

FCC 15.247 2.4GHz Test Report

for

Duke Energy Business Services LLC

526 S. Church St, Charlotte, North Carolina, 28202 United States

Product Name: Duke Energy Gateway

Model Name : DK-GW001-A01-C001

Brand DUKE ENERGY FCC ID : 2AUYW-A010001

Prepared by: : AUDIX Technology Corporation,

EMC Department

The test report is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

File Number: C1M1911073


Tel: +886 2 26099301 Fax: +886 2 26099303

Report Number: EM-F190514

TABLE OF CONTENTS

<u>De</u>	scrip	tion	Page		
TE	ST RE	EPORT CERTIFICATION	4		
1.	REV	VISION RECORD OF TEST REPORT	5		
2.		MMARY OF TEST RESULTS			
3.	GENERAL INFORMATION				
٥.	3.1.	Description of Application			
	3.2.	Description of EUT			
	3.3.	Antenna Information			
	3.4.	EUT Specifications Assessed in Current Report			
	3.5.	Descriptions of Key Components			
	3.6.	Test Configuration			
	3.7.	Tested Supporting System List			
	3.8.	Setup Configuration.			
	3.9.	Operating Condition of EUT			
		Description of Test Facility			
		Measurement Uncertainty			
4.	MEA	ASUREMENT EQUIPMENTLIST			
	4.1.	Conducted Emission Measurement			
	4.2.	Radiated Emission Measurement	-		
	4.3.	RF Conducted Measurement			
5.	CONDUCTED EMISSION				
	5.1.	Block Diagram of Test Setup			
	5.2.	Conducted Emission Limit			
	5.3.	Test Procedure			
	5.4.	Test Results			
6.	RAI	DIATED EMISSION			
	6.1.	Block Diagram of Test Setup			
	6.2.	Radiated Emission Limits			
	6.3.	Test Procedure			
	6.4.	Measurement Result Explanation			
_	6.5.	Test Results			
7.		OCCUPIED BANDWIDTH			
		Block Diagram of Test Setup			
	7.2.	Specification Limits			
	7.3.	Test Procedure			
_	7.4.	Test Results			
8.		XIMUM PEAK OUTPUT POWER			
	8.1.	Block Diagram of Test Setup			
	8.2.	Specification Limits			
	8.3.	Test Procedure			
_	8.4.	Test Results			
9.	EMI	ISSION LIMITATIONS	29		
	9.1.	Block Diagram of Test Setup			
	9.2.	Specification Limits	29		

Audix Technology Corp.
No. 53-11, Dingfu, Linkou, Dist.,

Tel: +886 2 26099301 Fax: +886 2 26099303

New	Taipei	City244,Taiwan	
	9.3.	Test Procedure	29
	9.4.	Test Results	30
10.	POV	VER SPECTRAL DENSITY	31
	10.1.	Block Diagram of Test Setup	31
		Specification Limits	
	10.3.	Test Procedure	31
	10.4.	Test Results	31
11.	DEV	TATION TO TEST SPECIFICATIONS	32

APPENDIX A TEST DATA AND PLOTS APPENDIX B TEST PHOTOGRAPHS

TEST REPORT CERTIFICATION

Applicant Duke Energy Business Services LLC

Manufacturer **Duke Energy Corporation** :

EUT Description

(1) Product **Duke Energy Gateway** (2) Model DK-GW001-A01-C001 (3) Brand **DUKE ENERGY**

(4) Power Supply: DC 5V, 3A

Applicable Standards:

47CFRFCC Part 15 Subpart C ANSI C63.10:2013

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. Audix Technology Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report: 2019. 12. 27

Reviewed by: The I during (Tina Huang/Administrator)

Approved by:

(Johnny Hsueh/Section Manager)

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Data	Revision Summary	Report Number
0	2019. 12. 27	Original Report	EM-F190514

2. SUMMARY OF TEST RESULTS

Rule	Description	Results			
15.207	Conducted Emission	PASS			
15.247(d)/15.205	Radiated Band Edge and Radiated Spurious Emission	PASS			
15.247(a)(2)	6dB/Occupied Bandwidth	PASS			
15.247(b)(3)	Maximum Peak Output Power	PASS			
15.247(d)	Conducted Band Edges and Conducted Spurious Emission	PASS			
15.247 (e)	Peak Power Spectral Density	PASS			
15.203 Antenna Requirement Compliance					
Note: The uncertainties value is not used in determining the result.					

