

TEST REPORT

Applicant Name:

SMART CAREGIVER CORPORATION

Address:

1229 N. McDOWELL BLVD PETALUMA California United States 94954

Report Number:

SZNS1220517-21053E-RF

FCC ID:

2AUNU433-MS

Test Standard (s)

FCC PART 15.231

Sample Description

Product Type: Motion Sensor

Model No.: 433-MS

Trade Mark: SMART

Date Received: 2022-05-17

Date of Test: 2022-05-30 to 2022-06-02

Report Date: 2022-06-08

Test Result:	Pass*
--------------	-------

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Black Ding
EMC Engineer

Approved By:

Candy Li
EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk ★.

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk *. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

Tel: +86 755-26503290

Fax: +86 755-26503396

Web: www.atc-lab.com

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE.....	3
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY.....	4
SYSTEM TEST CONFIGURATION.....	5
JUSTIFICATION	5
SPECIAL ACCESSORIES.....	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE.....	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST AND DETAILS	8
FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)	9
TEST RESULT:	9
FCC §15.203 - ANTENNA REQUIREMENT.....	10
APPLICABLE STANDARD	10
ANTENNA CONNECTOR CONSTRUCTION	10
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	11
EUT SETUP	11
EMI TEST RECEIVER SETUP.....	11
TEST PROCEDURE	12
FACTOR & MARGIN CALCULATION	12
TEST DATA	12
FCC §15.205, §15.209, §15.231 (B) - RADIATED EMISSIONS	15
APPLICABLE STANDARD	15
EUT SETUP.....	15
EMI TEST RECEIVER SETUP.....	16
TEST PROCEDURE	16
CORRECTED AMPLITUDE & MARGIN CALCULATION	17
TEST RESULTS SUMMARY	17
TEST DATA	17
FCC §15.231(A) (1) - DEACTIVATION TESTING.....	22
APPLICABLE STANDARD	22
TEST PROCEDURE	22
TEST DATA	22
FCC §15.231(C) – 20 DB EMISSION BANDWIDTH TESTING	23
APPLICABLE STANDARD	23
TEST PROCEDURE	23
TEST DATA	23

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Motion Sensor
Tested Model	433-MS
Frequency Range	433.92MHz
Modulation Technique	OOK
Antenna Specification*	1.6dBi(It is provided by the applicant)
Voltage Range	DC4.5V from battery or DC 12V from adapter
Sample serial number	SZNS1220517-21053E-RF-S1
Sample/EUT Status	Good condition

Objective

All the test measurements were performed according to the measurement procedure described in ANSI C63.10 - 2013.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209, 15.35(c) and 15.231 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10 - 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter	Uncertainty	
Occupied Channel Bandwidth	5%	
RF output power, conducted	0.73dB	
Unwanted Emission, conducted	1.6dB	
Emissions, Radiated	30MHz - 1GHz	4.28dB
	1GHz - 18GHz	4.98dB
	18GHz - 26.5GHz	5.06dB
Temperature	1 °C	
Humidity	6%	
Supply voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in Engineering Mode and the power is default, which was provided and declared by manufacturer.

