

Logical Infrastructure (Changzhou) Technology Co.,Ltd

RF TEST REPORT

Report Type:

FCC Part 15.225 RF report

Model:

LI-HS-10XX-X

REPORT NUMBER:

190800155SHA-002

ISSUE DATE:

Oct 10, 2019

DOCUMENT CONTROL NUMBER:

TTRFFCCPART15C_V1 © 2018 Intertek

Applicant : Logical Infrastructure (Changzhou) Technology Co.,Ltd
No 2, Hongyang Road Tianning, Changzhou, China

Manufacturer : Logical Infrastructure (Changzhou) Technology Co.,Ltd
No 2, Hongyang Road Tianning, Changzhou, China

FCC ID : 2AUS7LIHS10XX

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2018): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

PREPARED BY:

Project Engineer
Stephanie Zhang

REVIEWED BY:

Reviewer
Wakeyou Wang

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TEST REPORT**Content**

REVISION HISTORY	5
MEASUREMENT RESULT SUMMARY	6
1 GENERAL INFORMATION	7
1.1 DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	7
1.2 TECHNICAL SPECIFICATION	7
1.3 DESCRIPTION OF TEST FACILITY	8
2 TEST SPECIFICATIONS	9
2.1 STANDARDS OR SPECIFICATION	9
2.2 MODE OF OPERATION DURING THE TEST.....	9
2.3 TEST SOFTWARE LIST	9
2.4 TEST PERIPHERALS LIST	9
2.5 TEST ENVIRONMENT CONDITION:.....	9
2.6 INSTRUMENT LIST	10
2.7 MEASUREMENT UNCERTAINTY	11
3 FUNDAMENTAL EMISSION	12
3.1 LIMIT	12
3.2 MEASUREMENT PROCEDURE	12
3.3 TEST CONFIGURATION	13
3.4 TEST RESULTS OF FUNDAMENTAL EMISSIONS	14
4 SPURIOUS EMISSION	15
4.1 LIMIT	15
4.2 MEASUREMENT PROCEDURE	15
4.3 TEST CONFIGURATION	16
4.4 TEST RESULTS OF RADIATED EMISSIONS	18
5 FREQUENCY STABILITY (TEMPERATURE VARIATION)	19
5.1 TEST LIMIT	19
5.2 TEST CONFIGURATION	19
5.3 TEST PROCEDURE AND TEST SETUP	20
5.4 TEST PROTOCOL	20
6 FREQUENCY STABILITY (VOLTAGE VARIATION)	21
6.1 TEST LIMIT	21
6.2 TEST CONFIGURATION	21
6.3 TEST PROCEDURE AND TEST SETUP	21
6.4 TEST PROTOCOL	22
7 CONDUCTED EMISSIONS	23
7.1 LIMIT	23
7.2 TEST CONFIGURATION	23
7.3 MEASUREMENT PROCEDURE	24
7.4 TEST RESULTS OF CONDUCTED EMISSIONS.....	25
8 99% AND 20DB BANDWIDTH	27
8.1 LIMIT.....	27
8.2 TEST CONFIGURATION	27
8.3 TEST PROCEDURE AND TEST SET UP	28
8.4 TEST PROTOCOL	29

TEST REPORT

9 ANTENNA REQUIREMENT.....	30
-----------------------------------	-----------

TEST REPORT**Revision History**

Report No.	Version	Description	Issued Date
190800155SHA-002	Rev. 01	Initial issue of report	Oct 10, 2019

TEST REPORT**Measurement result summary**

TEST ITEM	FCC REFERENCE	RESULT
Fundamental emission	15.225(a) (b) (c)	Pass
Spurious emission	15.225(d)	Pass
Frequency stability	15.225(e)	Pass
Conducted emissions	15.207	Pass
99% and 20dB Bandwidth	15.215(c)	Pass
Antenna requirement	15.203	Pass

Notes: 1: NA =Not Applicable

2: Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

TEST REPORT**1 GENERAL INFORMATION****1.1 Description of Equipment Under Test (EUT)**

Product name:	Intelligent electronic swing handle
Type/Model:	LI-HS-10XX-X
Description of EUT:	There is one model only. Among this report, the Smart PDU is used as peripheral to provide power & control to the EUT. The Smart PDU input: 100-240VAC, 1.0Amax. output: 5VDC
Rating:	3~5VDC
EUT type:	<input checked="" type="checkbox"/> Table top <input type="checkbox"/> Floor standing
Software Version:	/
Hardware Version:	/
Sample received date:	Aug 06, 2019
Date of test:	Aug 20, 2019 – Sep 25, 2019

1.2 Technical Specification

Frequency Range:	13.56 MHz ~ 13.56 MHz
------------------	-----------------------

TEST REPORT**1.3 Description of Test Facility**

Name:	Intertek Testing Services Shanghai
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized, certified, or accredited by these organizations:	CNAS Accreditation Lab Registration No. CNAS L0139
	FCC Accredited Lab Designation Number: CN1175
	IC Registration Lab Registration code No.: 2042B-1
	VCCI Registration Lab Registration No.: R-4243, G-845, C-4723, T-2252
	NVLAP Accreditation Lab NVLAP LAB CODE: 200849-0
	A2LA Accreditation Lab Certificate Number: 3309.02

TEST REPORT**2 TEST SPECIFICATIONS****2.1 Standards or specification**

47CFR Part 15 (2018)

ANSI C63.10 (2013)

2.2 Mode of operation during the test

While testing, the internal modulation and continuously transmission was applied.

