

TEST REPORT

Applicant: Changsha Microbrain Intelligent Technology Co., Ltd.

Address: 3th Floor, Building A, Chentai Science Park, Wanglong Road
No.56, Yuelu District, Changsha, China

Product Name: Vehicle detection radar sensor

FCC ID: 2AV2O-ITS-AXX-XX

Standard(s): 47 CFR Part 15, Subpart C(15.255)
ANSI C63.10-2020 +Cor.1-2023

Report Number: 2402V64080E-RF-00B

Report Date: 2024/12/4

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Reviewed By: Pedro Yun

Approved By: Gavin Xu

Title: Project Engineer

Title: RF Supervisor

Bay Area Compliance Laboratories Corp. (Dongguan)
No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888

Fax: +86-769-86858891

www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with ★. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Each test item follows the test standard(s) without deviation.

CONTENTS

DOCUMENT REVISION HISTORY	4
1. GENERAL INFORMATION	5
1.1 GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	5
1.2 ACCESSORY INFORMATION.....	5
1.3 ANTENNA INFORMATION DETAIL▲.....	5
1.4 EQUIPMENT MODIFICATIONS	5
2. SUMMARY OF TEST RESULTS	6
3. DESCRIPTION OF TEST CONFIGURATION	7
3.1 EUT OPERATION CONDITION.....	7
3.2 EUT EXERCISE SOFTWARE.....	7
3.3 SUPPORT EQUIPMENT LIST AND DETAILS	7
3.4 SUPPORT CABLE LIST AND DETAILS	7
3.5 BLOCK DIAGRAM OF TEST SETUP	8
3.6 TEST FACILITY.....	9
3.7 MEASUREMENT UNCERTAINTY	9
4. REQUIREMENTS TEST RESULTS	10
4.1 AC LINE CONDUCTED EMISSIONS.....	10
4.1.1 Applicable Standard.....	10
4.1.2 EUT Setup.....	11
3.1.3 EMI Test Receiver Setup	11
4.1.4 Test Procedure	12
4.1.5 Corrected Amplitude & Margin Calculation.....	12
4.1.6 Test Data	13
4.2 PEAK EIRP AND TRANSMITTER OFF-TIMES	16
4.2.1 Applicable Standard.....	16
4.2.2 EUT Setup.....	16
4.2.3 Test Procedure	17
4.2.4 Test Result	18
4.3 EMISSION BANDWIDTH:	21
4.3.1 Applicable Standard.....	21
4.3.2 EUT Setup.....	21
4.3.3 Test Procedure	22
4.3.4 Test Data	23
4.4 RADIATED EMISSIONS	25
4.4.1 Applicable Standard.....	25
4.4.2 EUT Setup.....	25
4.4.3 EMI Test Receiver & Spectrum Analyzer Setup	28

4.4.4 Test Procedure	29
4.4.5 Corrected Amplitude & Margin Calculation.....	30
4.4.6 Test Data	31
4.5 FREQUENCY STABILITY.....	40
4.5.1 Applicable Standard.....	40
4.5.2 EUT Setup Block Diagram	40
4.5.3 Test Procedure	40
4.5.3 Test Result	41
4.6 GROUP INSTALLTION.....	42
4.6.1 Applicable Standard.....	42
4.6.2 Judgment.....	42
4.7 ANTENNA REQUIREMENT.....	43
4.7.1 Applicable Standard.....	43
4.7.2 Judgment.....	43
EXHIBIT A - EUT PHOTOGRAPHS	44
EXHIBIT B - TEST SETUP PHOTOGRAPHS	45

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2402V64080E-RF-00B	Original Report	2024/12/4

1. GENERAL INFORMATION

1.1 General Description of Equipment under Test

EUT Name:	Vehicle detection radar sensor
Application:	Outdoor permanently fixed application
EUT Model:	ITS-AX3-4
Multiple Models:	ITS-AXX-XX
Operation Frequency Range:	60-64 GHz
Maximum Peak EIRP:	5.45 dBm
Modulation Type:	FMCW
Chirp Time▲:	50 μs
Emission Designator:	N0N
Rated Input Voltage▲:	DC 9-24V (Typical DC 12V)
Serial Number:	2O5W-1
EUT Received Date:	2024/7/9
EUT Received Status:	Good

Note:
The multiple models are electrically identical with the test model. The difference is only the enclosure. Please refer to the declaration letter for more detail, which was provided by manufacturer.

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
/	/	/	/

1.3 Antenna Information Detail▲

Antenna Type	input impedance (Ohm)	Antenna Gain	Frequency Range
Microstrip Antenna	50	12dBi	60-64 GHz
The design of compliance with §15.203:			
<input checked="" type="checkbox"/> Unit uses a permanently attached antenna.			
<input type="checkbox"/> Unit uses a unique coupling to the intentional radiator.			
<input type="checkbox"/> Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.			

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

2. SUMMARY OF TEST RESULTS

Standard(s)/Rule(s)	Description of Test	Result
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.255(c)(2)(iii)	Peak EIRP and Transmitter Off-times	Compliant
§15.215, §15.255 (e)	Occupied Bandwidth	Compliant
§15.205, §15.209, §15.255(d)	Radiated Spurious Emissions	Compliant
§15.255 (f)	Frequency Stability	Compliant
§15.255 (h)	Group Installation	Compliant
§15.203	Antenna Requirement	Compliant

3. DESCRIPTION OF TEST CONFIGURATION

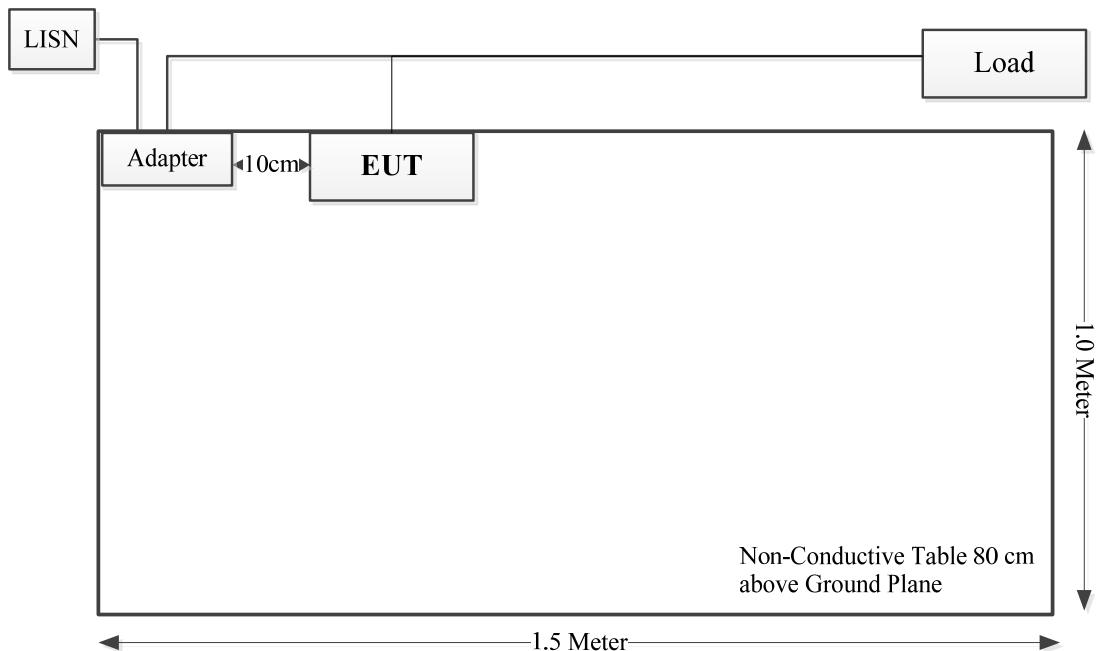
3.1 EUT Operation Condition

The system was configured for testing in production version with highest transmitter activity (on time), which was provided by the manufacturer. According to 15.31(c) and KDB 364244 D01 Meas 15.255 Radars v01, the device tested at Swept mode for FMCW modulation.

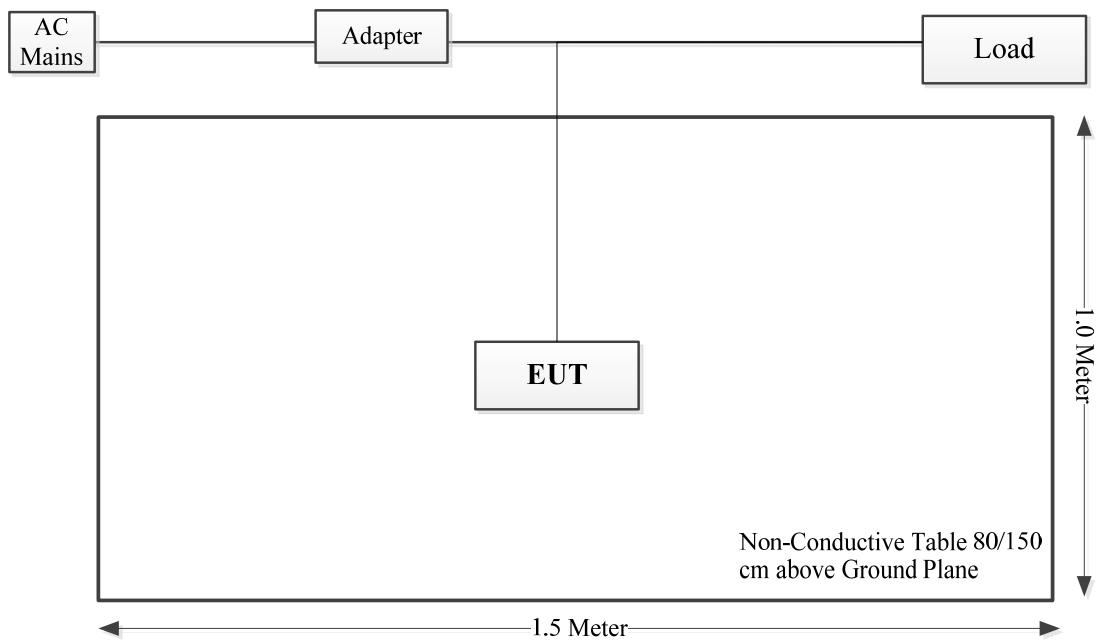
3.2 EUT Exercise Software

No software was used in test. The EUT transmit when EUT was power up.

