain
 Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Modulation / SF	CSS / 10	Test Freq. (MHz)	908.5
Polarization	Vertical		
Test By	: Roger Lu	Temperature(°C):	24
		Humidity(%):	65

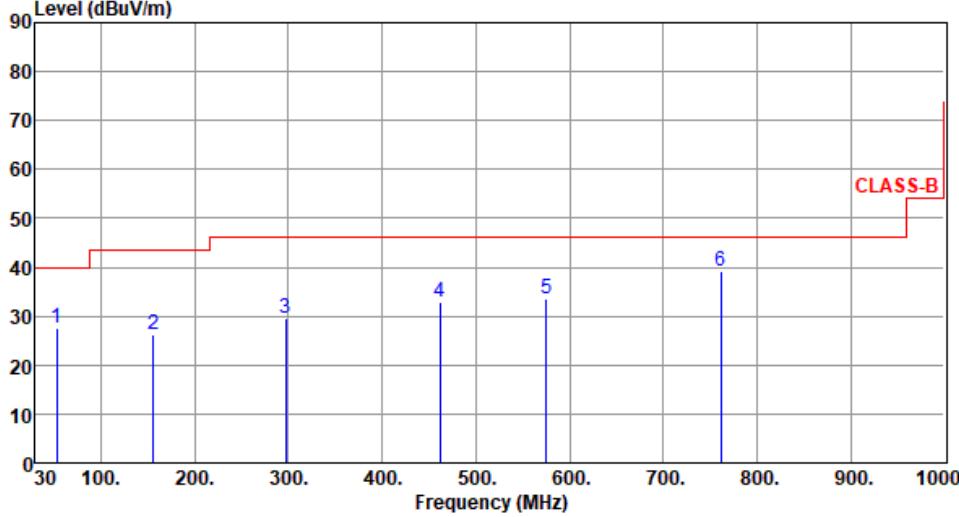
Level (dBuV/m)


Frequency (MHz)

	Freq. level MHz	Emission limit dBuV/m	Margin dB	SA reading dBuV	Factor dB/m	Remark	ANT High cm	Turn Table deg
1	52.46	26.65	40.00 -13.35	35.86	-9.21	Peak	---	---
2	155.31	27.58	43.50 -15.92	36.09	-8.51	Peak	---	---
3	295.16	27.46	46.00 -18.54	35.70	-8.24	Peak	---	---
4	460.58	32.65	46.00 -13.35	36.10	-3.45	Peak	---	---
5	575.26	35.86	46.00 -10.14	36.86	-1.00	Peak	---	---
6	763.25	39.45	46.00 -6.55	36.39	3.06	Peak	---	---

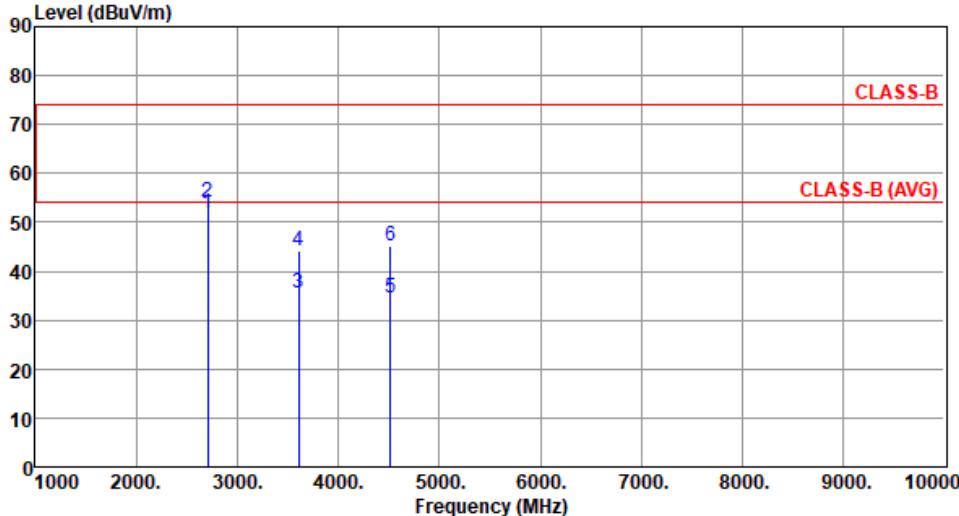
Note 1: Emission Level (dB_{BV}/m) = SA Reading (dB_{BV}/m) + Factor* (dB)

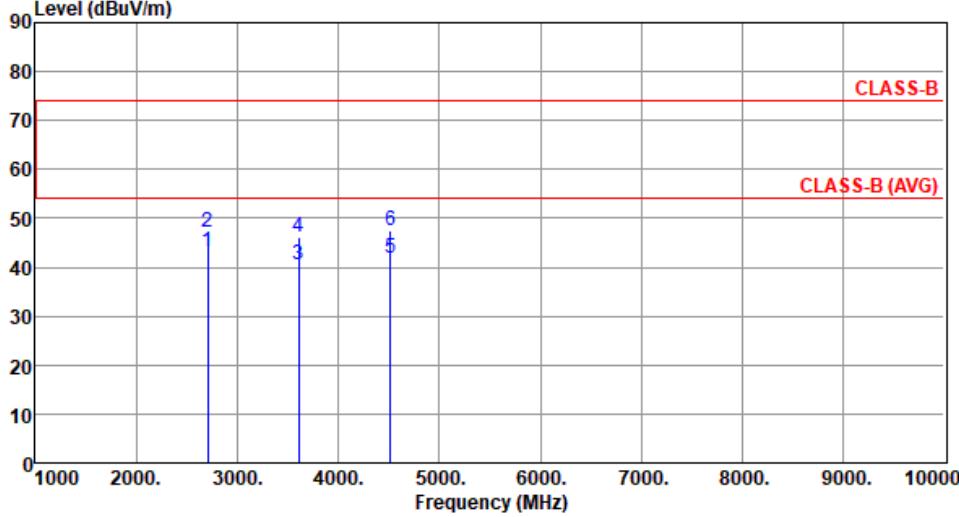
*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Modulation / SF	CSS / 10	Test Freq. (MHz)	914.9					
Polarization	Horizontal							
Test By	:Roger Lu	Temperature(°C):24	Humidity(%):65					
Test By :Roger Lu Temperature(°C):24 Humidity(%):65								
Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB/m	Remark	ANT High cm	Turn Table deg
1	42.36	26.15	40.00	-13.85	35.04	-8.89	Peak	---
2	134.26	27.59	43.50	-15.91	36.98	-9.39	Peak	---
3	281.34	28.56	46.00	-17.44	37.11	-8.55	Peak	---
4	353.29	29.85	46.00	-16.15	36.71	-6.86	Peak	---
5	421.65	31.56	46.00	-14.44	36.33	-4.77	Peak	---
6	747.56	41.38	46.00	-4.62	38.52	2.86	Peak	---

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

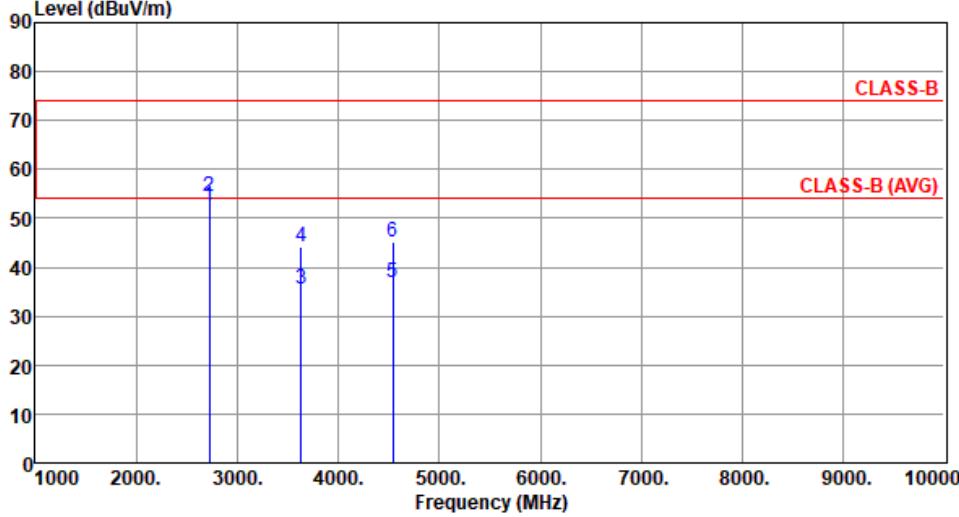

*Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Modulation / SF	CSS / 10	Test Freq. (MHz)	914.9						
Polarization	Vertical								
Test By	:Roger Lu	Temperature(°C):24	Humidity(%):65						
Test By :Roger Lu Temperature(°C):24 Humidity(%):65									
Freq. MHz	Emission level dBuV/m	Margin dB	SA reading dBuV	Factor dB/m	Remark	ANT High cm	Turn Table deg		
1	52.59	27.46	40.00	-12.54	36.71	-9.25	Peak	---	---
2	155.59	26.15	43.50	-17.35	34.66	-8.51	Peak	---	---
3	297.42	29.45	46.00	-16.55	37.69	-8.24	Peak	---	---
4	461.33	32.95	46.00	-13.05	36.37	-3.42	Peak	---	---
5	575.26	33.54	46.00	-12.46	34.54	-1.00	Peak	---	---
6	761.46	39.25	46.00	-6.75	36.20	3.05	Peak	---	---

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
 *Factor includes antenna factor , cable loss and amplifier gain
 Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

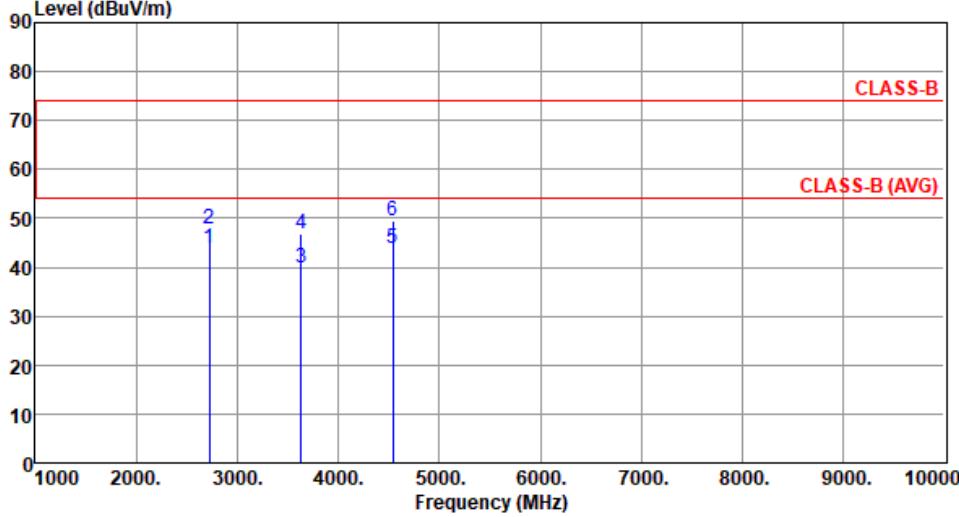
3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)