2.3 Test software list

Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

Item No	Description	Band and Model	S/No
1	Smart PDU	LI-PDU-6001	/
2	Mini Wireless Router	TP-LINK	/

2.5 Test environment condition:

Test items	Temperature	Humidity
Radiated emission	26°C	53% RH
Power line conducted emission	27°C	53% RH

TEST REPORT
2.6 Instrument list

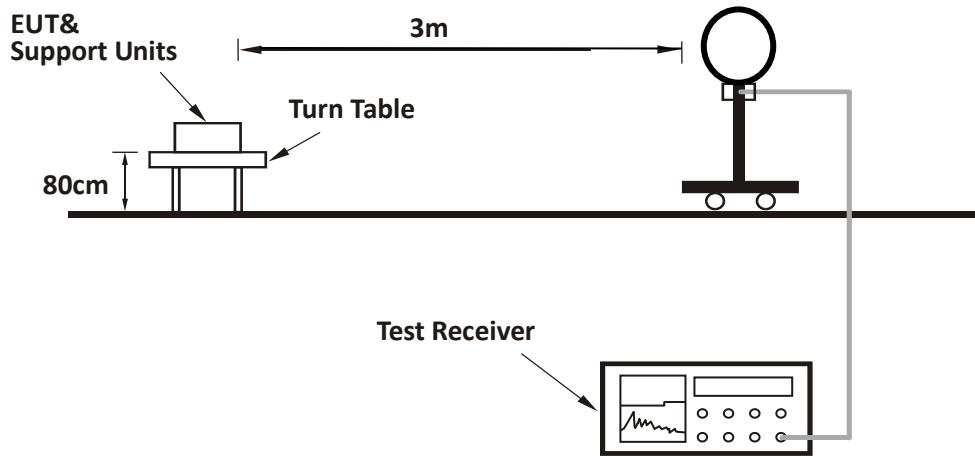
Conducted Emission/Disturbance Power/Tri-loop Test/CDN method					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Test Receiver	R&S	ESCS 30	EC 2107	2020-07-14
<input checked="" type="checkbox"/>	A.M.N.	R&S	ESH2-Z5	EC 3119	2019-11-29
Radiated Emission					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Test Receiver	R&S	ESIB 26	EC 3045	2020-09-16
<input checked="" type="checkbox"/>	Bilog Antenna	TESEQ	CBL 6112D	EC 4206	2019-12-10
<input checked="" type="checkbox"/>	Pre-amplifier	R&S	AFS42-00101800-25-S-42	EC5262	2020-06-11
<input checked="" type="checkbox"/>	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2020-03-14
RF test					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2020-03-04
<input type="checkbox"/>	Power sensor	Agilent	U2021XA	EC 5338-1	2020-03-04
<input type="checkbox"/>	Test Receiver	R&S	ESCI 7	EC 4501	2020-09-16
<input checked="" type="checkbox"/>	Climate chamber	GWS	MT3065	EC 6021	2020-07-04
<input checked="" type="checkbox"/>	Spectrum Analyzer	Keysight	N9030A	EC 6078	2020-06-11
Test Site					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Shielded room	Zhongyu	-	EC 2838	2020-01-13
<input checked="" type="checkbox"/>	Shielded room	Zhongyu	-	EC 2839	2020-01-13
<input checked="" type="checkbox"/>	Semi-anechoic chamber	Albatross project	-	EC 3048	2020-06-31
Additional instrument					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Spectrum analyzer	Agilent	E7402A	EC 2254	2020-07-14
<input checked="" type="checkbox"/>	Therm-Hygrograph	ZJ1-2A	S.M.I.F.	EC 3783	2020-03-10

