

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Compliance Laboratory Shenzhen, Guangdong, China.

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... MTEB25060182-R1 FCC ID..... : 2AUSP-BELLJ9PLUS

Compiled by

(position+printed name+signature)..: File administrators Alisa Luo

Supervised by

(position+printed name+signature)..: Test Engineer Sunny Deng

Approved by

(position+printed name+signature)... Manager Yvette Zhou

Date of issue...... Jun.17,2025

Representative Laboratory Name.: Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Address....:

Nanshan, Shenzhen, Guangdong, China.

Applicant's name...... Shenzhen Joystek Intelligence Co., Ltd

NO.101, Building Q, Shangxue Technology Industrial Area, Address....:

BantianLonggang District, Shenzhen China, 518129

Alsa Luo Sunny Deng 1 Hor

Test specification ::

Standard..... FCC Part 15.247

TRF Originator...... Shenzhen Most Technology Service Co., Ltd.

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description....: Video Doorbell

Trade Mark..... N/A

Model/Type reference...... Bell J9 Plus

Listed Models Bell J4N,Bell J4SN,Bell J7,Bell J7 Plus,Bell J9,

Bell J10.Bell J10 Plus.Bell J9Q.Bell J9N.Bell J9SN.Bell J11. Bell J11 Plus, Bell J12, Bell J12 Plus, Bell J13, Bell J13 Plus, Bell J14, Bell J14 Plus, Bell J15, Bell J15 Plus, Bell J16, Bell J16 Plus, Bell 27T, Bell 27TA, PECKY-FISHEYE,

Bell J1,Bell J1X,Bell J9X

Modulation Type.....: b: DSSS

g/n: OFDM

Ax: OFDMA

Operation Frequency.....: From 2412MHz~2462MHz

Hardware version.....: V1.0

Software version 6.1.2.20

DC 3.6V by Battery

Rating..... DC 5V by USB Port

Result..... PASS

Report No.: MTEB25060182-R1 Page 2 of 67

TEST REPORT

Equipment under Test : Video Doorbell

Model /Type : Bell J9 Plus

Bell J4N,Bell J4SN,Bell J7,Bell J7 Plus,Bell J9,

Bell J10,Bell J10 Plus,Bell J9Q,Bell J9N,Bell J9SN,Bell J11, Bell J11 Plus,Bell J12,Bell J12 Plus,Bell J13,Bell J13 Plus,

Listed Models Beil J11 Plus, Beil J12, Beil J12 Plus, Beil J13, Beil J13 Plus,

Bell J14,Bell J14 Plus,Bell J15,Bell J15 Plus,Bell J16, Bell J16 Plus,Bell 27T,Bell 27TA,PECKY-FISHEYE,

Bell J1,Bell J1X,Bell J9X

Only the model "Bell J9 Plus" was tested, Their electrical circuit

Remark design, layout, components used and internal wiring are identical,

Only the model name and Appearance colour is different.

Applicant : Shenzhen Joystek Intelligence Co., Ltd

Address NO.101 , Building Q, Shangxue Technology Industrial Area,

BantianLonggang District, Shenzhen China, 518129

Manufacturer : Shenzhen Joystek Intelligence Co., Ltd

Address : NO.101 , Building Q, Shangxue Technology Industrial Area,

BantianLonggang District, Shenzhen China, 518129

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

Page 3 of 67

1 REVISION HISTORY	4
2 TEST STANDARDS	5
3 SUMMARY	6
3.1 General Remarks	6
3.2 Product Description	6
3.3 Equipment Under Test	6
3.4 Short description of the Equipment under Test (EUT)	6
3.5 EUT operation mode	
3.6 Block Diagram of Test Setup	7
3.7 Test Item (Equipment Under Test) Description*	7
3.8 Auxiliary Equipment (AE) Description	7
3.9 Antenna Information*	7
3.10 Related Submittal(s) / Grant (s)	8
3.11 Modifications	8
3.12 EUT configuration	8
4 TEST ENVIRONMENT	9
4.1 Address of the test laboratory	9
4.2 Test Facility	
4.3 Environmental conditions	
4.4 Test Description	
4.5 Statement of the measurement uncertainty	
4.6 Equipments Used during the Test	11
5 TEST CONDITIONS AND RESULTS	1 2
5.1 AC Power Conducted Emission	
5.2 Radiated Emission	
5.3 Maximum Conducted Output Power	40
5.4 Power Spectral Density	
5.5 6dB Bandwidth	
5.6 Out-of-band Emissions	
5.7 Duty Cycle Information	
5.8 Antenna Requirement	45
6 TEST SETUP PHOTOS OF THE EUT	4 6
7 PHOTOS OF THE EUT	47
APPENDIX I. Conducted Output Power	
APPENDIX II. 99% Bandwidth	
APPENDIX III. 6dB Bandwidth	
APPENDIX IV. Conducted Out Of Band Emission	
APPENDIX V. Duty Cycle	62
APPENDIX VI. Power Spectral Density	65

Report No.: MTEB25060182-R1 Page 4 of 67

1 Revision History

Revision	Issue Date	Revisions	Revised By
00	2025.06.17	Initial Issue	Alisa Luo

Report No.: MTEB25060182-R1 Page 5 of 67

2 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules.

Report No.: MTEB25060182-R1 Page 6 of 67

3 **SUMMARY**

3.1 General Remarks

Date of receipt of test sample		2025.06.11
Testing commenced on	:	2025.06.12
Testing concluded on	:	2025.06.17

3.2 Product Description

Product Name:	Video Doorbell
Model/Type reference:	Bell J9 Plus
Power Supply:	DC 3.6V by Battery DC 5V by USB Port
Testing sample ID:	MTYP09590
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)/802.11ax(H20)
Modulation:	b: DSSS g/n:OFDM ax:OFDMA
Operation frequency:	802.11b/802.11g/802.11n(H20)/802.11ax(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(H20)/802.11ax(H20): 11 802.11n(H40): 7
Channel separation:	5MHz
Antenna type:	Metal antenna
Antenna gain:	2.5dBi

3.3 Equipment Under Test

Power supply system utilised

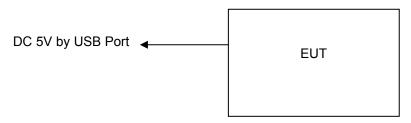
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below)		

DC 3.6V by Battery
DC 5V by USB Port

3.4 Short description of the Equipment under Test (EUT)

This is a Video Doorbell For more details, refer to the user's manual of the EUT.

3.5 EUT operation mode


The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

Report No.: MTEB25060182-R1 Page 7 of 67

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

3.6 Block Diagram of Test Setup

3.7 Test Item (Equipment Under Test) Description*

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A	1	1	1	1	1
EUT B	1	1	1	1	1

^{*:} declared by the applicant. According to customers information EUTs A and B are the same devices.