3. GENERAL INFORMATION

3.1. Description of Application

Applicant	Duke Energy Business Services LLC 526 S. Church St, Charlotte, North Carolina, United States, 28202 United States
Manufacturer	Duke Energy Corporation 550 South Tryon Street Charlotte, NC 28202 United States
Product	Duke Energy Gateway
Model	DK-GW001-A01-C001
Brand	DUKE ENERGY

3.2. Description of EUT

Test Model	DK-GW001-A01-C001
Serial Number	N/A
Power Rating	DC 5V, 3A
Software Version	N/A
RF Features	WLAN:802.11 a/b/g/n/ac Bluetooth: BT and BLE ZigBee Z-Wave
Transmit Type	WLAN: 1T1R Bluetooth: 1T1R ZigBee: 1T1R Z-Wave: 1T1R
Sample Status	Mass production
Date of Receipt	2019. 11. 06
Date of Test	2019. 11. 27 ~ 12. 27
Interface Ports of EUT	One LAN PortOne USB PortOne DC Input Port
Accessories Supplied	AC AdapterEthernet Cord

3.3. Antenna Information

WLAN/ZigBee/BT Antenna							
Antenna Part Number	Manufacture	Antenna Type	Frequency (MHz)	Max Gain(dBi)			
RFA-DB1-AP609-70-100	ARISTOTLE.	РСВ	2400-2500	3.73			
KrA-DD1-AF009-70-100			5150-5875	3.92			

Z-Wave Antenna							
Antenna Part Number	Manufacture	Antenna Type	Frequency (MHz)	Max Gain(dBi)			
RFA-ZW-AP856-100-R2	ARISTOTLE.	PCB	868-928	3.15			

3.4. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (Mbps)
802.11b		11	DSSS (DBPSK/DQPSK/CCK)	Up to 11
802.11g	2412-2462	11	OFDM	Up to 54
802.11n-HT20			(BPSK/QPSK/16QAM/64QAM)	Up to 144.4
BLE	2402-2480	40	GFSK	1
ZigBee (IEEE 802.15.4)	2405-2480	16	DSSS (O-QPSK)	0.25

Channel List						
802.11 b/g/n-HT20						
Channel Number	Frequency (MHz)					
1	2412					
2	2417					
3	2422					
4	2427					
5	2432					
6	2437					
7	2442					
8	2447					
9	2452					
10	2457					
11	2462					

Channel List							
BLE							
Channel Number	Frequency (MHz)						
37	2402	09	2422	18	2442	28	2462
00	2404	10	2424	19	2444	29	2464
01	2406	38	2426	20	2446	30	2466
02	2408	11	2428	21	2448	31	2468
03	2410	12	2430	22	2450	32	2470
04	2412	13	2432	23	2452	33	2472
05	2414	14	2434	24	2454	34	2474
06	2416	15	2436	25	2456	35	2476
07	2418	16	2438	26	2458	36	2478
08	2420	17	2440	27	2460	39	2480