Modulation / SF	CSS / 10	Test Freq. (MHz)	902.3																																																																														
Polarization	Horizontal																																																																																
Test By	:Roger Lu	Temperature(°C):24	Humidity(%):69																																																																														
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Freq.</th> <th style="text-align: left;">Emission</th> <th style="text-align: left;">Limit</th> <th style="text-align: left;">Margin</th> <th style="text-align: left;">SA</th> <th style="text-align: left;">Factor</th> <th style="text-align: left;">Remark</th> <th style="text-align: left;">ANT</th> <th style="text-align: left;">Turn</th> </tr> <tr> <th style="text-align: left;">MHz</th> <th style="text-align: left;">level</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">dBuV</th> <th style="text-align: left;">dB/m</th> <th style="text-align: left;">High</th> <th style="text-align: left;">Table</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2706.90</td> <td>51.96</td> <td>54.00</td> <td>-2.04</td> <td>52.99</td> <td>-1.03</td> <td>Average</td> <td>263</td> <td>186</td> </tr> <tr> <td>2</td> <td>2706.90</td> <td>54.05</td> <td>74.00</td> <td>-19.95</td> <td>55.08</td> <td>-1.03</td> <td>Peak</td> <td>263</td> <td>186</td> </tr> <tr> <td>3</td> <td>3609.20</td> <td>35.44</td> <td>54.00</td> <td>-18.56</td> <td>33.48</td> <td>1.96</td> <td>Average</td> <td>251</td> <td>90</td> </tr> <tr> <td>4</td> <td>3609.20</td> <td>44.05</td> <td>74.00</td> <td>-29.95</td> <td>42.09</td> <td>1.96</td> <td>Peak</td> <td>251</td> <td>90</td> </tr> <tr> <td>5</td> <td>4511.50</td> <td>34.61</td> <td>54.00</td> <td>-19.39</td> <td>29.94</td> <td>4.67</td> <td>Average</td> <td>105</td> <td>3</td> </tr> <tr> <td>6</td> <td>4511.50</td> <td>45.17</td> <td>74.00</td> <td>-28.83</td> <td>40.50</td> <td>4.67</td> <td>Peak</td> <td>105</td> <td>3</td> </tr> </tbody> </table>				Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	dBuV/m	dB	reading	dBuV	dB/m	High	Table	1	2706.90	51.96	54.00	-2.04	52.99	-1.03	Average	263	186	2	2706.90	54.05	74.00	-19.95	55.08	-1.03	Peak	263	186	3	3609.20	35.44	54.00	-18.56	33.48	1.96	Average	251	90	4	3609.20	44.05	74.00	-29.95	42.09	1.96	Peak	251	90	5	4511.50	34.61	54.00	-19.39	29.94	4.67	Average	105	3	6	4511.50	45.17	74.00	-28.83	40.50	4.67	Peak	105	3
Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																									
MHz	level	dBuV/m	dB	reading	dBuV	dB/m	High	Table																																																																									
1	2706.90	51.96	54.00	-2.04	52.99	-1.03	Average	263	186																																																																								
2	2706.90	54.05	74.00	-19.95	55.08	-1.03	Peak	263	186																																																																								
3	3609.20	35.44	54.00	-18.56	33.48	1.96	Average	251	90																																																																								
4	3609.20	44.05	74.00	-29.95	42.09	1.96	Peak	251	90																																																																								
5	4511.50	34.61	54.00	-19.39	29.94	4.67	Average	105	3																																																																								
6	4511.50	45.17	74.00	-28.83	40.50	4.67	Peak	105	3																																																																								
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).																																																																																	

Modulation / SF	CSS / 10		Test Freq. (MHz)	902.3					
Polarization	Vertical								
Test By	:Roger Lu		Temperature(°C):24	Humidity(%):69					
Level (dBuV/m)									
Freq. MHz	Emission level dBuV/m	Margin dB	SA reading dBuV	Factor dB/m	Remark	ANT High cm	Turn Table deg		
1	2706.90	43.16	54.00	-10.84	44.19	-1.03	Average	262	355
2	2706.90	46.99	74.00	-27.01	48.02	-1.03	Peak	262	355
3	3609.20	40.55	54.00	-13.45	38.59	1.96	Average	172	159
4	3609.20	46.27	74.00	-27.73	44.31	1.96	Peak	172	159
5	4511.50	41.86	54.00	-12.14	37.19	4.67	Average	100	152
6	4511.50	47.56	74.00	-26.44	42.89	4.67	Peak	100	152

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

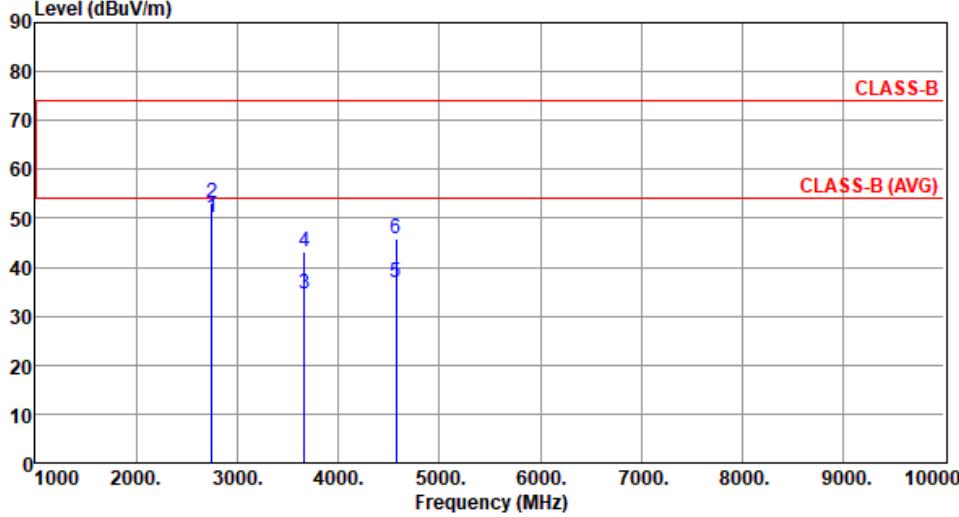
*Factor includes antenna factor , cable loss and amplifier gain

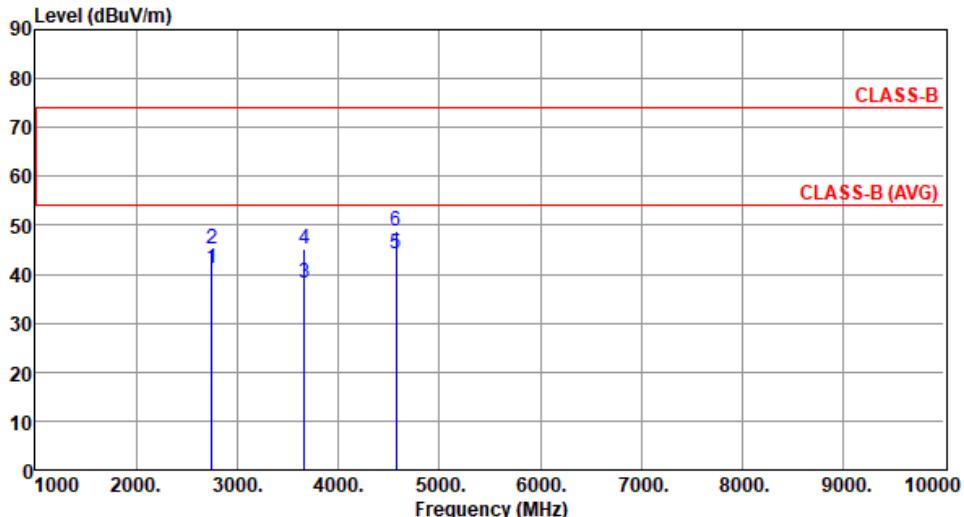

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Modulation / SF	CSS / 10	Test Freq. (MHz)	908.5																																																																														
Polarization	Horizontal																																																																																
Test By	:Roger Lu	Temperature(°C):24	Humidity(%):69																																																																														
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Freq.</th> <th style="text-align: left;">Emission</th> <th style="text-align: left;">Limit</th> <th style="text-align: left;">Margin</th> <th style="text-align: left;">SA</th> <th style="text-align: left;">Factor</th> <th style="text-align: left;">Remark</th> <th style="text-align: left;">ANT</th> <th style="text-align: left;">Turn</th> </tr> <tr> <th style="text-align: left;">MHz</th> <th style="text-align: left;">level</th> <th style="text-align: left;">dBuV/m</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">dB/m</th> <th></th> <th style="text-align: left;">High</th> <th style="text-align: left;">Table</th> </tr> </thead> <tbody> <tr> <td style="text-align: left;">1</td> <td style="text-align: left;">2725.50</td> <td style="text-align: left;">52.42</td> <td style="text-align: left;">54.00</td> <td style="text-align: left;">-1.58</td> <td style="text-align: left;">53.38</td> <td style="text-align: left;">-0.96</td> <td style="text-align: left;">Average</td> <td style="text-align: left;">326</td> <td style="text-align: left;">170</td> </tr> <tr> <td style="text-align: left;">2</td> <td style="text-align: left;">2725.50</td> <td style="text-align: left;">54.51</td> <td style="text-align: left;">74.00</td> <td style="text-align: left;">-19.49</td> <td style="text-align: left;">55.47</td> <td style="text-align: left;">-0.96</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">326</td> <td style="text-align: left;">170</td> </tr> <tr> <td style="text-align: left;">3</td> <td style="text-align: left;">3634.00</td> <td style="text-align: left;">35.49</td> <td style="text-align: left;">54.00</td> <td style="text-align: left;">-18.51</td> <td style="text-align: left;">33.44</td> <td style="text-align: left;">2.05</td> <td style="text-align: left;">Average</td> <td style="text-align: left;">225</td> <td style="text-align: left;">95</td> </tr> <tr> <td style="text-align: left;">4</td> <td style="text-align: left;">3634.00</td> <td style="text-align: left;">44.14</td> <td style="text-align: left;">74.00</td> <td style="text-align: left;">-29.86</td> <td style="text-align: left;">42.09</td> <td style="text-align: left;">2.05</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">225</td> <td style="text-align: left;">95</td> </tr> <tr> <td style="text-align: left;">5</td> <td style="text-align: left;">4542.50</td> <td style="text-align: left;">36.90</td> <td style="text-align: left;">54.00</td> <td style="text-align: left;">-17.10</td> <td style="text-align: left;">32.08</td> <td style="text-align: left;">4.82</td> <td style="text-align: left;">Average</td> <td style="text-align: left;">100</td> <td style="text-align: left;">2</td> </tr> <tr> <td style="text-align: left;">6</td> <td style="text-align: left;">4542.50</td> <td style="text-align: left;">45.22</td> <td style="text-align: left;">74.00</td> <td style="text-align: left;">-28.78</td> <td style="text-align: left;">40.40</td> <td style="text-align: left;">4.82</td> <td style="text-align: left;">Peak</td> <td style="text-align: left;">100</td> <td style="text-align: left;">2</td> </tr> </tbody> </table>				Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	dBuV/m	dB	reading	dB/m		High	Table	1	2725.50	52.42	54.00	-1.58	53.38	-0.96	Average	326	170	2	2725.50	54.51	74.00	-19.49	55.47	-0.96	Peak	326	170	3	3634.00	35.49	54.00	-18.51	33.44	2.05	Average	225	95	4	3634.00	44.14	74.00	-29.86	42.09	2.05	Peak	225	95	5	4542.50	36.90	54.00	-17.10	32.08	4.82	Average	100	2	6	4542.50	45.22	74.00	-28.78	40.40	4.82	Peak	100	2
Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																									
MHz	level	dBuV/m	dB	reading	dB/m		High	Table																																																																									
1	2725.50	52.42	54.00	-1.58	53.38	-0.96	Average	326	170																																																																								
2	2725.50	54.51	74.00	-19.49	55.47	-0.96	Peak	326	170																																																																								
3	3634.00	35.49	54.00	-18.51	33.44	2.05	Average	225	95																																																																								
4	3634.00	44.14	74.00	-29.86	42.09	2.05	Peak	225	95																																																																								
5	4542.50	36.90	54.00	-17.10	32.08	4.82	Average	100	2																																																																								
6	4542.50	45.22	74.00	-28.78	40.40	4.82	Peak	100	2																																																																								

