

FCC TEST REPORT
For
SHENZHEN PROTEK ELECTRONIC CO.,LIMITED
Video speaker
Test Model: BB2713

Prepared for : SHENZHEN PROTEK ELECTRONIC CO.,LIMITED
Address : 5/F, Building C15, Fuyuan Industrial City, NO.598 Zhoushi Road,
Jiwei Community, Hangcheng Street, Bao'an District, Shenzhen
City, Guangdong Province, P.R.China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.
Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an
District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330
Fax : (+86)755-82591332
Web : www.LCS-cert.com
Mail : webmaster@LCS-cert.com

Date of receipt of test sample : October 17, 2019
Number of tested samples : 1
Serial number : Prototype
Date of Test : October 17, 2019 ~ November 19, 2019
Date of Report : November 19, 2019

FCC TEST REPORT
FCC CFR 47 PART 15 C(15.236)

Report Reference No. : LCS191017021AEA

Date of Issue : November 19, 2019

Testing Laboratory Name : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure : Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method

Applicant's Name : SHENZHEN PROTEK ELECTRONIC CO.,LIMITED

Address : 5/F, Building C15, Fuyuan Industrial City, NO.598 Zhoushi Road, Jiuwei Community, Hangcheng Street, Bao'an District, Shenzhen City, Guangdong Province, P.R.China

Test Specification

Standard : FCC CFR 47 PART 15 C(15.236) / ANSI C63.10: 2013

Test Report Form No. : LCSEMC-1.0

TRF Originator : Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF : Dated 2019-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

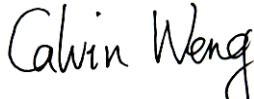
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

EUT Description : Video speaker

Trade Mark : billboard

Test Model : BB2713

Ratings : DC 3.0V by 2*AA Battery


Result : Positive

Compiled by:

Scent Hu/ Administrators

Supervised by:

Calvin Weng/ Technique principal

Approved by:

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No. :	LCS191017021AEA	November 19, 2019 Date of issue
Test Model.....	: BB2713	
EUT.....	: Video speaker	
Applicant.....	: SHENZHEN PROTEK ELECTRONIC CO.,LIMITED	
Address.....	: 5/F, Building C15, Fuyuan Industrial City, NO.598 Zhoushi Road, Jiuwei Community, Hangcheng Street, Bao'an District, Shenzhen City, Guangdong Province, P.R.China	
Telephone.....	: /	
Fax.....	: /	
Manufacturer.....	: SHENZHEN PROTEK ELECTRONIC CO.,LIMITED	
Address.....	: 5/F, Building C15, Fuyuan Industrial City, NO.598 Zhoushi Road, Jiuwei Community, Hangcheng Street, Bao'an District, Shenzhen City, Guangdong Province, P.R.China	
Telephone.....	: /	
Fax.....	: /	
Factory.....	: SHENZHEN PROTEK ELECTRONIC CO.,LIMITED	
Address.....	: 5/F, Building C15, Fuyuan Industrial City, NO.598 Zhoushi Road, Jiuwei Community, Hangcheng Street, Bao'an District, Shenzhen City, Guangdong Province, P.R.China	
Telephone.....	: /	
Fax.....	: /	

Test Result	Positive
--------------------	-----------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	November 19, 2019	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	6
1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS	6
1.3. EXTERNAL I/O CABLE	6
1.4. DESCRIPTION OF TEST FACILITY	6
1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	7
1.6. MEASUREMENT UNCERTAINTY	7
1.7. DESCRIPTION OF TEST MODES	7
2. TEST METHODOLOGY	8
2.1. EUT CONFIGURATION	8
2.2. EUT EXERCISE	8
2.3. GENERAL TEST PROCEDURES	8
3. SYSTEM TEST CONFIGURATION.....	9
3.1. JUSTIFICATION	9
3.2. EUT EXERCISE SOFTWARE.....	9
3.3. SPECIAL ACCESSORIES	9
3.4. BLOCK DIAGRAM/SCHEMATICS.....	9
3.5. EQUIPMENT MODIFICATIONS	9
3.6. TEST SETUP	9
4. SUMMARY OF TEST RESULTS.....	10
5. TEST RESULT	11
5.1 MAXIMUM RADIATED POWER.....	11
5.2 PERMITTED RANGE OF OPERATING FREQUENCIES AND OCCUPIED CHANNEL BANDWIDTH.....	14
5.3 FREQUENCY TOLERANCE	16
5.4 NECESSARY BANDWIDTH	17
5.5. SPURIOUS EMISSIONS.....	19
5.6. AC POWER LINE CONDUCTED EMISSIONS (NOT APPLICABLE).....	23
5.7. ANTENNA REQUIREMENTS.....	24
6. LIST OF MEASURING EQUIPMENTS	25
7. TEST SETUP PHOTOGRAPHS OF EUT.....	26
8. EXTERIOR PHOTOGRAPHS OF THE EUT	26
9. INTERIOR PHOTOGRAPHS OF THE EUT	26

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: Video speaker
Test Model	: BB2713
Model Number	: BB2713
Hardware Version	: MJ-Q12-MAIN V2.0
Software Version	: QI_4.4.2_20190506084607
Power Supply	: DC 3.0V by 2*AA Battery
202.75 MHz Transmitter	
Frequency Range	: 202.75 MHz
Channel Number	: 1
Modulation Type	: FM
Antenne Description	: Internal antenna, 0dBi (Max.)