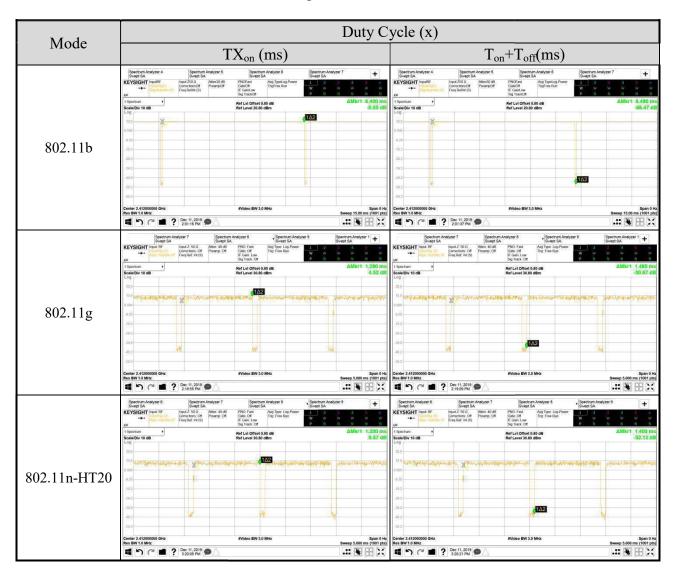
Channel List							
ZigBee (IEEE 802.15.4)							
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)				
11	2405	19	2445				
12 2410		20	2450				
13	2415	21	2455				
14	2420	22	2460				
15	2425	23	2465				
16	2430	24	2470				
17	2435	25	2475				
18	2440	26	2480				

3.5. Descriptions of Key Components

3.5.1. For the All Component Lists

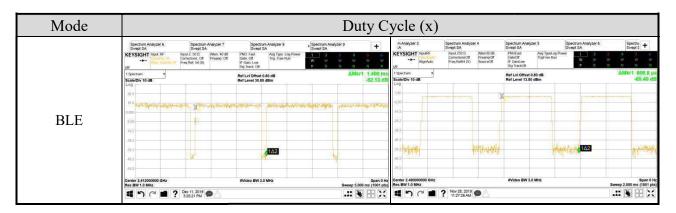
Item	Supplier	Model / Type	Character	
CPU	Intel	E3805	1.33GHz	
Storage (SSD)	Kingston.	EMMC16G-TB28	eMMC flash 16GB	
Memory (RAM)	NANYA.	NT5CC256M16EP-EK	4GB DDR3	
WLAN/BT Combo Card	AMPAK.	AP6255		
Z-Wave Chip	SIGMA.	ZM5101A-CME3R		
ZigBee Chip	Silicon Labs	EFR32MG1B232F256GM32 -C0		
Z-Wave Antenna	ARISTOTLE	RFA-ZW-AP856-100-R2		
Wi-Fi/BT/ ZigBee Antenna	ARISTOTLE	RFA-DB1-AP609-70-100		
AC Adapter (Wall-mount, 2C)	SUNNY COMPUTER TECHNOLOGY CO., LTD	SYS1639-1505-W2 I/P: 100-240Vac, 50-60Hz, 1.0. O/P: 5Vdc, 3A 15W MAX		
DC Cable: Unshielded, Detachable, 1.4m				
Cable	Ethernet Cord: Unshielded, Detachable, 0.9m			

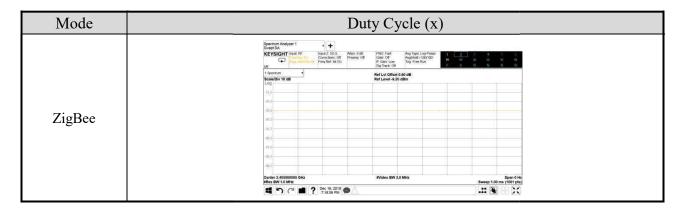
Remark: For more detailed features description, please refer to the manufacturer's specifications or the user manual.



3.6. Test Configuration

Mode	TX _{on} (ms)	1/TX _{on} (kHz)	Duty Cycle (x)	Duty Cycle Factor [10log(1/x)] (dB)
802.11b	8.40	0.12	0.99	0.04
802.11g	1.39	0.72	0.94	0.27
802.11n-HT20	1.30	0.77	0.93	0.32


Note: When duty cycle is less than 98% (0.98) that duty cycle factor $10\log(1/x)$ is needed to add in conducted test items measured in average detector.



