

FCC Test Report

Report No.: RFBHKO-WTW-P21090237-5

FCC ID: 2AUS4-NFD1

Test Model: NF-D1

Received Date: 2021/9/8

Test Date: 2021/10/19 ~2021/11/1

Issued Date: 2021/11/15

Applicant: Neatframe AS

Address: Martin Linges vei 25 Fornebu 1364 Norway

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan

**FCC Registration /
Designation Number:** 723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT	6
3.2 Description of Test Modes	7
3.2.1 Test Mode Applicability and Tested Channel Detail.....	8
3.3 Description of Support Units	10
3.3.1 Configuration of System under Test	11
3.4 General Description of Applied Standards	12
4 Test Types and Results	13
4.1 Radiated Emission and Bandedge Measurement.....	13
4.1.1 Limits of Radiated Emission and Bandedge Measurement	13
4.1.2 Test Instruments	14
4.1.3 Test Procedures.....	17
4.1.4 Deviation from Test Standard	18
4.1.5 Test Setup.....	19
4.1.6 EUT Operating Conditions.....	20
4.1.7 Test Results	21
4.2 Conducted Emission Measurement	29
4.2.1 Limits of Conducted Emission Measurement	29
4.2.2 Test Instruments	29
4.2.3 Test Procedures.....	30
4.2.4 Deviation from Test Standard	30
4.2.5 Test Setup.....	30
4.2.6 EUT Operating Conditions.....	30
4.2.7 Test Results	31
4.3 20dB Bandwidth Measurement.....	33
4.3.1 Limits of 20dB Bandwidth Measurement.....	33
4.3.2 Test Instruments	33
4.3.3 Test Procedure	33
4.3.4 Test Setup.....	33
4.3.5 Deviation from Test Standard	33
4.3.6 EUT Operating Condition	33
4.3.7 Test Results	34
5 Pictures of Test Arrangements.....	35
Appendix – Information of the Testing Laboratories	36

Release Control Record

Issue No.	Description	Date Issued
RFBHKO-WTW-P21090237-5	Original release.	2021/11/15

1 Certificate of Conformity

Product: Neat Bar Pro

Brand: neat.

Test Model: NF-D1

Sample Status: Engineering sample

Applicant: Neatframe AS

Test Date: Oct. 19 to Nov. 01, 2021

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.249)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : Phoenix Huang, **Date:** 2021/11/15

Phoenix Huang / Specialist

Approved by : Clark Lin, **Date:** 2021/11/15

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.249)			
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -4.05 dB at 0.46250 MHz.
15.209 15.249 15.249 (d)	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209	Pass	Meet the requirement of limit. Minimum passing margin is -1.2 dB at 24066.52 MHz.
15.215 (c)	20dB Bandwidth	Pass	Meet the requirement of limit
15.203	Antenna Requirement	Pass	No antenna connector is used.

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
	30MHz ~ 1GHz	5.1 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.1 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Neat Bar Pro
Brand	neat.
Test Model	NF-D1
Status of EUT	Engineering sample
Power Supply Rating	AC I/P: 100-240V, 50/60Hz, 1.2A
Modulation Type	CW
Operating Frequency	24~24.25 GHz
Number of Channel	1
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Neat pad <Brand: Neat / Model: A1> Shielded HDMI cable (2.0m) Shielded LAN cable (3.0m) Non-shielded AC 2-Pin cable (3.0m)
Cable Supplied	

Note:

1. The EUT has below radios, as following table:

Radio 1	Radio 2	Radio 3
WLAN (2.4GHz + 5GHz)	Bluetooth	24GHz Radar

2. WLAN, Bluetooth and 24GHz Radar technologies cannot transmit at same time.

3. The following antennas were provided to the EUT.

Brand	Model	Antenna Net Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connector Type
RICHGREEN TEK Incorporation	R1124GFZ	10	24~24.25	Microstrip antenna (antenna array)	None

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.
5. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

1 channel is provided to this EUT:

Frequency (GHz)
24.06652

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO				DESCRIPTION
	RE \geq 1G	RE $<$ 1G	PLC	BW	
-	✓	✓	✓	✓	-

Where RE \geq 1G: Radiated Emission above 1GHz & Bandedge Measurement
 RE $<$ 1G: Radiated Emission below 1GHz
 PLC: Power Line Conducted Emission
 BW: 20dB Bandwidth Measurement

Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TYPE
1	CW

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TYPE
1	CW

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TYPE
1	CW

20dB Bandwidth Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

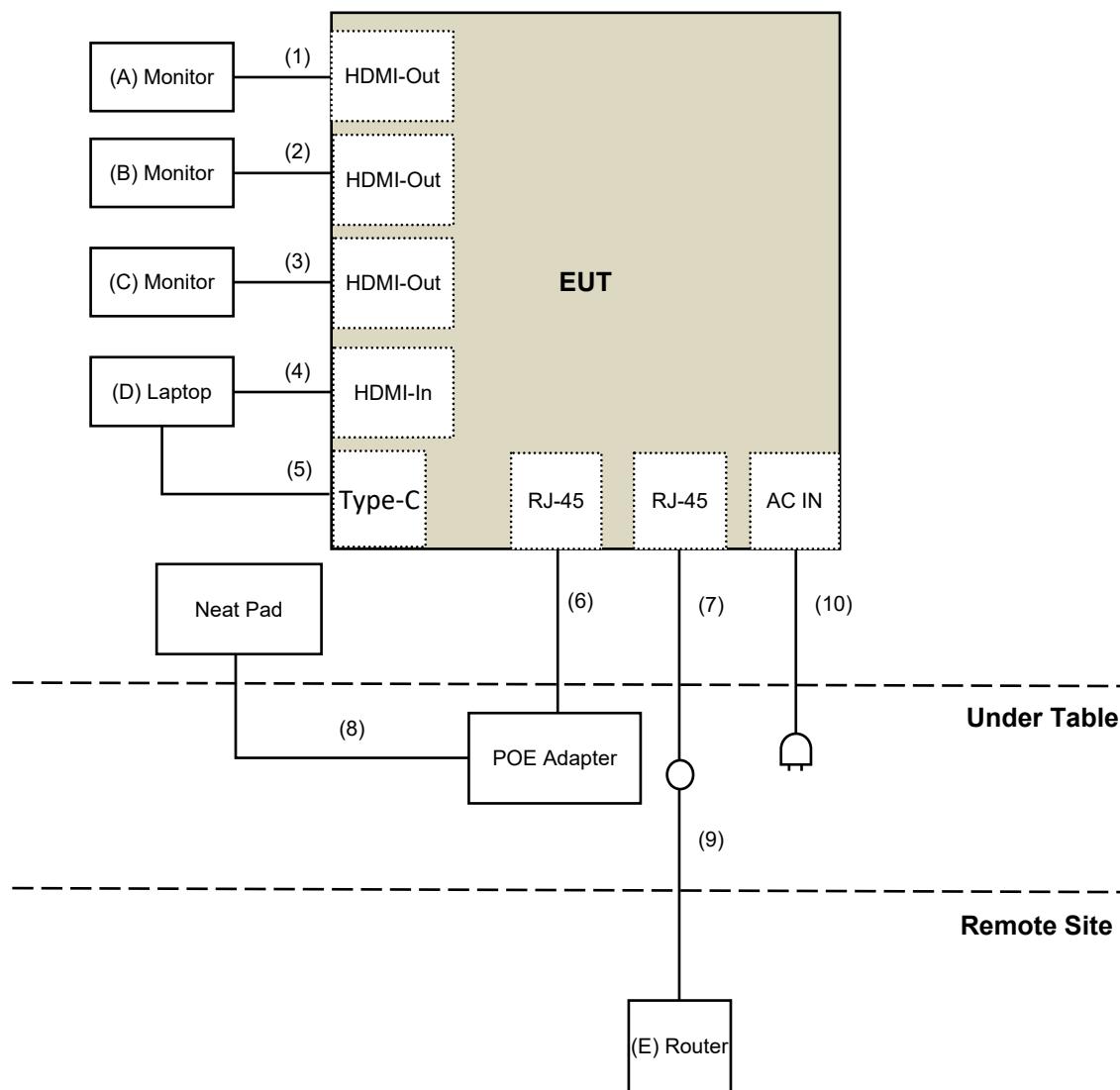
TESTED CHANNEL	MODULATION TYPE
1	CW

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	23~25deg. C, 62~65%RH	120Vac, 60Hz	Nelson Teng, Spencer Liao
RE<1G	25deg. C, 75%RH	120Vac, 60Hz	Ian Chang
PLC	25deg. C, 75%RH	120Vac, 60Hz	Ian Chang
APCM	25deg. C, 60%RH	120Vac, 60Hz	Eric Peng

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A	Monitor	ASUS	VA24EHE	L3LMTF088915	NA	Provided by Lab
B	Monitor	ViewSonic	VX2457-mhd	UG01913A2522	NA	Provided by Lab
C	Monitor	NEOKA	24NS50	NA	NA	Provided by Lab
D	Laptop	Lenovo	20U5S01X00 L14	PF-1ANPYA	N/A	Provided by Lab
E	Router	ASUS	RT-N12+	NA	NA	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	HDMI Cable	1	1.8	Yes	0	Provided by Lab
2	HDMI Cable	1	3	Yes	0	Provided by Lab
3	HDMI Cable	1	1.8	Yes	0	Provided by Lab
4	HDMI Cable	1	2	Yes	0	Supplied by applicant
5	Type A to C Cable	1	1.4	Yes	0	Provided by Lab
6	RJ-45 Cable	1	3	Yes	0	Supplied by applicant
7	RJ-45 Cable	1	3	Yes	0	Supplied by applicant
8	RJ-45 Cable	1	3	Yes	0	Supplied by applicant
9	RJ-45 Cable	1	10	No	0	Provided by Lab
10	AC Cable	1	3	No	0	Supplied by applicant

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

For below 40GHz test:

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver R&S	ESR3	102528	2021/3/2	2022/3/1
Spectrum Analyzer KEYSIGHT	N9030B	MY57141948	2021/5/21	2022/5/20
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Pre_Amplifier EMCI	EMC001340	980142	2021/5/24	2022/5/23
LOOP ANTENNA Electro-Metrics	EM-6879	264	2021/3/5	2022/3/4
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-001	2021/1/7	2022/1/6
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-002	2021/1/7	2022/1/6
Pre_Amplifier EMCI	EMC330N	980538	2021/4/26	2022/4/25
Bilog Antenna Schwarzbeck	VULB 9168	9168-0842	2020/11/3	2021/11/2
RF Coaxial Cable COMMATE/PEWC	8D	966-5-1	2021/4/26	2022/4/25
RF Coaxial Cable COMMATE/PEWC	8D	966-5-2	2021/4/26	2022/4/25
RF Coaxial Cable COMMATE/PEWC	8D	966-5-3	2021/4/26	2022/4/25
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-02	2021/1/11	2022/1/10
Broad-Band Horn Antenna Schwarzbeck	BBHA 9120D	9120D-1819	2020/11/22	2021/11/21
Pre_Amplifier EMCI	EMC12630SE	980509	2021/4/26	2022/4/25
RF Coaxial Cable EMCI	EMC104-SM-SM-1500	180503	2021/4/26	2022/4/25
RF Coaxial Cable EMCI	EMC104-SM-SM-2000	180501	2021/4/26	2022/4/25
RF Coaxial Cable EMCI	EMC104-SM-SM-6000	180506	2021/4/26	2022/4/25
Pre_Amplifier EMCI	EMC184045SE	980387	2021/1/11	2022/1/10
Horn Antenna Schwarzbeck	BBHA 9170	BBHA9170519	2020/11/22	2021/11/21
RF Cable-Frequency range: 1-40GHz EMCI	EMC102-KM-KM-1200	160924	2021/1/11	2022/1/10
RF cable (40GHz) EMCI	EMC-KM-KM-4000	200214	2021/3/10	2022/3/9