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
--	--	--	--	--

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
--	--	--

1.4. Description of Test Facility

FCC Registration Number is 254912.
Industry Canada Registration Number is 9642A-1.
EMSD Registration Number is ARCB0108.
UL Registration Number is 100571-492.
TUV SUD Registration Number is SCN1081.
TUV RH Registration Number is UA 50296516-001.
NVLAP Accreditation Code is 600167-0.
FCC Designation Number is CN5024.
CAB identifier: CN0071.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10:2013 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 “Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements” and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
Radiation Uncertainty	9KHz~30MHz	±3.10dB	(1)
	30MHz~200MHz	±2.96dB	(1)
	200MHz~1000MHz	±3.10dB	(1)
	1GHz~26.5GHz	±3.80dB	(1)
	26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	150kHz~30MHz	±1.63dB	(1)
Power disturbance	30MHz~300MHz	±1.60dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX mode.

***Note: Using a temporary antenna connector for the EUT when conducted measurements are performed.

Channel List and Frequency			
Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	202.75	--	--
Mode of Operations			Transmitting Frequency (MHz)
FM			202.75
For AC Power Line Conducted Emissions			
Test Mode			N/A
For Radiated Emission			
Test Mode			TX Mode

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.236 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, expiatory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document.

3.5. Equipment Modifications

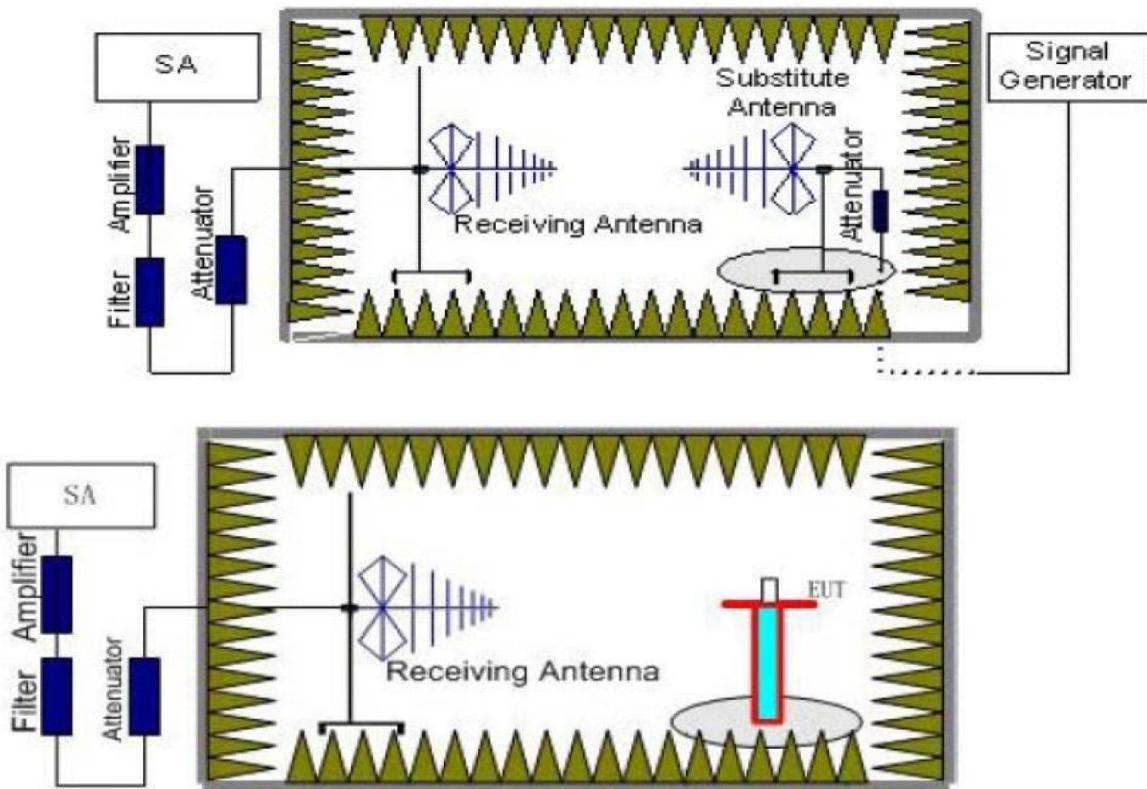
Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C			
FCC Rules	Description of Test	Result	Remark
§15.236(d)(1)	Maximum Radiated Power	Compliant	Note 1
§15.236(b), §15.236(f)(2)	Permitted range of operating frequencies and Occupied Channel Bandwidth	Compliant	Note 1
§15.236(f)(3)	Frequency Tolerance	Compliant	Note 1
§15.236(g)	Necessary bandwidth	Compliant	Note 1
§15.236(g)	Spurious emissions	Compliant	Note 1
§15.207(a)	AC Power Line Conducted Emissions	N/A	--
§15.203	Antenna Requirements	Compliant	Note 1


Remark:

Note 1 --- Test results inside test report.