Mode	TX _{on} (ms)	1/ TX _{on} (kHz)
BLE	0.39	2.56

Mode	TX _{on} (ms)	1/ TX _{on} (kHz)
ZigBee		

AC Conduction		
Test Case	Normal operation	

Item		Mode	Data Rate	Test Channel
		802.11b	1Mbps	1/11
	Radiated Band Edge	802.11g	6Mbps	1/11
	Notel	802.11n-HT20	MCS0	1/11
		BLE	1Mbps	37/39
Radiated		ZigBee		11/26
Test Case	Radiated Spurious Emission ^{Note1& 2}	802.11b	1Mbps	6
1 CSt Case		802.11g	6Mbps	6
		802.11n-HT20	MCS0	6
		BLE	1Mbps	37
		ZigBee		11
		ZigBee+802.11g		11+1

Item		Mode	Data Rate	Test Channel
		802.11b	1Mbps	1/7/11
	(4D/O	802.11g	6Mbps	1/7/11
	6dB/Occupied Bandwidth	802.11n-HT20	MCS0	1/7/11
	Dandwidin	BLE	1Mbps	37/17/39
		ZigBee		11/18/26
		802.11b	1Mbps	1/7/11
		802.11g	6Mbps	1/7/11
	Peak Output Power	802.11n-HT20	MCS0	1/7/11
		BLE	1Mbps	37/17/39
		ZigBee		11/18/26
		802.11b	1Mbps	1/11
Candyatad	Band Edge	802.11g	6Mbps	1/11
Conducted Test Case		802.11n-HT20	MCS0	1/11
1 est case		BLE	1Mbps	37/39
		ZigBee		11/26
	Spurious Emission	802.11b	1Mbps	1/7/11
		802.11g	6Mbps	1/7/11
		802.11n-HT20	MCS0	1/7/11
		BLE	1Mbps	37/17/39
		ZigBee		11/18/26
		802.11b	1Mbps	1/7/11
	De de Deserve Consert 1	802.11g	6Mbps	1/7/11
	Peak Power Spectral Density	802.11n-HT20	MCS0	1/7/11
	Delisity	BLE	1Mbps	37/17/39
		ZigBee		11/18/26

Note 1: Mobile Device

Portable Device, and 3 axis were assessed.	The worst scenario	for Radiated	Spurious	Emission	as
follow: ☐ Lie ☐ Side ☐ Stand					

Note 2: Low, mid, and high channels were measured, only the worst channel of each modulation was presented in this report.

3.7. Tested Supporting System List

3.7.1. Support Peripheral Unit

No.	Product	Brand	Model No.	Serial No.	Approval
1.	Notebook PC	hp	TPN-Q189	N/A	N/A
2.	USB Storage Memory (128GB)	SanDisk	N/A	N/A	N/A

3.7.2. Cable Lists

No.	Cable Description Of The Above Support Units			
	AC Adapter: hp, M/N PPP-012C-S,			
1.	DC Power Cord: Unshielded, Undetachable, 1.8m, Bonded a ferrite core			
	AC Power Cord: Unshielded, Detachable, 1.0m			
2.	USB Cable: Unshielded, Undetachable, 1.8m			

3.8. Setup Configuration

3.8.1. EUT Configuration for Power Line & Radiated Emission

3.8.2. EUT Configuration for RF Conducted Test Items

3.9. Operating Condition of EUT

Test program "putty" is used for enabling EUT WLAN function under continues transmitting and choosing data rate/ channel.