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Modulation / SF	CSS / 10		Test Freq. (MHz)	908.5					
Polarization	Vertical								
Test By	:Roger Lu		Temperature(°C):24	Humidity(%):69					
Level (dBuV/m)									
Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB/m	Remark	ANT High cm	Turn Table deg	
1	2725.50	43.84	54.00	-10.16	44.80	-0.96	Average	268	357
2	2725.50	47.98	74.00	-26.02	48.94	-0.96	Peak	268	357
3	3634.00	39.82	54.00	-14.18	37.77	2.05	Average	151	137
4	3634.00	46.73	74.00	-27.27	44.68	2.05	Peak	151	137
5	4542.50	43.87	54.00	-10.13	39.05	4.82	Average	100	150
6	4542.50	49.49	74.00	-24.51	44.67	4.82	Peak	100	150

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Modulation / SF	CSS / 10	Test Freq. (MHz)	914.9																																																																												
Polarization	Horizontal																																																																														
Test By	:Roger Lu	Temperature(°C):24	Humidity(%):69																																																																												
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Freq.</th> <th style="text-align: left;">Emission Limit</th> <th style="text-align: left;">Margin</th> <th style="text-align: left;">SA</th> <th style="text-align: left;">Factor</th> <th style="text-align: left;">Remark</th> <th style="text-align: left;">ANT</th> <th style="text-align: left;">Turn</th> </tr> <tr> <th style="text-align: left;">MHz</th> <th style="text-align: left;">level</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">dB/m</th> <th></th> <th style="text-align: left;">High</th> <th style="text-align: left;">Table</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2744.70</td> <td>50.22</td> <td>54.00</td> <td>-3.78</td> <td>51.12</td> <td>-0.90</td> <td>Average</td> <td>286</td> <td>178</td> </tr> <tr> <td>2</td> <td>2744.70</td> <td>53.02</td> <td>74.00</td> <td>-20.98</td> <td>53.92</td> <td>-0.90</td> <td>Peak</td> <td>286</td> <td>178</td> </tr> <tr> <td>3</td> <td>3659.60</td> <td>34.46</td> <td>54.00</td> <td>-19.54</td> <td>32.34</td> <td>2.12</td> <td>Average</td> <td>259</td> <td>92</td> </tr> <tr> <td>4</td> <td>3659.60</td> <td>43.05</td> <td>74.00</td> <td>-30.95</td> <td>40.93</td> <td>2.12</td> <td>Peak</td> <td>259</td> <td>92</td> </tr> <tr> <td>5</td> <td>4574.50</td> <td>36.94</td> <td>54.00</td> <td>-17.06</td> <td>32.01</td> <td>4.93</td> <td>Average</td> <td>100</td> <td>5</td> </tr> <tr> <td>6</td> <td>4574.50</td> <td>45.75</td> <td>74.00</td> <td>-28.25</td> <td>40.82</td> <td>4.93</td> <td>Peak</td> <td>100</td> <td>5</td> </tr> </tbody> </table>				Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	dB	reading	dB/m		High	Table	1	2744.70	50.22	54.00	-3.78	51.12	-0.90	Average	286	178	2	2744.70	53.02	74.00	-20.98	53.92	-0.90	Peak	286	178	3	3659.60	34.46	54.00	-19.54	32.34	2.12	Average	259	92	4	3659.60	43.05	74.00	-30.95	40.93	2.12	Peak	259	92	5	4574.50	36.94	54.00	-17.06	32.01	4.93	Average	100	5	6	4574.50	45.75	74.00	-28.25	40.82	4.93	Peak	100	5
Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																								
MHz	level	dB	reading	dB/m		High	Table																																																																								
1	2744.70	50.22	54.00	-3.78	51.12	-0.90	Average	286	178																																																																						
2	2744.70	53.02	74.00	-20.98	53.92	-0.90	Peak	286	178																																																																						
3	3659.60	34.46	54.00	-19.54	32.34	2.12	Average	259	92																																																																						
4	3659.60	43.05	74.00	-30.95	40.93	2.12	Peak	259	92																																																																						
5	4574.50	36.94	54.00	-17.06	32.01	4.93	Average	100	5																																																																						
6	4574.50	45.75	74.00	-28.25	40.82	4.93	Peak	100	5																																																																						
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).																																																																															

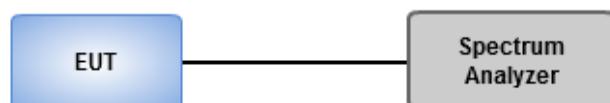
Modulation / SF	CSS / 10	Test Freq. (MHz)	914.9																																																																
Polarization	Vertical																																																																		
Test By	:Roger Lu	Temperature(°C):24	Humidity(%):69																																																																
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Freq.</th> <th style="text-align: left;">Emission Limit</th> <th style="text-align: left;">Margin</th> <th style="text-align: left;">SA</th> <th style="text-align: left;">Factor</th> <th style="text-align: left;">Remark</th> <th style="text-align: left;">ANT</th> <th style="text-align: left;">Turn</th> </tr> <tr> <th style="text-align: left;">MHz</th> <th style="text-align: left;">level</th> <th style="text-align: left;">dB</th> <th style="text-align: left;">reading</th> <th style="text-align: left;">dB/m</th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2744.70</td> <td>41.29</td> <td>54.00</td> <td>-12.71</td> <td>42.19</td> <td>-0.90</td> <td>Average</td> </tr> <tr> <td>2</td> <td>2744.70</td> <td>45.20</td> <td>74.00</td> <td>-28.80</td> <td>46.10</td> <td>-0.90</td> <td>Peak</td> </tr> <tr> <td>3</td> <td>3659.60</td> <td>38.23</td> <td>54.00</td> <td>-15.77</td> <td>36.11</td> <td>2.12</td> <td>Average</td> </tr> <tr> <td>4</td> <td>3659.60</td> <td>45.26</td> <td>74.00</td> <td>-28.74</td> <td>43.14</td> <td>2.12</td> <td>Peak</td> </tr> <tr> <td>5</td> <td>4574.50</td> <td>44.25</td> <td>54.00</td> <td>-9.75</td> <td>39.32</td> <td>4.93</td> <td>Average</td> </tr> <tr> <td>6</td> <td>4574.50</td> <td>48.98</td> <td>74.00</td> <td>-25.02</td> <td>44.05</td> <td>4.93</td> <td>Peak</td> </tr> </tbody> </table>				Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	dB	reading	dB/m				1	2744.70	41.29	54.00	-12.71	42.19	-0.90	Average	2	2744.70	45.20	74.00	-28.80	46.10	-0.90	Peak	3	3659.60	38.23	54.00	-15.77	36.11	2.12	Average	4	3659.60	45.26	74.00	-28.74	43.14	2.12	Peak	5	4574.50	44.25	54.00	-9.75	39.32	4.93	Average	6	4574.50	48.98	74.00	-25.02	44.05	4.93	Peak
Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn																																																												
MHz	level	dB	reading	dB/m																																																															
1	2744.70	41.29	54.00	-12.71	42.19	-0.90	Average																																																												
2	2744.70	45.20	74.00	-28.80	46.10	-0.90	Peak																																																												
3	3659.60	38.23	54.00	-15.77	36.11	2.12	Average																																																												
4	3659.60	45.26	74.00	-28.74	43.14	2.12	Peak																																																												
5	4574.50	44.25	54.00	-9.75	39.32	4.93	Average																																																												
6	4574.50	48.98	74.00	-25.02	44.05	4.93	Peak																																																												
<p>Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).</p>																																																																			

3.2 Unwanted Emissions into Non-Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

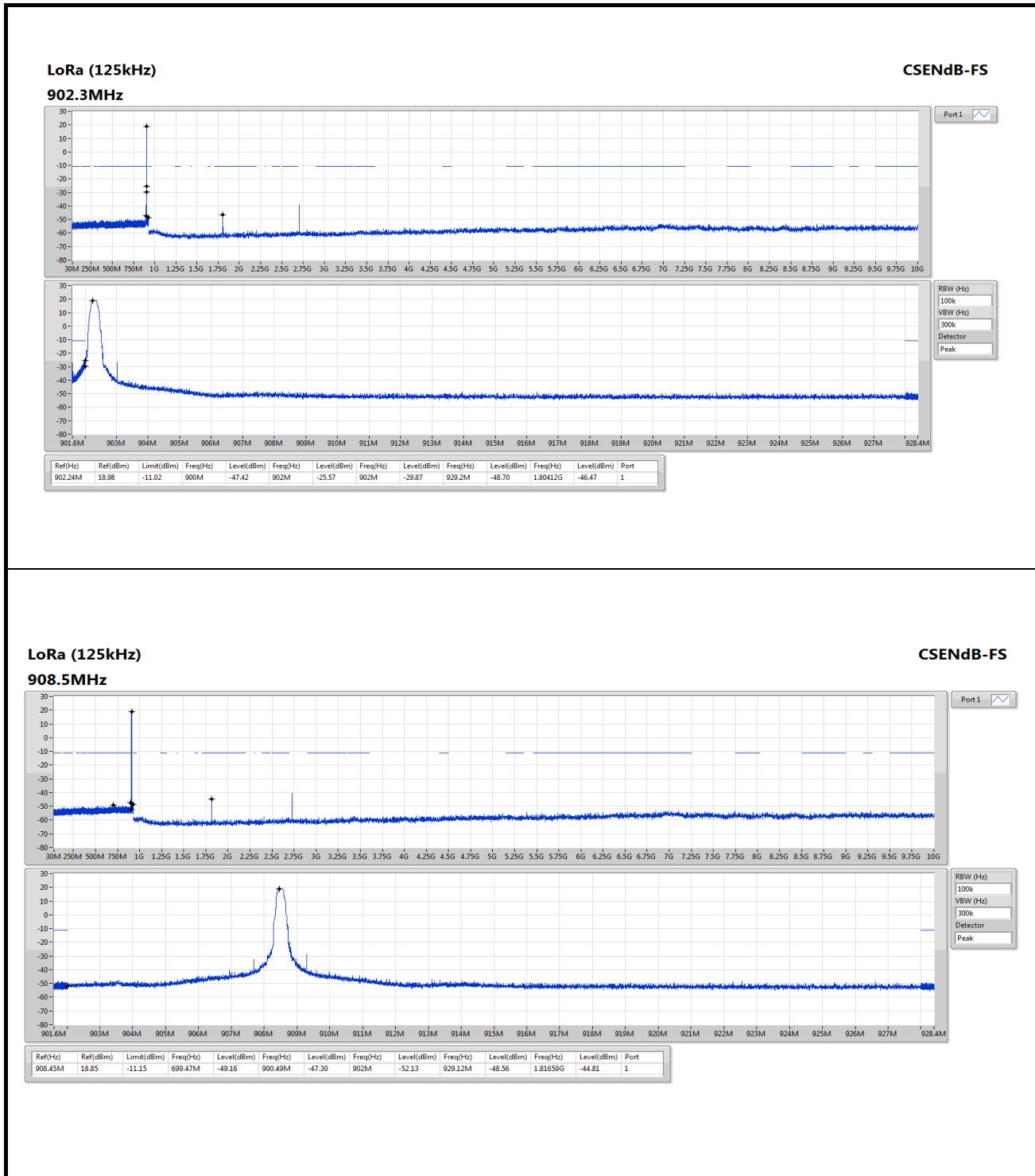
The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.2.2 Test Procedures