3.8 Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1	Adapter	UP0512	1	1
AE 2	1	1	1	1

3.9 Antenna Information*

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		Metal antenna	2.4 – 2.5 GHz		2.5dBi
Antenna 2					

^{*:} declared by the applicant.

Report No.: MTEB25060182-R1 Page 8 of 67

3.10 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID**: **2AUSP-BELLJ9PLUS** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

3.11 Modifications

No modifications were implemented to meet testing criteria.

3.12 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- O supplied by the manufacturer
- Supplied by the lab

ADAPTER	M/N:	UP0512
	Manufacturer:	Salcomp (Shenzhen) Co., Ltd.

Report No.: MTEB25060182-R1 Page 9 of 67

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

4.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.3 Environmental conditions

Radiated Emission:

Temperature:	24 ° C
Humidity:	48 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C		
·			
Humidity:	45 %		
Atmospheric pressure:	950-1050mbar		

Conducted testing:

onducted testing.	
Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Report No.: MTEB25060182-R1 Page 10 of 67

4.4 Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Mariana Bark Cardada Cadad Barra	11b/DSSS	1 Mbps	1/6/11
Maximum Peak Conducted Output Power Power Spectral Density	11g/OFDM	6 Mbps	1/6/11
6dB Bandwidth Spurious RF conducted emission	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Radiated Emission 9KHz∼1GHz&	11ax(20MHz)/OFDMA	6.5Mbps	1/6/11
Radiated Emission 1GHz~10 th Harmonic	11n(40MHz)/OFDM	6.5Mbps	3/6/9
	11b/DSSS	1 Mbps	1/11
	11g/OFDM	6 Mbps	1/11
Band Edge	11n(20MHz)/OFDM 6.5Mbps		1/11
	11ax(20MHz)/OFDMA	6.5Mbps	1/11
	11n(40MHz)/OFDM	6.5Mbps	3/9

4.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

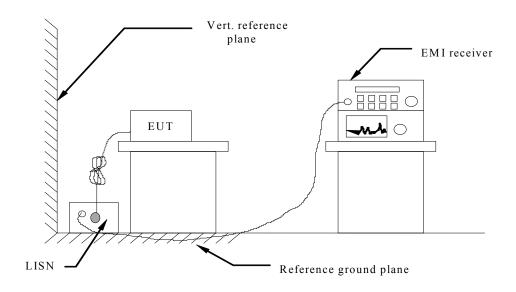
Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)
6dB Bandwidth	/	5%	(1)
Maximum Conducted Output Power	1	0.80dB	(1)
Spurious RF Conducted Emission	1	1.6dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.6 Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware versions	Last Cal.
1.	L.I.S.N.	R&S	ENV216	100093	1	2025/03/04
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	/	2025/03/04
3.	Receiver	R&S	ESCI	100492	V3.0-10-2	2025/03/04
4	Receiver	R&S	ESPI	101202	V3.0-10-2	2025/03/04
5	Spectrum analyzer	Agilent	9020A	MT-E306	A14.16	2025/03/04
6	Bilong Antenna	Sunol Sciences	JB3	A121206	1	2024/08/14
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	1	2025/03/16
8	Loop antenna	Beijing Daze	ZN30900B	1	1	2025/03/04
9	Horn antenna	R&S	OBH100400	26999002	1	2025/03/16
10	Wireless Communication Test Set	R&S	CMW500	1	CMW-BASE- 3.7.21	2025/03/04
11	Spectrum analyzer	R&S	FSP	100019	V4.40 SP2	2025/03/04
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	1	2025/03/04
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	1	2025/03/04
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	1	2025/03/04
15	Pre-amplifier	Agilent	83051A	MT-E392	1	2025/03/04
16	High pass filter unit	Tonscend	JS0806-F	MT-E393	1	2025/03/04
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	1	2025/03/04
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	1	2025/03/04
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	1	2025/03/04
20	Power meter	R&S	NRVS	100444	1	2025/03/04


Note: The Cal.Interval was one year.