Note: 1. The test was performed in 966 Chamber No. 3.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2021/10/21 ~ 2021/11/1

For above 40GHz test:

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer Keysight	N9030A	MY55330160	2021/2/5	2022/2/4
Zero-Bias Detector Vdi	WR15ZBD	WR15R5 1-30	CoC	CoC
4CH Infiniivision Oscilloscope Keysight	DSOX6004A	MY55190202	2021/6/28	2022/6/27
OXE89 Horn Antenna QuinStar	QWH-UCRR00	924200002	2020/1/20	2022/1/19
50G~75G Conical Horn Antenna Keysight	WR15CH-Conical Horn Antenna	WR15CH_001	2020/1/20	2022/1/19
75G~110G Conical Horn Antenna Keysight	WR10CH-Conical Horn Antenna	WR10CH_001	2020/1/20	2022/1/19
N9029AV15-DC9 - 50-75 GHz VDI Standard Downconverter with 9VDC supply Keysight	SA Extension WR15	SAX 381	CoC	CoC
N9029AV10-DC9 - 75-110 GHz VDI Standard Downconverter with 9VDC supply Keysight	SA Extension WR10	SAX 378	CoC	CoC
Millimeter-Wave Signal Generator Frequency Extension Module (50~75 GHz) Keysight	E8257DV15	SGX 050	CoC	CoC
Millimeter-Wave Signal Generator Frequency Extension Module (75~110 GHz) Keysight	E8257DV10	SGX 069	CoC	CoC
PSG analog signal generator (from 250 kHz to 50 GHz) Keysight	E8257D	MY53401987	2021/6/18	2022/6/17
Power Meter VDI	PM5	431V	2019/12/9	2021/12/8
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note: 1. The test was performed in 966 Chamber No. 6.

2. The calibrations are traceable to NML/ROC and NIST/USA.
3. Certificate of Conformance (CoC) which is issued by manufacturer states that the product meets the specification.
4. Tested Date: 2021/10/28

For other test items:

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer R&S	FSV40	101516	2021/3/8	2022/3/7
Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	2021/4/13	2022/4/12
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

Note: 1. The test was performed in Oven room 2.
2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
3. Tested Date: 2021/10/19

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission 30MHz to 40GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 40GHz

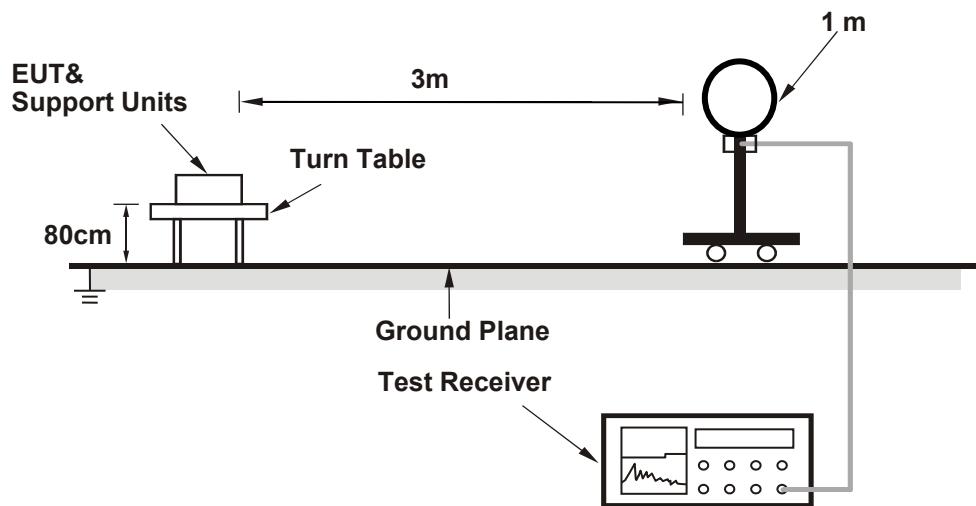
- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The distance at which limits are typically specified is 3 meter; however, closer measurement distances may be utilized.
- c. Begin handheld measurements with the test antenna (horn) at a distance of 1 meter from the EUT, in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 meter from the EUT.
- d. Repeat (b) with the horn in a vertically polarized position.
- e. If the emission cannot be detected at 1 meter, reduce the RBW in order to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.
- f. Note the maximum level indicated on the Spectrum Analyzer.
- g. Based on the distance at which the measurement was made and the calculated distance to the edge of the far field, determine the appropriate distance attenuation factor. Apply this factor to the calculated field strength in order to determine the equivalent field strength at the distance at which the regulatory limit is specified. Compare to the appropriate limits
- h. Repeat (a) - (f) for every emission that must be measured, up through the required frequency range of investigation

Note:

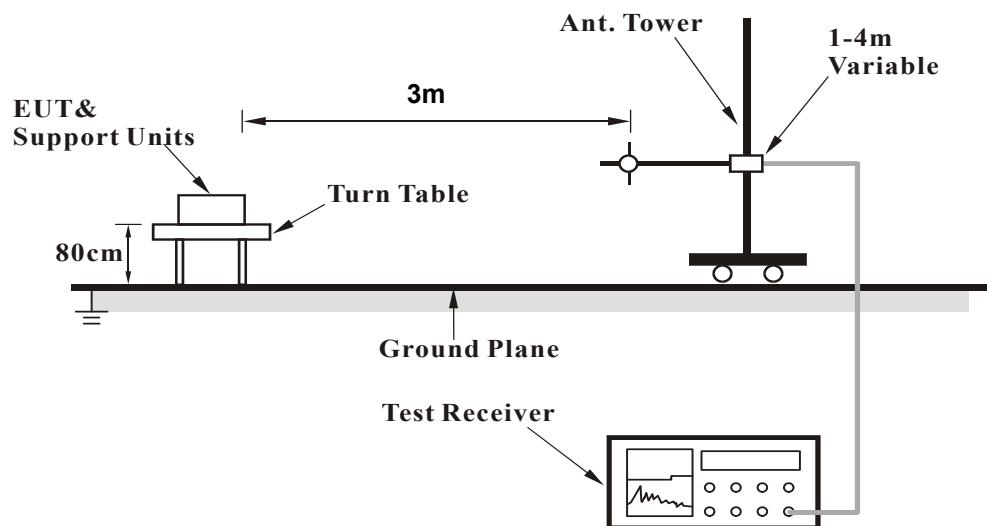
1. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak and Average detection at frequency above 40GHz.
2. Shorter measurement distances may be used to improve the measurement system's noise floor. As ANSI C63.10 section 9.4 description is based on the measurement in distance of 3 meters, the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

Test value at 3-meter distance (dB_{uV})

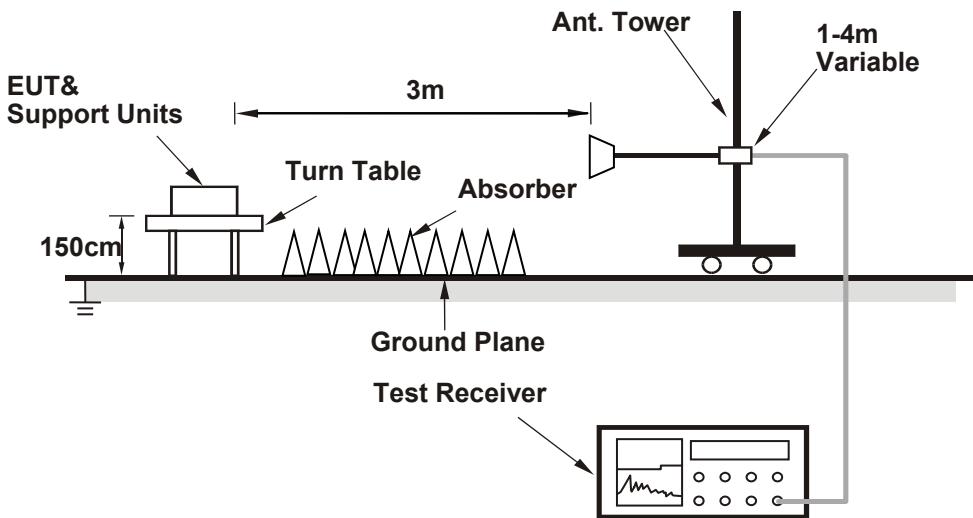
= Test value at 1 meter distance (dB_{uV}) - 20log(3/1)(dB)

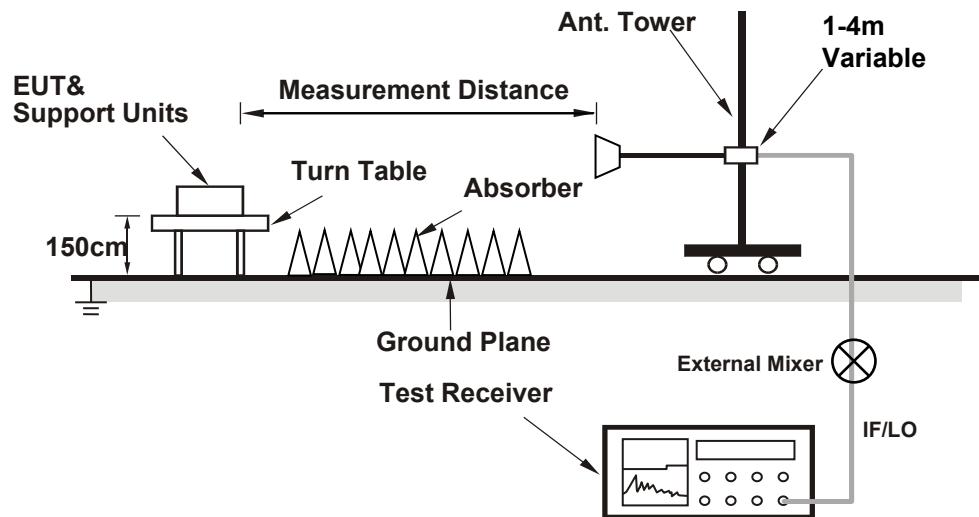

= Test value at 1 meter distance (dB_{uV}) - 9.5(dB).