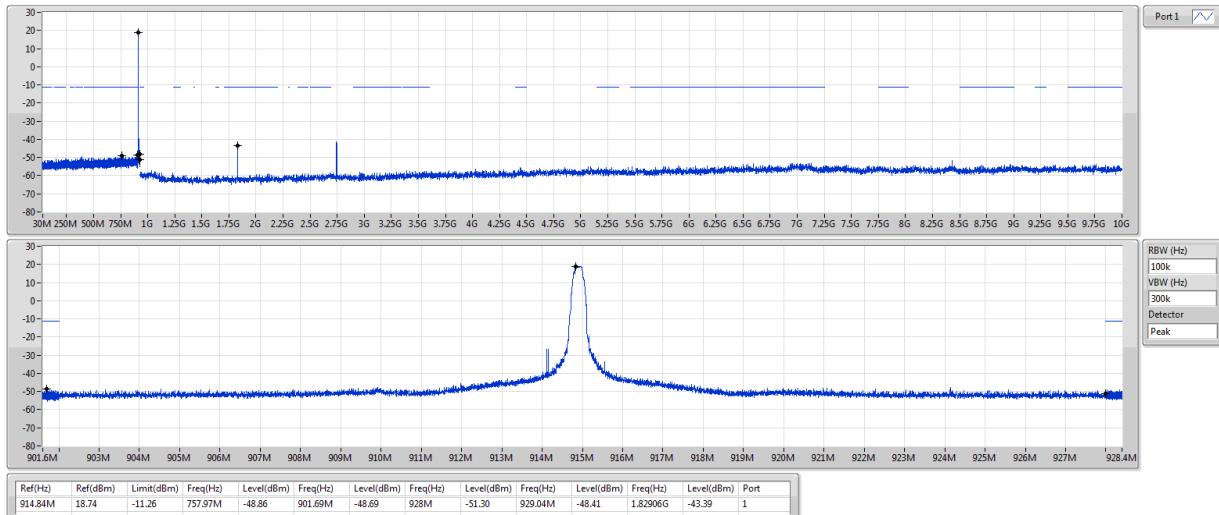

Reference Level Measurement

1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
2. Set Sweep time = auto couple, Trace mode = max hold.
3. Allow trace to fully stabilize.
4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement


1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
2. Trace Mode = max hold, Sweep = auto couple.
3. Allow the trace to stabilize.
4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.2.3 Test Setup


3.2.4 Unwanted Emissions into Non-Restricted Frequency Bands

Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------

LoRa (125kHz)

914.9MHz

LoRa (125kHz)

902.3MHz-Hopping On

3.3 Conducted Output Power

3.3.1 Limit of Conducted Output Power

1W

3.3.2 Test Procedures

1. A wideband power meter is used for power measurement. Bandwidth of power sensor and meter is 50MHz
2. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.3.3 Test Setup

3.3.4 Test Result of Conducted Output Power

Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------

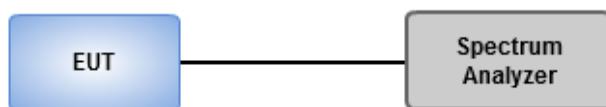
Summary

Mode	Power (dBm)	Power (W)
902-928MHz	-	-
LoRa (125kHz)	19.29	0.08492

Result

Mode	Result	Gain (dBi)	Power (dBm)	Power Limit (dBm)
LoRa (125kHz)	-	-	-	-
902.3MHz	Pass	-3.92	19.29	30.00
908.5MHz	Pass	-3.92	19.16	30.00
914.9MHz	Pass	-3.92	19.03	30.00

3.4 Number of Hopping Frequency


3.4.1 Limit of Number of Hopping Frequency

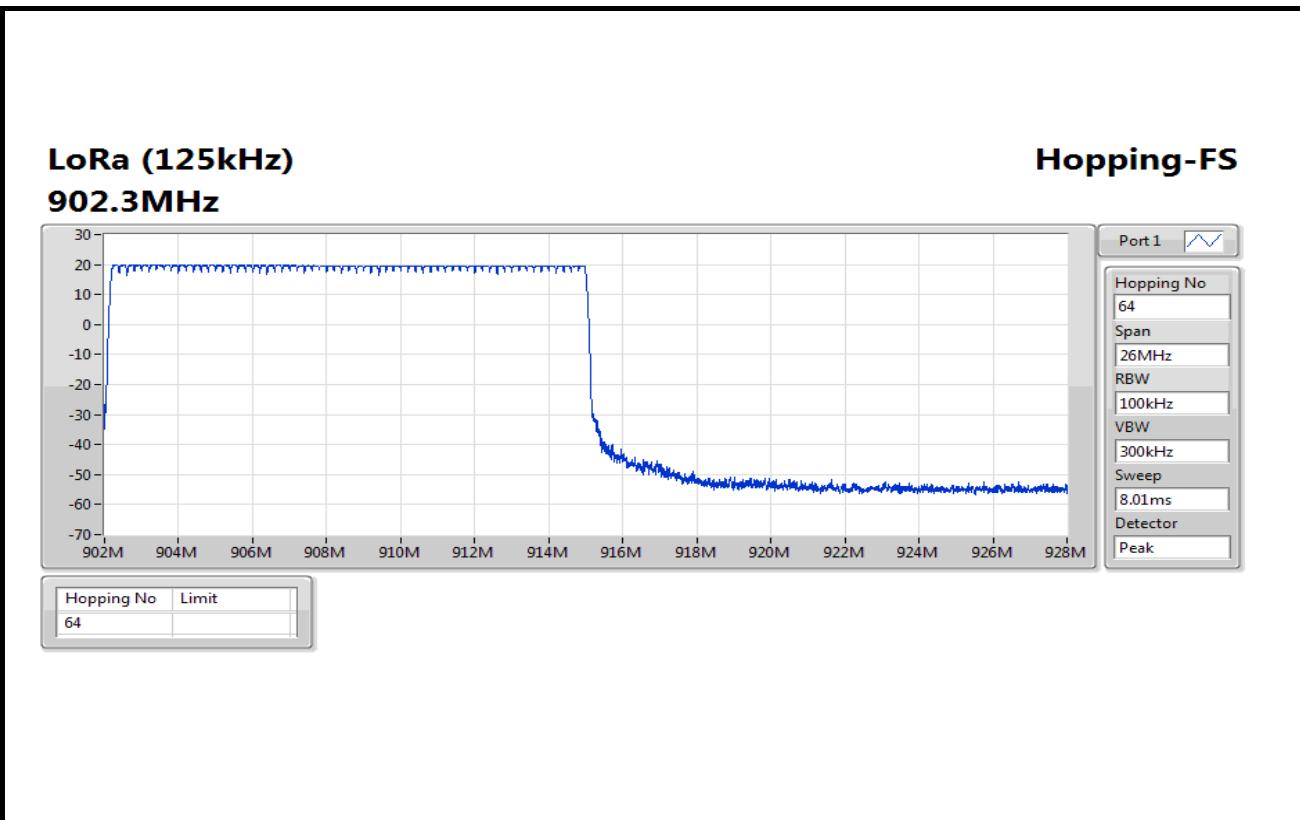
Number of Hopping Frequencies Limit for Frequency Hopping Systems	
<input checked="" type="checkbox"/>	902-928 MHz Band:
<input type="checkbox"/>	$N \geq 50$, 20 dB bandwidth of the hopping channel is less than 250 kHz
<input type="checkbox"/>	$N \geq 25$, 20 dB bandwidth of the hopping channel is 250 kHz or greater
<input checked="" type="checkbox"/>	Hybrid mode, No minimum number of hopping channels associated with hybrid system.
N: Number of Hopping Frequencies	

3.4.2 Test Procedures

1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
2. Allow trace to stabilize.

3.4.3 Test Setup

3.4.4 Test Result of Number of Hopping Frequency


Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------

Summary

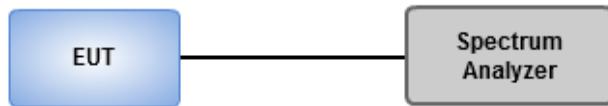
Mode	Max-Hop No
902-928MHz	-
LoRa (125kHz)	64

Result

Mode	Result	Hopping No	Limit
LoRa (125kHz)	-	-	-
902.3MHz	Pass	64	-

3.5 20dB and Occupied Bandwidth

3.5.1 Test Procedures


20dB Bandwidth

1. Set RBW=3kHz, VBW=10kHz, Sweep time=Auto, Detector=Peak Trace max hold.
2. Allow trace to stabilize.
3. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

1. Set RBW=3kHz, VBW=10kHz, Sweep time = Auto, Detector=Peak, Trace max hold
2. Allow trace to stabilize
3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

3.5.2 Test Setup

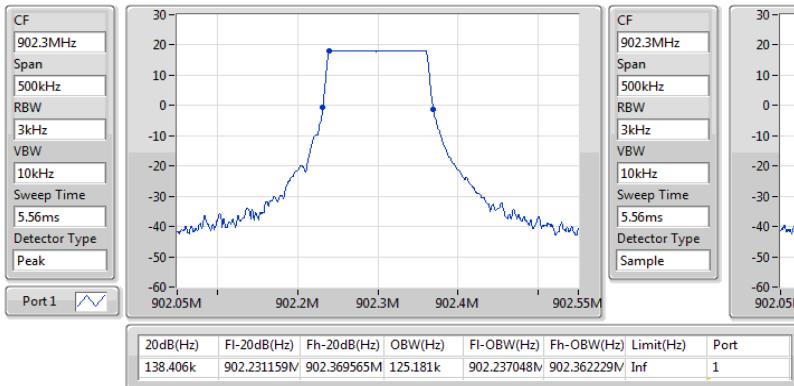
3.5.3 Test result of 20dB and Occupied Bandwidth

Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------

Summary

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
902-928MHz	-	-	-	-	-
LoRa (125kHz)	139.13k	125.181k	125KF1D	138.406k	125.181k

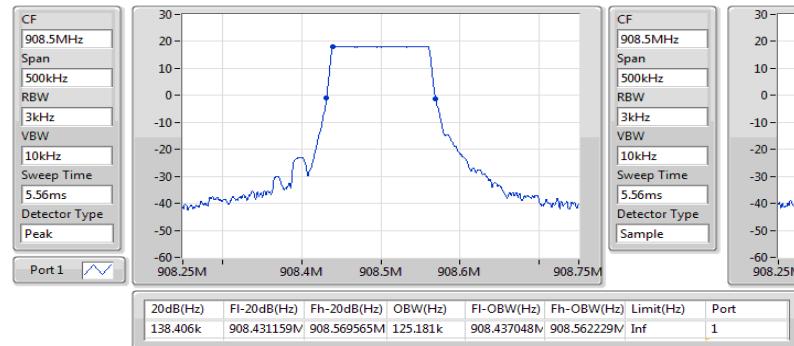
Max-N dB = Maximum 20dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth;
Min-N dB = Minimum 20dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth

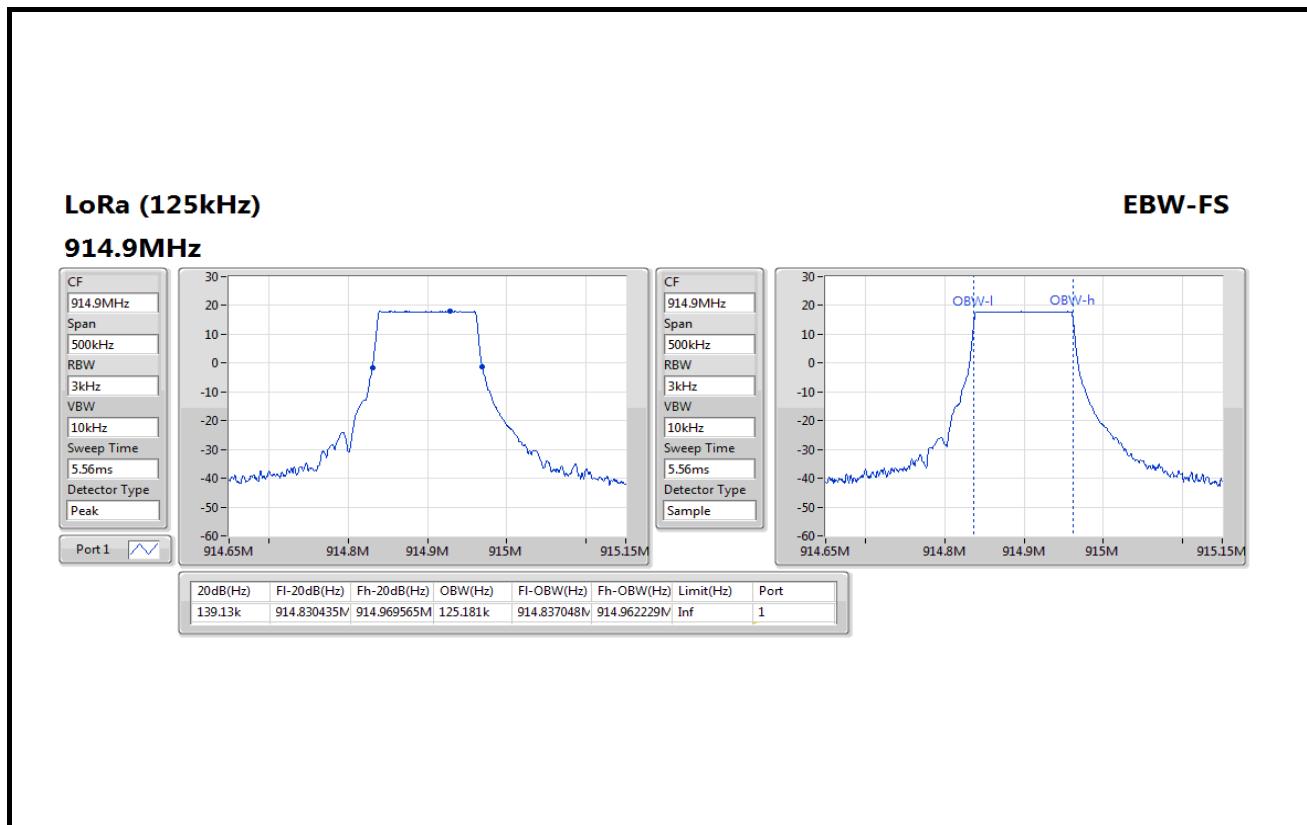

Result

Mode	Result	Limit (Hz)	Port 1-N dB (Hz)	Port 1-OBW (Hz)
LoRa (125kHz)	-	-	-	-
902.3MHz	Pass	Inf	138.406k	125.181k
908.5MHz	Pass	Inf	138.406k	125.181k
914.9MHz	Pass	Inf	139.13k	125.181k

Port X-N dB = Port X 20dB down bandwidth;
Port X-OBW = Port X 99% occupied bandwidth

LoRa (125kHz)


902.3MHz

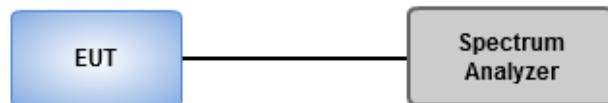

EBW-FS

LoRa (125kHz)

908.5MHz

EBW-FS

3.6 Channel Separation


3.6.1 Limit of Channel Separation

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

3.6.2 Test Procedures

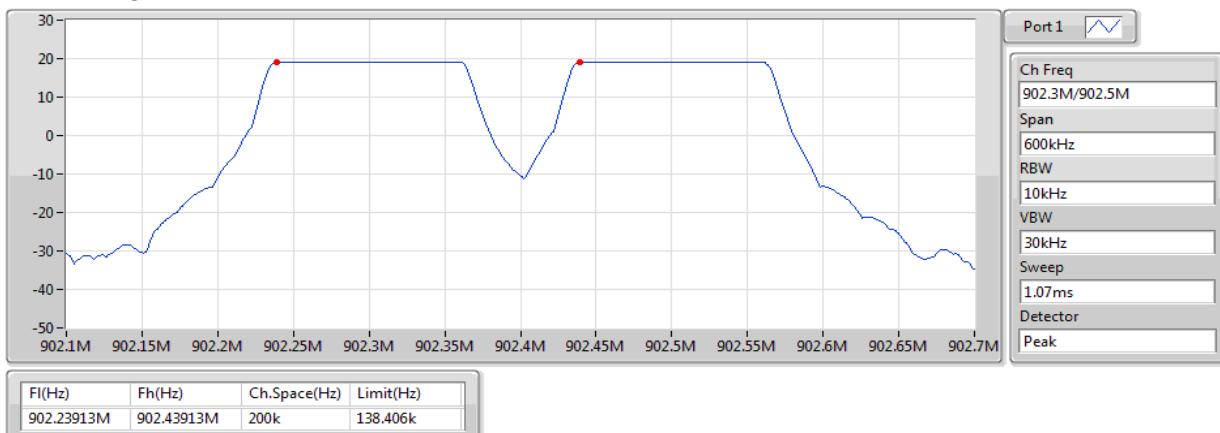
1. Set RBW=10kHz, VBW=30kHz, Sweep time=Auto, Detector=Peak Trace max hold.
2. Allow trace to stabilize.
3. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

3.6.3 Test Setup

3.6.4 Test result of Channel Separation

Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------

Summary


Mode	Max-Space (Hz)	Min-Space (Hz)
902-928MHz	-	-
LoRa (125kHz)	200k	200k

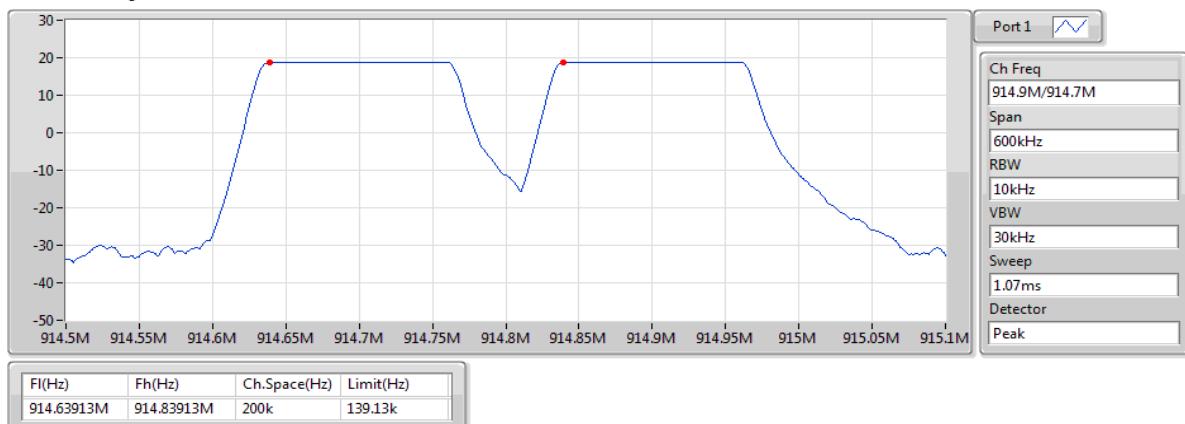
Result

Mode	Result	Fl (Hz)	Fh (Hz)	Ch.Space (Hz)	Limit (Hz)
LoRa (125kHz)	-	-	-	-	-
902.3MHz	Pass	902.23913M	902.43913M	200k	138.406k
908.5MHz	Pass	908.43913M	908.63913M	200k	138.406k
914.9MHz	Pass	914.63913M	914.83913M	200k	139.13k

LoRa (125kHz)

902.3M/902.5MHz

LoRa (125kHz)

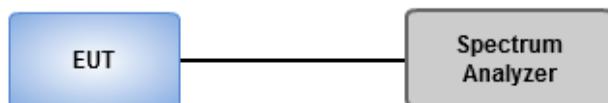

908.5M/908.7MHz

LoRa (125kHz)