Report No.: MTEB25060182-R1 Page 12 of 67

5 TEST CONDITIONS AND RESULTS

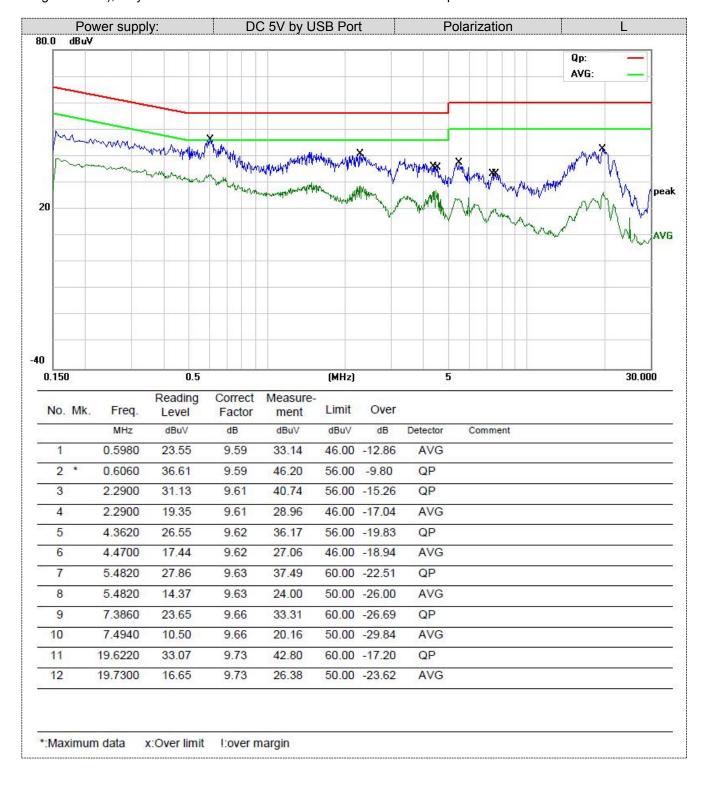
5.1 AC Power Conducted Emission

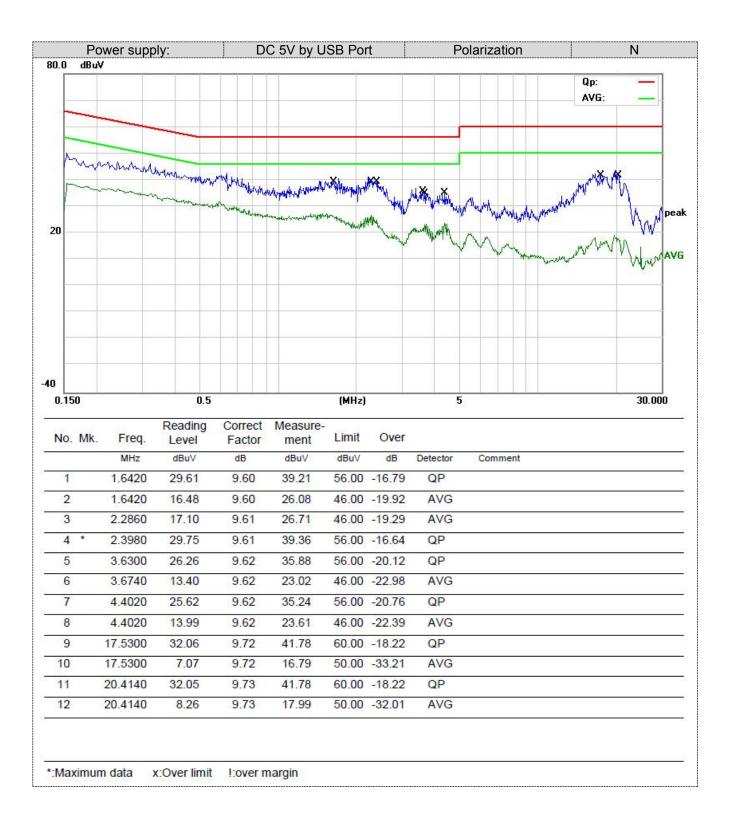
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 5V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

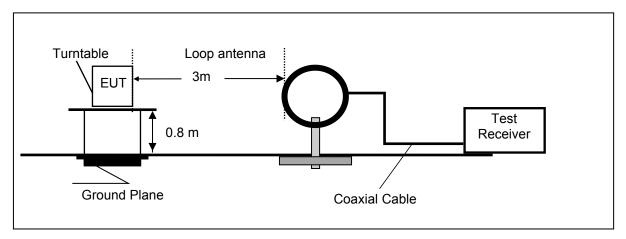

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:


Fraguency range (MHz)	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ncy.	

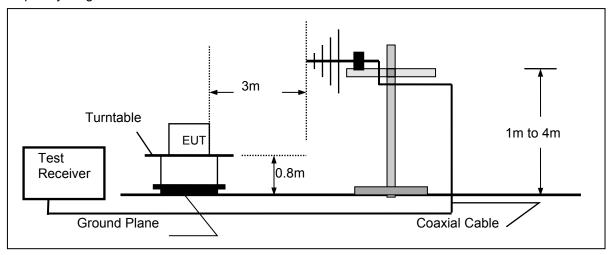
TEST RESULTS

Remark:

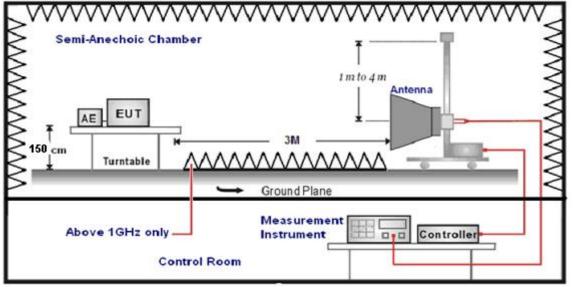
1.WIFI modes were test at 802.11b/802.11g/802.11n (H20))/802.11ax(H20) /802.11n (H40) (Low, Middle, and High channel); only the worst result of 802.11b Middle Channel was reported as below:



Report No.: MTEB25060182-R1 Page 15 of 67


5.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

Report No.: MTEB25060182-R1 Page 16 of 67

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Detector	
9KHz-150KHz	QP	
150KHz-30MHz	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

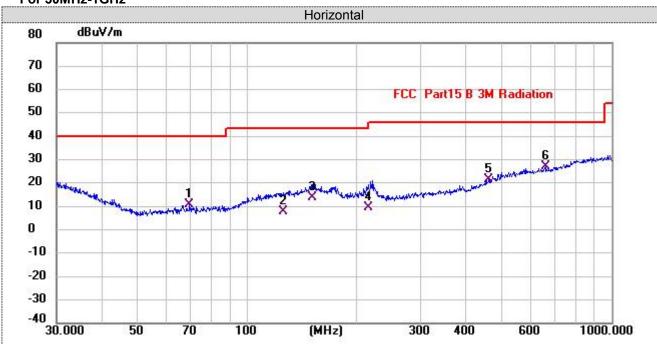
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

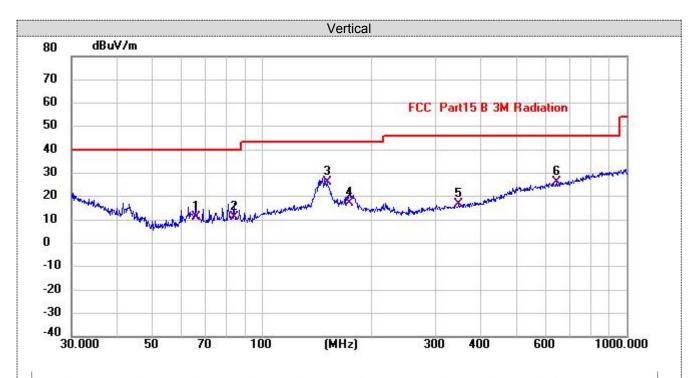
The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		


Report No.: MTEB25060182-R1 Page 17 of 67

TEST RESULTS

Remark:


- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Remark: Result=Reading value+Factor

For 30MHz-1GHz

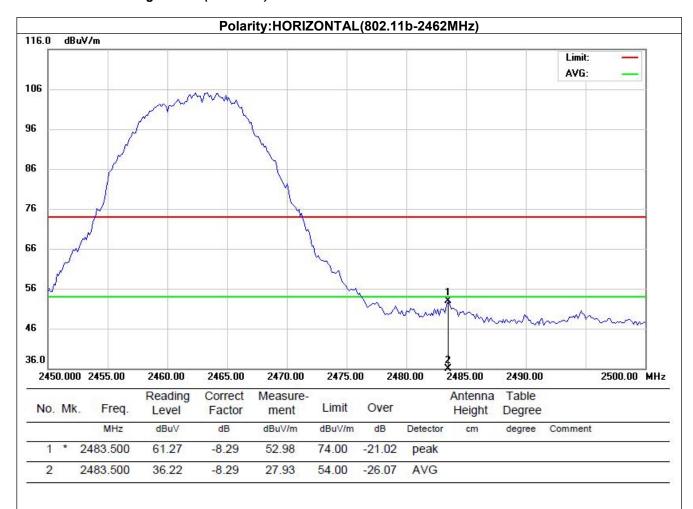
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	69.8000	1.46	9.29	10.75	40.00	-29.25	QP	200	20	Р	
2	125.6800	-8.24	16.02	7.78	43.50	-35.72	QP	200	150	Р	
3	151.7600	-3.94	17.63	13.69	43.50	-29.81	QP	200	250	Р	
4	215.9200	-5.26	14.75	9.49	43.50	-34.01	QP	200	300	Р	
5	461.9200	0.67	20.68	21.35	46.00	-24.65	QP	200	320	Р	
6 *	660.7199	2.33	24.59	26.92	46.00	-19.08	QP	200	340	Р	