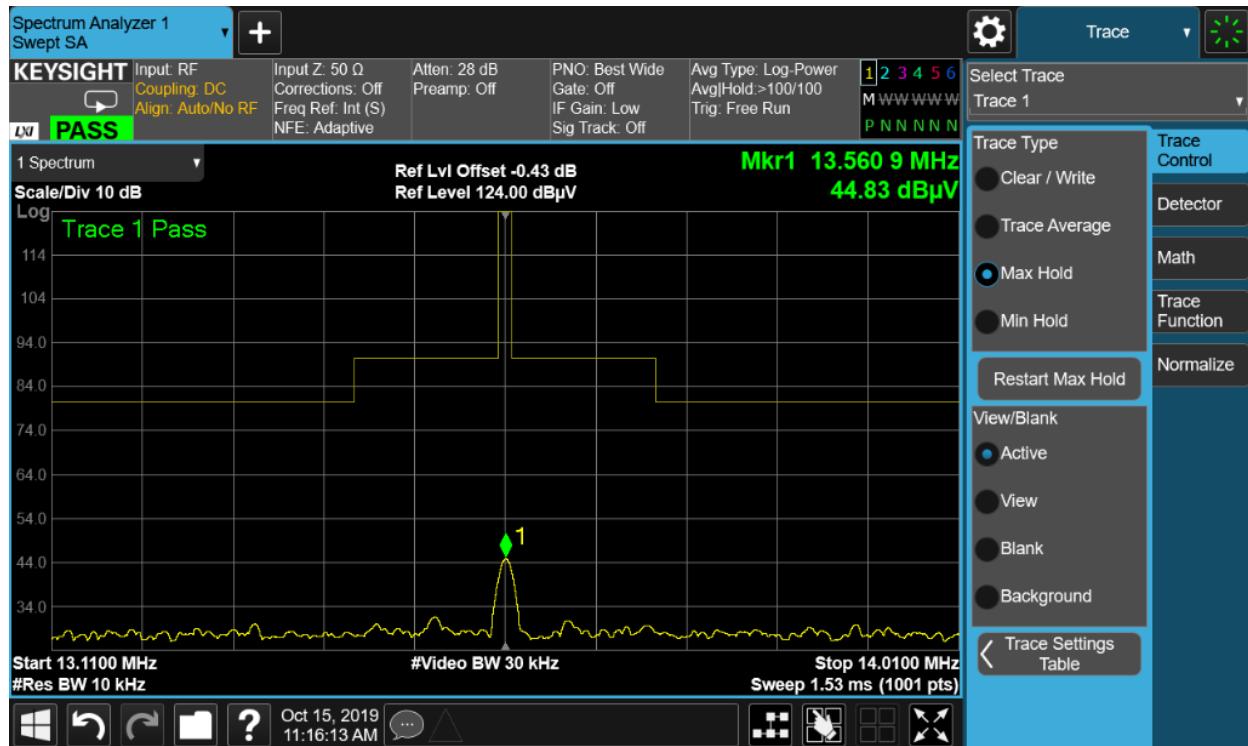
TEST REPORT**2.7 Measurement uncertainty**

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Expanded Uncertainty (k=2)
Conducted emission at mains ports	9kHz ~ 150kHz	3.52 dB
	150kHz ~ 30MHz	3.19 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	4.90 dB
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	5.02 dB
	6GHz ~ 18GHz	5.28 dB

TEST REPORT**3 Fundamental Emission****Test result:** **Pass****3.1 Limit**


Frequencies (MHz)	Limit at 30m (dBuV/m)	Limit at 3m (dBuV/m)
13.110 – 13.410	40.50	80.50
13.410 – 13.553	50.50	90.50
13.553 – 13.567	84.00	124.00
13.567 – 13.710	50.50	90.50
13.710 – 14.010	40.50	80.50


3.2 Measurement Procedure

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to PK Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

TEST REPORT**3.3 Test Configuration**

TEST REPORT
3.4 Test Results of Fundamental Emissions

Antenna Polarization	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin	Detector
X	13.55	44.30	20.30	124.00	79.7	PK
Y	13.55	44.90	20.30	124.00	79.1	PK
Z	13.55	42.70	20.30	124.00	81.3	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.
2. Corrected Reading = Original Receiver Reading + Correct Factor
3. Margin = Limit - Corrected Reading

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,
Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,
Limit = 40.00dBuV/m.
Then Correct Factor = $30.20 + 2.00 - 32.00 = 0.20\text{dB/m}$;
Corrected Reading = $10\text{dBuV} + 0.20\text{dB/m} = 10.20\text{dBuV/m}$;
Margin = $40.00\text{dBuV/m} - 10.20\text{dBuV/m} = 29.80\text{dB}$.

TEST REPORT**4 Spurious Emission****Test result:** Pass**4.1 Limit**

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

4.2 Measurement Procedure**For Radiated emission below 30MHz:**

- f) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- g) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- h) Both X and Y axes of the antenna are set to make the measurement.
- i) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- j) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

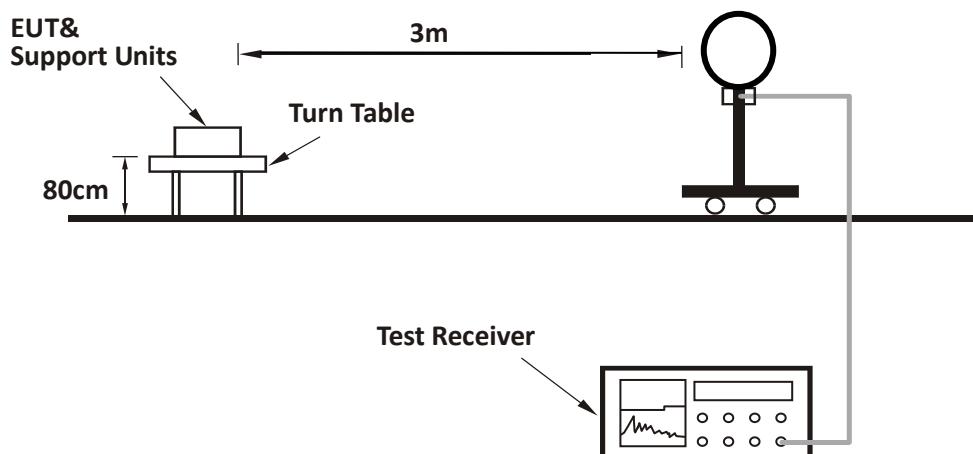
NOTE:

2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz:

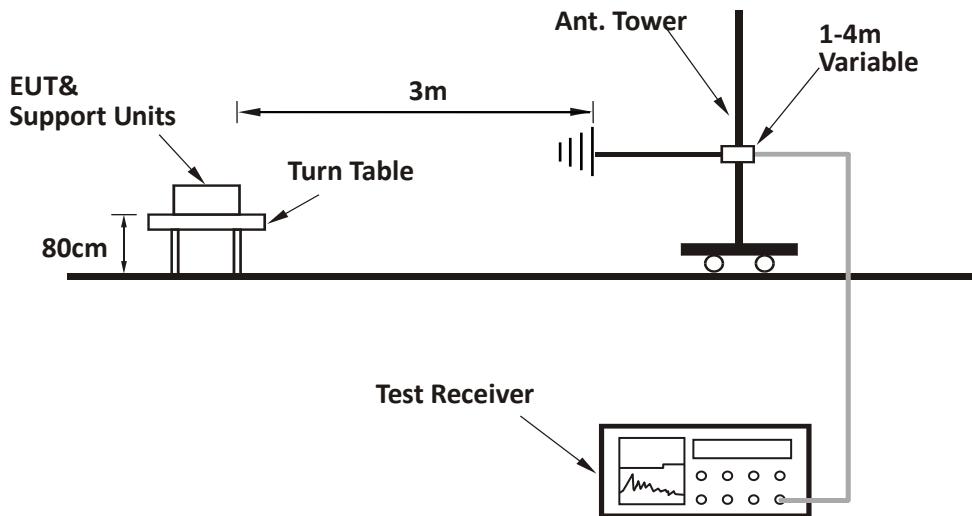
- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the

TEST REPORT

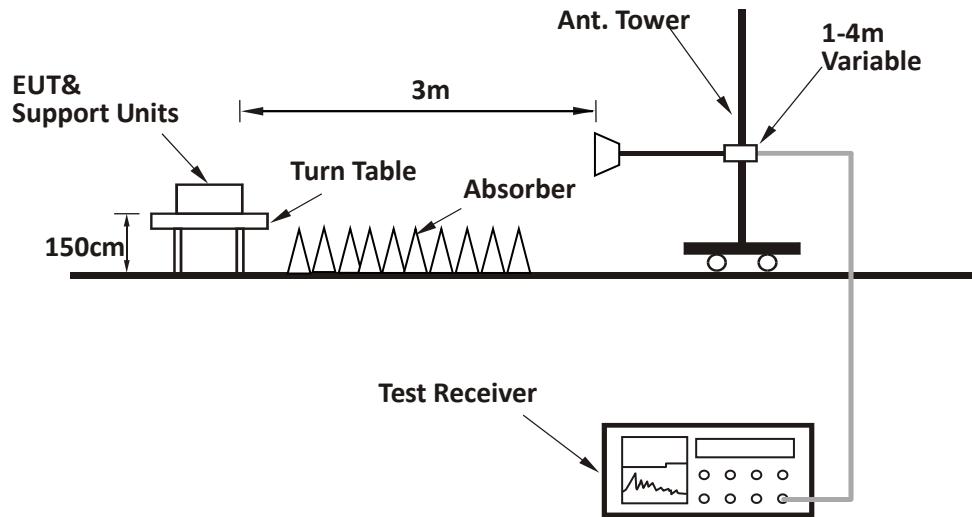

maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. All modes of operation were evaluated and the worst-case emissions were reported

4.3 Test Configuration


For Radiated emission below 30MHz:

TEST REPORT

For Radiated emission 30MHz to 1GHz:

For Radiated emission above 1GHz:

TEST REPORT
4.4 Test Results of Radiated Emissions

The EUT has been tested in all three orthogonal planes, it has the worst case when it is in horizontal position for both below 30MHz & above 30MHz.

Test data below 30MHz:

Antenna Polarization	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin	Detector	Remark
X	1.227	34.80	20.30	65.83	31.03	PK	Spurious
X	1.885	31.40	20.30	69.54	38.14	PK	Spurious
X	21.206	27.00	20.60	69.54	42.54	PK	Spurious
Y	2.064	31.50	20.30	69.54	38.04	PK	Spurious
Y	4.696	30.50	20.40	69.54	39.04	PK	Spurious
Y	28.265	30.40	20.70	69.54	39.14	PK	Spurious
Z	15.284	27.00	20.30	69.54	42.54	PK	Spurious
Z	26.770	27.20	20.70	69.54	42.34	PK	Spurious

Test data from 30MHz to 1000MHz:

Antenna Polarization	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin	Detector
H	31.944	22.80	20.40	40.00	17.20	PK
H	76.653	15.40	9.30	40.00	24.60	PK
H	152.465	23.80	10.20	43.50	19.70	PK
H	284.649	39.90	14.10	46.00	6.10	PK
H	500.421	36.30	19.90	46.00	9.70	PK
H	850.321	41.10	24.30	46.00	4.90	PK
V	35.832	28.00	18.70	40.00	12.00	PK
V	162.184	24.60	10.10	43.50	18.90	PK
V	249.659	33.00	13.10	46.00	13.00	PK
V	393.507	38.70	17.00	46.00	7.30	PK
V	502.365	40.90	19.80	46.00	5.10	PK
V	900.862	34.90	25.20	46.00	11.10	PK

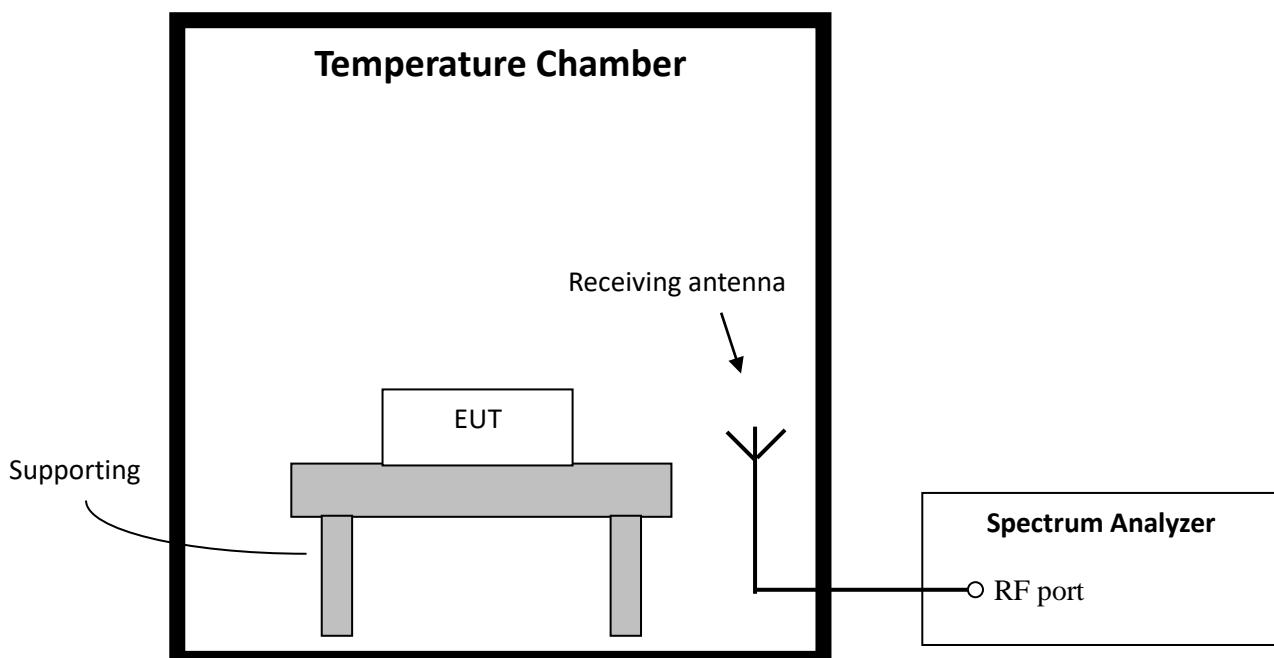
Remark:

1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.
2. Corrected Reading = Original Receiver Reading + Correct Factor
3. Margin = Limit - Corrected Reading
4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB, Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m.

Then Correct Factor = $30.20 + 2.00 - 32.00 = 0.20\text{dB/m}$;

Corrected Reading = $10\text{dBuV} + 0.20\text{dB/m} = 10.20\text{dBuV/m}$;


Margin = $40.00\text{dBuV/m} - 10.20\text{dBuV/m} = 29.80\text{dB}$.