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup


For Radiated emission below 30MHz


For Radiated emission 30MHz to 1GHz

For Radiated emission 1GHz to 50GHz

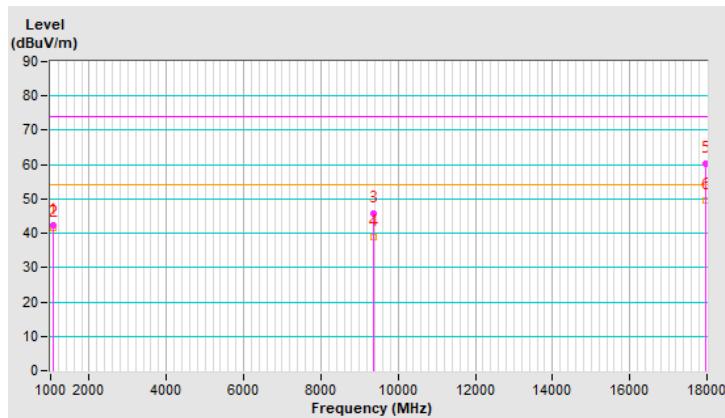
For Radiated emission above 50GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- Placed the EUT on the testing table.
- Controlling software (Dalmore_24GHz Radar.bat) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

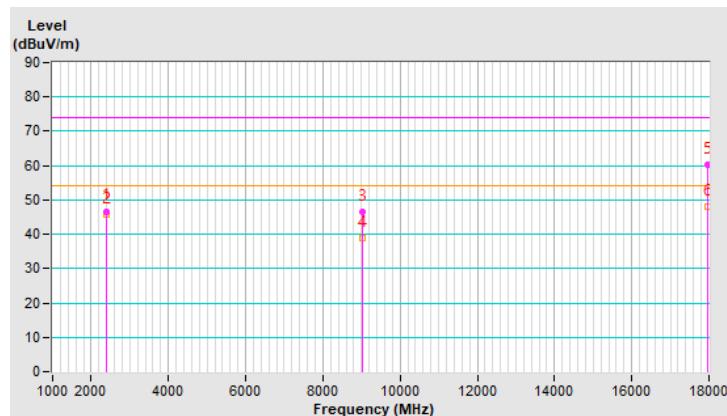

For 1~18GHz

RF Mode	TX	Frequency	24.06652 GHz
Frequency Range	1GHz ~ 18GHz	Detector Function	Peak (PK) Average (AV)

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1060.75	42.3 PK	74.0	-31.7	1.50 H	349	48.6	-6.3
2	1060.75	41.6 AV	54.0	-12.4	1.50 H	349	47.9	-6.3
3	9360.55	45.6 PK	74.0	-28.4	1.00 H	237	35.1	10.5
4	9360.55	38.9 AV	54.0	-15.1	1.00 H	237	28.4	10.5
5	17978.89	60.2 PK	74.0	-13.8	4.00 H	323	34.3	25.9
6	17978.89	49.6 AV	54.0	-4.4	4.00 H	323	23.7	25.9

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.



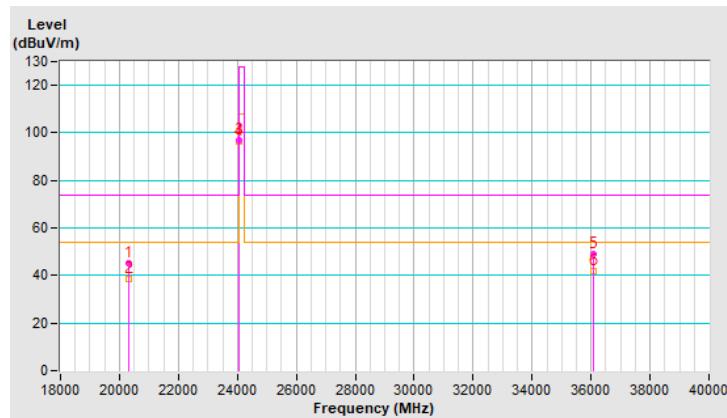
RF Mode	TX	Frequency	24.06652 GHz
Frequency Range	1GHz ~ 18GHz	Detector Function	Peak (PK) Average (AV)

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.05	46.7 PK	74.0	-27.3	1.00 V	86	49.4	-2.7
2	2390.05	45.6 AV	54.0	-8.4	1.00 V	86	48.3	-2.7
3	9024.40	46.6 PK	74.0	-27.4	2.50 V	148	37.2	9.4
4	9024.40	39.0 AV	54.0	-15.0	2.50 V	148	29.6	9.4
5	17977.75	60.1 PK	74.0	-13.9	3.50 V	324	34.3	25.8
6	17977.75	48.0 AV	54.0	-6.0	3.50 V	324	22.2	25.8

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.

For 18~40GHz

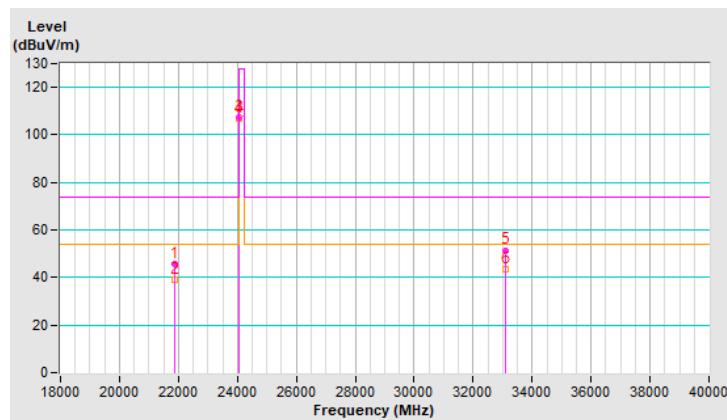

RF Mode	TX	Frequency	24.06652 GHz
Frequency Range	18GHz ~ 40GHz	Detector Function	Peak (PK) Average (AV)

Antenna Polarity & Test Distance : Horizontal at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	20332.00	45.4 PK	74.0	-28.6	1.50 H	200	50.6	-5.2
2	20332.00	38.4 AV	54.0	-15.6	1.50 H	200	43.6	-5.2
3	*24066.52	96.7 PK	127.9	-31.2	1.72 H	46	99.4	-2.7
4	*24066.52	96.3 AV	107.9	-11.6	1.72 H	46	99.0	-2.7
5	36084.00	48.9 PK	74.0	-25.1	2.00 H	157	48.8	0.1
6	36084.00	41.9 AV	54.0	-12.1	2.00 H	157	41.8	0.1

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency (主頻).