3.10.Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website: www.audixtech.com Contact e-mail: attemc_report@audixtech.com
Accreditations	The laboratory is accredited by following organizations under ISO/IEC 17025:2017 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724
Test Facilities	FCC OET Designation Number under APEC MRA by NCC is: TW1724 ISED CAB Identifier Number under APEC TEL MRA by NCC is TW1724 (1) No.8 Shielded Room (2) No.1 3m Semi Anechoic Chamber (3) Fully Anechoic Chamber

3.11. Measurement Uncertainty

Test Items/Facilities		Frequency Range	Uncertainty
Co	onduction Test	150kHz~30MHz	±3.50dB
		30MHz-200MHz, 3m, Horizontal	±3.9dB
		200MHz-1000MHz, 3m, Horizontal	±4.3dB
	No.1 3m Semi	30MHz-200MHz, 3m, Vertical	±4.5dB
	Anechoic Chamber	200MHz-1000MHz, 3m, Vertical	±4.1dB
		1GHz-6GHz, 3m	±5.1dB
		6GHz-18GHz, 3m	±5.5dB
		30MHz-200MHz, 3m, Horizontal	±4.7dB
	No.3 3m Semi	200MHz-1000MHz, 3m, Horizontal	±4.5dB
	Anechoic Chamber	30MHz-200MHz, 3m, Vertical	±4.3dB
		200MHz-1000MHz, 3m, Vertical	±4.1dB
		30MHz-200MHz, 3m, Horizontal	±4.1dB
Radiation		200MHz-1000MHz, 3m, Horizontal	±4.4dB
Test	No.4 3m Semi Anechoic Chamber	30MHz-200MHz, 3m, Vertical	±4.2dB
		200MHz-1000MHz, 3m, Vertical	±5.0dB
		1GHz-6GHz, 3m	±4.4dB
		6GHz-18GHz, 3m	±4.1dB
		30MHz-200MHz, 3m, Horizontal	±4.0dB
		200MHz-1000MHz, 3m, Horizontal	±4.0dB
	No.5 3m Semi	30MHz-200MHz, 3m, Vertical	±4.2dB
	Anechoic Chamber	200MHz-1000MHz, 3m, Vertical	±4.4dB
		1GHz-6GHz, 3m	±4.3dB
		6GHz-18GHz, 3m	±4.6dB
	Fully Anechoic	30MHz~1000MHz	±4.7dB
	Chamber	1GHz~18GHz	±5.3dB

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty
6dB Bandwidth	± 0.05kHz
Maximum peak output power	± 0.33dB
Power spectral density	± 0.13dB
Conducted Emission Limitations	± 0.13dB

4. MEASUREMENT EQUIPMENTLIST

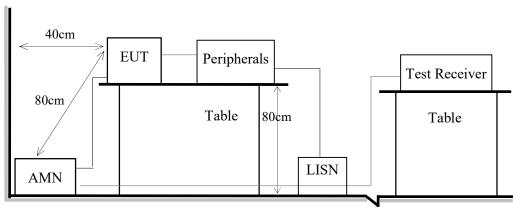
4.1. Conducted Emission Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Test Receiver	R&S	ESR3	101774	2019. 01. 23	1 Year
2.	A.M.N.	R&S	ENV4200	100169	2019. 11. 13	1 Year
3.	L.I.S.N.	Kyoritsu	KNW-407	8-855-9	2019. 12 .10	1 Year
4.	Pulse Limiter	R&S	ESH3-Z2	100354	2019. 01. 12	1 Year
5.	Signal Cable	Yeida	RG/58AU	CE-08	2019. 09. 20	1 Year
6.	Digital Thermo- Hygro Meter	iMax	HTC-1	No.8 S/R	2019. 04. 20	1 Year
7.	Test Software	Audix	e3	V6.120619c	N.C.R.	N.C.R.