3.3 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
CHANNEL WELL TECHNOLOGY	Adapter	2ABB018F	Unknown
Microbrain	Load	Unknown	205W-10

3.4 Support Cable List and Details


Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	To
DC Cable	NO	NO	1.5	Adapter	System Cable
System Cable	NO	NO	3	EUT	Load/DC Cable

3.5 Block Diagram of Test Setup

AC line conducted emissions:

Spurious emissions:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
Unwanted Emissions, radiated	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz: 5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB, 18GHz~26.5GHz: 5.47 dB, 26.5GHz~40GHz: 5.63 dB 40~60G: 4.83dB, 60G~90G: 4.94dB, 90G~140G: 5.46dB, 140G~220G: 6.00dB, 220G~325G: 7.35dB
EIRP	4.94dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

4. REQUIREMENTS TEST RESULTS

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard

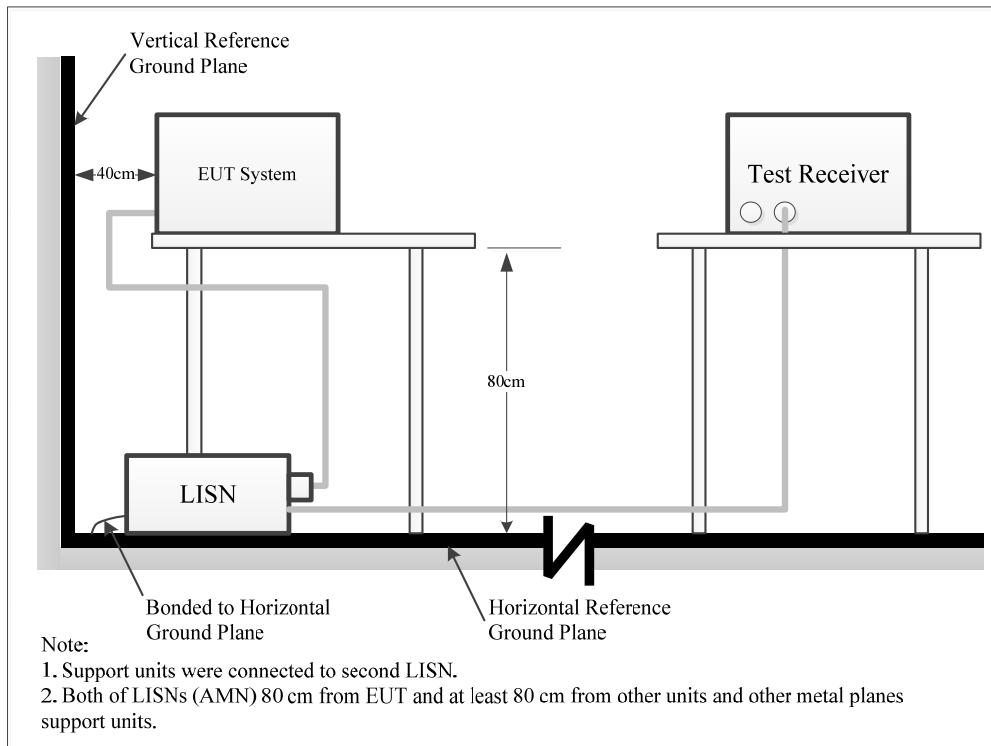
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtainig their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2020 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

3.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

During the conducted emission test, the EUT was connected to the outlet of the first LISN.

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase (“hot”) line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

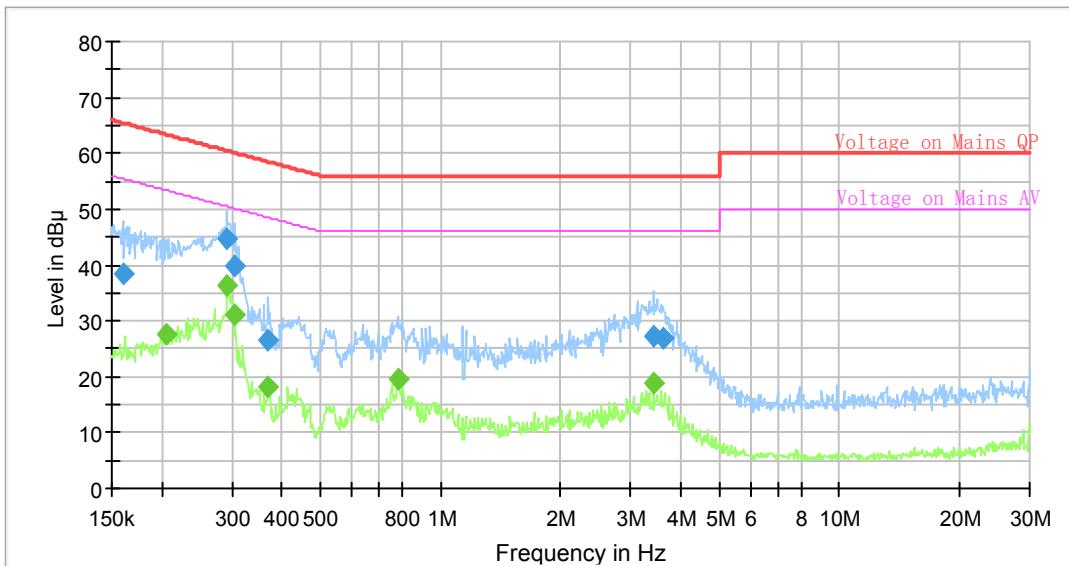
The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result

4.1.6 Test Data

Serial Number:	2O5W-1	Test Date:	2024/11/15
Test Site:	CE	Test Mode:	Swept
Tester:	Lane Sun	Test Result:	Pass

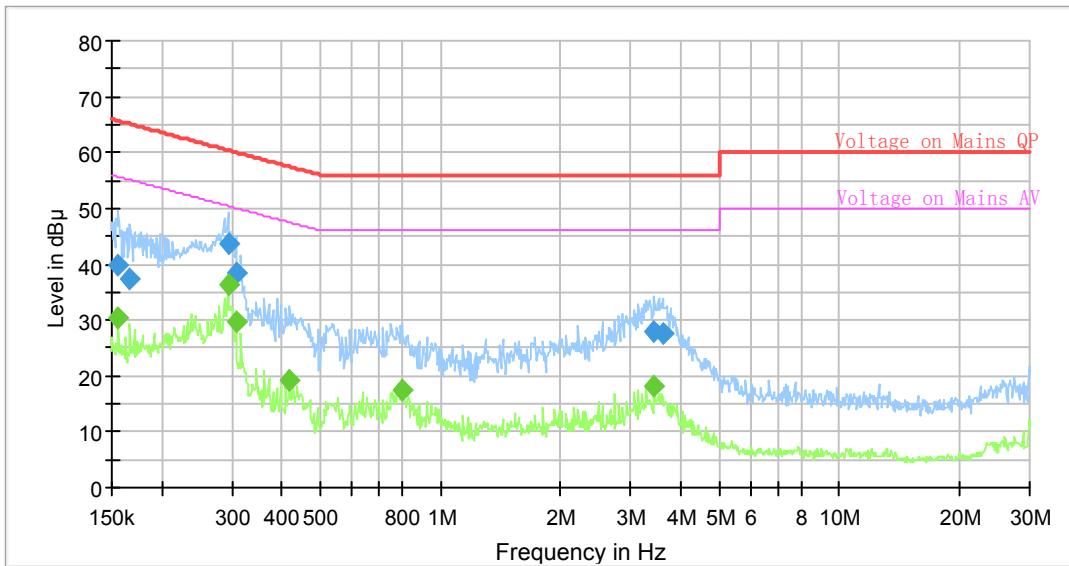
Environmental Conditions:


Temperature: (°C)	26.2	Relative Humidity: (%)	58	ATM Pressure: (kPa)	101
-------------------	------	------------------------	----	---------------------	-----

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2024/9/5	2025/9/4
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2024/9/5	2025/9/4
R&S	EMI Test Receiver	ESCI	100035	2024/8/26	2025/8/25
R&S	Test Software	EMC32	V9.10.00	N/A	N/A

** Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).*


Project No: 2402V64080E-RF
 Test Date: 2024-11-15
 Test Engineer: Lane Sun
 Port: L
 Test Mode: Swept
 Power Source: AC 120V/60Hz

Final_Result

Frequency (MHz)	QuasiPeak (dB μV)	Average (dB μV)	Limit (dB μV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.160048	38.58	---	65.46	26.88	9.000	L1	10.8
0.206405	---	27.45	53.35	25.90	9.000	L1	10.8
0.291191	---	36.18	50.49	14.31	9.000	L1	10.8
0.291191	44.84	---	60.49	15.65	9.000	L1	10.8
0.306082	---	31.06	50.08	19.02	9.000	L1	10.8
0.306082	39.80	---	60.08	20.28	9.000	L1	10.8
0.369955	26.55	---	58.50	31.95	9.000	L1	10.8
0.369955	---	18.29	48.50	30.21	9.000	L1	10.8
0.781732	---	19.56	46.00	26.44	9.000	L1	10.9
3.421464	27.33	---	56.00	28.67	9.000	L1	10.8
3.421464	---	18.90	46.00	27.10	9.000	L1	10.8
3.614420	26.94	---	56.00	29.06	9.000	L1	10.8

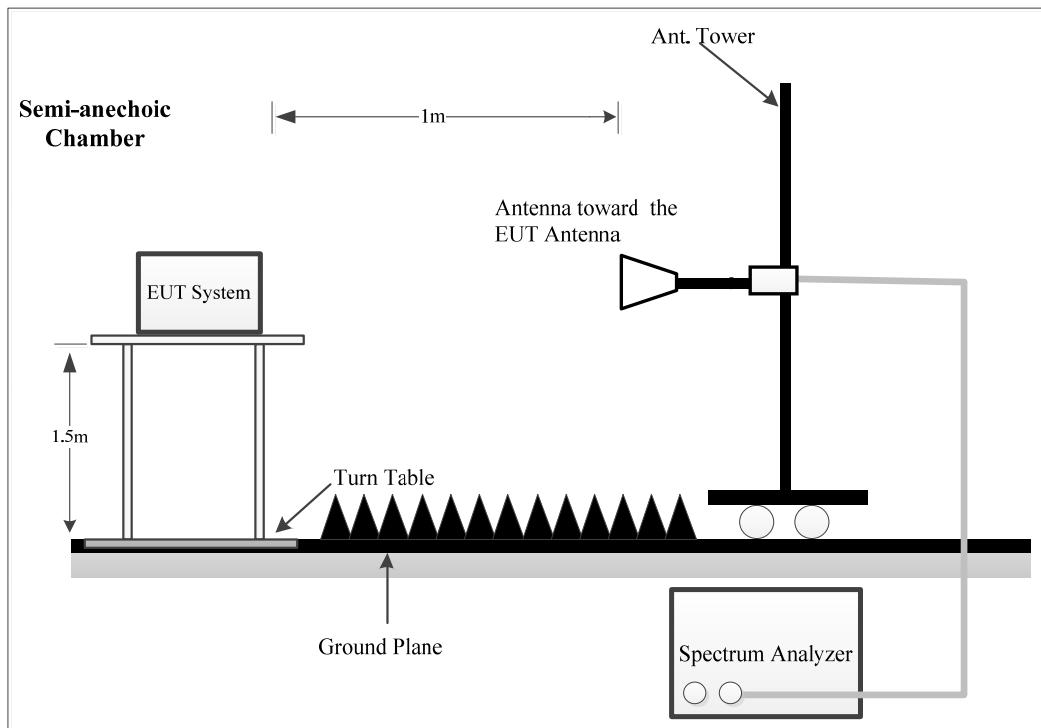
Project No: 2402V64080E-RF
 Test Date: 2024-11-15
 Test Engineer: Lane Sun
 Port: N
 Test Mode: Swept
 Power Source: AC 120V/60Hz