TEST REPORT**5 Frequency Stability (Temperature Variation)**

Test result: PASS

5.1 Test limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage.

5.2 Test Configuration

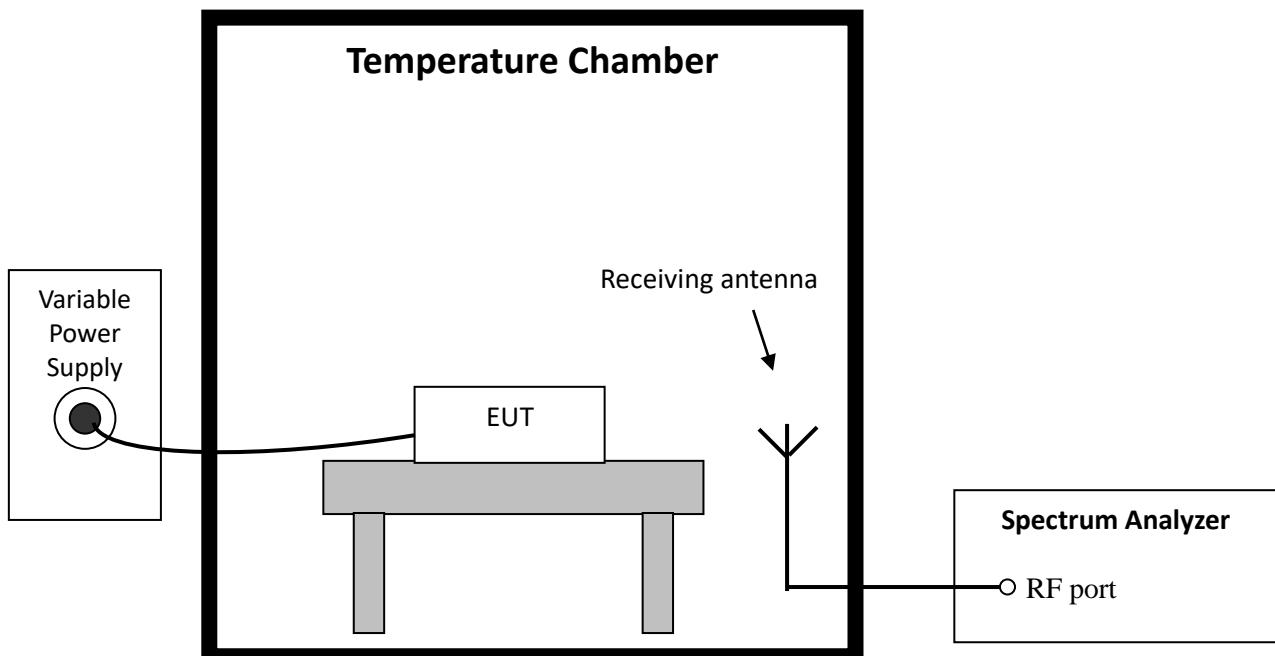
TEST REPORT**5.3 Test procedure and test setup**

Test Procedure as per ANSI 63.10 clause 6.8.1.

5.4 Test protocol

Voltage (V)	Temp (°C)	Freq measured (MHz)	Freq nominal (MHz)	Tolerance (%)	Limit (%)
120	-20	13.549	13.550	0.007	0.01
	-10	13.549		0.007	
	0	13.550		0	
	10	13.550		0	
	20	13.550		0	
	30	13.550		0	
	40	13.550		0	
	50	13.549		0.007	

TEST REPORT


6 Frequency Stability (Voltage Variation)

Test result: PASS

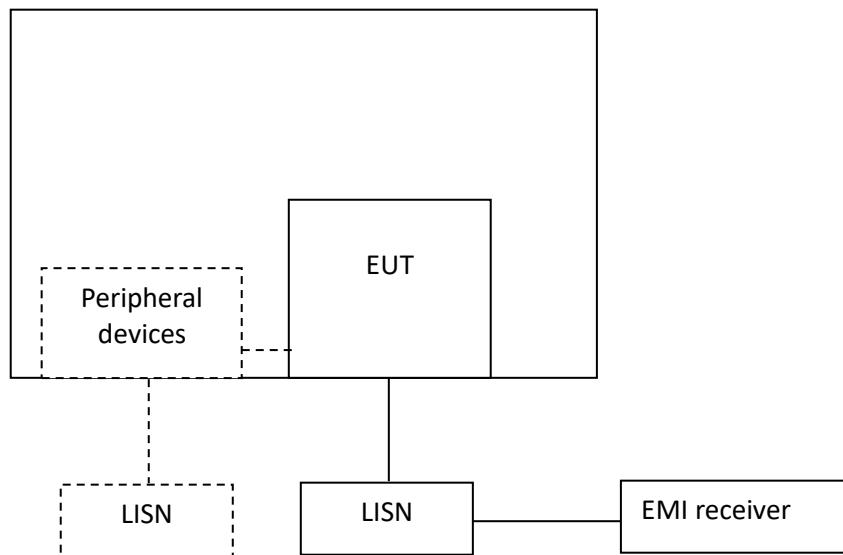
6.1 Test limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

6.2 Test Configuration

6.3 Test procedure and test setup

Test Procedure as per ANSI 63.10 clause 6.8.2.