^{*:}Maximum data x:Over limit !:over margin

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	65.9200	2.34	9.01	11.35	40.00	-28.65	QP	100	10	Р	
2	83.9600	1.24	10.02	11.26	40.00	-28.74	QP	100	230	Р	
3 *	151.3600	8.67	17.65	26.32	43.50	-17.18	QP	100	100	Р	
4	173.3600	0.24	16.85	17.09	43.50	-26.41	QP	100	160	Р	
5	347.6400	0.18	16.41	16.59	46.00	-29.41	QP	100	300	Р	
6	645.0800	1.71	24.39	26.10	46.00	-19.90	QP	100	345	Р	

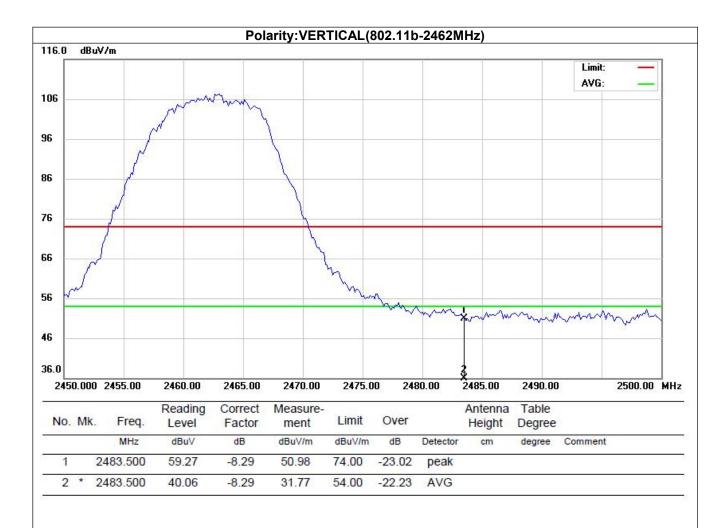
Report No.: MTEB25060182-R1 Page 19 of 67

For 1GHz to 25GHz

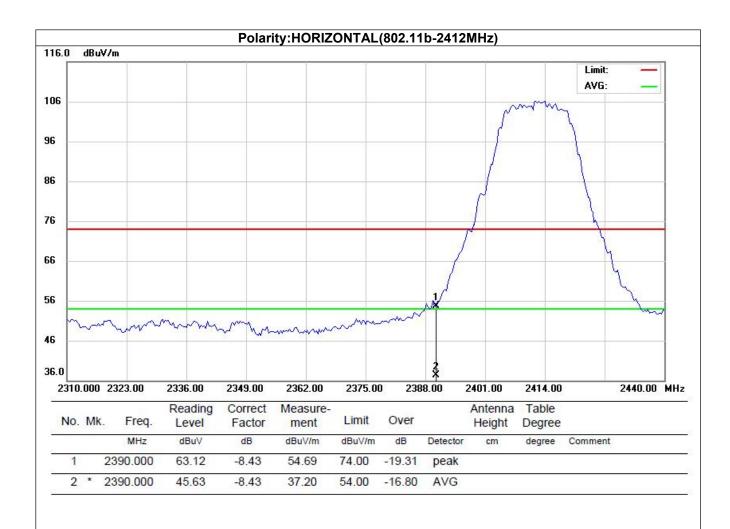

Note: 802.11b/802.11g/802.11n (H20))/802.11ax(H20) /802.11n (H40) all have been tested, only worse case 802.11b mode is reported

Polar (H/V)	Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector Type				
	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type				
802.11b-2412MHz													
V	4824	53.53	30.28	7.01	36.5	54.32	74	19.68	PK				
V	4824	43.85	30.28	7.01	36.5	44.64	54	9.36	AV				
Н	4824	55.87	30.28	7.01	36.5	56.66	74	17.34	PK				
Н	4824	43.57	30.28	7.01	36.5	44.36	54	9.64	AV				
٧	7236	41.15	36.59	8.91	35.3	51.35	74	22.65	PK				
٧	7236	29.73	36.59	8.91	35.3	39.93	54	14.07	AV				
Н	7236	42.62	36.59	8.91	35.3	52.82	74	21.18	PK				
Н	7236	30.34	36.59	8.91	35.3	40.54	54	13.46	AV				
				802.11	b -2437MF	lz							
V	4874	53.38	30.36	7.62	36.5	54.86	74	19.14	PK				
V	4874	42.92	30.36	7.62	36.5	44.4	54	9.6	AV				
Η	4874	56.56	30.36	7.62	36.5	58.04	74	15.96	PK				
Н	4874	40.17	30.36	7.62	36.5	41.65	54	12.35	AV				
V	7311	43.13	36.61	8.84	35.3	53.28	74	20.72	PK				
V	7311	30.14	36.61	8.84	35.3	40.29	54	13.71	AV				
Н	7311	43.93	36.61	8.84	35.3	54.08	74	19.92	PK				
Η	7311	29.56	36.61	8.84	35.3	39.71	54	14.29	AV				
802.11b -2462MHz													
V	4924	54.58	30.43	7.94	36.2	56.75	74	17.25	PK				
V	4924	40.17	30.43	7.94	36.2	42.34	54	11.66	AV				
Н	4924	54.54	30.43	7.94	36.2	56.71	74	17.29	PK				
Н	4924	41.69	30.43	7.94	36.2	43.86	54	10.14	AV				
V	7386	43.45	36.78	8.45	35.3	53.38	74	20.62	PK				
V	7386	29.88	36.78	8.45	35.3	39.81	54	14.19	AV				
Н	7386	42.41	36.78	8.45	35.3	52.34	74	21.66	PK				
Н	7386	31.49	36.78	8.45	35.3	41.42	54	12.58	AV				

Note:

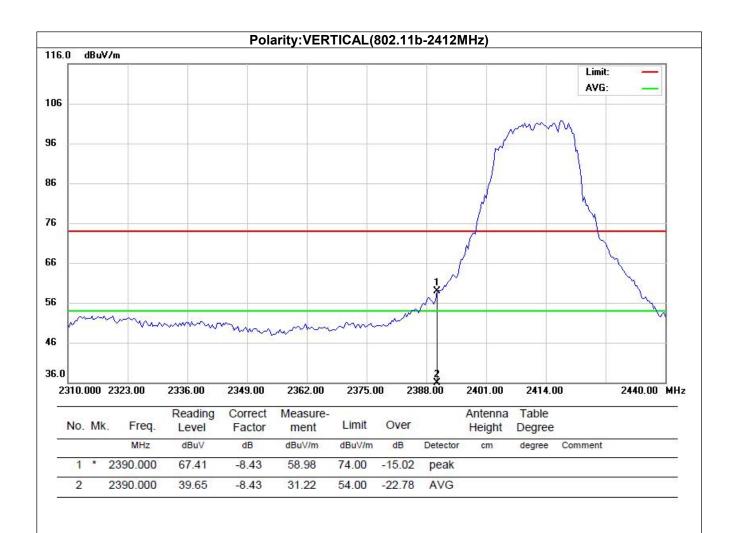

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

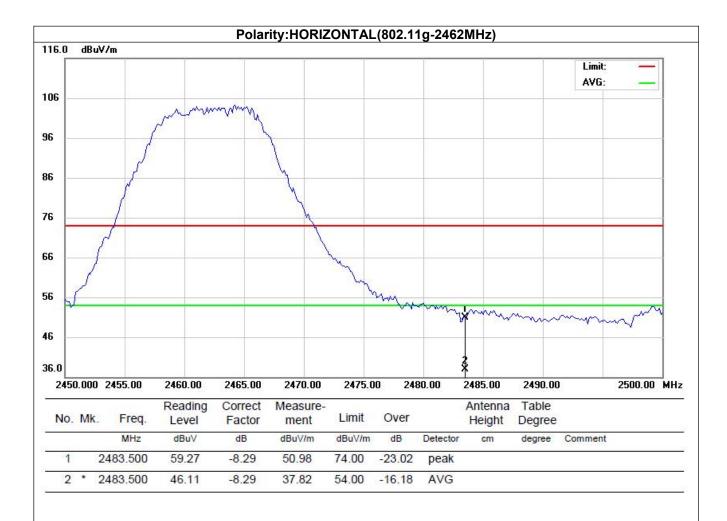


^{*:}Maximum data x:Over limit !:over margin

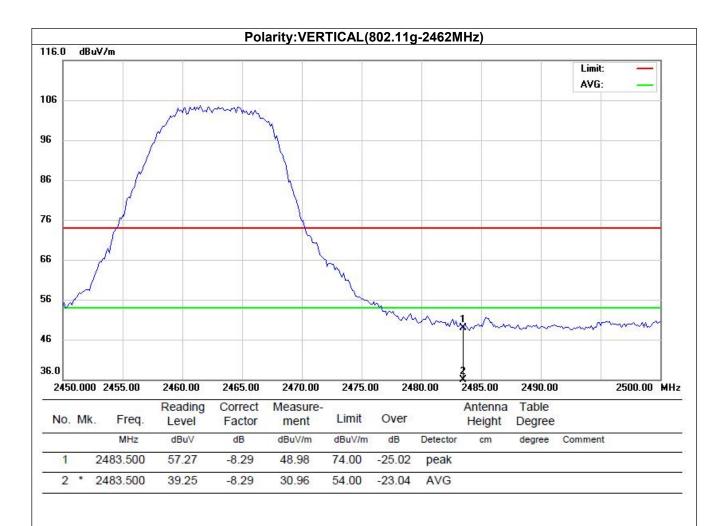
Report No.: MTEB25060182-R1 Page 21 of 67



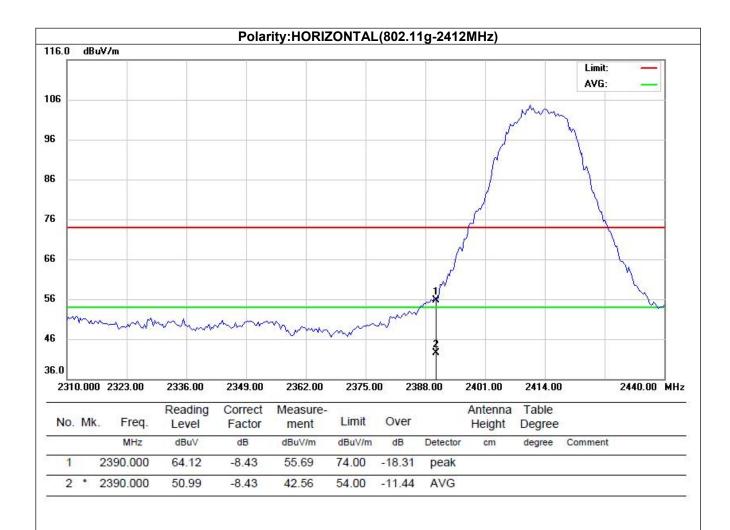
Report No.: MTEB25060182-R1 Page 22 of 67