RF Mode	TX	Frequency	24.06652 GHz
Frequency Range	18GHz ~ 40GHz	Detector Function	Peak (PK) Average (AV)

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	21894.00	45.6 PK	74.0	-28.4	1.50 V	242	49.3	-3.7
2	21894.00	38.9 AV	54.0	-15.1	1.50 V	242	42.6	-3.7
3	*24066.52	107.6 PK	127.9	-20.3	1.62 V	276	110.3	-2.7
4	*24066.52	106.7 AV	107.9	-1.2	1.61 V	276	109.4	-2.7
5	33084.00	51.5 PK	74.0	-22.5	2.24 V	155	53.9	-2.4
6	33084.00	43.7 AV	54.0	-10.3	2.24 V	155	46.1	-2.4

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency (主頻).

For 40~100GHz

RF Mode	TX	Frequency	24.06652 GHz
Frequency Range	40GHz ~ 100GHz	Detector Function	Peak (PK) Average (AV)

Antenna Polarity : Horizontal

No.	Frequency (GHz)	Factor (dB/m)	Reading (dBuV)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Pass/Fail
1	48.13	20.09	36.49	56.58	87.9	-31.318	Peak	Pass
2	48.13	20.09	26.45	46.54	67.9	-21.359	Average	Pass
3	72.20	1.50	53.31	54.81	87.9	-33.092	Peak	Pass
4	72.20	1.50	35.58	37.08	67.9	-30.822	Average	Pass
5	98.32	19.59	21.23	40.82	74	-33.182	Peak	Pass
6	98.32	19.59	3.69	23.28	54	-30.722	Average	Pass

Antenna Polarity : Vertical

No.	Frequency (GHz)	Factor (dB/m)	Reading (dBuV)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Pass/Fail
1	48.13	20.09	43.78	63.87	87.9	-24.030	Peak	Pass
2	48.13	20.09	33.77	53.85	67.9	-14.047	Average	Pass
3	72.20	1.50	52.81	54.31	87.9	-33.592	Peak	Pass
4	72.20	1.50	34.91	36.41	67.9	-31.492	Average	Pass
5	98.47	19.59	20.57	40.16	74	-33.842	Peak	Pass
6	98.47	19.59	3.55	23.14	54	-30.862	Average	Pass

REMARKS:

1. The measured power level is converted to E_{Meas} using the equation:

Emission = Factor + Reading

where:

Measurements made at 1 m

2. Shorter measurement distances may be used to improve the measurement system's noise floor.

As ANSI C63.10 section 9.4 description is based on the measurement in distance of 3 meters,

the data obtained at 1-meter distance was extrapolate results to the 3-m distance:

Test value at 3-meter distance (dBuV) = Test value at 1 meter distance (dBuV) + 20log(1/3)(dB)

= Test value at 1 meter distance (dBuV) - 9.5(dB).

*Measurements made at 1 meter distance. Test value converted to account for 3-meter measurement distance.

3. The far-field boundary is given in ANSI 63.10 section 9.1 as:

$R_{\text{far field}} = (2 * D^2) / \lambda$

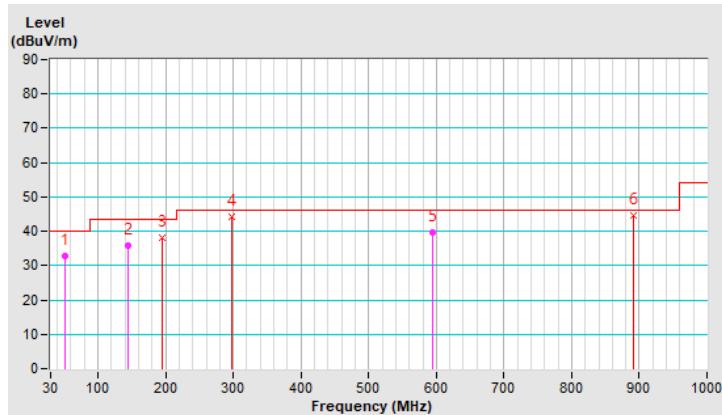
D is the Largest Antenna Dimension of measurement antenna, including the reflector

λ is the wavelength

Frequency (GHz)	L (m)	Lambda (m)	R (Far Field) (m)
40	0.03	0.0075	0.240
50	0.03	0.0060	0.300

Frequency (GHz)	L (m)	Lambda (m)	R (Far Field) (m)
50	0.025	0.0060	0.208
75	0.025	0.0040	0.313

Frequency (GHz)	L (m)	Lambda (m)	R (Far Field) (m)
75	0.018	0.0040	0.162
100	0.018	0.0030	0.216

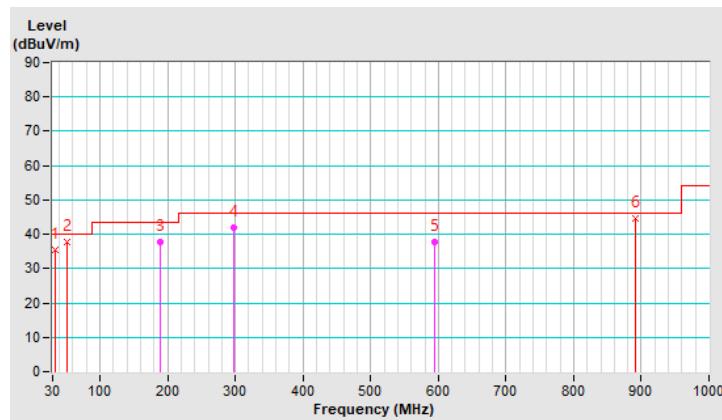

Below 1GHz Data:

RF Mode	TX	Frequency	24.06652 GHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	52.21	32.7 QP	40.0	-7.3	1.96 H	146	45.5	-12.8
2	144.46	35.9 QP	43.5	-7.6	2.43 H	358	48.7	-12.8
3	195.42	38.0 QP	43.5	-5.5	1.88 H	210	53.9	-15.9
4	296.99	44.3 QP	46.0	-1.7	1.08 H	184	56.7	-12.4
5	594.01	39.8 QP	46.0	-6.2	2.24 H	355	45.2	-5.4
6	890.99	44.6 QP	46.0	-1.4	2.18 H	132	46.0	-1.4

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX	Frequency	24.06652 GHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	33.48	35.5 QP	40.0	-4.5	1.03 V	182	44.0	-8.5
2	52.22	37.9 QP	40.0	-2.1	1.27 V	44	44.8	-6.9
3	188.50	37.8 QP	43.5	-5.7	1.63 V	191	46.1	-8.3
4	296.99	41.8 QP	46.0	-4.2	2.25 V	202	46.1	-4.3
5	593.96	37.7 QP	46.0	-8.3	2.15 V	156	35.5	2.2
6	890.98	44.5 QP	46.0	-1.5	1.97 V	120	36.9	7.6

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

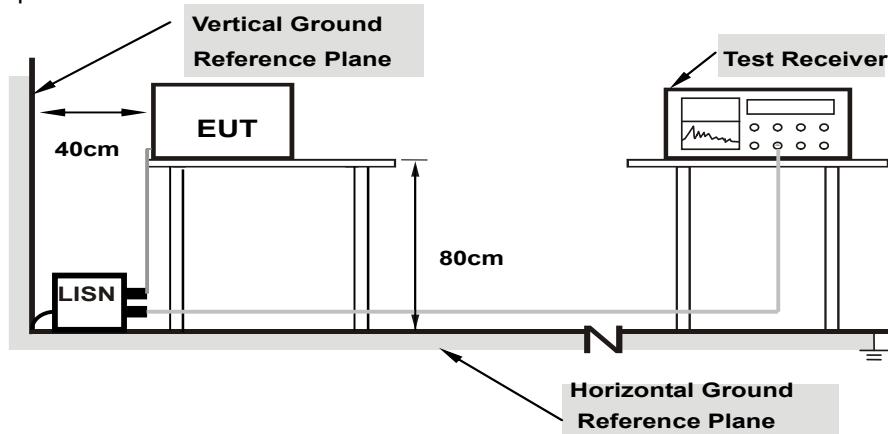
Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver R&S	ESCS 30	847124/029	2021/10/13	2022/10/12
LISN R&S	ESH3-Z5	848773/004	2021/10/29	2022/10/28
LISN R & S	ESH3-Z5	835239/001	2021/3/26	2022/3/25
50 ohms Terminator	50	3	2021/10/27	2022/10/26
RF Coaxial Cable JYEBO	5D-FB	COCCAB-001	2021/9/25	2022/9/24
Fixed attenuator STI	STI02-2200-10	005	2021/8/27	2022/8/26
Software BVADT	BVADT_Cond_V7.3.7.4	NA	NA	NA

Note: 1. The test was performed in Conduction 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2021/11/1

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

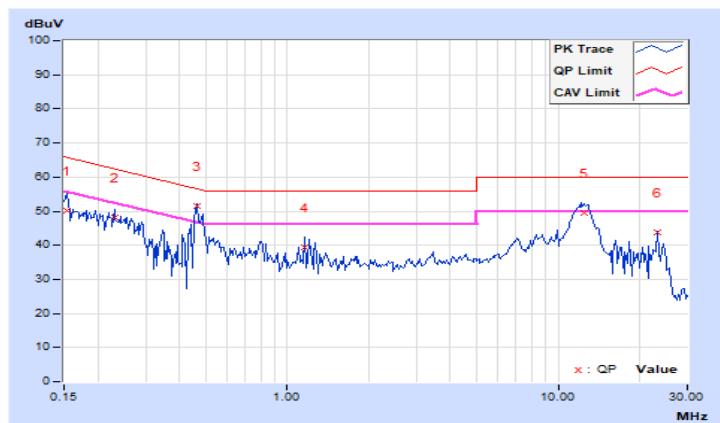
4.2.5 Test Setup

Note: 1. Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

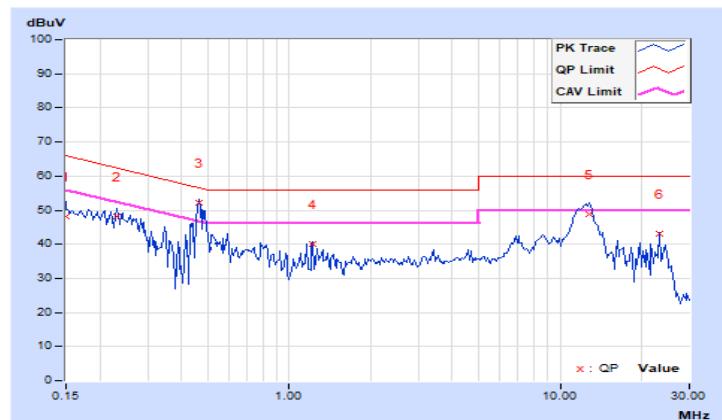

4.2.7 Test Results

RF Mode	TX	Frequency	24.06652 GHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