Operating frequency: 433.92MHz

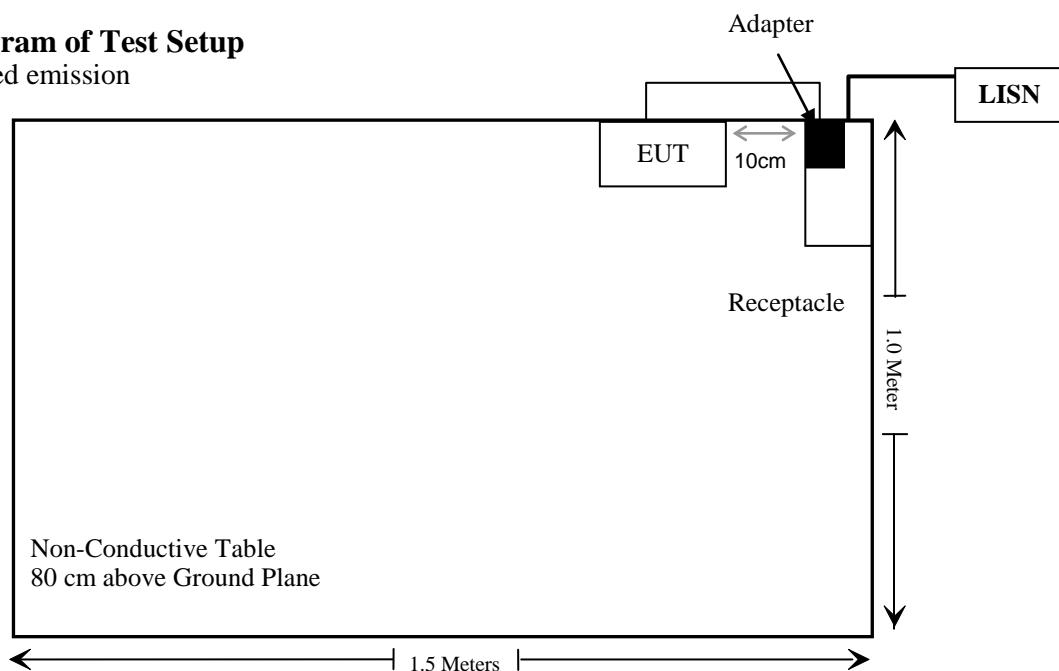
Special Accessories

No special accessories was used

Equipment Modifications

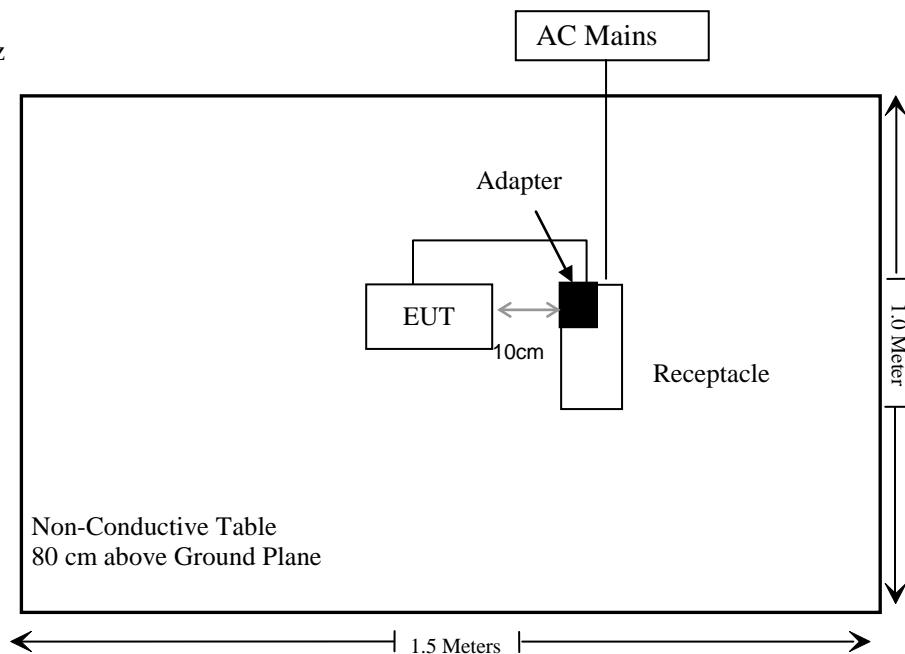
No modification was made to the EUT.

Support Equipment List and Details

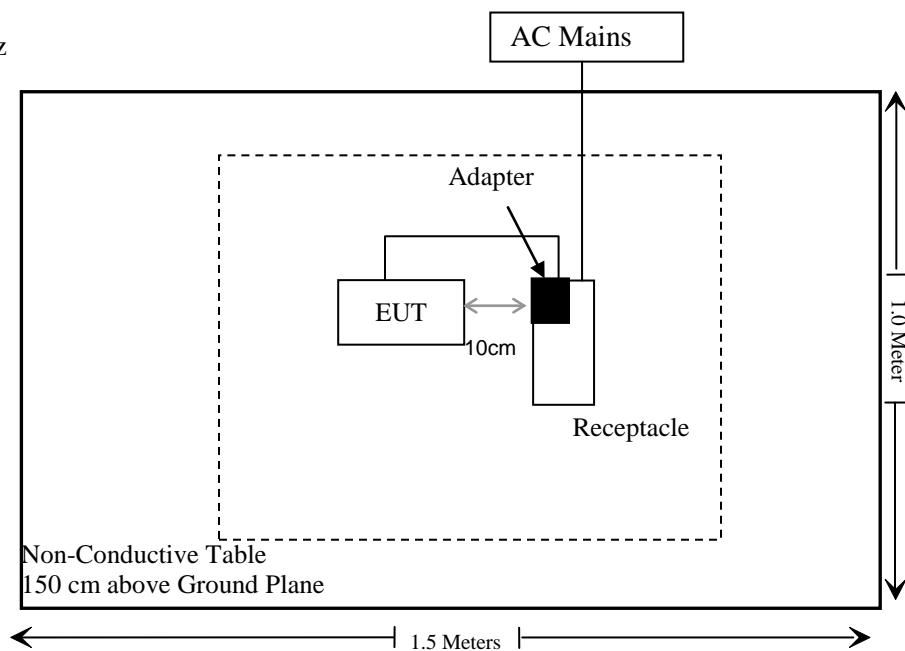

Manufacturer	Description	Model	Serial Number
Unknown	Adapter	GA-1200500	Unknown

External I/O Cable

Cable Description	Length (m)	From / Port	To
Un-shielding Detachable USB Cable	1.0	EUT	Adapter