^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 23 of 67

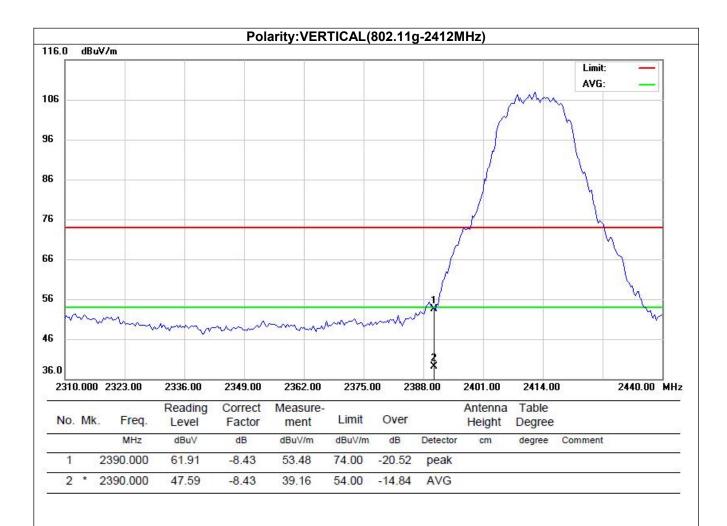

^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 24 of 67

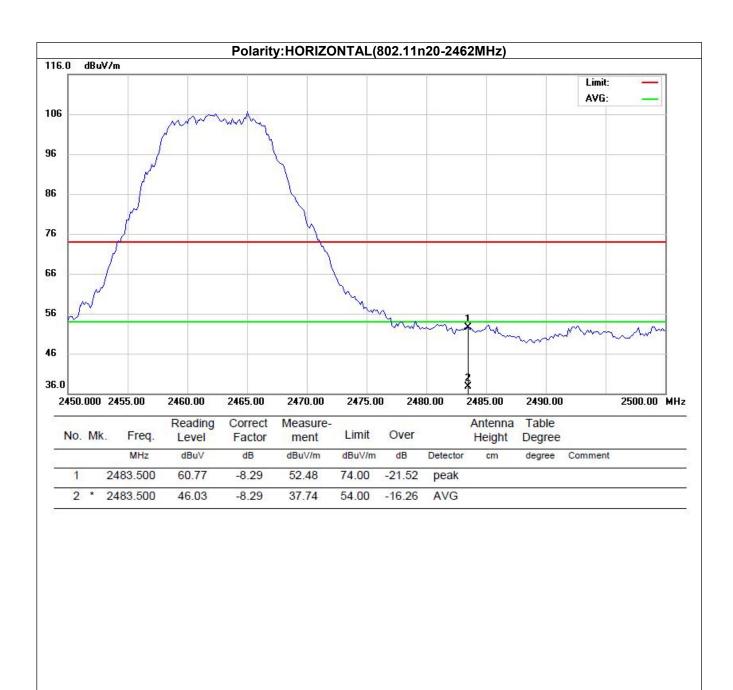


^{*:}Maximum data x:Over limit !:over margin

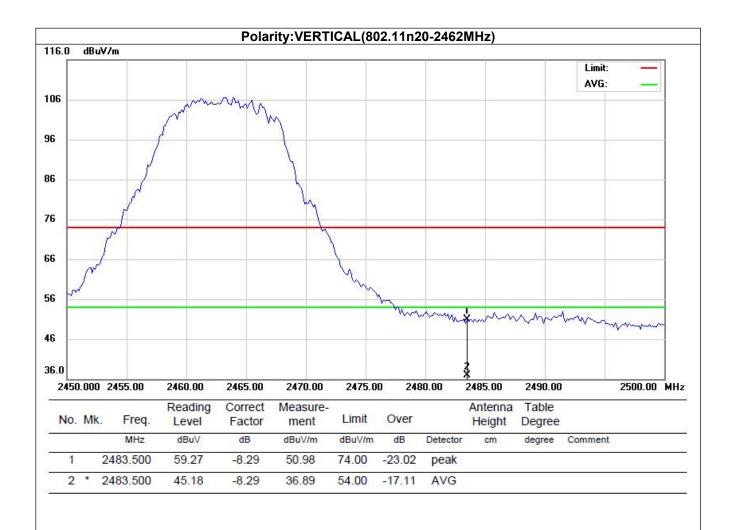
Report No.: MTEB25060182-R1 Page 25 of 67