914.9M/914.7MHz

Channel Separation-FS

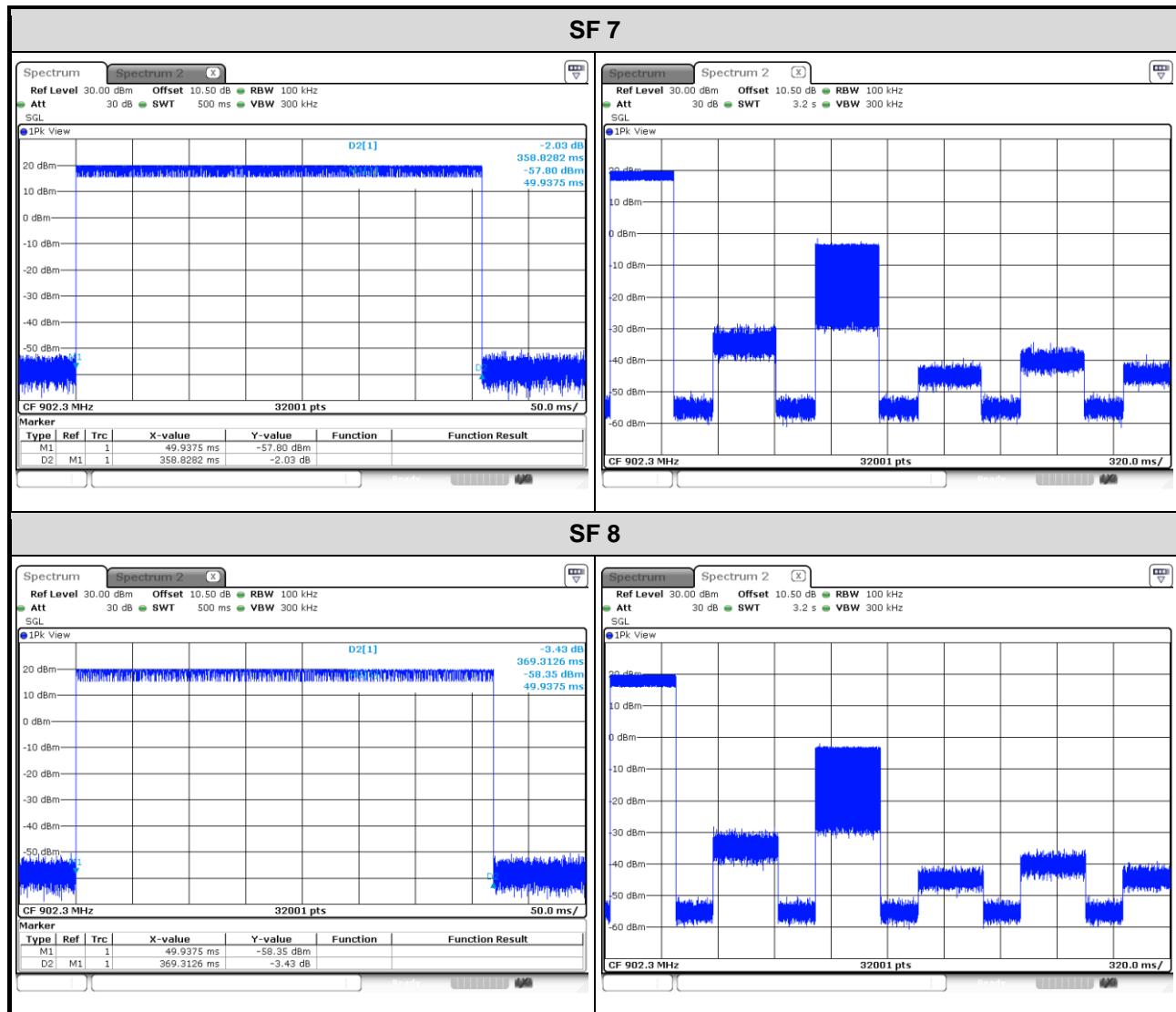
3.7 Number of Dwell Time

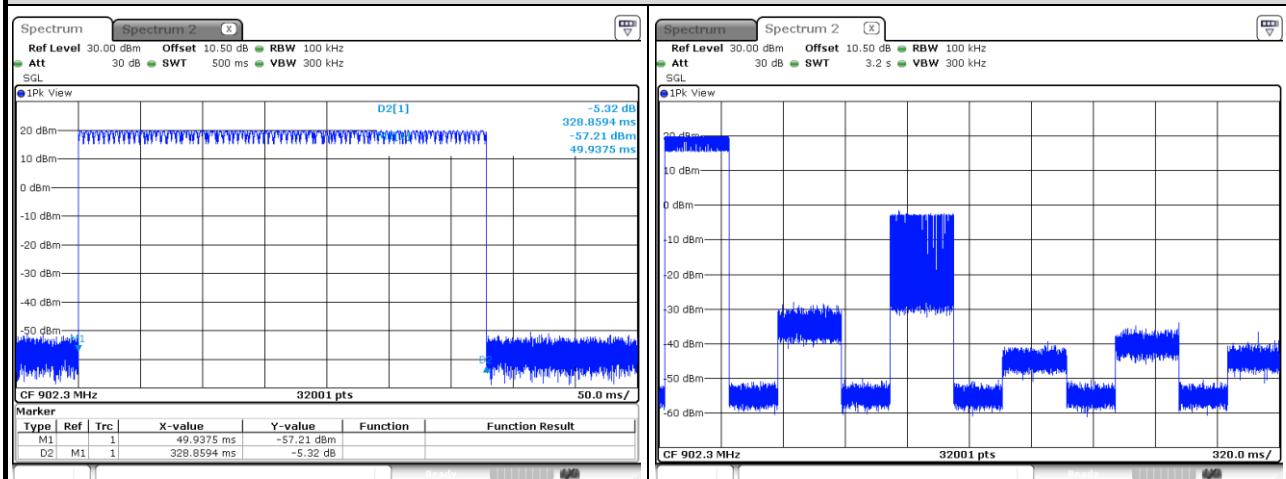

3.7.1 Limit of Dwell time

Time of Occupancy (Dwell Time) Limit for Frequency Hopping Systems	
<input checked="" type="checkbox"/> 902-928 MHz Band:	
<input type="checkbox"/>	≤ 0.4 second within a 20 second period, 20 dB bandwidth of the hopping channel is less than 250 kHz
<input type="checkbox"/>	≤ 0.4 second within a 10 second period, 20 dB bandwidth of the hopping channel is 250 kHz or greater
<input checked="" type="checkbox"/>	Hybrid mode ,an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4

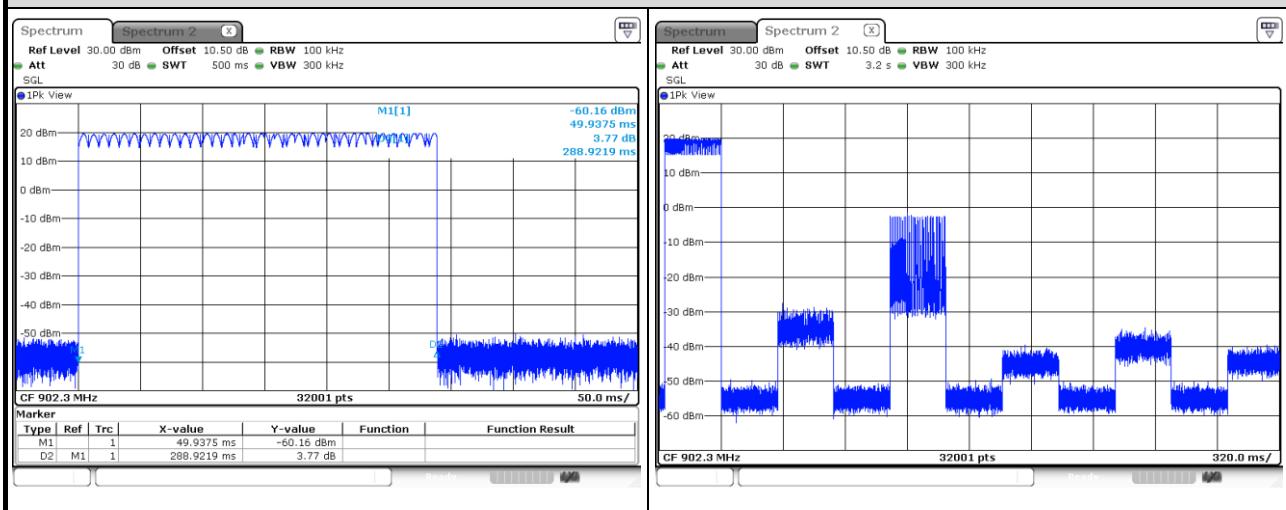
3.7.2 Test Procedures

1. Set RBW=200kHz, VBW=1000kHz, Sweep time=3.2s / 500ms, Detector=Peak, Span=0Hz, Trace max hold for 8 hopping channels.
2. Set RBW=200kHz, VBW=1000kHz, Sweep time=6.4s / 500ms, Detector=Peak, Span=0Hz, Trace max hold for 16 hopping channels.
3. Set RBW=200kHz, VBW=1000kHz, Sweep time=25.6s / 500ms, Detector=Peak, Span=0Hz, Trace max hold for 64 hopping channels.
4. Measure and record the burst on time.

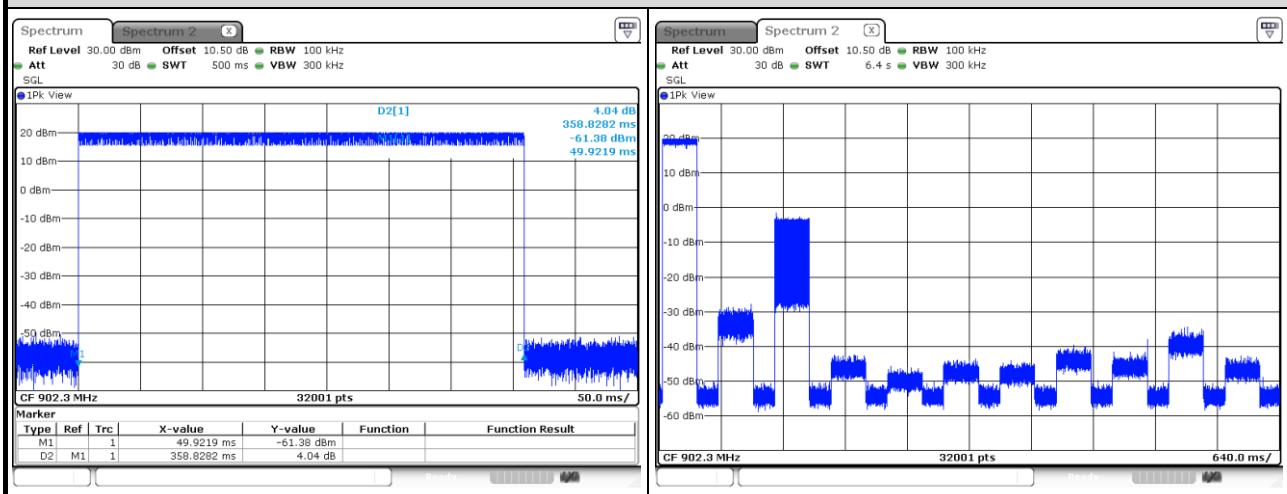

3.7.3 Test Setup


3.7.4 Test Result of Dwell Time

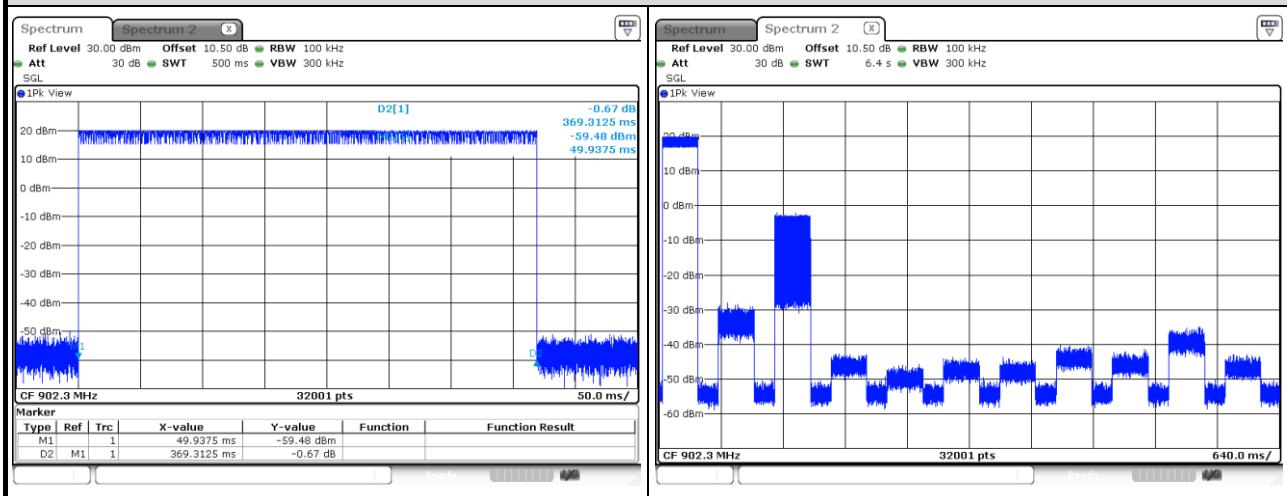
Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------