Final_Result

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.155329	39.88	---	65.71	25.83	9.000	N	10.9
0.155329	---	30.28	55.71	25.43	9.000	N	10.9
0.166563	37.41	---	65.13	27.72	9.000	N	10.9
0.294110	43.84	---	60.41	16.57	9.000	N	10.8
0.294110	---	36.16	50.41	14.25	9.000	N	10.8
0.307613	---	29.62	50.03	20.41	9.000	N	10.8
0.307613	38.28	---	60.03	21.75	9.000	N	10.8
0.419083	---	19.25	47.47	29.22	9.000	N	10.8
0.801471	---	17.44	46.00	28.56	9.000	N	10.8
3.438571	---	18.32	46.00	27.68	9.000	N	10.9
3.438571	27.82	---	56.00	28.18	9.000	N	10.9
3.614420	27.69	---	56.00	28.31	9.000	N	10.9

4.2 Peak EIRP And Transmitter Off-times

4.2.1 Applicable Standard


FCC §15.255(c)(2)(iii)

(A) The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds, except as specific in paragraph (c)(2)(iii)(B) of this section;

(B) The peak EIRP shall not exceed 20 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 16.5 milliseconds within any contiguous interval of 33 milliseconds when operated outdoors:

- (1) As part of a temporary or permanently fixed application; or
- (2) When being used in vehicular applications to perform specific tasks of moving something or someone, except for in-cabin applications;

4.2.2 EUT Setup

Place the measurement antenna at a measurement distance that is in the far-field of the measurement antenna, in the far-field of the EUT antenna. The EIRP test was performed at 1m distance, which was larger than the minimum test distance, please refer to section 4.4.4 for more detail.

4.2.3 Test Procedure

Refer to ANSI C63.10-2020 Clause 9.8

For radiated measurements:

- 1) Place the measurement antenna at a measurement distance that is in the far-field of the measurement antenna, in the far-field of the EUT antenna, and meets the measurement distance requirements for final radiated measurements as specified in 9.1.4.
- 2) Place the measurement antenna in the main beam of the EUT then maximize the fundamental emission using the procedures of 9.7, noting that multiple peaks can be found at different beam orientations and/or polarizations.
- 3) Correct the power reading from the spectrum analyzer for any external gain and/or attenuation between the measurement antenna and the spectrum analyzer. This is the power at the output of the measurement antenna
- 4) Calculate the EIRP from the power at the output of the measurement antenna using Equation (22), and then convert to linear form using Equation (24).

$$EIRP = 21.98 - 20\log(\lambda) + 20\log(d_{\text{Meas}}) + P - G \quad (22)$$

where

$EIRP$ is the equivalent isotropic radiated power, in dBm
 λ is the wavelength of the emission under investigation [300/f(MHz)], in m
 d_{Meas} is the measurement distance, in m
 P is the power measured at the output of the measurement antenna, in dBm
 G is the gain of the measurement antenna, in dBi

NOTE—The measured power P includes all applicable instrument correction factors up to the connection to the measurement antenna.

- 5) Where applicable, calculate conducted output power from the EIRP using Equation (27).

For FMCW emissions, the procedures in 4.1.5.2.8 and Annex L shall be used.

4.2.4 Test Result

Serial Number:	205W-1	Test Date:	2024/7/20
Test Site:	Chamber B	Test Mode:	Swept
Tester:	Bill Yang	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	25.2	Relative Humidity: (%)	40	ATM Pressure: (kPa)	100.2

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Waveguide Mixer	11970V	2521A011767	2023/2/16	2026/2/15
Flann Microwave	Horn Antenna	861V/385	736	2023/2/27	2026/2/26
Resenberger	Coaxial Cable	LU7-022-1000	0031	2024/3/1	2025/2/28
Resenberger	Coaxial Cable	LU7-022-1000	0032	2024/3/1	2025/2/28
Agilent	Spectrum Analyzer	E4440A	MY44303352	2023/10/18	2024/10/17

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Frequency (GHz)	Receiver		Polar (H/V)	Factor (dB/m)	E- Field@1m (dB μ V/m)	Chirps Correction Factor (dB)	EIRP (dBm)	Limit (dBm)
	Reading (dB μ V)	Detector						
62	60.41	PK	V	42.22	102.63	7.72	5.45	20.00

$$EIRP = E_{meas} + 20\log(Measurement\ distance) - 104.8$$

Measurement distance = 1m

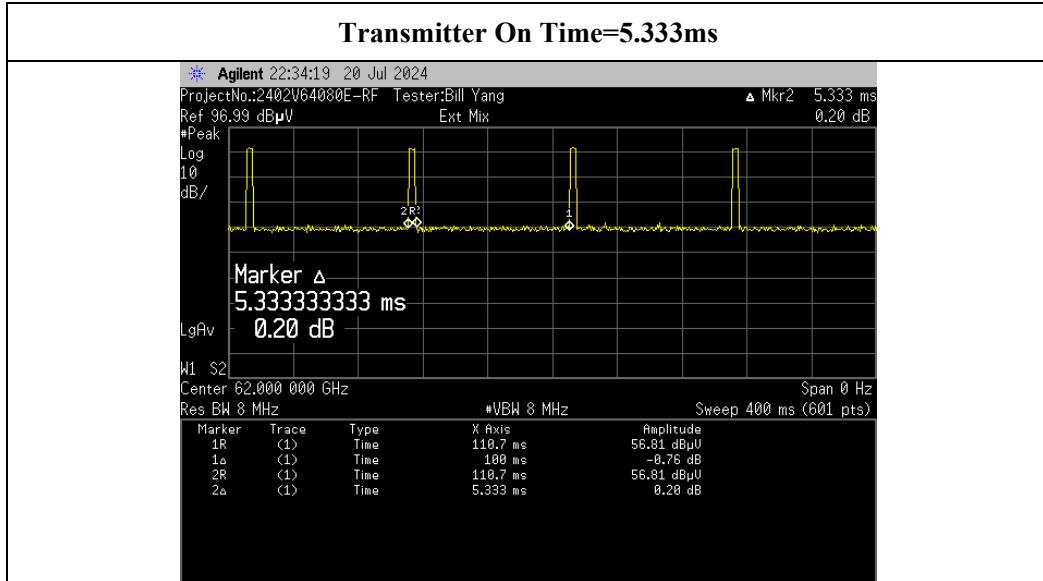
The Mixers and it's RF cables is compose a system for calibration.

The test data recorded was the maximum polarization.

Chirps Time (μ s)	BW _{Chirp} (MHz)	RBW (MHz)	Chirps Correction Factor (dB)
50	3963.39	1	7.72

Refer to ANSI C63.10-2020/cor 1-2023 Annex L.1. The chirps correction factor was calculated using the formula:

$$\alpha = \frac{1}{\left(1 + \left[\left(\frac{2 \times \ln(2)}{\pi}\right)^2 \times \left(\frac{BW_{Chirp}}{T_{Chirp} \times RBW^2}\right)^2\right]\right)^{0.25}}$$

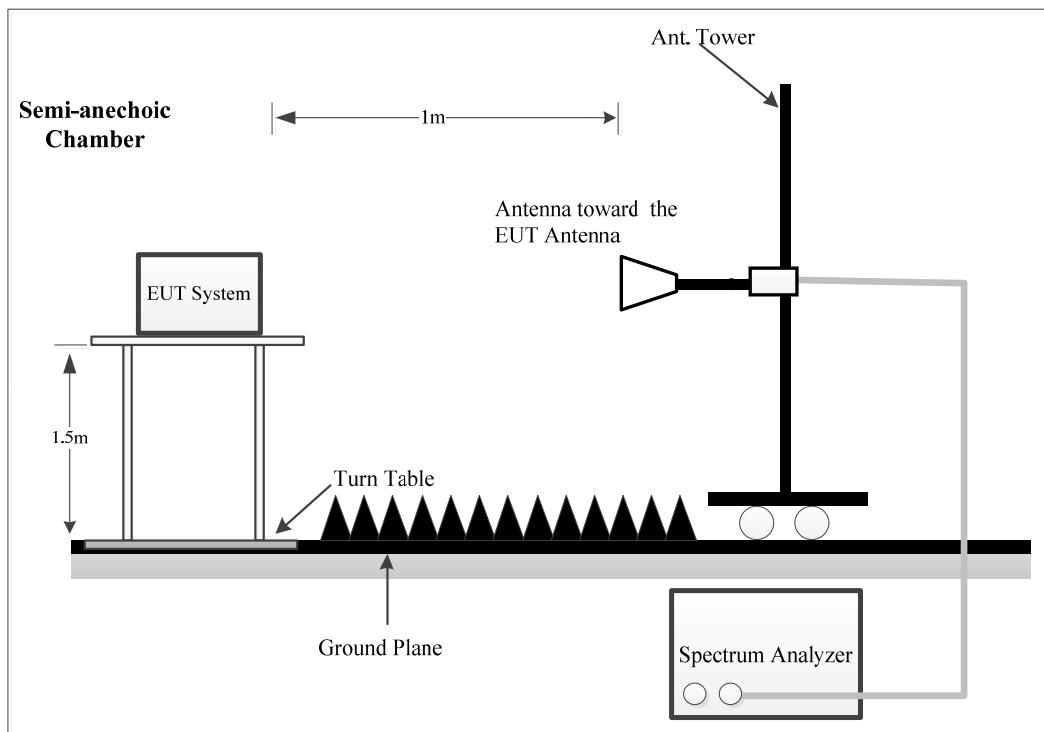

where

α is the reduction in amplitude
 BW_{Chirp} is the FMCW Chirp Bandwidth
 T_{Chirp} is the FMCW Chirp Time

Transmitter Off-times

Transmitter On (ms)	Observation Time (ms)	sum of continuous transmitter off-times (ms)	Limit (ms)
5.333	33	27.667	≥ 16.5

Note: Sum of Continuous Transmitter Off-times= Observation Time(33ms) - Ton


4.3 Emission Bandwidth:

4.3.1 Applicable Standard

KDB 364244 D01 Meas 15.255 Radars v01

For other than pulsed radar transmitters, the fundamental emission bandwidth is presumed to be “...the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission. Unless otherwise specified in an ITU-R Recommendation for the appropriate class of emission, the value of $\beta/2$ should be taken as 0.5%,” as defined in §2.1(c) of the FCC rules. This is also known as the 99% occupied bandwidth (OBW).