Block Diagram of Test Setup

For conducted emission



For radiated emission

Below 1 GHz

Above 1 GHz

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§ 1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207	AC Line Conducted Emission	Compliant
§15.205, §15.209, §15.231(b)	Radiated Emissions	Compliant
§15.231 (c)	20dB Emission Bandwidth	Compliant
§15.231 (a) (1)	Deactivation	Compliant

TEST EQUIPMENT LIST AND DETAILS

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Conducted Emission Test					
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13
Conducted Emission Test Software: e3 19821b (V9)					
Radiated Emissions Test					
Rohde & Schwarz	Test Receiver	ESR	101817	2021/12/13	2022/12/12
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12
A.H. Systems, inc.	Preamplifier	PAM-0118P	531	2021/11/09	2022/11/08
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Radiated Emission Test Software: e3 19821b (V9)					
RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12

*** Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4 –MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R^2 .
1.34-30	3,450 R^2/f^2 .
30-300	3.83 R^2 .
300-1,500	0.0128 R^2f .
1,500-100,000	19.2 R^2 .

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

Test Result:

For worst case:

Mode	Frequency Range (MHz)	Tune-up Conducted Output Power		Antenna Gain		ERP		Evaluation Distance (cm)	ERP Limit (mW)
		(dBm)	(mW)	(dBi)	(dBd)	(dBm)	(mW)		
SRD	433.92	-34	0.00040	1.6	-0.55	-34.55	0.00035	20	222

Note 1: Conducted power @3m for 433.92MHz: 61.81-95.2-1.6 (dBm) = -34.99 (dBm)

Note 2: The tune-up Conducted Output power was declared by the applicant.

Note 3: 0dBd=2.15dBi.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

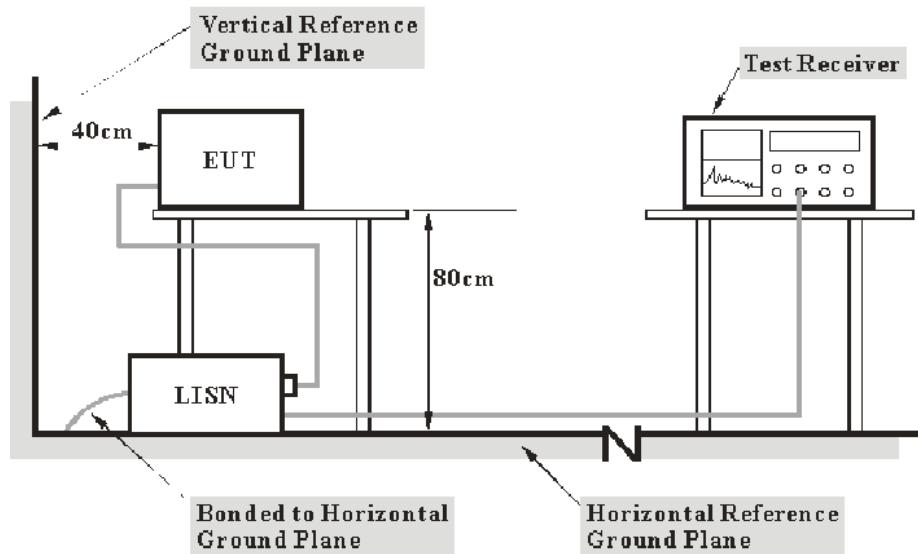
FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Antenna Connector Construction

The EUT has one external antenna arrangement which was permanently attached. And the antenna gain is 1.6dBi; fulfill the requirement of this section. Please refer to EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