Modulation / SF	Freq. (MHz)	Length of Transmission Time (sec)	Number of Transmission in a 3.2 s (8 Hopping*0.4s)	Result (s)	Limit (s)
CSS / 7	902.3	0.358828	1	0.358828	0.4
CSS / 8	902.3	0.369313	1	0.369313	0.4
CSS / 9	902.3	0.328594	1	0.328594	0.4
CSS / 10	902.3	0.288922	1	0.288922	0.4

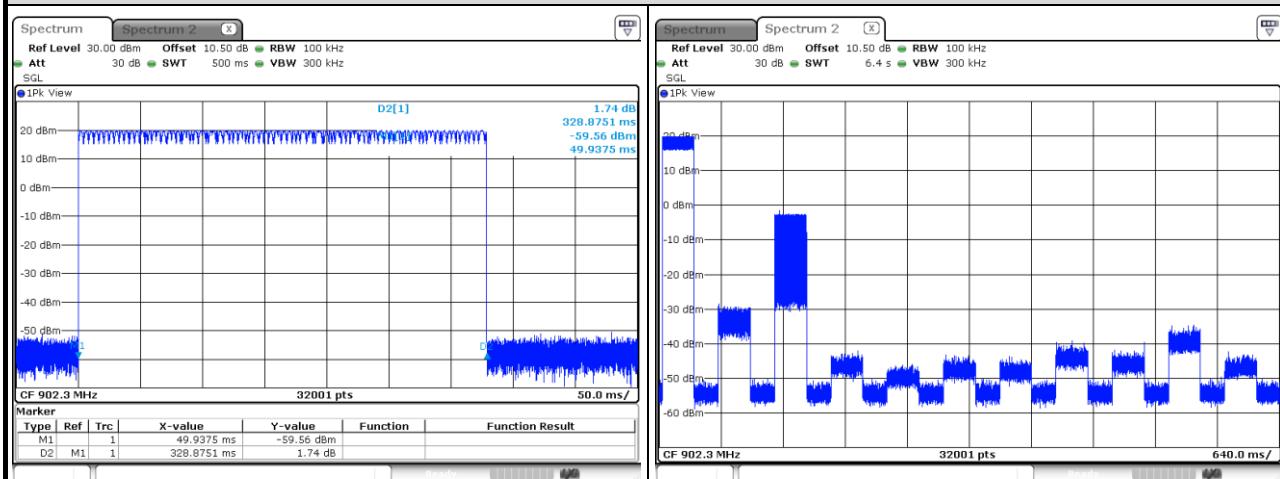
SF 9

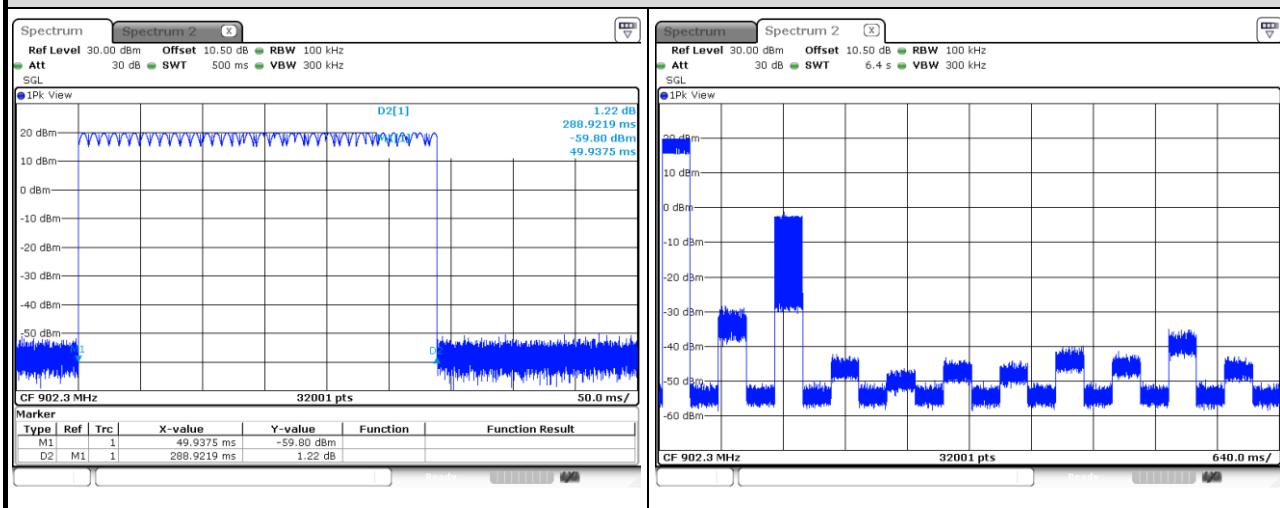


SF 10

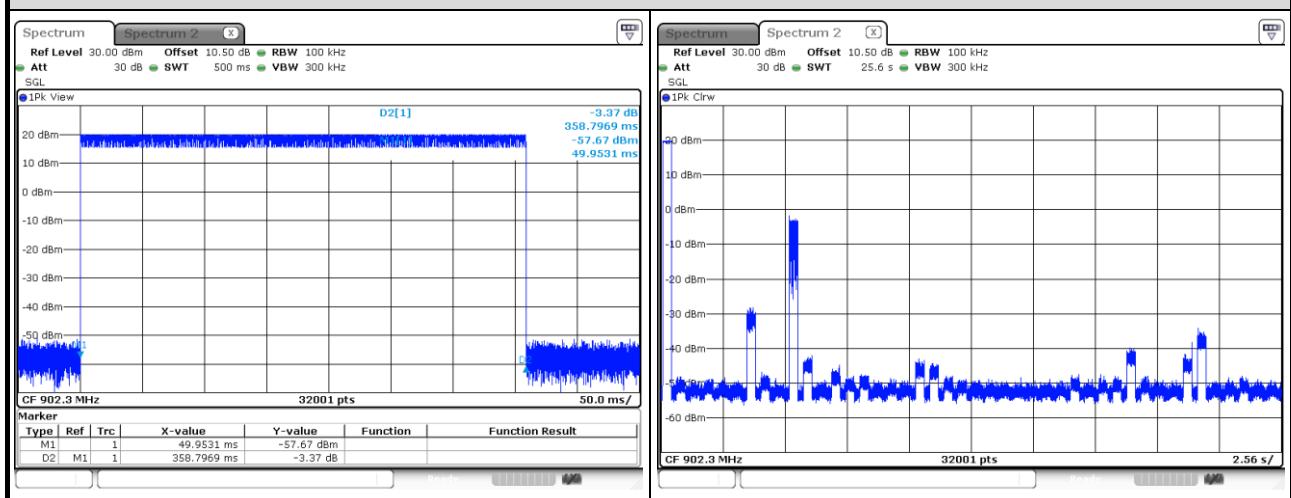


Modulation / SF	Freq. (MHz)	Length of Transmission Time (sec)	Number of Transmission in a 6.4 s (16 Hopping*0.4s)	Result (s)	Limit (s)
CSS / 7	902.3	0.358828	1	0.358828	0.4
CSS / 8	902.3	0.369313	1	0.369313	0.4
CSS / 9	902.3	0.328751	1	0.328751	0.4
CSS / 10	902.3	0.288922	1	0.288922	0.4