4.2. Radiated Emission Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2019. 09. 11	1 Year
2.	Spectrum Analyzer	Keysight	N9010B-544	MY55460198	2019. 05. 06	1 Year
3.	Test Receiver	R & S	ESCS30	100338	2019. 06. 12	1 Year
4.	Amplifier	HP	8447D	2944A06305	2019. 01. 30	1 Year
5.	Amplifier	HP	8449B	3008A02678	2019. 03. 07	1 Year
6.	Amplifier	Keysight	83051A	MY53010042	2019. 08. 08	1 Year
7.	Bilog Antenna	TESEQ	CBL6112D	33821	2019. 01. 19	1 Year
8.	Loop Antenna	R&S	HFH2-Z2	891847/27	2017. 12. 18	2 Years
9	Double-Ridged Waveguide Horn	ETS-Lindgren	3117	00135902	2019. 03. 13	1 Year
10.	Horn Antenna	COM-POWE R	AH-840	101092	2019 .05. 14	1 Year
11.	2.4GHz Notch Filter	K&L	7NSL10-244 1.5/E130.5-O /O	1	2019. 07. 24	1 Year
12.	3GHz Notch Filter	Microwave	H3G018G1	484796	2019. 08. 21	1 Year
13.	Coaxial Cable	MIYAZAKI	5D2W	RE-11	2019. 02. 01	1 Year
14.	Coaxial Cable	HUBER+SU HNER	SUCOFLEX 104	RF CABLE-01	2019. 09. 20	1 Year
15.	Coaxial Cable	HUBER+ SUHNER	SUCOFLEX 102	No.1 18-40GHz Cable	2019. 09. 20	1 Year
16.	Digital Thermo-Hygro Meter	iMax	HTC-1	No.1 3m A/C	2019. 04. 20	1 Year
17.	Digital Thermo-Hygro Meter	EVERY DAY	E-512	RF-02	2019. 04. 20	1 Year
18.	Test Software	Audix	e3	V6.120619c	N.C.R.	N.C.R.
19.	Test Software	Audix	e3	V6.110601	N.C.R.	N.C.R.

4.3. RF Conducted Measurement


Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Keysight	N9020B-544	MY57120357	2019.01.17	1 Year
2.	Power Meter	Anritsu	ML2495A	1145008	2019. 11. 06	1 Year
3.	Power Sensor	Anritsu	MA2411B	1126096	2019. 11. 06	1 Year
4.	Digital Thermo-Hygro Meter	Shenzhen Datronn Electronics	KT-905	RF	2019. 04. 20	1 Year

5. CONDUCTED EMISSION

5.1. Block Diagram of Test Setup

5.1.1. Block Diagram of EUT Indicated as section 3.8

5.1.2. Shielded Room Setup Diagram

Ground Plane

5.2. Conducted Emission Limit

Enggyanav	Conducted Limit		
Frequency	Quasi-Peak Level	Average Level	
150kHz ~ 500kHz	66 ~ 56 dBμV	$56 \sim 46 \text{ dB}\mu\text{V}$	
500kHz ~ 5MHz	56 dBμV	46 dBμV	
5MHz ~ 30MHz	60 dBμV	50 dBμV	

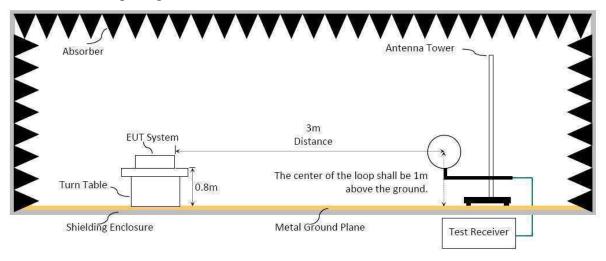
Remark1.: If the average limit is met when using a Quasi-Peak detector, the measurement using the average detector is not required.

2.: The lower limit applies to the band edges.

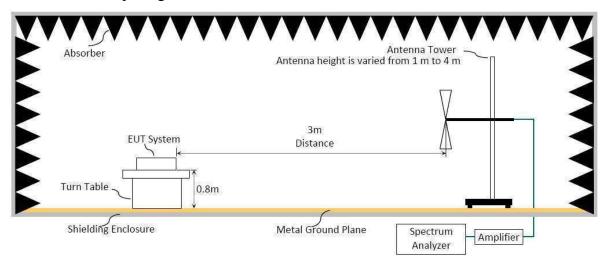
5.3. Test Procedure

- 5.3.1. To set up the EUT as indicated in ANSI C 63.10. The EUT was placed on the table which has 80 cm height to the ground and 40 cm distance to the conducting wall.
- 5.3.2. Power supplier of the EUT was connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 5.3.3. The AC power supplies to all peripheral devices must be provided through line impedance stabilization network (L.I.S.N.)
- 5.3.4. Checking frequency range from 150kHz to 30 MHz and record the emission which does not have 20 dB below limit.