Report No.: MTEB25060182-R1 Page 26 of 67

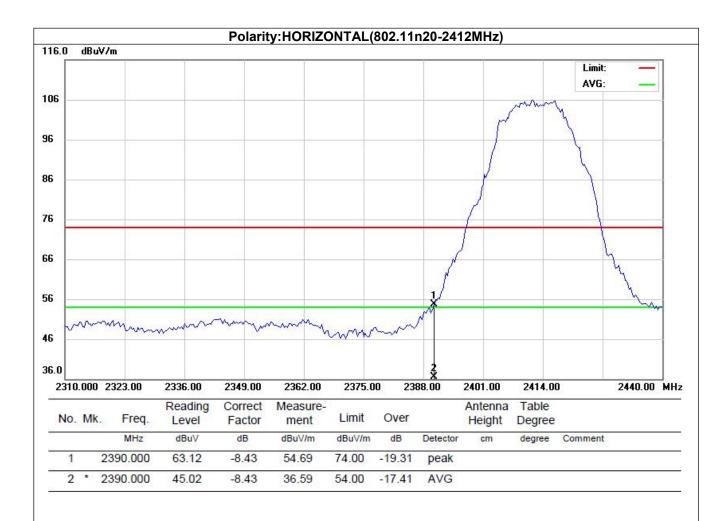

^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 27 of 67

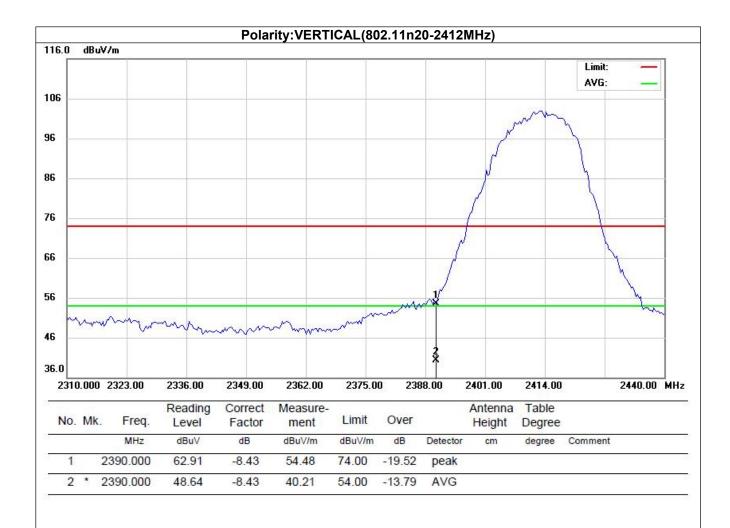


^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 28 of 67

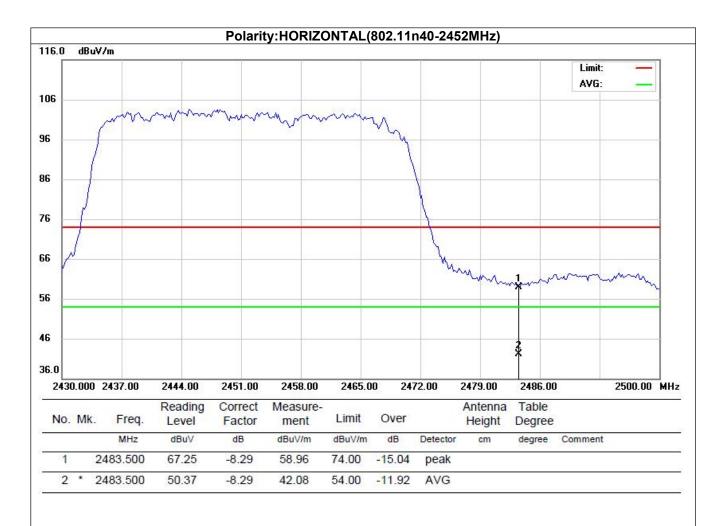


Report No.: MTEB25060182-R1 Page 29 of 67

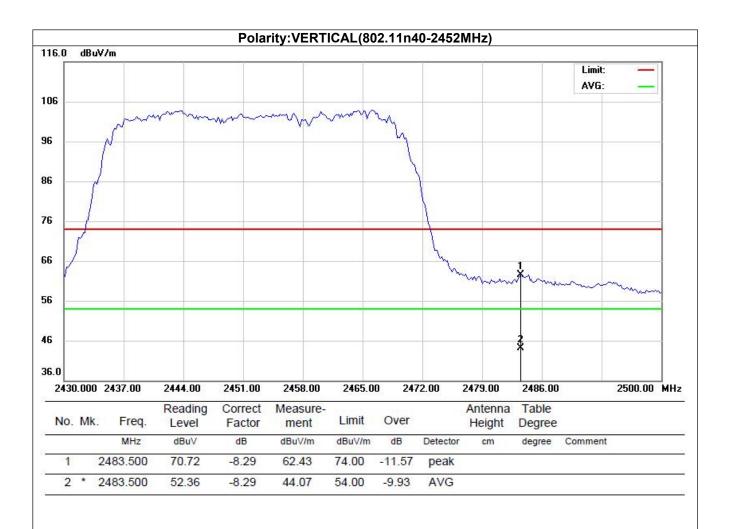


^{*:}Maximum data x:Over limit !:over margin

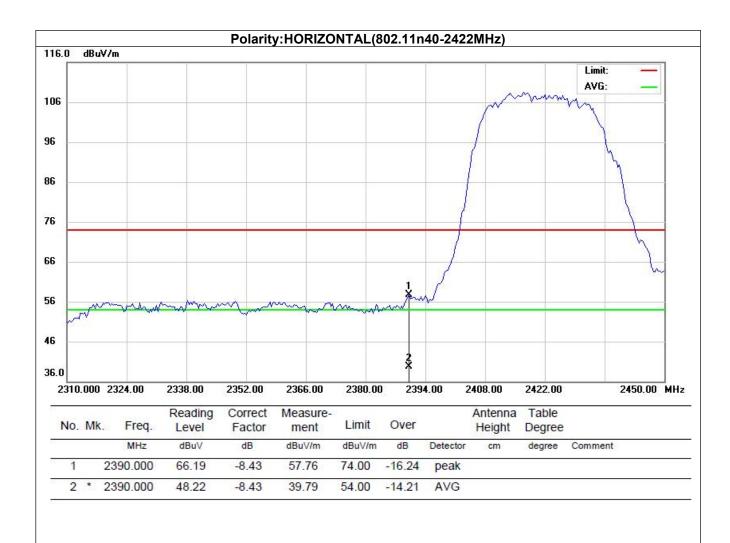
Report No.: MTEB25060182-R1 Page 30 of 67