Phase Of Power : Line (L)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	10.03	40.29	31.65	50.32	41.68	65.79	55.79	-15.47	-14.11
2	0.23203	10.04	38.16	30.75	48.20	40.79	62.38	52.38	-14.18	-11.59
3	0.46250	10.05	41.46	32.55	51.51	42.60	56.65	46.65	-5.14	-4.05
4	1.16016	10.10	29.33	21.51	39.43	31.61	56.00	46.00	-16.57	-14.39
5	12.44531	10.81	38.72	30.91	49.53	41.72	60.00	50.00	-10.47	-8.28
6	23.12891	11.50	32.17	31.28	43.67	42.78	60.00	50.00	-16.33	-7.22

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value



RF Mode	TX	Frequency	24.06652 GHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

Phase Of Power : Neutral (N)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.04	38.23	32.26	48.27	42.30	66.00	56.00	-17.73	-13.70
2	0.23203	10.04	38.10	30.47	48.14	40.51	62.38	52.38	-14.24	-11.87
3	0.46641	10.06	42.05	32.34	52.11	42.40	56.58	46.58	-4.47	-4.18
4	1.21875	10.11	29.92	21.90	40.03	32.01	56.00	46.00	-15.97	-13.99
5	12.77734	10.67	38.12	30.92	48.79	41.59	60.00	50.00	-11.21	-8.41
6	23.12891	11.17	31.86	30.72	43.03	41.89	60.00	50.00	-16.97	-8.11

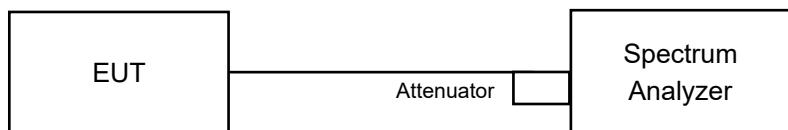
Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

4.3 20dB Bandwidth Measurement

4.3.1 Limits of 20dB Bandwidth Measurement

The 20dB bandwidth shall be specified in operating frequency band.

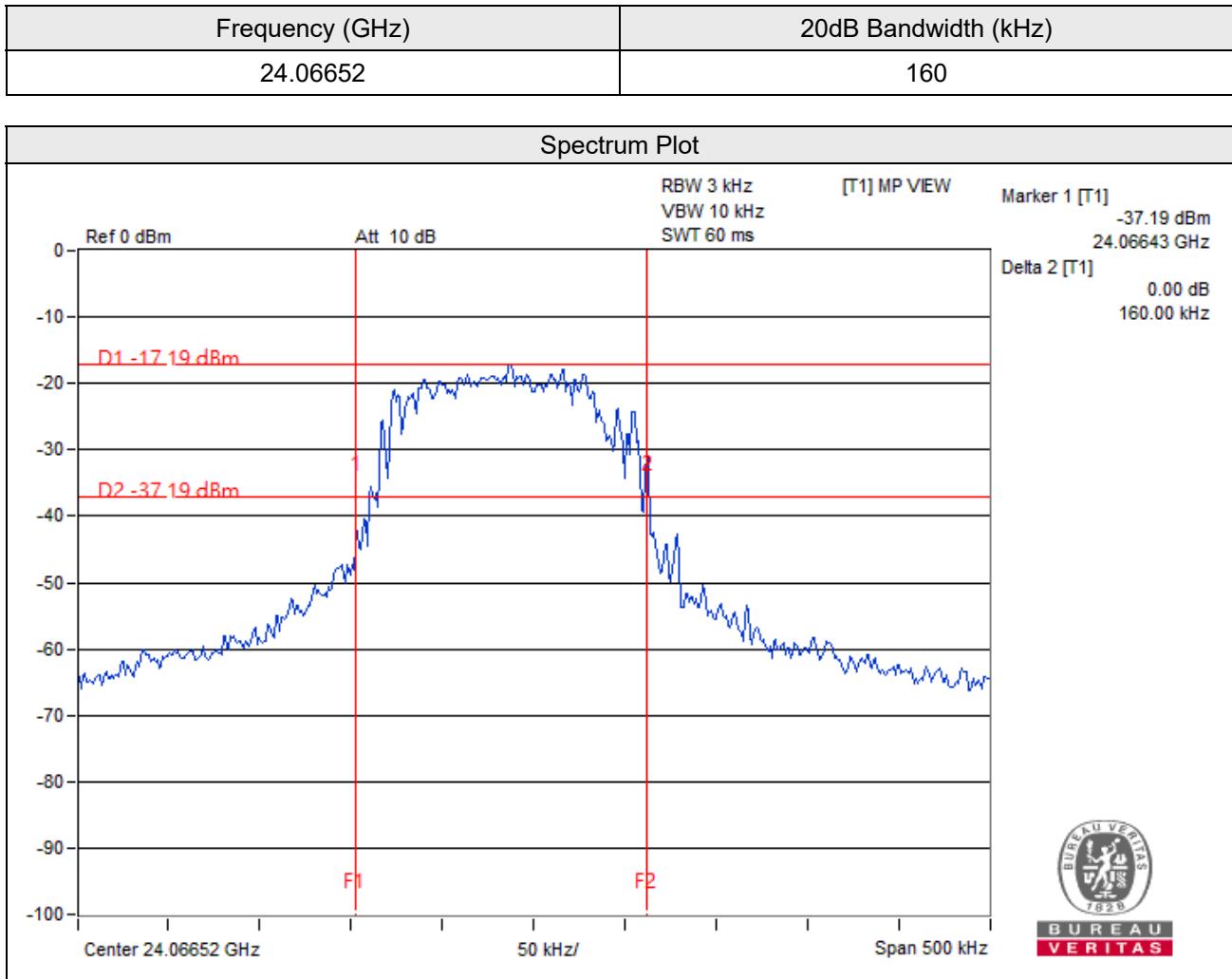

4.3.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.3 Test Procedure

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3kHz RBW and 10kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.3.4 Test Setup


4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Condition

Set the EUT under transmission condition continuously at specific channel frequency.

4.3.7 Test Results

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---