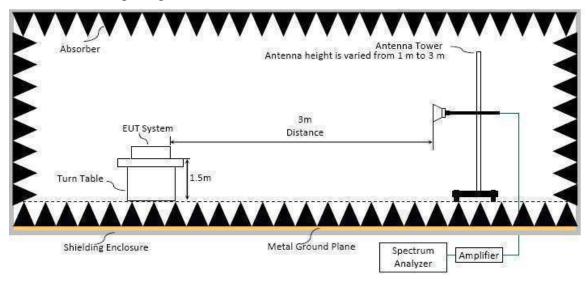
5.4. Test Results


Please refer to Appendix A.

6. RADIATED EMISSION


6.1. Block Diagram of Test Setup

6.1.1. Block Diagram of EUT Indicated as section 3.8


6.1.2. Setup Diagram for 9kHz-30MHz

6.1.3. Setup Diagram for 30-1000MHz

6.1.4. Setup Diagram for above 1GHz

6.2. Radiated Emission Limits

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205 must also comply with the radiated emission limits specified as below.

Fraguanay (MHz)	Distance(m)	Limits		
Frequency (MHz)		dBμV/m	μV/m	
0.009 - 0.490	300	67.6-20 log f(kHz)	2400/f kHz	
0.490 - 1.705	30	87.6-20 log f(kHz)	24000/f kHz	
1.705 - 30	30	29.5	30	
30 - 88	3	40.0	100	
88- 216	3	43.5	150	
216- 960	3	46.0	200	
Above 960	3	54.0	500	
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)		

Remark: (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

6.3. Test Procedure

Frequency Range 9kHz~30MHz:

The EUT setup on the turntable which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

Frequency Range 30MHz ~ 25GHz:

The EUT setup on the turn table which has 80 cm (for 30-1000 MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m (for 30-1000MHz) or antenna varied from 1 m to 3 m (for above 1GHz) to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1)RBW = 120KHz
- (2)VBW $\geq 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- Note 1: When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required, otherwise using Q.P. for final measurement.
- Note 2: When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Frequency above 1GHz to 10th harmonic(up to 25 GHz): Peak Detector:

- (1)RBW = 1MHz
- (2)VBW $\geq 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

Note: When peak-detected value is lower than limit that the measurement using the average detector is not required, otherwise using average detector for final measurement.

Average Detector:

Option 1:

(1)RBW = 1MHz

(2) VBW $\geq 1/T$.

Modulation Type	T (ms)	1/ T (kHz)	VBW Setting
802.11b	8.40	0.119048	10Hz
802.11g	1.39	0.719424	750Hz
802.11n-HT20	1.30	0.769231	750Hz
BLE	0.39	2.564103	2.6kHz
ZigBee			10Hz

N/A: 1/ T is not implemented when duty cycle presented in section 3.6 is $\ge 98\%$.

- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

□ Option	2:
-----------------	----

Average Emission Level= Peak Emission Level+ D.C.C.F.

6.4. Measurement Result Explanation

- Peak Emission Level=Antenna Factor + Cable Loss + Meter Reading Meter Reading= Spectrum Analyzer Reading - Preamp factor
- Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading Meter Reading= Spectrum Analyzer Reading Preamp factor
- Average Emission Level= Peak Emission Level+ DCCF

Duty Cycle Correction Factor (DCCF)= 20log(TX on/TX on+off) presented in section 3.6

ERP= Peak Emission Level-95.2dB-2.14dB

6.5. Test Results

Please refer to Appendix A.