Report No.: MTEB25060182-R1 Page 31 of 67

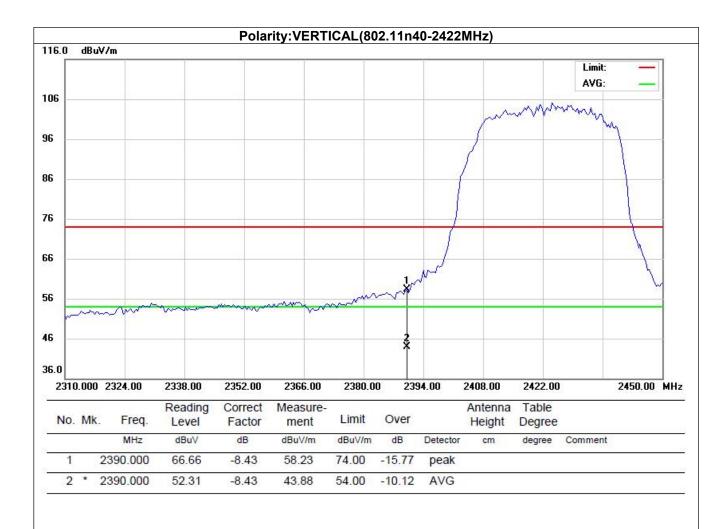

^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 32 of 67

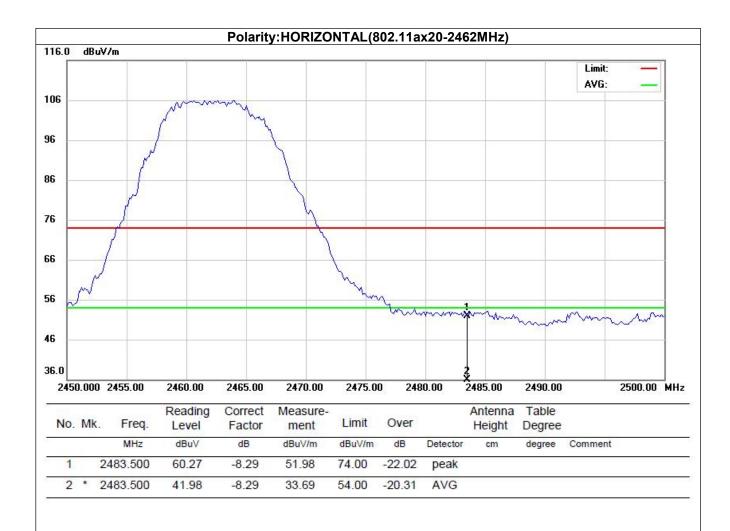


^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 33 of 67

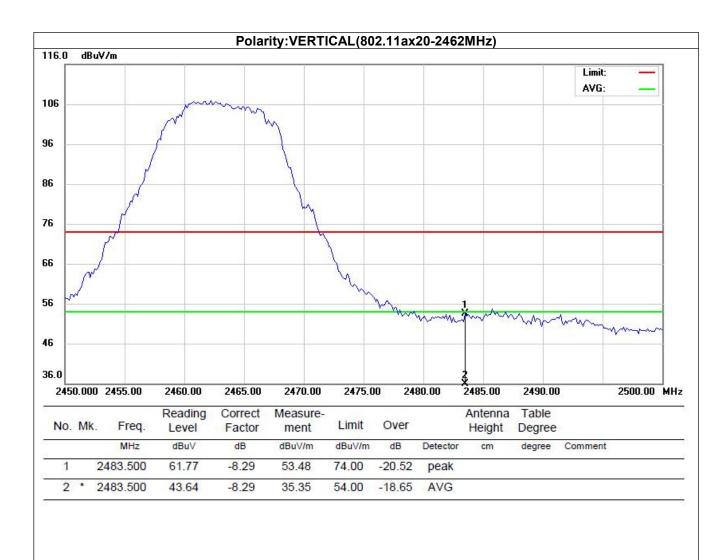


Report No.: MTEB25060182-R1 Page 34 of 67

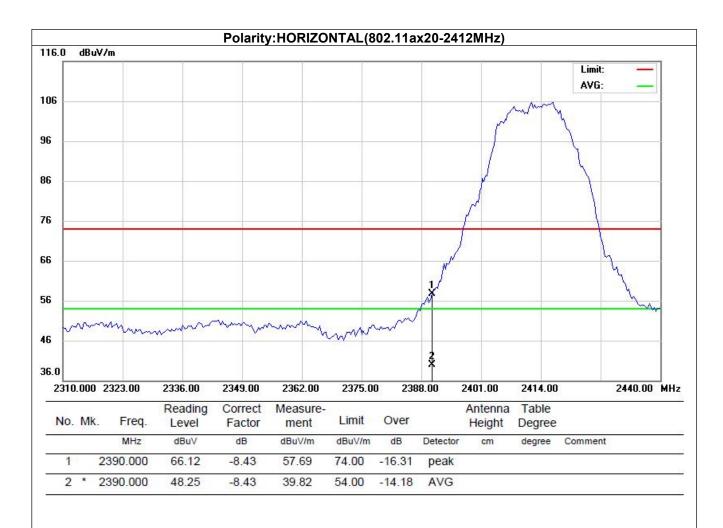


^{*:}Maximum data x:Over limit !:over margin

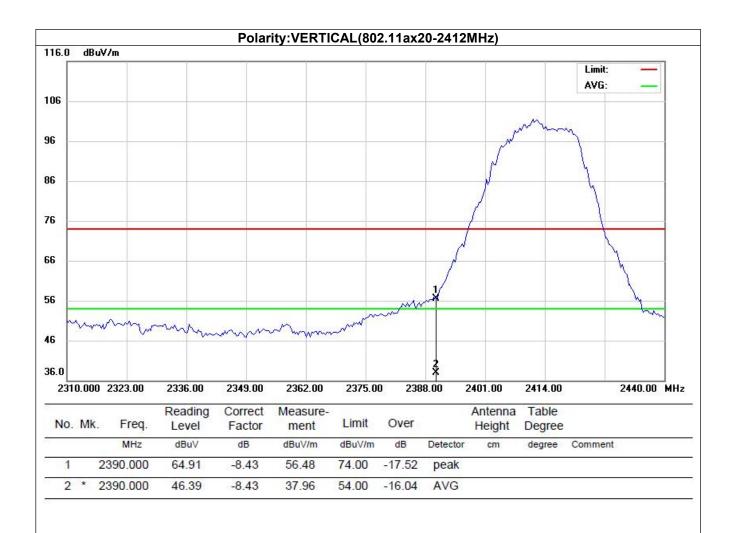
Report No.: MTEB25060182-R1 Page 35 of 67



Report No.: MTEB25060182-R1 Page 36 of 67


^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 37 of 67


*:Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 38 of 67

*:Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 39 of 67

^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB25060182-R1 Page 40 of 67

5.3 Maximum Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

See Appendix I

Report No.: MTEB25060182-R1 Page 41 of 67

5.4 Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW ≥ 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

See Appendix VI

Report No.: MTEB25060182-R1 Page 42 of 67

5.5 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

See Appendix III

Report No.: MTEB25060182-R1 Page 43 of 67

5.6 Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

See Appendix IV

Report No.: MTEB25060182-R1 Page 44 of 67

5.7 Duty Cycle Information

See Appendix V

Report No.: MTEB25060182-R1 Page 45 of 67

5.8 Antenna Requirement

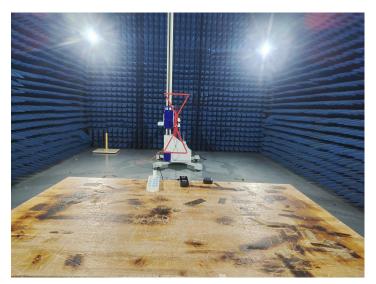
Standard Applicable

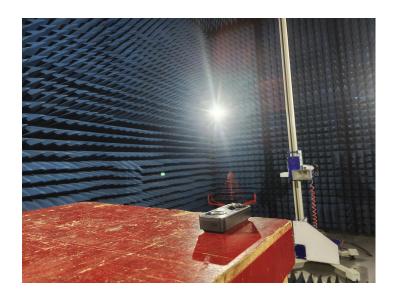
For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.


Test Result:


The directional gains of antenna used for transmitting is 2.5dBi, and the antenna is and Metal antenna and no consideration of replacement. Please see EUT photo for details.

Results: Compliance.

6 Test Setup Photos of the EUT

Report No.: MTEB25060182-R1 Page 47 of 67

7 Photos of the EUT

See related photo report.

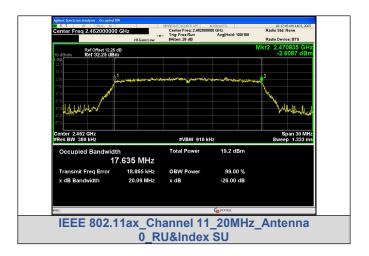
Report No.: MTEB25060182-R1 Page 48 of 67

Conducted Output Power APPENDIX I.

Test Result Conducted Output Power

Mode	Channel	RU & Index	Ant. 0 (dBm)	Total (dBm)	Limit (dBm)	Result
IEEE 802.11b	1	N/A	19.74	N/A	≤30	PASS
	6		19.36	N/A	≤30	PASS
	11		19.78	N/A	≤30	PASS
IEEE 802.11g	1		20.57	N/A	≤30	PASS
	6		20.30	N/A	≤30	PASS
	11		20.66	N/A	≤30	PASS
IEEE 802.11n_20	1		20.14	N/A	≤30	PASS
	6		19.95	N/A	≤30	PASS
	11		20.30	N/A	≤30	PASS
IEEE 802.11n_40	3		18.84	N/A	≤30	PASS
	6		21.56	N/A	≤30	PASS
	9		18.88	N/A	≤30	PASS
IEEE 802.11ax_20	1	SU	20.03	N/A	≤30	PASS
	6		19.93	N/A	≤30	PASS
	11		20.26	N/A	≤30	PASS

Report No.: MTEB25060182-R1 Page 49 of 67


APPENDIX II. 99% Bandwidth

Test Result

Mode	Channel	RU & Index	Ant.	Center Frequency (MHz)	99% BW (MHz)
IEEE 802.11b	1	N/A	0	2412	13.249
	6			2437	13.173
	11			2462	13.230
IEEE 802.11g	1			2412	16.549
	6			2437	16.515
	11			2462	16.528
IEEE 802.11n_20	1			2412	17.620
	6			2437	17.602
	11			2462	17.632
IEEE 802.11n_40	3			2422	36.078
	6			2437	35.975
	9			2452	35.988
IEEE 802.11ax_20	1	SU		2412	17.625
	6			2437	17.656
	11			2462	17.635