5. TEST RESULT

5.1 Maximum Radiated Power

5.1.1 Test Setup Layout

5.1.2. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.3 Limit

According to §15.236(d)(1), In the bands allocated and assigned for broadcast television and in the 600 MHz service band: 50 mW EIRP. In the 600 MHz guard band and the 600 MHz duplex gap: 20 mW EIRP.

5.1.4 Test Procedure

EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).

The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

$$\text{Power(EIRP)} = P_{Mea} + P_{Ag} - P_{cl} + G_a$$

This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, $\text{ERP} = \text{EIRP} - 2.15\text{dBi}$.

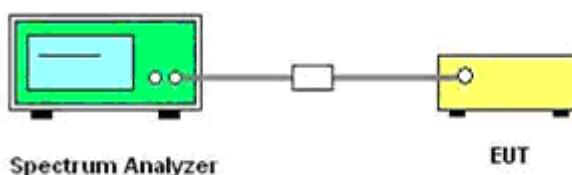
5.1.5 Test Results

Temperature	23.8 °C	Humidity	54%
Test Engineer	CHUANG WANG	Configurations	TX

Test Mode	Channel	Frequency (MHz)	EIRP Power (dBm)	Limits EIRP [dBm]	Verdict
FM	1	202.75	1.623	17.00	Pass

Remark:

1. $EIRP = P_{Mea}(\text{dBm}) - P_{cl}(\text{dB}) + P_{Ag}(\text{dB}) + G_a(\text{dBi})$
2. ERP = EIRP – 2.15dBi as EIRP by subtracting the gain of the dipole.
3. Margin = Emission Level - Limit
4. We test the H direction and V direction recorded worst case.


5.2 Permitted range of operating frequencies and Occupied Channel Bandwidth

5.2.1 Limit

According to §15.236(b), Operation under this section is limited to wireless microphones as defined in this section(§15.236 Operation of wireless microphones in the bands 54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-698 MHz).

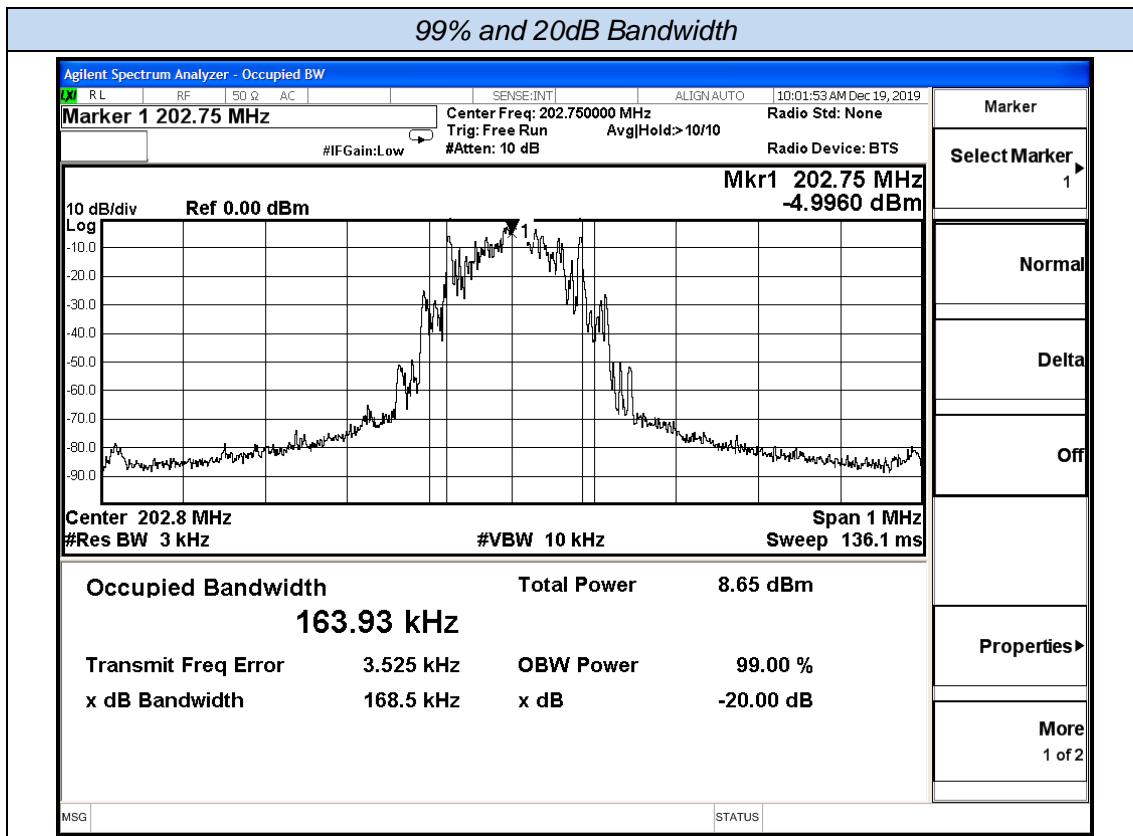
According to §15.236(f)(2), One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz.