7. 6dB/OCCUPIED BANDWIDTH

7.1. Block Diagram of Test Setup

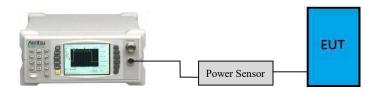
7.2. Specification Limits

The minimum 6dB bandwidth shall be at least 500kHz.

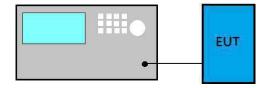
7.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \geq 3 × RBW.
- (3) Detector = Peak.
- (4) Trace mode = \max hold.
- (5) Sweep = auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x to -6dB or 99% power to record the final bandwidth.


7.4. Test Results

Please refer to Appendix A


8. MAXIMUM PEAK OUTPUT POWER

8.1. Block Diagram of Test Setup

• For WLAN Function

• For BLE / ZigBee Function

8.2. Specification Limits

The Limits of maximum Peak Output Power for digital modulation in 2400-2483.5MHzis: 1Watt. (30dBm), and E.I.R.P.: 4Watt (36dBm)

Page 28 of 32

Tel: +886 2 26099301 Fax: +886 2 26099303

8.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

PKPM1 Peak power meter method:

EUT is connected to power sensor and record the maximum output power.

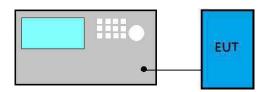
Maximum peak conducted output power method:

- (1) Set the RBW \geq DTS bandwidth
- (2) Set $VBW \ge 3 \times RBW$
- (3) Set span $\geq 3 \times RBW$.
- (4) Sweep time = auto couple
- (5) Detector = peak.
- (6) Trace mode = \max hold.
- (7) Allow trace to fully stabilize.
- (8) Use peak marker function to determine the peak amplitude level.

Method AVGPM (Measurement using an RF average power meter):

EUT is connected to power sensor and record the maximum average output power and duty cycle factor is added when duty cycle presented in section 3.7 is < 98%.

■ Method AVGSA-2 (Spectrum channel power)


- (1) Set span to at least 1.5 times the OBW
- (2) Set RBW = 1 5% of OBW
- (3) Set the video bandwidth (VBW) \geq 3 × RBW.
- (4) Detector = RMS.
- (5) Trace mode = trace average at least 100 traces
- (6) Sweep = auto couple.
- (7) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges.
- (8) Duty cycle factor is added when duty cycle presented in section 3.7 is < 98%.

8.4. Test Results

Please refer to Appendix A

9. EMISSION LIMITATIONS

9.1. Block Diagram of Test Setup

9.2. Specification Limits

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, that the required attenuation shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a) must also comply with the radiated emission limits specified in Section 15.209(a) (See Section 15.205(c)).

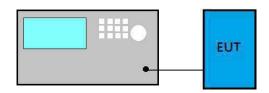
9.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

Reference Level

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: 100 kHz.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = \max hold.
- (8) Allow trace to fully stabilize to find the max PSD as reference level.

Emission Level Measurement


- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: 100 kHz.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = \max hold.
- (8) Allow trace to fully stabilize to find the max level.

9.4. Test Results

Please refer to Appendix A

10.POWER SPECTRAL DENSITY

10.1.Block Diagram of Test Setup

10.2. Specification Limits

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band.

10.3. Test Procedure

Following measurement procedure is reference to ANSI C63.10:2013:

Method PKPSD (peak PSD)

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = max hold.
- (8) Allow trace to fully stabilize.
- (9) Use the peak marker function to determine the maximum amplitude level.
- (10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Method AVGPSD-2

- (1) Using peak PSD procedure step 1 to step 4.
- (2) Detector= RMS detector
- (3) Sweep time = auto couple
- (4) Trace mode = trace averaging over a minimum of 100 traces
- (5) Use the peak marker function to determine the maximum amplitude level.
- (6) Duty cycle factor is added when duty cycle presented in section 3.7< 98%.
- (7) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

10.4. Test Results

Please refer to Appendix A

11. DEVIATION TO TEST SPECIFICATIONS

[NONE]