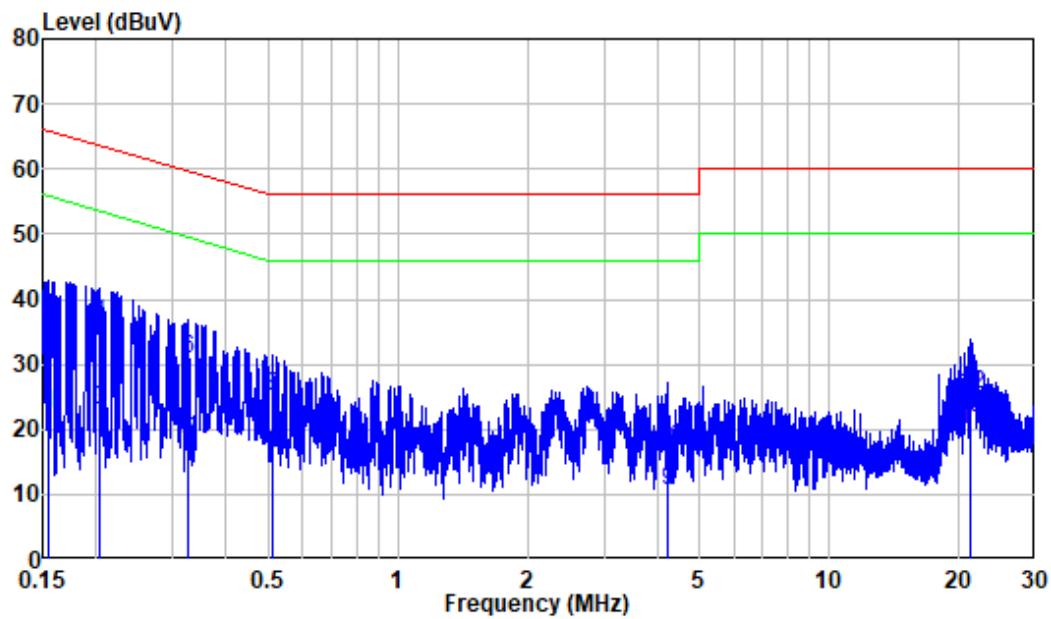
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

$$\text{Factor} = \text{LISN VDF} + \text{Cable Loss}$$

The “**Over limit**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

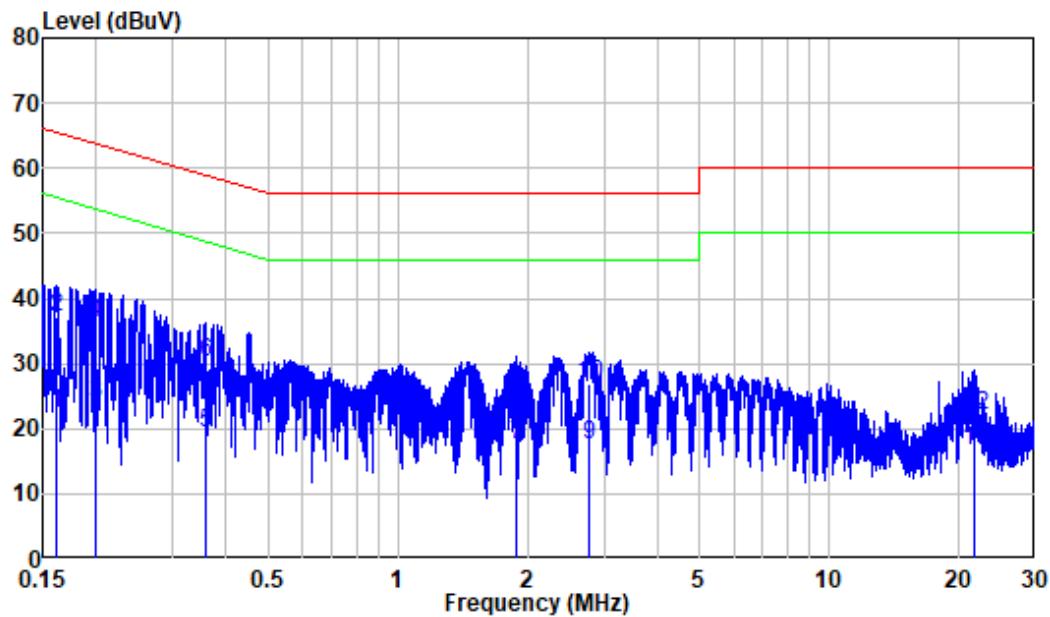
$$\text{Over Limit} = \text{Level} - \text{Limit}$$

$$\text{Level} = \text{Read Level} + \text{Factor}$$


Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa


The testing was performed by Jason Liu on 2022-06-01.

EUT operation mode: Transmitting

AC 120V/60 Hz, Line

Site : Shielding Room
Condition: Line
Job No. : SZNS1220517-21053E-RF
Mode : Transmitting
Power : AC 120V 60Hz

Freq	Factor	Read	Limit	Over	Remark
		Level	Level	Line	
1	0.155	9.80	12.53	22.33	55.71 -33.38 Average
2	0.155	9.80	27.42	37.22	65.71 -28.49 QP
3	0.203	9.80	13.07	22.87	53.50 -30.63 Average
4	0.203	9.80	26.53	36.33	63.50 -27.17 QP
5	0.327	9.80	8.23	18.03	49.52 -31.49 Average
6	0.327	9.80	20.87	30.67	59.52 -28.85 QP
7	0.513	9.81	5.26	15.07	46.00 -30.93 Average
8	0.513	9.81	15.13	24.94	56.00 -31.06 QP
9	4.213	9.84	0.74	10.58	46.00 -35.42 Average
10	4.213	9.84	6.96	16.80	56.00 -39.20 QP
11	21.203	10.01	9.95	19.96	50.00 -30.04 Average
12	21.203	10.01	15.36	25.37	60.00 -34.63 QP