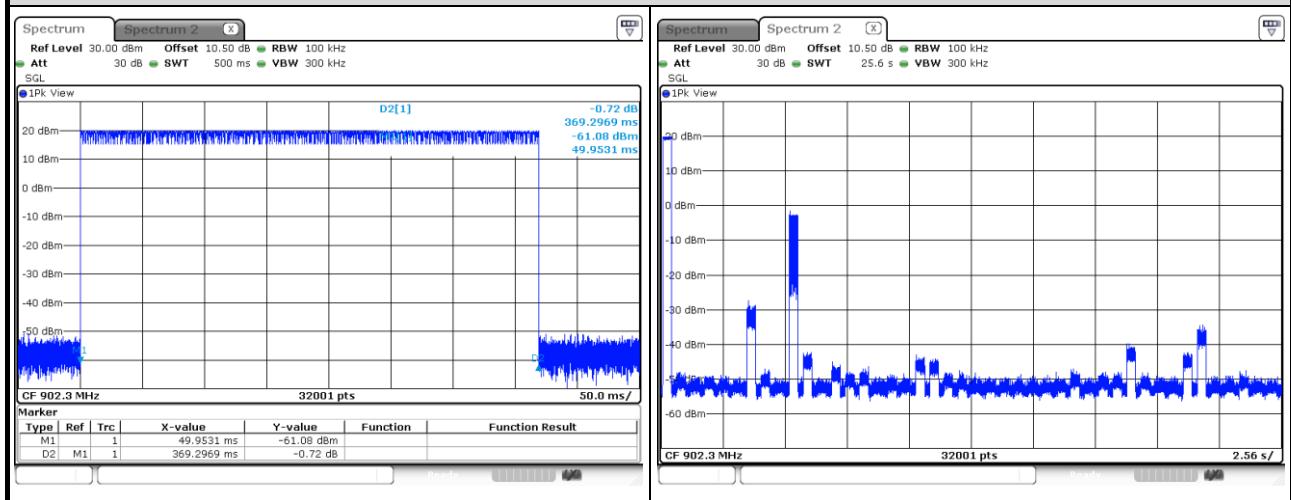

SF 7


SF 8

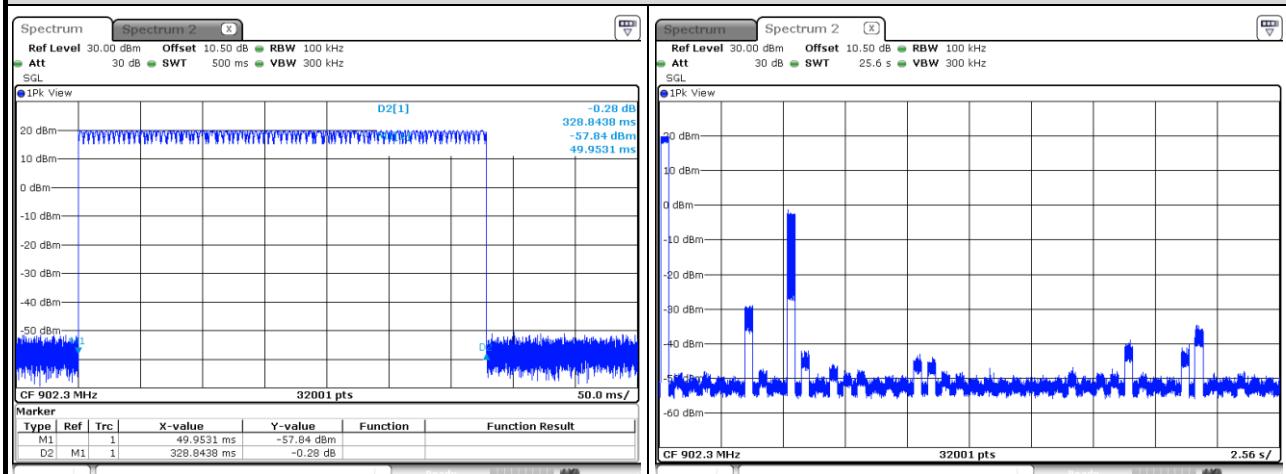
SF 9

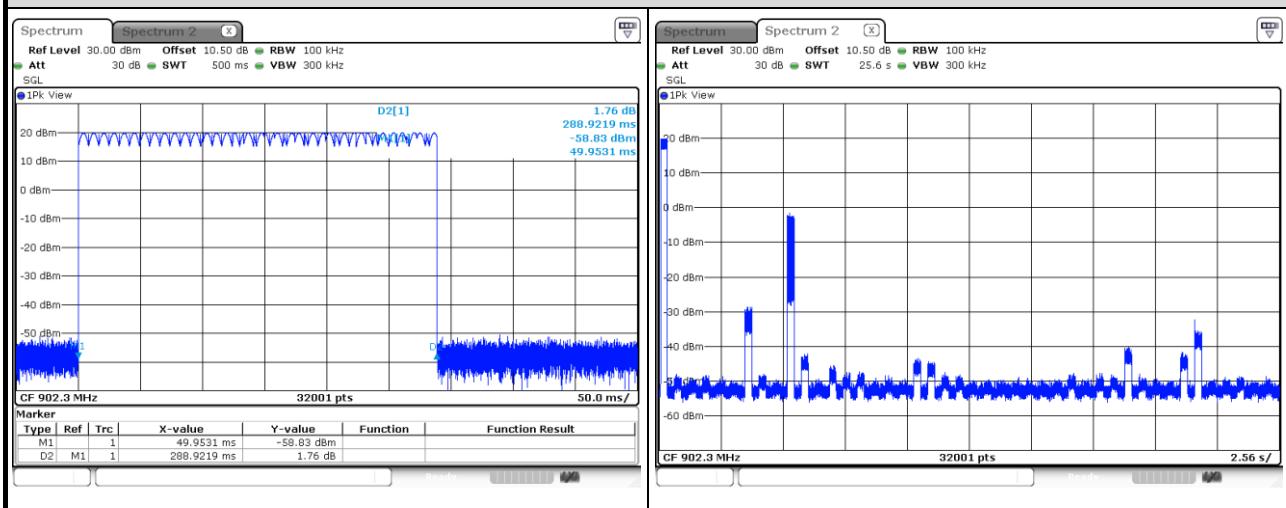


SF 10



Modulation / SF	Freq. (MHz)	Length of Transmission Time (sec)	Number of Transmission in a 25.6 s (64 Hopping*0.4s)	Result (s)	Limit (s)
CSS / 7	902.3	0.358797	1	0.358797	0.4
CSS / 8	902.3	0.369297	1	0.369297	0.4
CSS / 9	902.3	0.328844	1	0.328844	0.4
CSS / 10	902.3	0.288922	1	0.288922	0.4

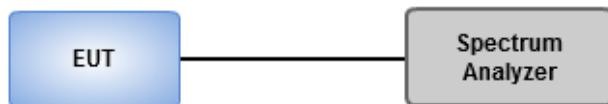

SF 7


SF 8

SF 9

SF 10

3.8 Power Spectral Density


3.8.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band. This item is for Hybrid mode.

3.8.2 Test Procedures

1. Set the RBW = 3kHz, VBW = 10 kHz.
2. Detector = RMS, Sweep time = auto couple.
3. Employ trace averaging (RMS) mode over a minimum of 100 traces
4. Use the peak marker function to determine the maximum amplitude level.

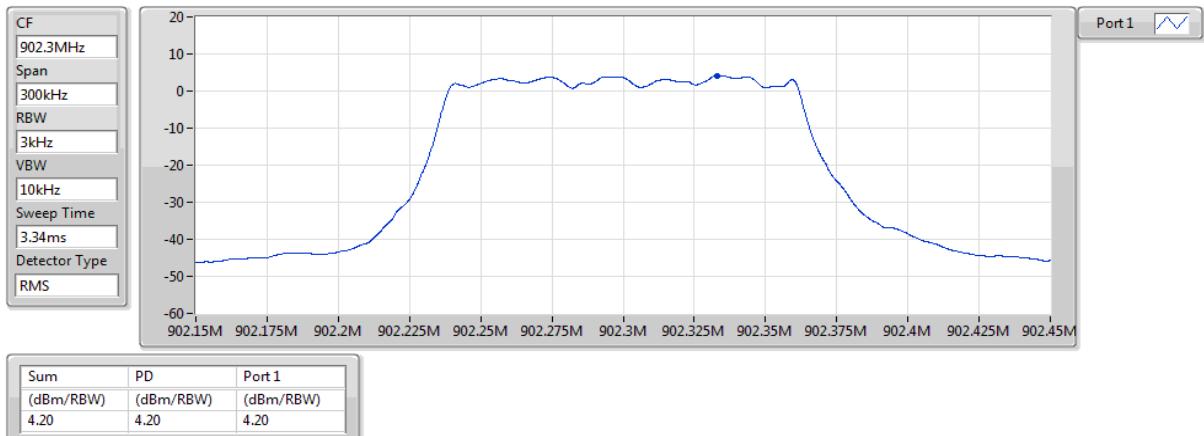
3.8.3 Test Setup

3.8.4 Test Result of Power Spectral Density

Ambient Condition	24°C / 67%	Tested By	Aska Huang
-------------------	------------	-----------	------------

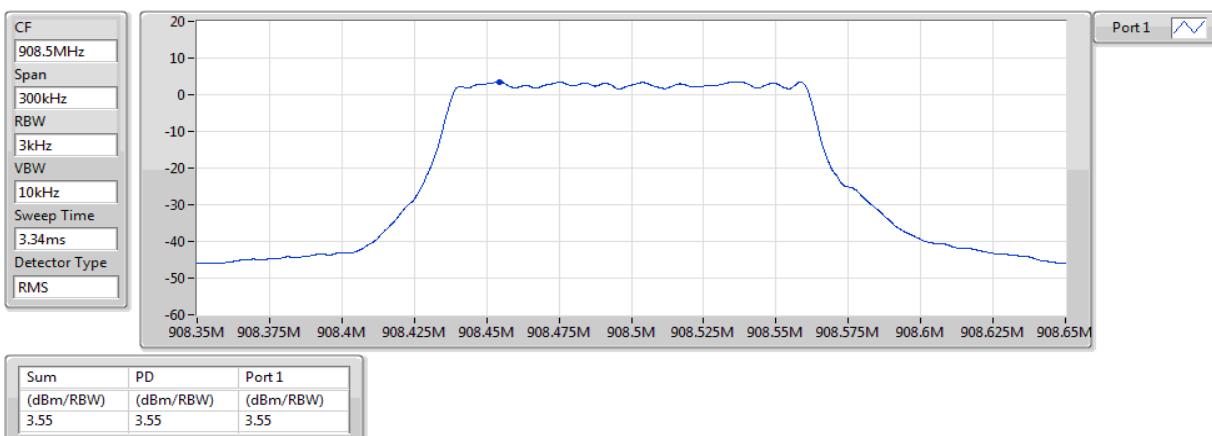
Summary

Mode	PD (dBm/3kHz)
902-928MHz	-
LoRa (125kHz)	4.20


Result

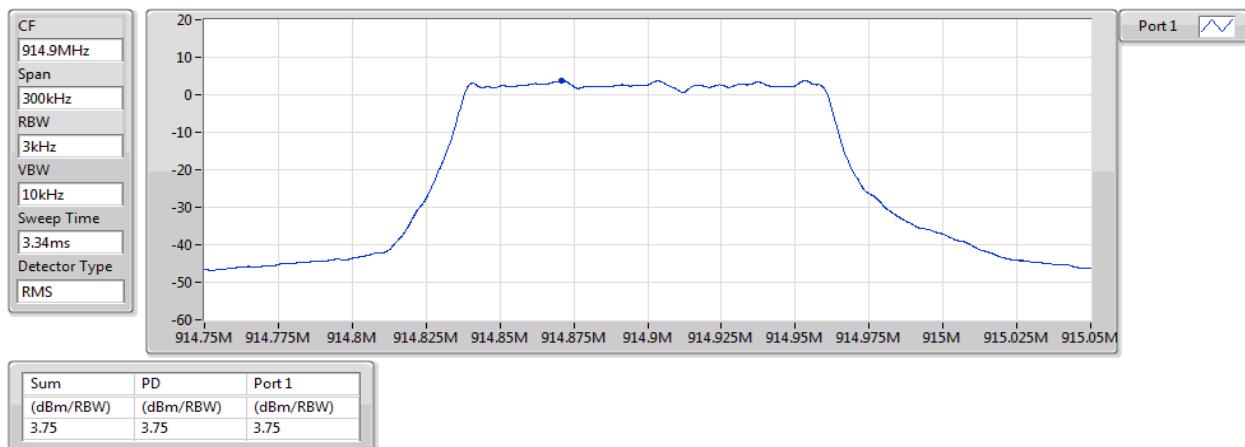
Mode	Result	Antenna Gain (dBi)	PD (dBm/3kHz)	PD Limit (dBm/3kHz)
LoRa (125kHz)	-	-	-	-
902.3MHz	Pass	-3.92	4.20	8.00
908.5MHz	Pass	-3.92	3.55	8.00
914.9MHz	Pass	-3.92	3.75	8.00

PD = Power density;


LoRa (125kHz)

902.3MHz

LoRa (125kHz)


908.5MHz

LoRa (125kHz)

PSD

914.9MHz

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <http://www.icertifi.com.tw>.

Linkou

Tel: 886-2-2601-1640
No.30-2, Ding Fwu Tsuen, Lin Kou
District, New Taipei City, Taiwan
(R.O.C.)

Kwei Shan

Tel: 886-3-271-8666
No.3-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)
No.2-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640
No.14-1, Lane 19, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 333, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666
Fax: 886-3-318-0345
Email: ICC_Service@icertifi.com.tw

—END—