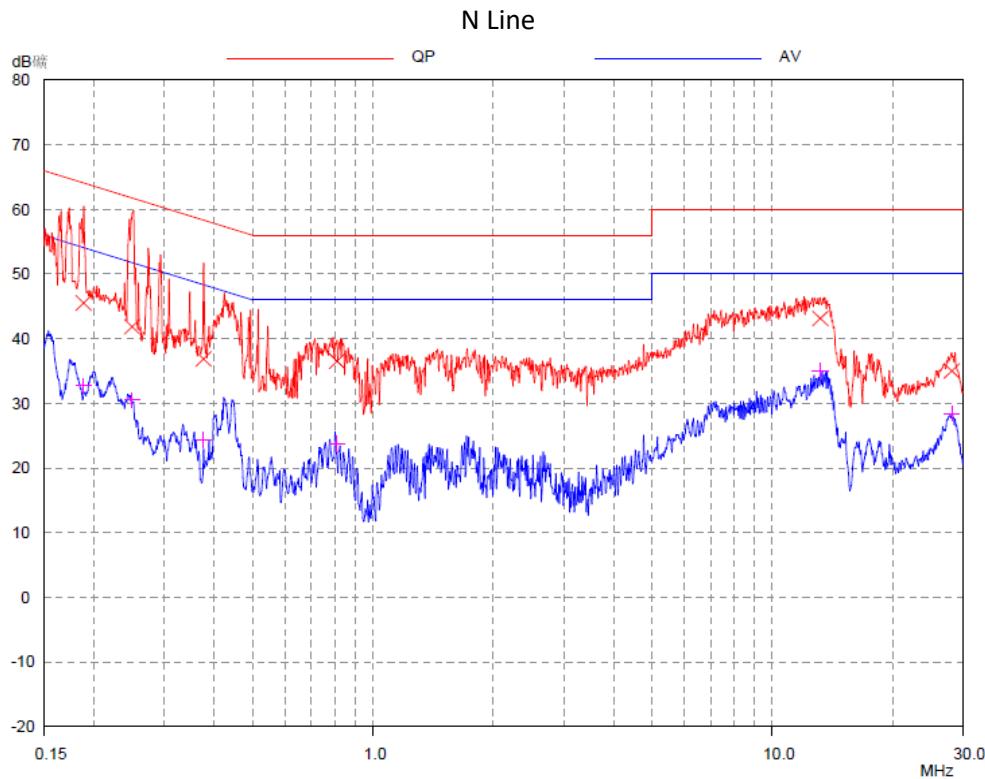
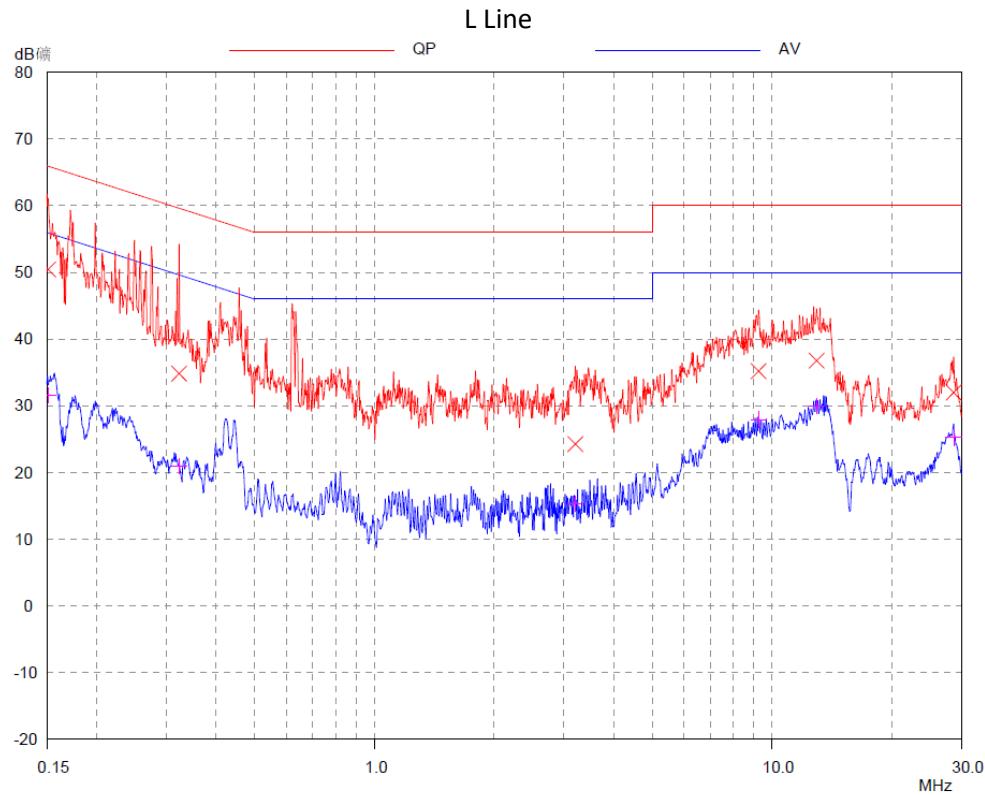

TEST REPORT**6.4 Test protocol**

Temp (°C)	Voltage (V)	Freq Measured (MHz)	Freq nominal (MHz)	Tolerance (%)	Limit (%)
20	120	13.550	13.550	0	0.01
	102	13.549		0.007	
	138	13.549		0.007	

TEST REPORT**7 Conducted emissions**Test result: **Pass****7.1 Limit**

Frequency of Emission (MHz)	Conducted Emissions Limit (dB _{UV})	
	QP	AV
0.15-0.5	66 to 56*	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.