5.2.2 Block Diagram of Test Setup

5.2.3 Test Procedure

The transmitter output is connected to the spectrum.

5.2.4 Test Results

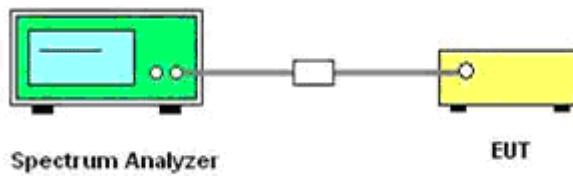

Temperature	23.8°C	Humidity	54%
Test Engineer	CHUANG WANG	Configurations	TX

99% Bandwidth

TestMode	Channel	Frequency(MHz)	99%Bandwidth(KHz)	Limits(KHz)	Verdict
FM	1	202.75	163.93	200	PASS

Permitted range of operating frequencies

TestMode	Channel	Frequency(MHz)	Flower (MHz)	Fupper (MHz)	Limit (MHz)	Verdict
FM	1	202.75	202.67	202.83	174-216 MHz	PASS



5.3 Frequency Tolerance

5.3.1 Limit

According to §15.236(f)(3), the frequency tolerance of the carrier signal shall be maintained within $\pm 0.005\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Battery operated equipment shall be tested using a new battery.

5.3.2 Block Diagram of Test Setup

5.3.3 Test Procedure

The transmitter output is connected to the spectrum.

5.3.4 Test Results

Temperature	23.8°C	Humidity	54%
Test Engineer	CHUANG WANG	Configurations	TX

Mode	Temperature (°C)	Channel	Frequency (MHz)	Measured (MHz)	Tolerance (KHz)	Result (%)	Limit (%)
FM	-30	1	202.75	202.752	2.00	0.0010	± 0.005
FM	-20	1	202.75	202.754	4.00	0.0020	± 0.005
FM	-10	1	202.75	202.754	4.00	0.0020	± 0.005
FM	0	1	202.75	202.753	3.00	0.0015	± 0.005
FM	10	1	202.75	202.754	4.00	0.0020	± 0.005
FM	20	1	202.75	202.752	2.00	0.0010	± 0.005
FM	30	1	202.75	202.754	4.00	0.0020	± 0.005
FM	40	1	202.75	202.753	3.00	0.0015	± 0.005
FM	50	1	202.75	202.755	5.00	0.0025	± 0.005

5.4 Necessary bandwidth

5.4.1 Limit

According to §15.236(g), emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in §8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08), Electromagnetic compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25 MHz to 3 GHz frequency range; Part 1: Technical characteristics and methods of measurement.

According to §8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08):