4.3.2 EUT Setup

Place the measurement antenna in the main beam of the EUT then maximize the fundamental emission, noting that multiple peaks can be found at different beam orientations and/or polarizations.

4.3.3 Test Procedure

KDB 364244 D01 Meas 15.255 Radars v01

Clauses 9.3 and 9.4 of C63.10-2020 provide standardized procedures recognized by the FCC for measuring both the relative (-10 dB) bandwidth and the 99% OBW.

The occupied bandwidth (OBW) is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

a) The following procedure shall be used for measuring 99% power bandwidth: Use the following spectrum analyzer settings:

- 1) Span equal to approximately 1.5 times the OBW, centered on the carrier frequency
- 2) RBW, prefer 1% to 5% of OBW, or a minimum of 1 MHz if this is not possible due to a large OBW
- 3) VBW approximately $3 \times$ RBW
- 4) Set the reference level of the instrument as required to reduce the chance of the signal amplitude exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.1.6.
- 5) Sweep = No faster than coupled (auto) time.
- 6) Detector function = peak.
- 7) Trace = max-hold.

b) The EUT shall be transmitting at its maximum data rate. Allow the trace to stabilize.

c) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.

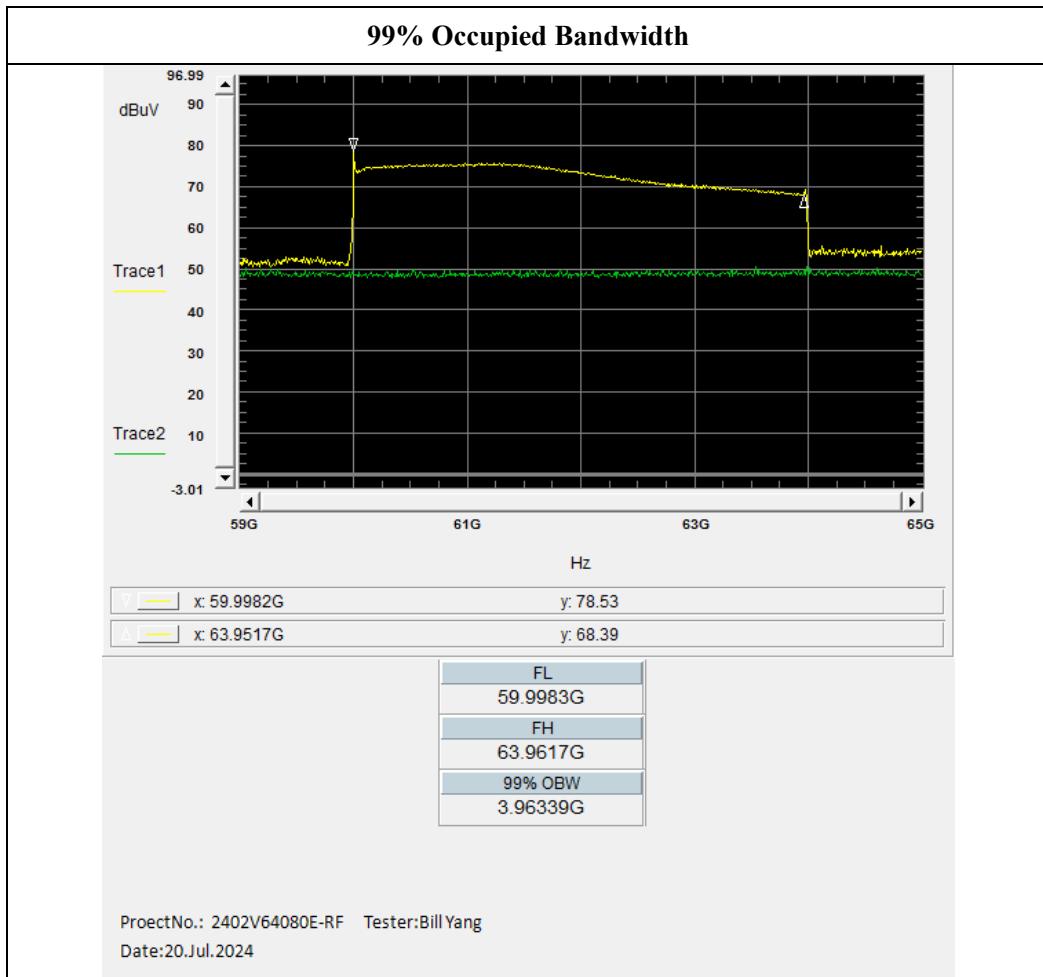
d) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).

e) Repeat this test for each modulation scheme using the guidance of 5.6.2.1.

4.3.4 Test Data

Serial Number:	205W-1	Test Date:	2024/7/20
Test Site:	Chamber B	Test Mode:	Swept
Tester:	Bill Yang	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	25.2	Relative Humidity: (%)	40	ATM Pressure: (kPa)	100.2


Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Waveguide Mixer	11970V	2521A011767	2023/2/16	2026/2/15
Flann Microwave	Horn Antenna	861V/385	736	2023/2/27	2026/2/26
Agilent	Spectrum Analyzer	E4440A	MY44303352	2023/10/18	2024/10/17
Resenberger	Coaxial Cable	LU7-022-1000	0031	2024/3/1	2025/2/28
Resenberger	Coaxial Cable	LU7-022-1000	0032	2024/3/1	2025/2/28

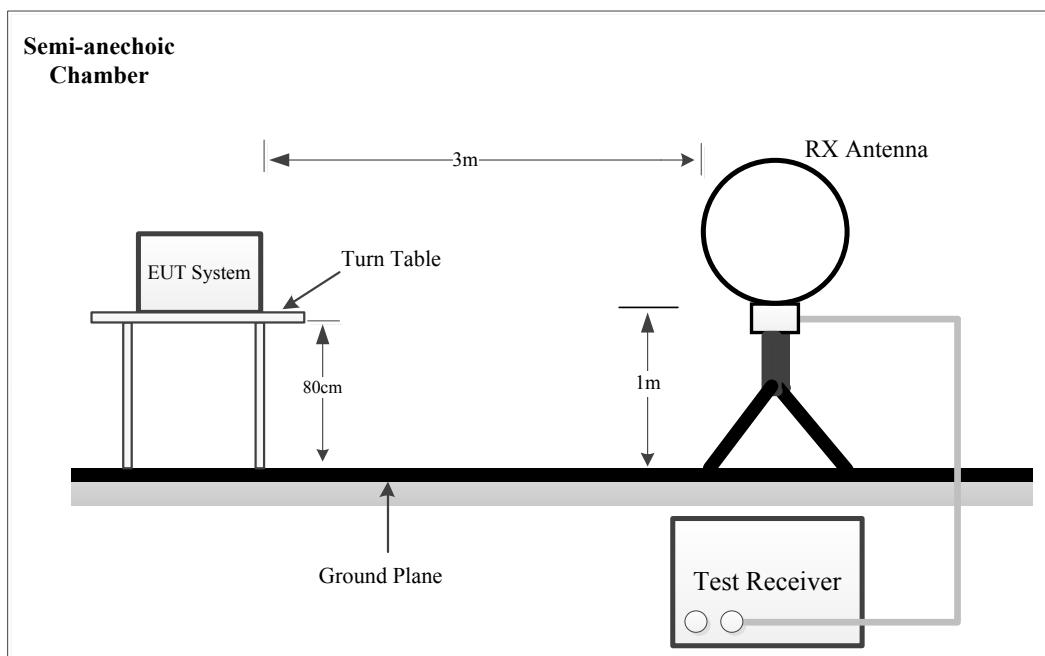
* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

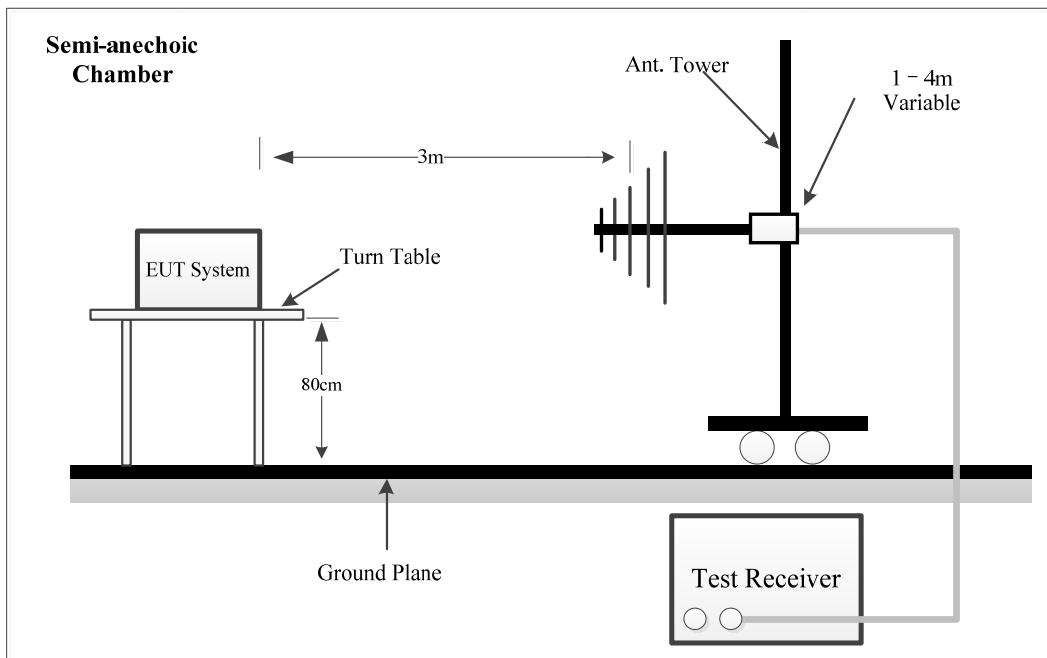
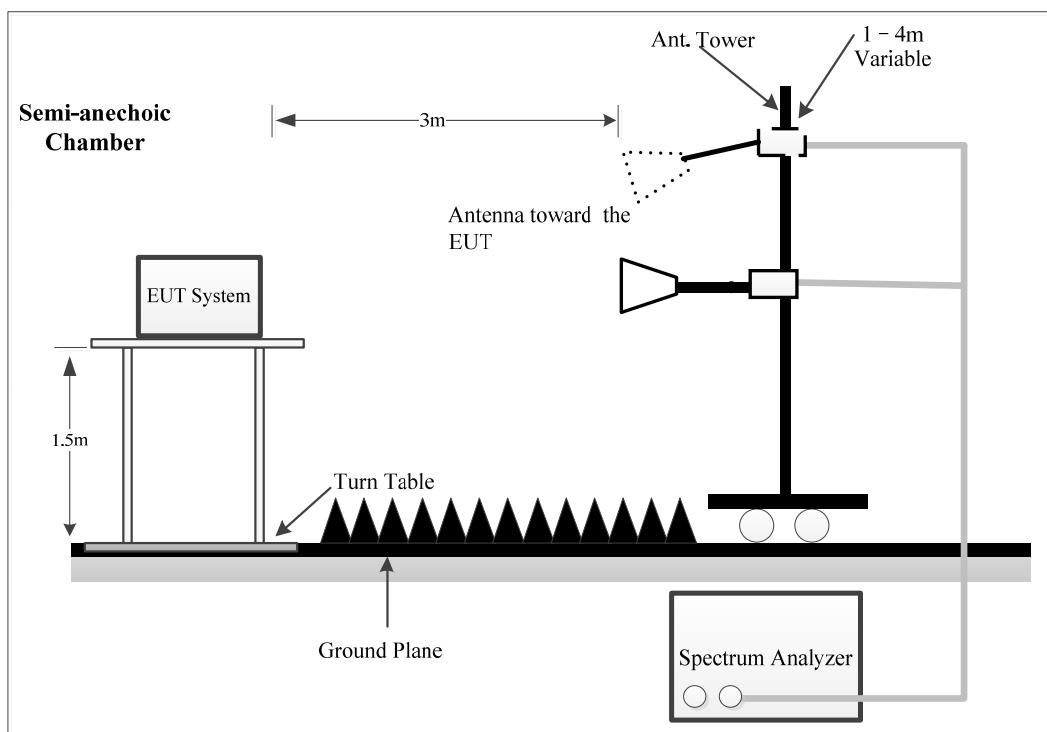
Test Data:

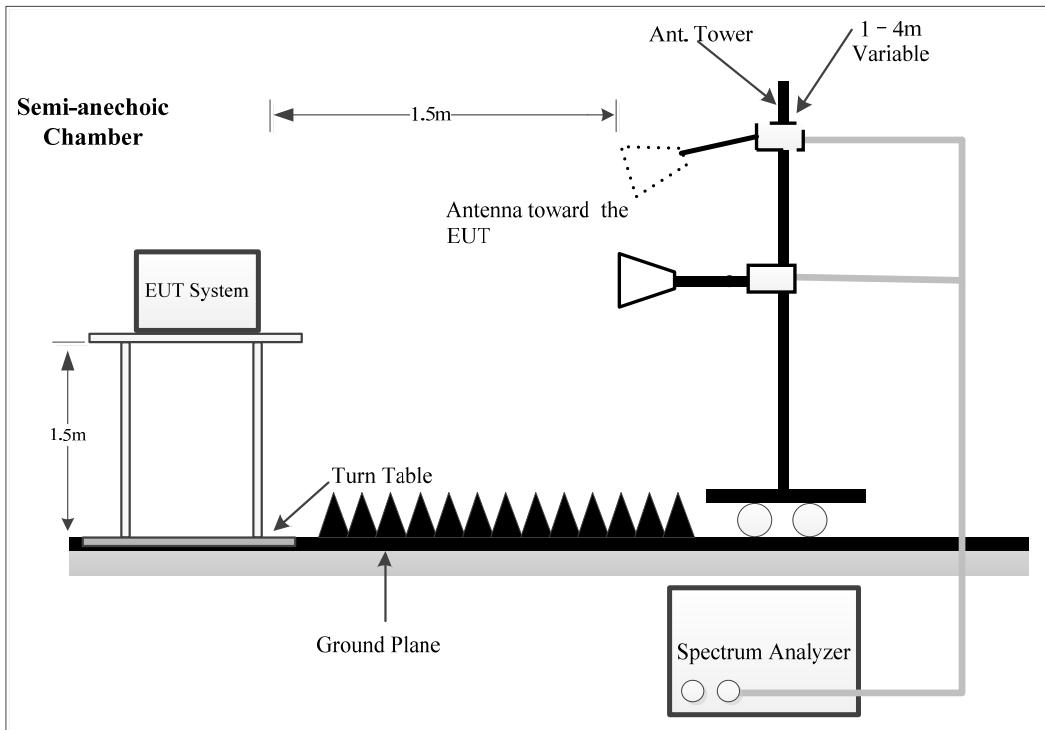
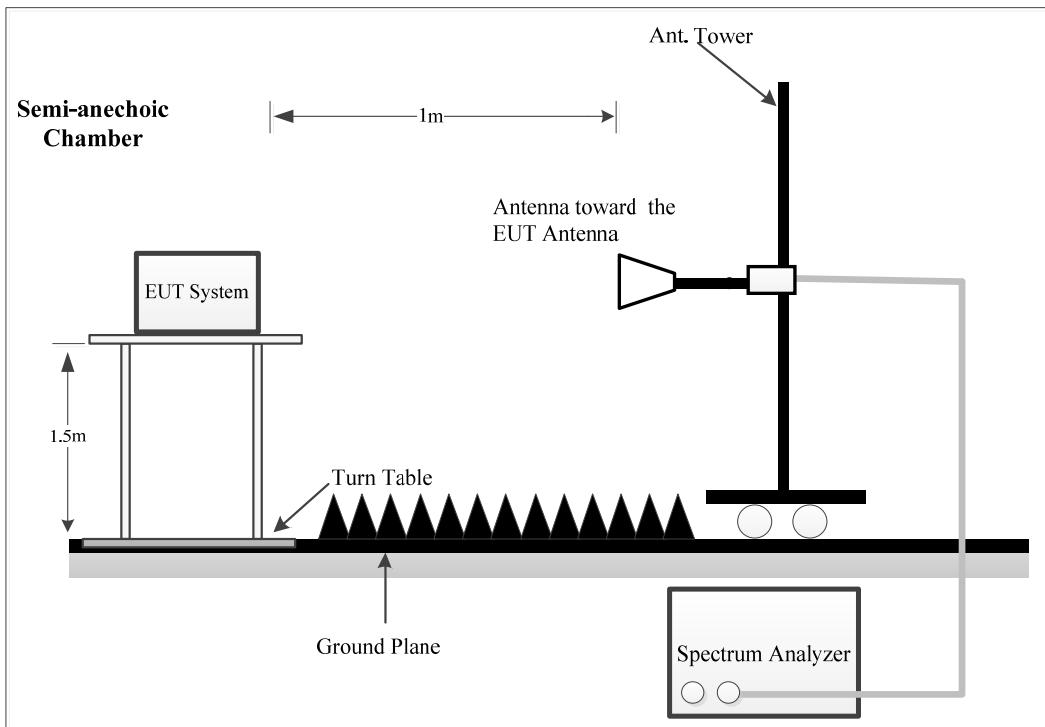
Test Mode	99% Occupied Bandwidth (MHz)	F _L (GHz)	Limit F _L (GHz)	F _H (GHz)	Limit F _H (GHz)
Swept	3963.39	59.9983	57	63.9617	64

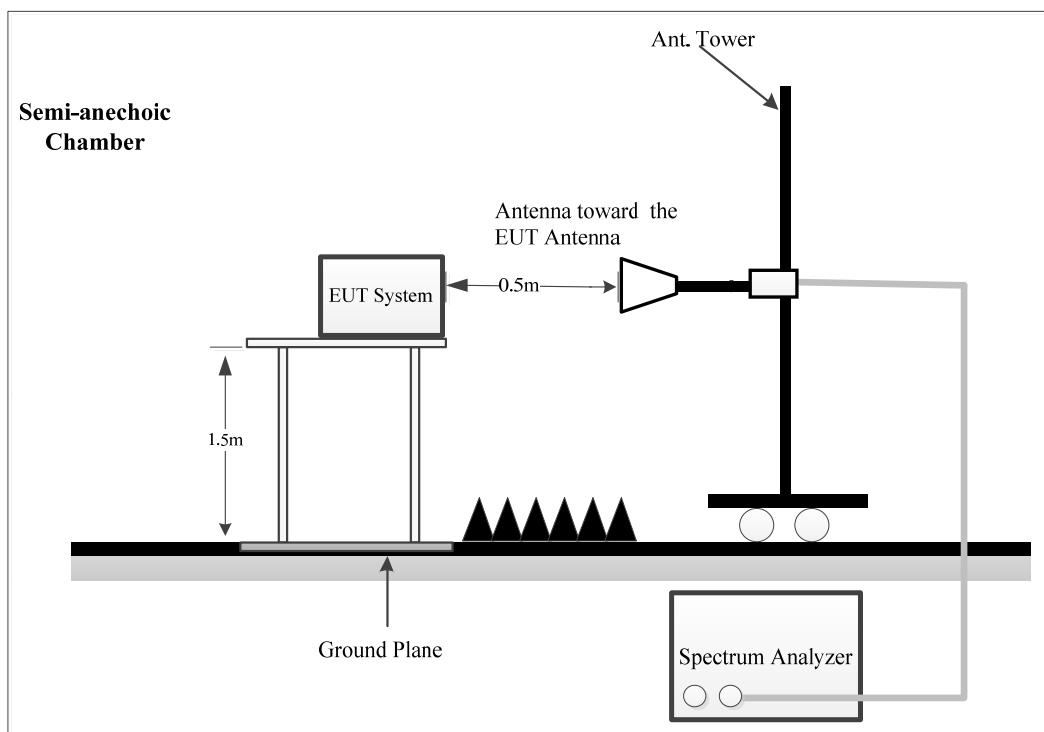
4.4 Radiated Emissions

4.4.1 Applicable Standard


FCC §15.255(d)



Limits on spurious emissions:



- (1) The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in § 15.209.
- (3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm² at a distance of 3 meters.
- (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.


4.4.2 EUT Setup

9kHz-30MHz:

30MHz~1GHz:**1~26.5 GHz:**

26.5~40 GHz:**40~90 GHz:**

90~200 GHz:**Above 40GHz:**

The antenna is scanned around the entire perimeter surface of the EUT, in both horizontal and vertical polarizations, at the distance of 1.0 m from 40 GHz to 90 GHz, and 0.5 m from 90 GHz to 200 GHz.

The radiated emission and out of band emission tests were performed in the 3 meters chamber, using the setup accordance with the ANSI C63.10-2020 The specification used was the FCC 15.209/15.205/15.255 limits.