AC 120V/60 Hz, Neutral

Site : Shielding Room
Condition: Neutral
Job No. : SZNS1220517-21053E-RF
Mode : Transmitting
Power : AC 120V 60Hz

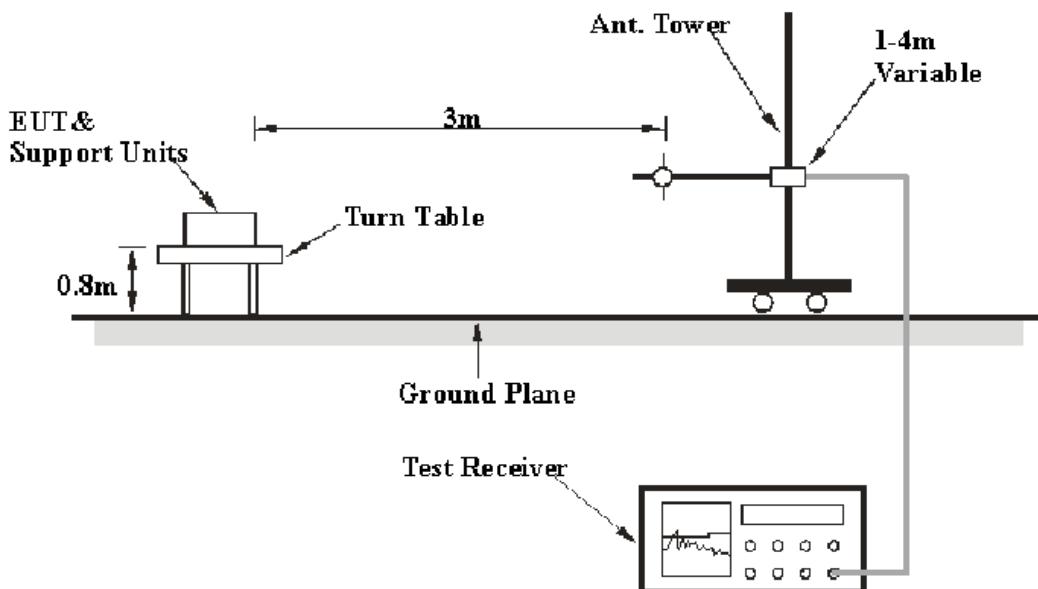
Freq	Factor	Read	Limit	Over	Remark
		Level	Level	Line	
1	0.162	9.80	12.58	22.38	55.37 -32.99 Average
2	0.162	9.80	27.20	37.00	65.37 -28.37 QP
3	0.200	9.80	14.05	23.85	53.62 -29.77 Average
4	0.200	9.80	26.48	36.28	63.62 -27.34 QP
5	0.357	9.80	9.48	19.28	48.80 -29.52 Average
6	0.357	9.80	20.48	30.28	58.80 -28.52 QP
7	1.872	9.82	7.60	17.42	46.00 -28.58 Average
8	1.872	9.82	15.95	25.77	56.00 -30.23 QP
9	2.765	9.83	7.54	17.37	46.00 -28.63 Average
10	2.765	9.83	16.90	26.73	56.00 -29.27 QP
11	21.686	10.12	6.61	16.73	50.00 -33.27 Average
12	21.686	10.12	11.80	21.92	60.00 -38.08 QP

FCC §15.205, §15.209, §15.231 (b) - RADIATED EMISSIONS

Applicable Standard

FCC §15.205, §15.209, §15.231 (b)

According to FCC §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:


Fundamental frequency (MHz)	Field Strength of Fundamental (Microvolts /meter)	Field Strength of spurious emissions ((Microvolts /meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750**	125 to 375**
174-260	3750	375
260-470	3750 to 12500**	375 to 1250**
Above 470	12500	1250


*

The above field strength limits are specified at a distance of 3-meters the tighter limits apply at the band edges.

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10 - 2013. The specification used was the FCC 15 § 15.209, 15.205 and 15.231.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	PK
Above 1 GHz	1 MHz	3 MHz	/	PK

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in the Quasi-peak detection mode from 30MHz to 1GHz, Peak and average detection mode above 1 GHz.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform QP/Average measurement.