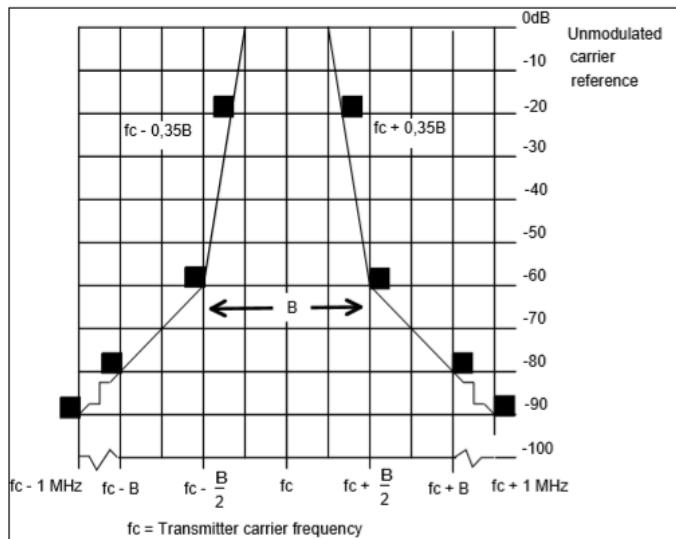


Figure 3: Spectrum mask for analogue systems in all bands

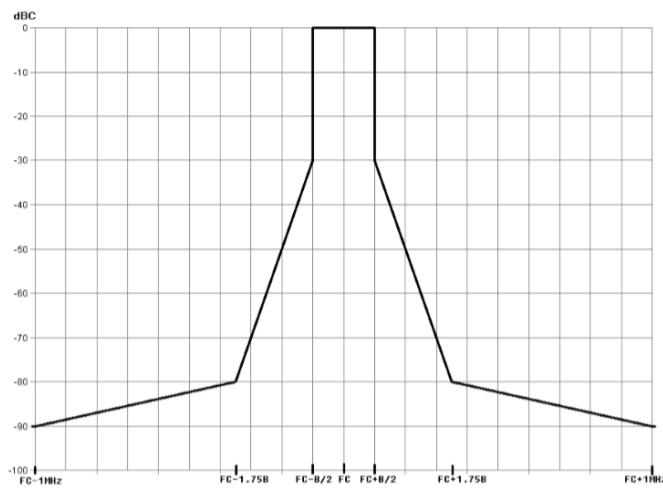


Figure 4: Spectrum mask for digital systems below 1 GHz

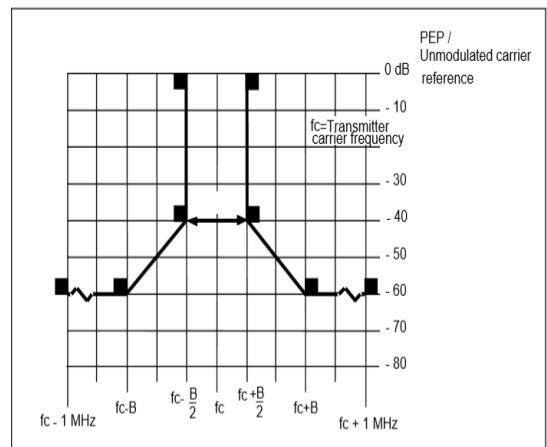
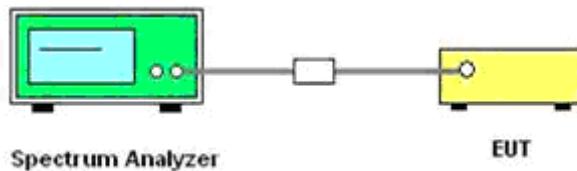
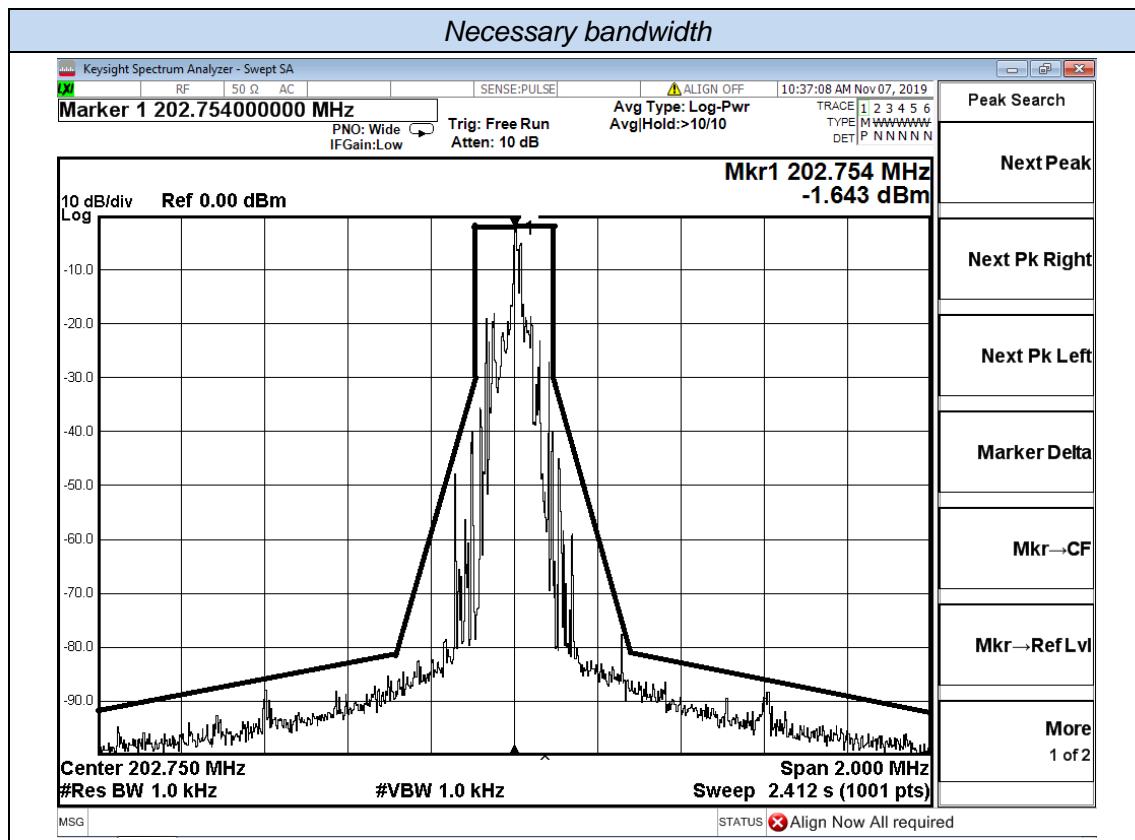



Figure 5: Spectral mask for digital systems above 1 GHz, normalized to channel bandwidth B

5.4.2 Block Diagram of Test Setup


5.4.3 Test Procedure

The transmitter output is connected to the spectrum.