4.4.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 200 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:
9kHz-1000MHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	Detector
9 kHz – 150 kHz	200 Hz	1 kHz	200 Hz	QP/Average	QP/Average
150 kHz – 30 MHz	9 kHz	30 kHz	9 kHz	QP/Average	QP/Average
30 MHz – 1000 MHz	/	/	120 kHz	QP	QP
	100 kHz	300 kHz	/	PK	PK

1-40GHz:

Pre-scan:

Frequency Range	Measurement	RBW	Video B/W	Detector
1-40 GHz	Peak	1MHz	3 MHz	PK
	AV	1MHz	5kHz	PK

Final measurement for emission identified during the pre-scan:

Frequency Range	Measurement	RBW	Video B/W	Detector
1-40 GHz	Peak	1MHz	3 MHz	PK
	AV	1MHz	10Hz	PK

Above 40GHz:

Frequency Range	Measurement	RBW	Video B/W	Detector
Above 40GHz	AV	1MHz	3MHz	AV

Note: Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz-30MHz except 9 – 90 kHz, 110 – 490 kHz, employing an average detector.

4.4.4 Test Procedure

Refer to ANSI C63.10-2020 Clauses 9.10, and 9.11.

A Maximizing procedure was performed to ensure that the highest emissions from the EUT were actually measured in all of the Test Arrangements of the EUT and Local Support Equipment.

All emissions under the average limit and under the noise floor have not recorded in the report. According to C63.10, the 26.5-40GHz test result shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m

Distance extrapolation factor = $20 \log (\text{specific distance [3m]}/\text{test distance [1.5m]})$ dB= 6.02 dB

For above 40GHz:

External harmonic mixers are utilized. The antenna is scanned around the entire perimeter surface of the EUT, in both horizontal and vertical polarizations. The Mixers and it's RF cables is compose a system for calibration, the conversion factor was added into the test Spectrum Analyzer in testing.

The far-field boundary is given in ANSI C63.10-2020:

$$R_m = 2D^2 / \lambda$$

Where:

D is the largest dimension of the antenna aperture in m and

λ is the free-space wavelength in m at the frequency of measurement.

The minimum test distance for the frequency range 40GHz-200GHz determine as below:

Model	Frequency Range (GHz)	Largest Dimension of the Horn Antenna (mm)	Minimum Test Distance R_m (m)
M19RH	40-60	46.3	0.57
861/385	50-75	43.7	0.64
M12RH	60-90	30.02	0.36
M08RH	90-140	19.7	0.23
M05RH	140-220	12.5	0.15

Note: the test distances used were 1.0 m from 40 GHz to 90 GHz, and 0.5 m from 90 GHz to 200GHz, it can be seen that the EUT was always in the Far-field of the Receive Antenna during all Radiated Emissions Tests.

4.4.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

For 9kHz-26.5GHz:

Result = Reading + Factor

For 26.5GHz-40GHz

Result = Reading + Factor-Distance extrapolation Factor

Note: the antenna JB3 was calibrated with 6dB Attenuator, the antenna factor includes the insertion loss of the Attenuator.

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result

4.4.6 Test Data

Serial Number:	2O5W-1	Test Date:	Below 1GHz:2024/8/2 Above 1GHz: 2024/8/5~2024/11/22
Test Site:	Chamber B, Chamber 10m	Test Mode:	Swept
Tester:	Colin Yang, Leesin Xiang	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	20.9~30.6	Relative Humidity: (%)	42~54	ATM Pressure: (kPa)	100.1~102.1
-------------------	-----------	------------------------	-------	---------------------	-------------

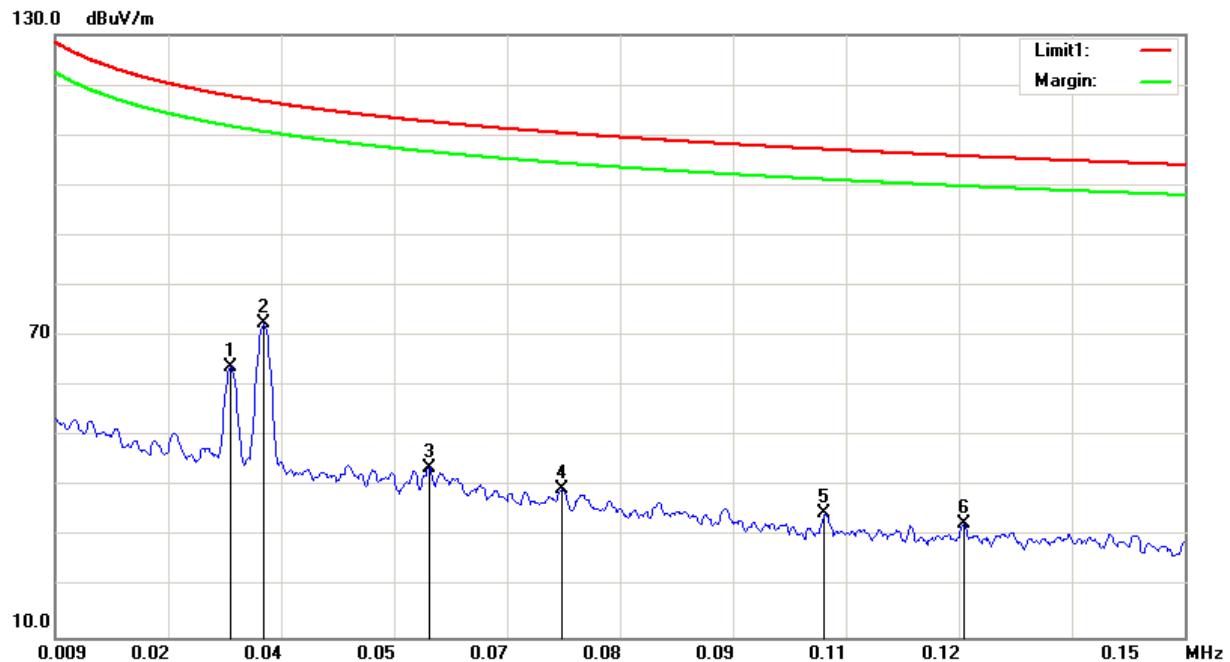
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
9kHz~1000MHz					
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/21	2026/10/20
Sunol Sciences	Hybrid Antenna	JB3	A060611-1	2023/9/6	2026/9/5
Narda	Coaxial Attenuator	779-6dB	04269	2023/9/6	2026/9/5
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2024/8/1	2025/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-04	2024/8/1	2025/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2024/8/1	2025/7/31
Sonoma	Amplifier	310N	185914	2024/8/1	2025/7/31
R&S	EMI Test Receiver	ESCI	100224	2023/8/18	2024/8/17
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
Above 1GHz					
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2026/9/6
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-02 1304	2023/2/22	2026/2/21
Ducommun Technologies	Horn Antenna	ARH-2823-02	1007726-01 1302	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH750A-N/J-SMA/J-10M	20231117004 #0001	2023/11/17	2024/11/16
Xinhang Macrowave	Coaxial Cable	XH750A-N/J-SMA/J-10M	20231117004 #0001	2024/11/17	2025/11/16
Xinhang Macrowave	Coaxial Cable	XH360A-2.92/J-2.92/J-6M-A	20231208001 #0001	2023/12/11	2024/12/10
AH	Preamplifier	PAM-0118P	469	2024/4/15	2025/4/14
AH	Preamplifier	PAM-1840VH	191	2023/9/7	2024/9/6
AH	Preamplifier	PAM-1840VH	191	2024/9/5	2025/9/4
R&S	Spectrum Analyzer	FSV40	101944	2023/10/18	2024/10/17
R&S	Spectrum Analyzer	FSV40	101944	2024/9/6	2025/9/5
Audix	Test Software	E3	191218 (V9)	N/A	N/A
OML	Waveguide Mixer	WR19/M19HWD	U60313-1	2023/2/16	2026/2/15
OML	Horn Antenna	M19RH	11648-01	2023/2/27	2026/2/26

OML	Waveguide Mixer	WR12/M12HWD	E60120-1	2023/2/16	2026/2/15
OML	Horn Antenna	M12RH	E60120-2	2023/2/27	2026/2/26
OML	Waveguide Mixer	WR08/M08HWD	F60313-1	2023/2/16	2026/2/15
OML	Horn Antenna	M08RH	F60313-2	2023/2/27	2026/2/26
OML	Waveguide Mixer	WR05/M05HWD	G60106-1	2023/2/16	2026/2/15
OML	Horn Antenna	M05RH	G60106-2	2023/2/27	2026/2/26
Resenberger	Coaxial Cable	LU7-022-1000	0031	2024/3/1	2025/2/28

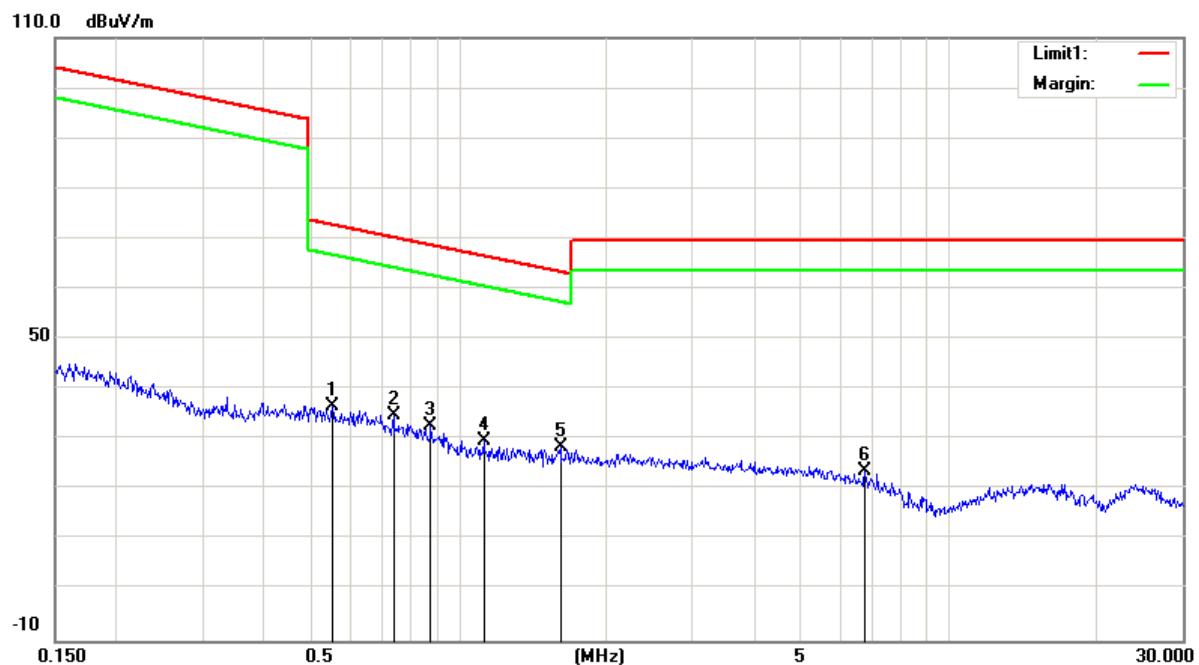
** Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).*

Test Data:


Please refer to the below table and plots.