Corrected Amplitude & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

$$\text{Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “**Over Limit/Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

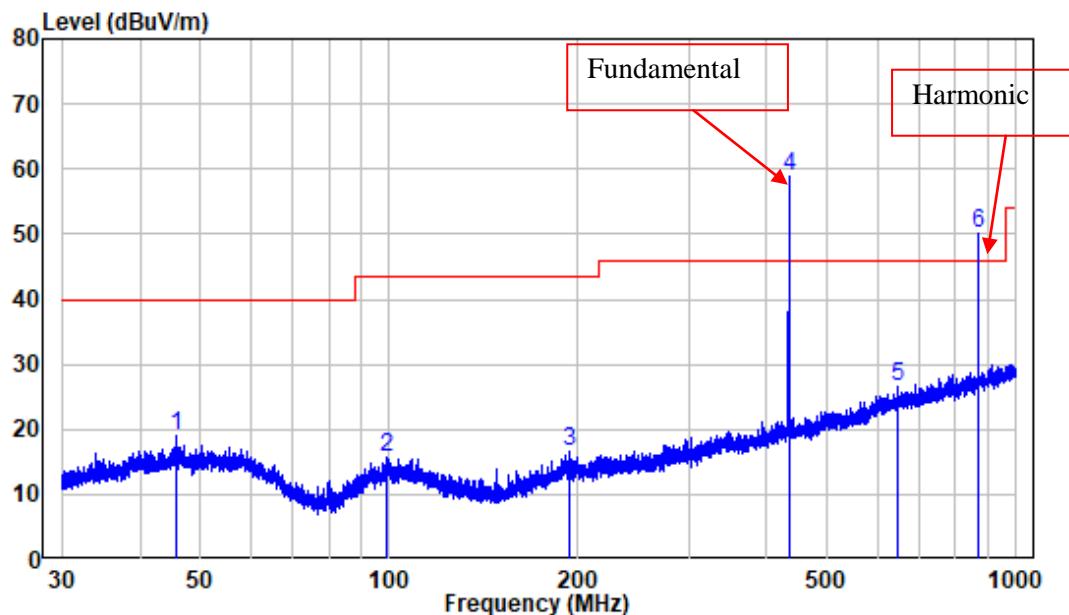
$$\begin{aligned}\text{Over Limit/Margin} &= \text{Level} / \text{Corrected Amplitude} - \text{Limit} \\ \text{Level} / \text{Corrected Amplitude} &= \text{Read Level} + \text{Factor}\end{aligned}$$

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.205, §15.209, §15.231 (b).

Test Data

Environmental Conditions


Temperature:	24 °C
Relative Humidity:	56 %
ATM Pressure:	101.2 kPa

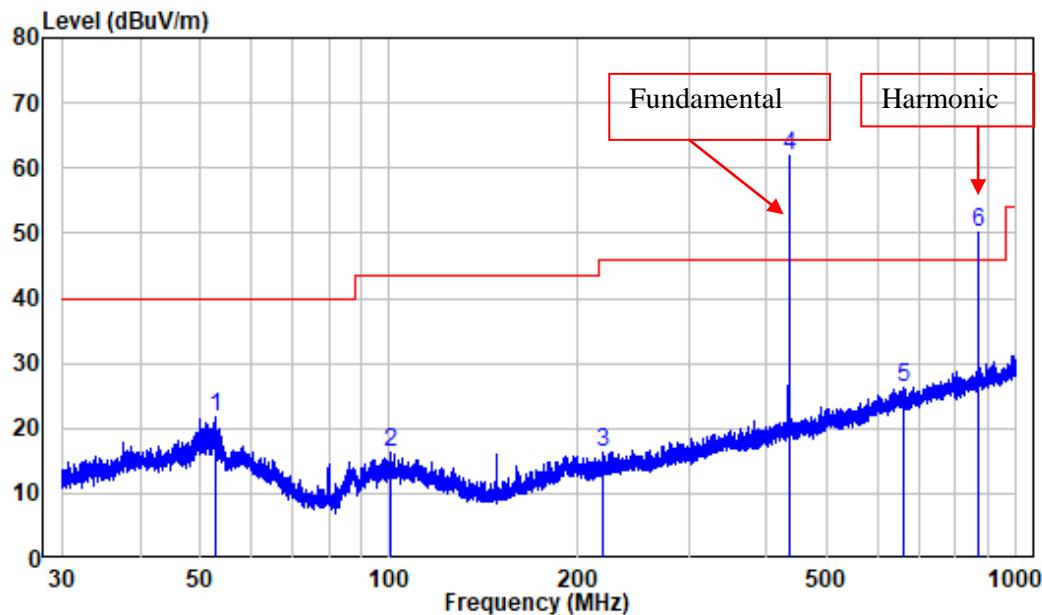
The testing was performed by Level Li on 2022-06-02.