5.4.4 Test Results

Temperature	23.8 °C	Humidity	54%
Test Engineer	CHUANG WANG	Configurations	TX

Necessary bandwidth

5.5. Spurious emissions

5.5.1. Standard Applicable

1). According to §15.236 (g): Emissions outside of the band from one megahertz below to one megahertz above the carrier frequency shall comply with the limits specified in section 8.4 of ETSI EN 300 422-1 V1.4.2 (2011-08).

Table 3: Limits for spurious emissions

State	Frequency		
	47 MHz to 74 MHz 87,5 MHz to 137 MHz 174 MHz to 230 MHz 470 MHz to 862 MHz	Other Frequencies below 1 000 MHz	Frequencies above 1 000 MHz
Operation	4 nW	250 nW	1 μ W
Standby	2 nW	2 nW	20 nW

5.5.2 Measuring Instruments and Setting

The term measuring receiver refers to either a selective voltmeter or a spectrum analyser. The bandwidth of the measuring receiver is given in table 4.

Table 4

Frequency being measured	Measuring receiver bandwidth
25 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1 000 MHz	100 kHz to 120 kHz
> 1 000 MHz	1 MHz

5.5.3. Test Procedures

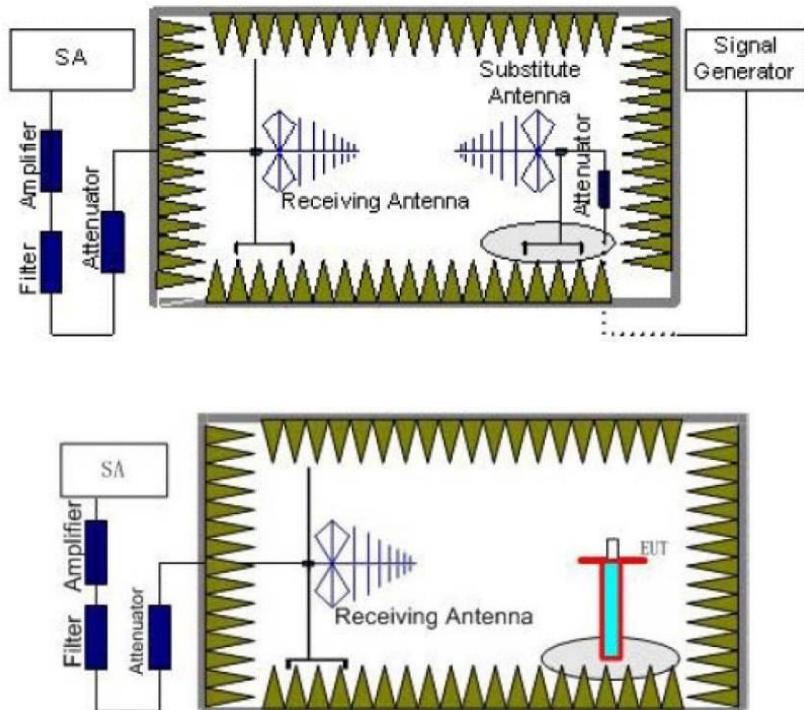
EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).

The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.


The measurement results are obtained as described below:

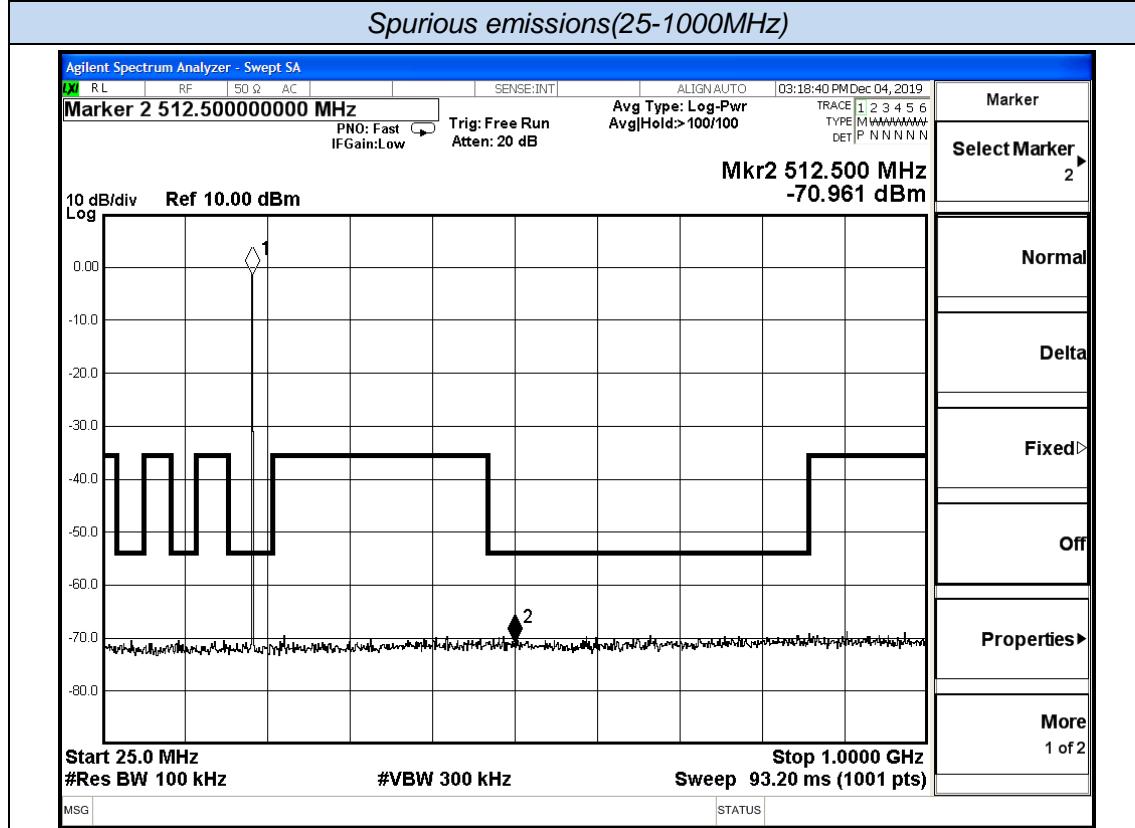
$$\text{Power(EIRP)} = P_{\text{Mea}} + P_{\text{Ag}} - P_{\text{cl}} + G_a$$

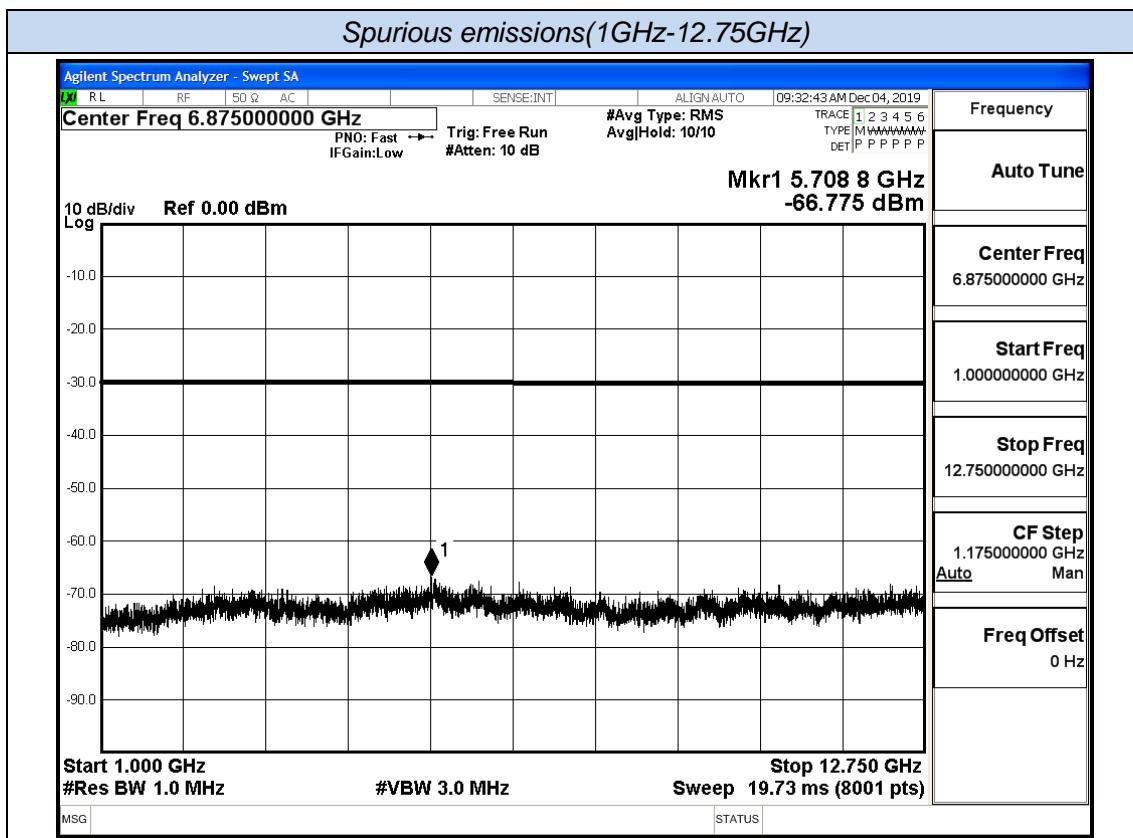
This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, $\text{ERP} = \text{EIRP} - 2.15 \text{ dBi}$.