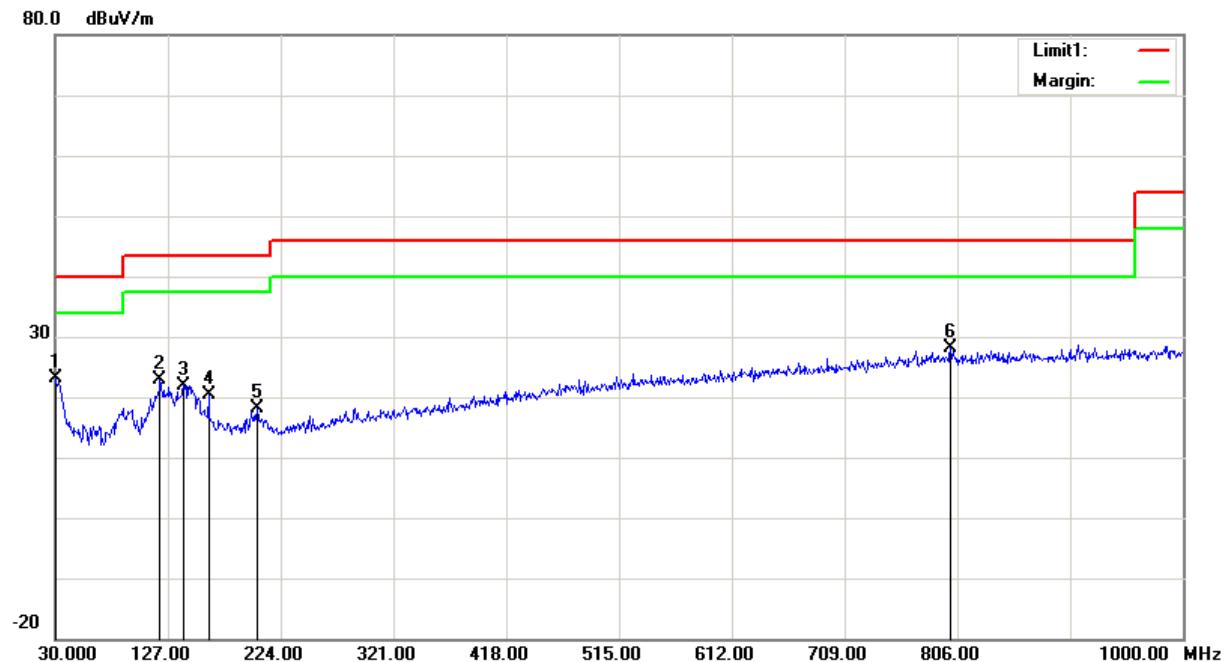
After pre-scan in the X, Y and Z axes of orientation, the worst case is below:

1) 9kHz~30MHz

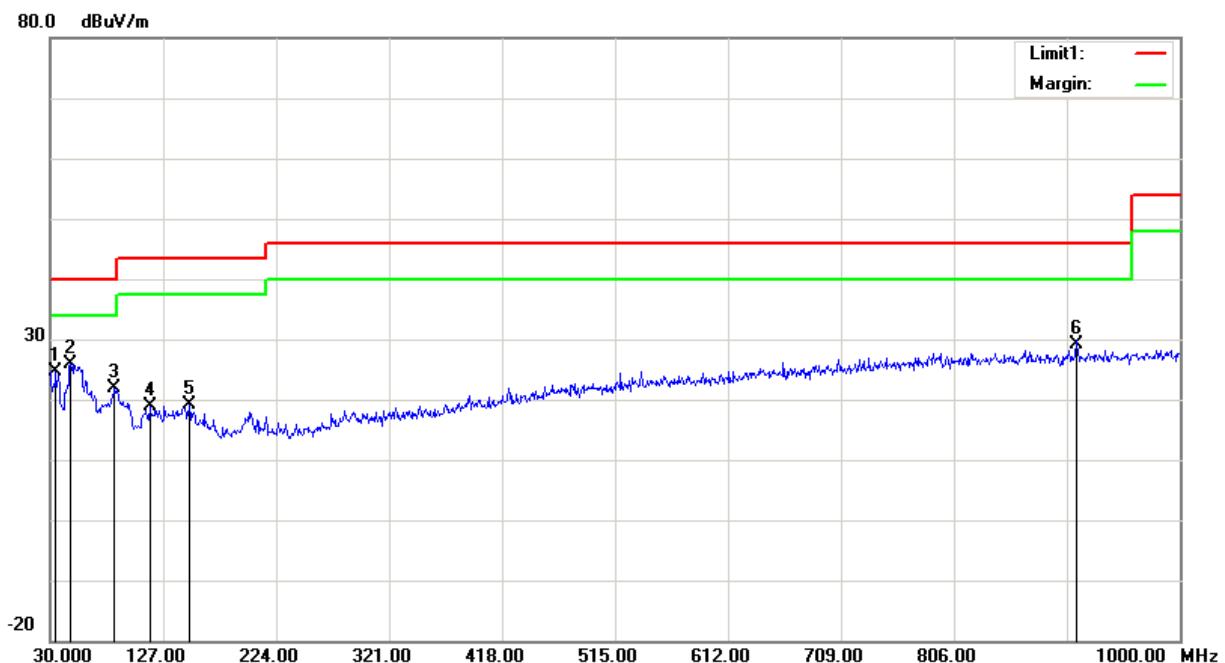

Three antenna orientations (parallel, perpendicular, and ground-parallel) was measured, the worst orientations was below:

Project No: 2402V64080E-RF
 Test Engineer: Leesin Xiang
 Test Date: 2024-8-2
 Polarization: Parallel
 Test Mode: Swept
 Power Source: DC 12V

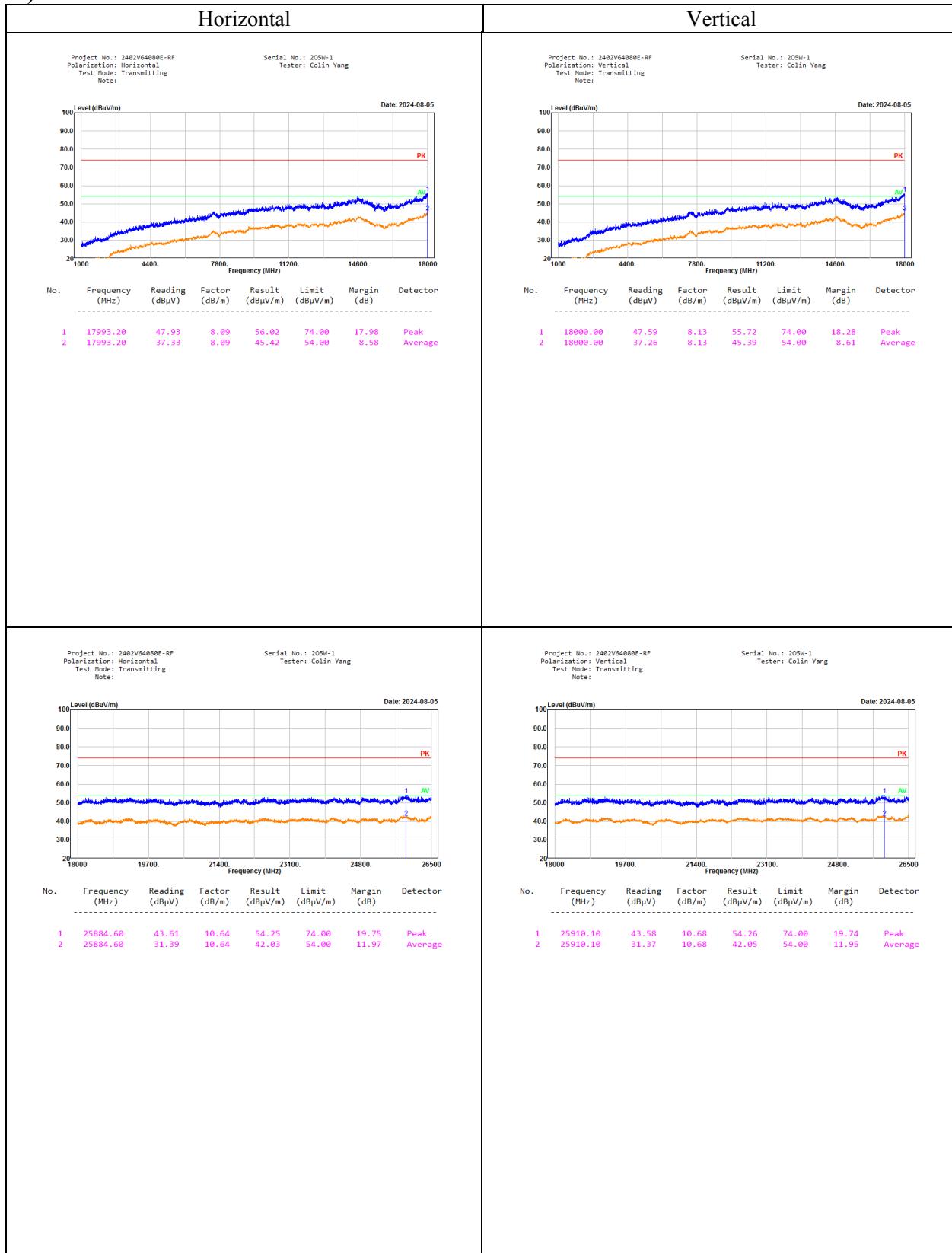
No.	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	0.0309	16.49	peak	47.39	63.88	117.80	53.92
2	0.0351	25.76	peak	46.64	72.40	116.70	44.30
3	0.0557	0.77	peak	43.07	43.84	112.69	68.85
4	0.0722	-0.76	peak	40.22	39.46	110.43	70.97
5	0.1050	-0.53	peak	35.13	34.60	107.18	72.58
6	0.1224	-1.47	peak	34.16	32.69	105.85	73.16