7.2 Test Configuration

TEST REPORT**7.3 Measurement Procedure**

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

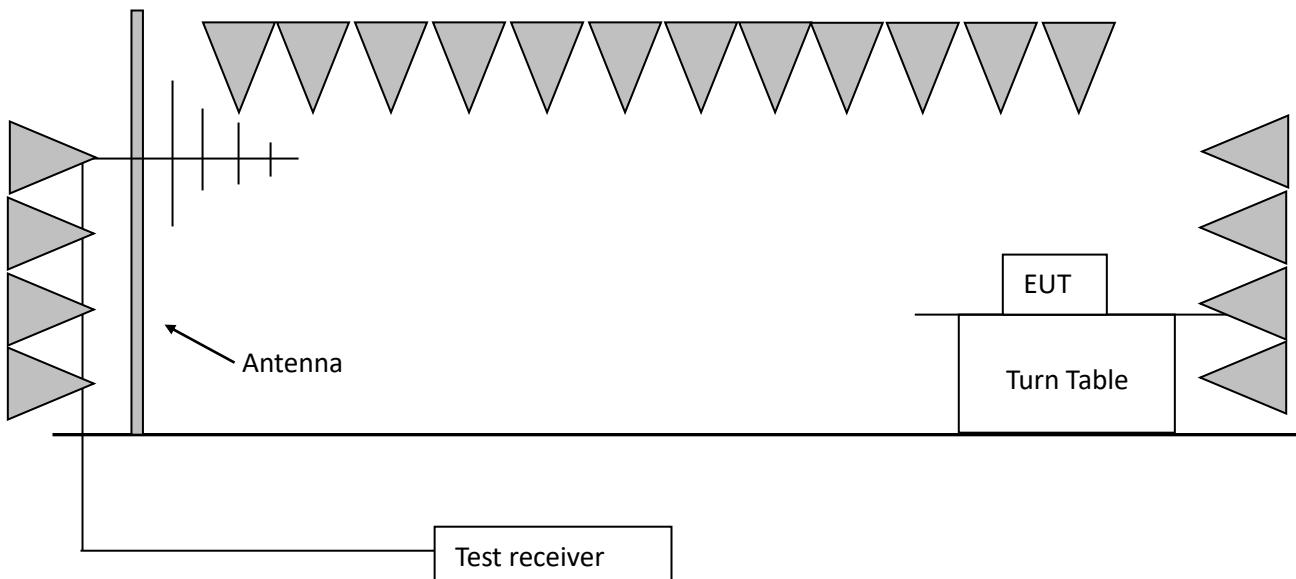
Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

TEST REPORT**7.4 Test Results of Conducted Emissions****Test Curve:**

TEST REPORT
Test Data:

Frequency (MHz)	Quasi-peak			Average			Line
	Corrected Reading (dBuV)	Limit (dBuV)	Margin (dB)	Corrected Reading (dBuV)	Limit (dBuV)	Margin (dB)	
0.151	50.45	65.93	15.48	31.54	55.93	24.39	L
0.323	34.84	59.63	24.79	20.97	49.63	28.66	L
3.205	24.26	56.00	31.74	15.25	46.00	30.75	L
9.269	35.20	60.00	24.80	27.94	50.00	22.06	L
12.961	36.78	60.00	23.22	30.00	50.00	20.00	L
28.685	32.00	60.00	28.00	25.25	50.00	24.75	L
0.188	45.54	64.11	18.57	32.72	54.11	21.39	N
0.249	41.86	61.79	19.93	30.50	51.79	21.29	N
0.376	36.88	58.37	21.49	24.33	48.37	24.04	N
0.812	36.55	56.00	19.45	23.73	46.00	22.27	N
13.170	43.15	60.00	16.85	35.11	50.00	14.89	N
28.118	35.04	60.00	24.96	28.47	50.00	21.53	N


Note: * means the emission level 20dB below the relevant limit.

Remark:

1. *Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.*
2. *Corrected Reading = Original Receiver Reading + Correct Factor*
3. *Margin = Limit - Corrected Reading*
4. *If the PK Corrected Reading is lower than AV limit, the AV test can be elided.*

TEST REPORT**8 99% and 20dB Bandwidth****Test result: Pass****8.1 Limit**

The 20dB bandwidth should be fallen in the allocated operating frequency range.
No limit for 99% bandwidth.

8.2 Test configuration

TEST REPORT**8.3 Test procedure and test set up**

The measurement was applied in a 3m semi-anechoic chamber.


The center of the loop antenna shall be 1 m above the horizontal metal ground plane.

The following procedure shall be used for measuring (99 %) power bandwidth:

1. Set center frequency to the nominal EUT channel center frequency.
2. Set RBW = 1 % to 5 % of the OBW
3. Set VBW $\geq 3 \cdot$ RBW
4. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
5. Use the 99 % power bandwidth function of the instrument (if available).
6. the 20dB bandwidth is also measured with the same setting.

TEST REPORT
8.4 Test protocol

	Lower point (MHz)	Higher point (MHz)	Bandwidth (kHz)	Allocated bandwidth (MHz)
99% Bandwidth	13.5600	13.5620	2.052	/
20dB Bandwidth	13.5605	13.5616	1.100	13.553 ~ 13.567

TEST REPORT

9 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.

***** END *****