5.5.4. Test Setup Layout

5.5.5. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.


5.4.4 Test Results

When the EUT is started up, it is in the Operation Mode and has no Standby Mode.

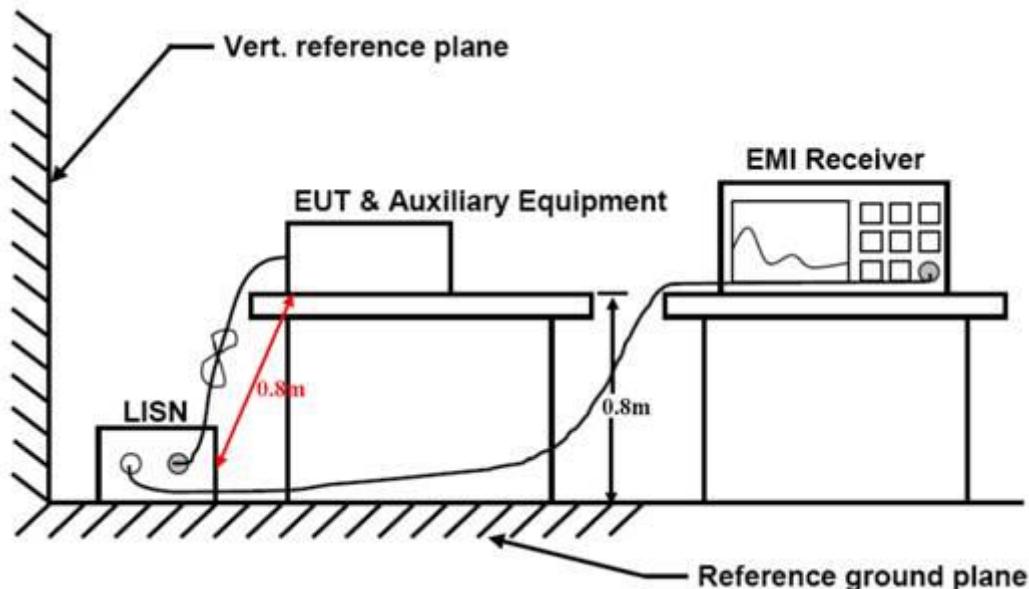
Temperature	23.8°C	Humidity	54%
Test Engineer	CHUANG WANG	Configurations	TX

Spurious emissions: Operation

Remark:

1. $EIRP = P_{Mea}(\text{dBm}) - P_{cl}(\text{dB}) + P_{Ag}(\text{dB}) + G_a(\text{dBi})$
2. ERP = EIRP – 2.15dBi as EIRP by subtracting the gain of the dipole.
3. Margin = Emission Level - Limit
4. We test the H direction and V direction recorded worst case.

5.6. AC Power Line Conducted Emissions (Not Applicable)


5.6.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

* Decreasing linearly with the logarithm of the frequency

5.6.2 Block Diagram of Test Setup

5.6.3 Test Results

Not Applicable!!

The device was powered by AA battery!

5.7. Antenna Requirements

5.7.1 Standard Applicable

According to antenna requirement of §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.7.2 Antenna Connected Construction

5.7.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.7.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0dBi (Max.), and the antenna is an Internal Antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.7.2.3. Results: Compliance.

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R&S	NRVS	100444	2019-06-16	2020-06-15
2	Power Sensor	R&S	NRV-Z81	100458	2019-06-16	2020-06-15
3	Power Sensor	R&S	NRV-Z32	10057	2019-06-16	2020-06-15
4	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2019-06-16	2020-06-15
5	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2019-06-16	2020-06-15
6	SPECTRUM ANALYZER	R&S	FSP	100503	2019-06-16	2020-06-15
7	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2019-06-16	2020-06-15
8	Positioning Controller	MF	MF-7082	/	2019-06-16	2020-06-15
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
10	EMI Test Receiver	R&S	ESR 7	101181	2019-06-16	2020-06-15
11	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2019-06-16	2020-06-15
12	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2019-06-16	2020-06-15
13	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2019-06-16	2020-06-15
14	Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-1925	2019-06-16	2020-06-15
15	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2020-09-20
16	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2020-09-20
17	RF Cable-R03m	Jye Bao	RG142	CB021	2019-06-16	2020-06-15
18	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2019-06-16	2020-06-15
19	TEST RECEIVER	R&S	ESCI	101142	2019-06-16	2020-06-15
20	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2019-06-16	2020-06-15
21	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-0032	2019-06-16	2020-06-15
22	Artificial Mains	R&S	ENV216	101288	2019-06-16	2020-06-15
23	RF Control Unit	JS Tonscend Corporation	JS0806-2	178060073	2019-06-16	2020-06-15
24	JS1120-3 BT/WIFI Test Software	JS Tonscend Corporation	JS1120-3	/	N/A	N/A
25	Signal Generator	R&S	SMR40	10016	2019-06-16	2020-06-15

Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT-----