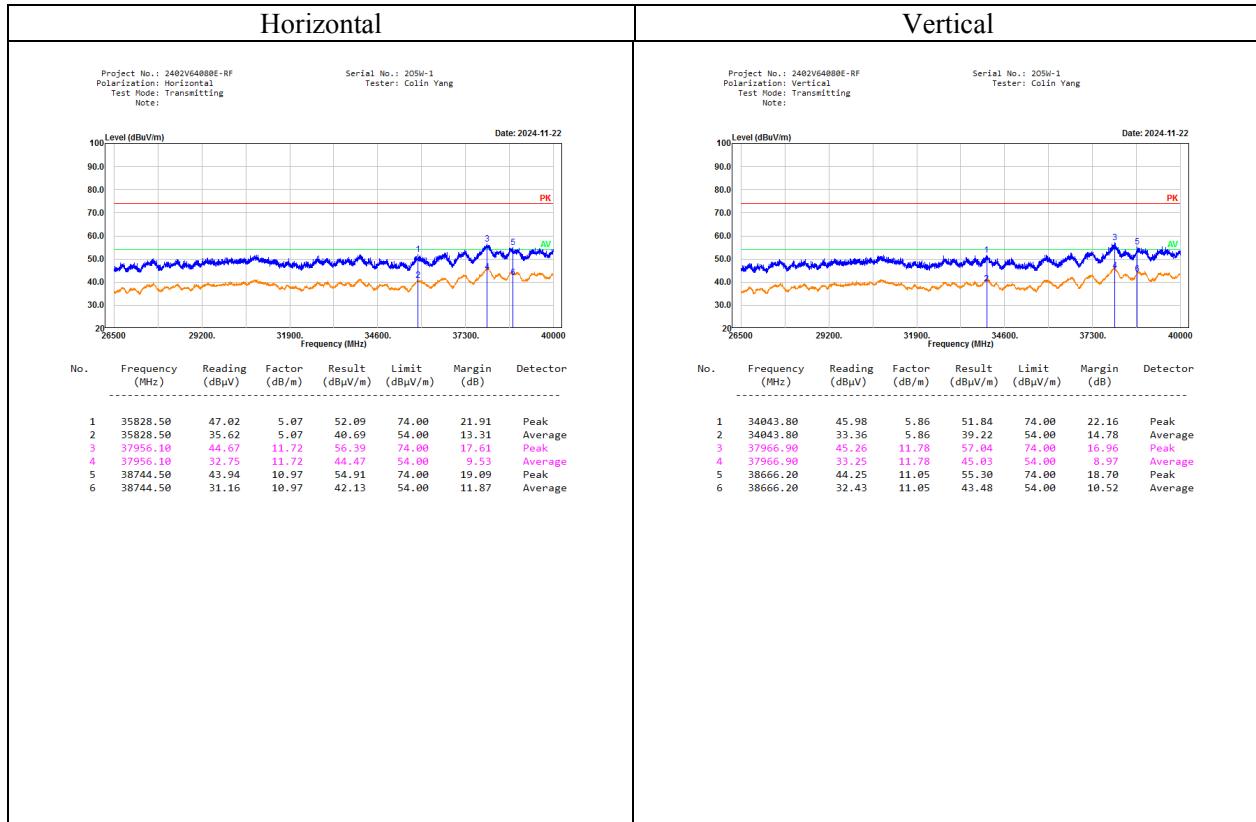

Project No: 2402V64080E-RF
Test Engineer: Leesin Xiang
Test Date: 2024-8-2
Polarization: Parallel
Test Mode: Swept
Power Source: DC 12V

No.	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	0.5523	13.82	peak	22.97	36.79	72.76	35.97
2	0.7352	13.67	peak	21.15	34.82	70.26	35.44
3	0.8757	13.65	peak	19.05	32.70	68.73	36.03
4	1.1233	13.69	peak	16.02	29.71	66.56	36.85
5	1.6105	14.57	peak	13.85	28.42	63.42	35.00
6	6.7333	18.03	peak	5.60	23.63	69.54	45.91


2) 30MHz-1GHz

Project No: 2402V64080E-RF
Test Engineer: Leesin Xiang
Test Date: 2024-8-2
Polarization: Horizontal
Test Mode: Swept
Power Source: DC 12V


No.	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	30.0000	26.84	peak	-3.80	23.04	40.00	16.96
2	120.2100	32.75	peak	-9.94	22.81	43.50	20.69
3	140.5800	32.49	peak	-10.49	22.00	43.50	21.50
4	161.9200	31.68	peak	-11.27	20.41	43.50	23.09
5	203.6300	30.06	peak	-11.91	18.15	43.50	25.35
6	800.1800	27.69	peak	0.46	28.15	46.00	17.85


Project No: 2402V64080E-RF
Test Engineer: Leesin Xiang
Test Date: 2024-8-2
Polarization: Vertical
Test Mode: Swept
Power Source: DC 12V

No.	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	34.8500	31.93	peak	-7.33	24.60	40.00	15.40
2	47.4600	41.02	peak	-15.04	25.98	40.00	14.02
3	85.2900	38.43	peak	-16.63	21.80	40.00	18.20
4	115.3600	29.42	peak	-10.60	18.82	43.50	24.68
5	149.3100	30.12	peak	-11.02	19.10	43.50	24.40
6	911.7300	27.59	peak	1.55	29.14	46.00	16.86

2) 1GHz-40GHz:

3) 40GHz-200GHz:

Frequency (GHz)	Receiver Reading (dB μ V)	Polar (H/V)	Factor (dB/m)	Field Strength (dB μ V/m)	Power Density (pW/cm ²)	Limit (pW/cm ²)
42.620	50.65	H	39.20	80.31	28.49	90.00
42.220	50.32	V	39.14	79.92	26.04	90.00
65.350	51.64	H	42.74	84.84	80.85	90.00
65.170	50.84	V	42.72	84.02	66.94	90.00
92.630	52.47	H	45.43	82.34	45.46	90.00
91.740	54.65	V	45.32	84.41	73.22	90.00
141.520	51.32	H	48.96	84.72	78.64	90.00
142.370	51.44	V	49.00	84.88	81.59	90.00

Note:

Factor = Antenna Factor

Field Strength = Reading + Factor + 20log(d_{Meas}/d_{SpecLimit})

d_{Meas} is the measurement distance, in m

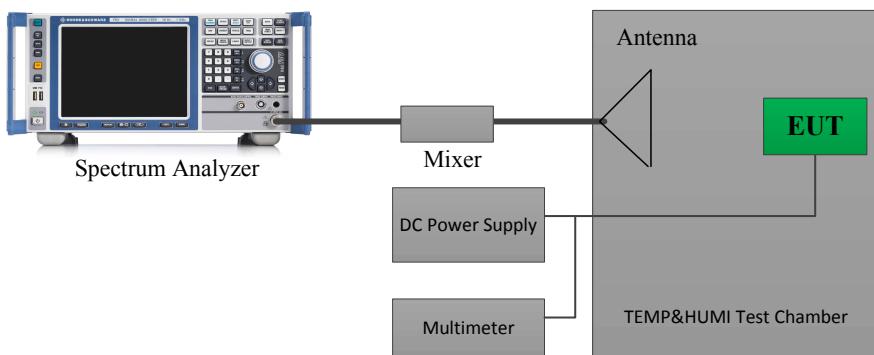
d_{SpecLimit} is the distance specified by the limit, in m

$$PD = \frac{E_{\text{SpecLimit}}^2}{377}$$

where

PD is the power density at the distance specified by the limit, in W/m²
 $E_{\text{SpecLimit}}$ is the field strength at the distance specified by the limit, in V/m

The Specified distance is 3m.


4.5 Frequency Stability

4.5.1 Applicable Standard

FCC §15.255(f)

(f) Frequency stability. Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to $+50$ degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

4.5.2 EUT Setup Block Diagram

4.5.3 Test Procedure

Refer to ANSI C63.10-2020 Clauses 9.5.

The following procedure shall be used for determining frequency stability of millimeter-wave systems:

- a) Arrange EUT and test equipment as shown in Figure 21. Some temperature chambers have a window or other opening that permits locating the receive antenna outside the chamber.
- b) With the EUT at ambient temperature (approximately 25 °C) and voltage source set to the EUT nominal operating voltage (100%), record the spectrum mask of the EUT emission on the spectrum analyzer.
- c) Vary EUT power supply between 85% and 115% of nominal, and record the frequency excursion of the EUT emission mask.
- d) Set the power supply to 100% nominal setting, and raise EUT operating temperature to 50 °C. Record the frequency excursion of the EUT emission mask.
- e) Repeat step d) at each 10 °C increment down to -20 °C.

4.5.3 Test Result

Serial Number:	205W-1	Test Date:	2024/7/20
Test Site:	RF	Test Mode:	Transmitting
Tester:	Colin Yang	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	25.2	Relative Humidity: (%)	40	ATM Pressure: (kPa)	100.2
-------------------	------	------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Waveguide Mixer	11970V	2521A011767	2023/2/16	2026/2/15
Flann Microwave	Horn Antenna	861V/385	736	2023/2/27	2026/2/26
Agilent	Spectrum Analyzer	E4440A	MY44303352	2023/10/18	2024/10/17
Resenberger	Coaxial Cable	LU7-022-1000	0031	2024/3/1	2025/2/28
Resenberger	Coaxial Cable	LU7-022-1000	0032	2024/3/1	2025/2/28
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30173	2023/10/18	2024/10/17
All-sun	Clamp Meter	EM305A	8348897	2023/8/3	2024/8/2
TDK-Lambda	DC Power Supply	Z+60-14	F-08-EM038-1	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Temperature	Voltage	Frequency (GHz)			
		°C	V _{DC}	f _L	f _H
-20	12	59.9946	63.9606	57	64
-10	12	59.9927	63.9636	57	64
0	12	59.9946	63.9606	57	64
10	12	59.9951	63.9642	57	64
20	12	59.9983	63.9617	57	64
30	12	59.9969	63.9638	57	64
40	12	59.9974	63.9630	57	64
50	12	59.9969	63.9638	57	64
20	9	59.9953	63.9644	57	64
20	24	59.9968	63.9653	57	64

Note: The Voltage range was declared by manufacturer▲.

4.6 Group Installation

4.6.1 Applicable Standard

§15.255 (h)

Any transmitter that has received the necessary FCC equipment authorization under the rules of this chapter may be mounted in a group installation for simultaneous operation with one or more other transmitter(s) that have received the necessary FCC equipment authorization, without any additional equipment authorization. However, no transmitter operating under the provisions of this section may be equipped with external phase-locking inputs that permit beam-forming arrays to be realized.

4.6.2 Judgment

The frequency, amplitude and phase of the transmit signal are set within the EUT. There are no external phase-locking inputs or any other means of combining two or more units together to realize a beam-forming array

4.7 Antenna Requirement

4.7.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

4.7.2 Judgment

Please refer to the Antenna Information detail in Section 1.3.

EXHIBIT A - EUT PHOTOGRAPHS

Please refer to the attachment 2402V64080E-RF-EXP EUT external photographs and 2402V64080E-RF-INP EUT internal photographs.

EXHIBIT B - TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2402V64080E-RF-00B-TSP test setup photographs.

******* END OF REPORT *******