Test mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case as setup photos was recorded)

30MHz – 1 GHz:

Horizontal

Site : chamber


Condition: 3m HORIZONTAL

Job No. : SZNS1220517-21053E-RF

Test Mode: Transmitting

	Freq	Read Factor	Level	Limit Level	Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	45.735	-9.98	28.92	18.94	40.00	-21.06	Peak
2	98.963	-12.04	27.71	15.67	43.50	-27.83	Peak
3	193.603	-11.30	27.81	16.51	43.50	-26.99	Peak
4	433.920	-5.73	64.52	58.79			Peak
5	647.386	-1.81	28.38	26.57	46.00	-19.43	Peak
6	867.840	0.85	49.16	50.01			Peak

Vertical

Site : chamber

Condition: 3m VERTICAL

Job No. : SZNS1220517-21053E-RF

Test Mode: Transmitting

	Freq	Read Factor	Level	Limit Level	Over Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	52.899	-10.15	31.79	21.64	40.00	-18.36	Peak
2	100.141	-11.79	27.96	16.17	43.50	-27.33	Peak
3	219.749	-11.42	27.76	16.34	46.00	-29.66	Peak
4	433.920	-5.73	67.54	61.81			Peak
5	659.125	-1.63	27.89	26.26	46.00	-19.74	Peak
6	867.840	0.85	49.34	50.19			Peak

Fundamental:

Frequency (MHz)	Receiver		Turn-Table	Rx Antenna		Corrected Factor (dB/m)	Corrected Amplitude (dB μ V/m)	FCC Part 15.231(b)	
	Reading (dB μ V)	PK/QP/Ave.	Angle Degree	Height (m)	Polar (H/V)			Limit (dB μ V/m)	Margin (dB)
433.92MHz									
433.92	64.52	PK	145	1.6	H	-5.72	58.79	80.83	-22.04
433.92	64.52	PK	17	1.8	V	-5.73	61.81	80.83	-19.02

30MHz - 5 GHz:

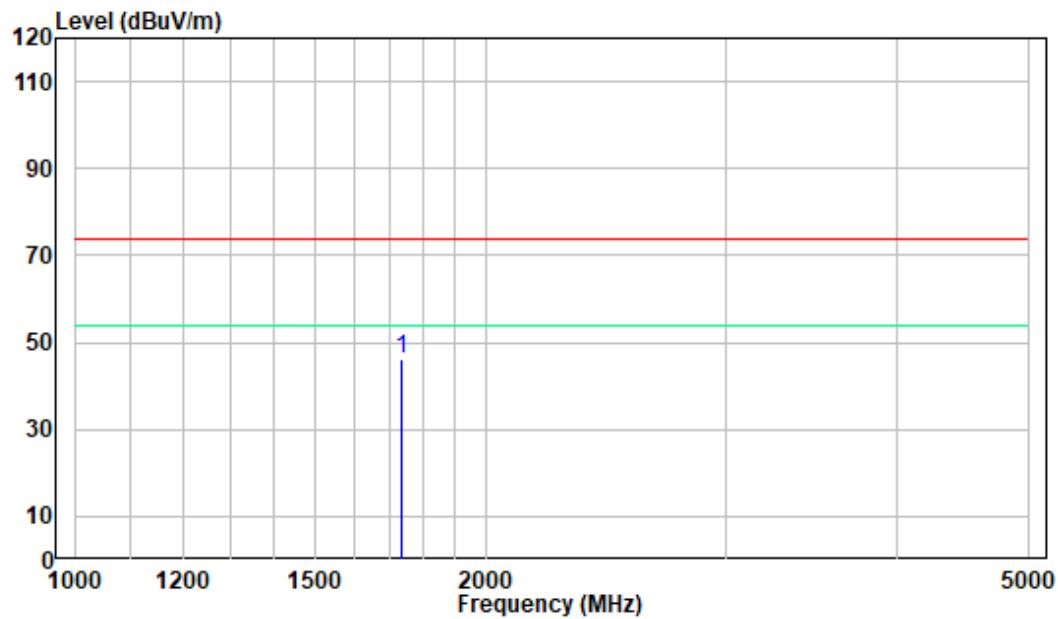
Frequency (MHz)	Receiver		Turntable	Rx Antenna		Corrected Factor (dB/m)	Corrected Amplitude (dB μ V/m)	FCC Part 15.231(b)	
	Reading (dB μ V)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)			Limit (dB μ V/m)	Margin (dB)
433.92MHz									
867.84	49.16	PK	41	1.5	H	0.85	50.01	60.83	-10.82
867.84	49.34	PK	325	1.9	V	0.85	50.19	60.83	-10.64
1735.68	55.18	PK	197	1.7	H	-8.85	46.33	60.83	-14.50
1735.68	58.29	PK	263	2.2	V	-8.85	49.44	60.83	-11.39

Note:

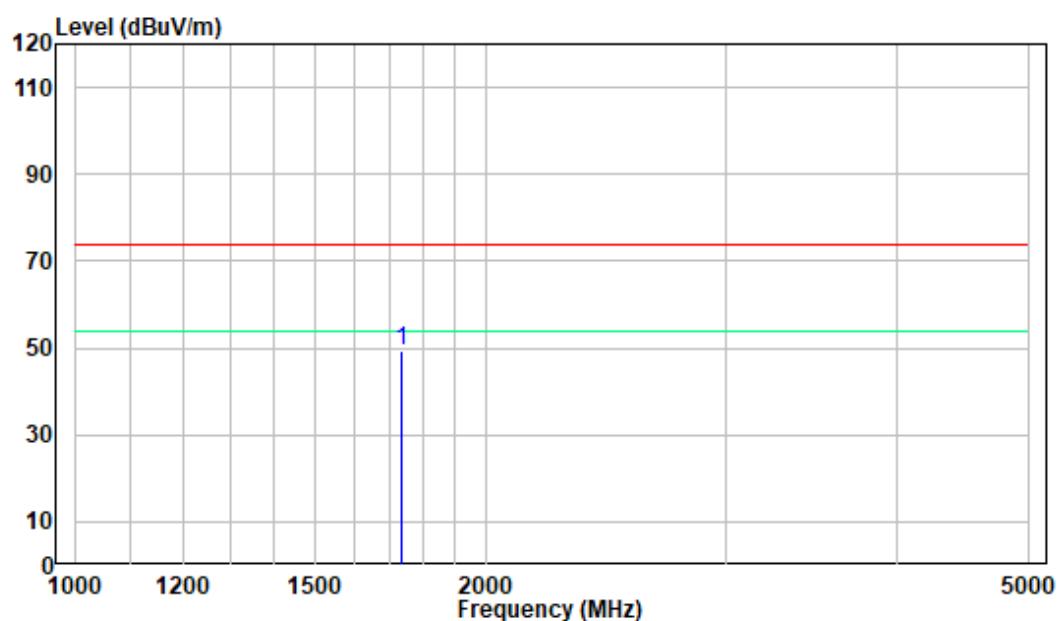
The peak value can meet the limit of the average value.

Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor

Absolute Level (Corrected Amplitude) = Factor + Reading


Margin = Absolute Level (Corrected Amplitude) - Limit

The other spurious emission which is in the noise floor level was not recorded.


For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

Pre-scan plots:

Horizontal

Vertical

FCC §15.231(a) (1) - DEACTIVATION TESTING

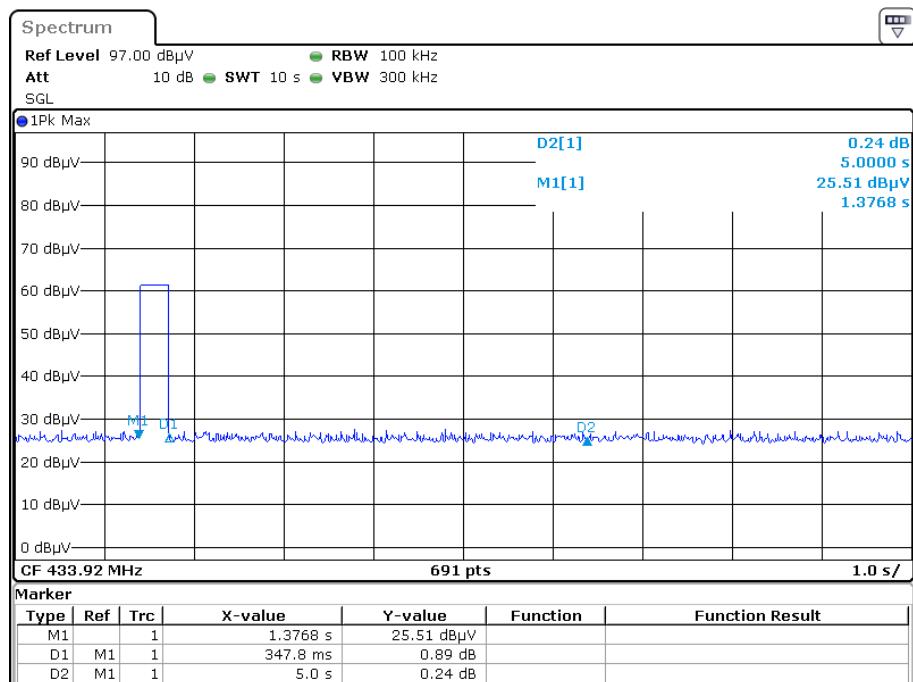
Applicable Standard

Per FCC §15.231(a) (1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Test Procedure

1. Set center frequency of spectrum analyzer=operating frequency.
2. Set the spectrum analyzer as RBW=100kHz/ VBW=300kHz/ Span=0Hz.
3. Repeat above procedures until all frequency measured was complete.

Test Data


Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.1 kPa

The testing was performed by Jeff Jiang on 2022-05-30

Test mode: Transmitting

Test Result: Compliant. This product will cease transmission within 5 seconds after activation. Please refer to following plots.

Date: 30.MAY.2022 15:16:10

FCC §15.231(c) – 20 dB EMISSION BANDWIDTH TESTING

Applicable Standard

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

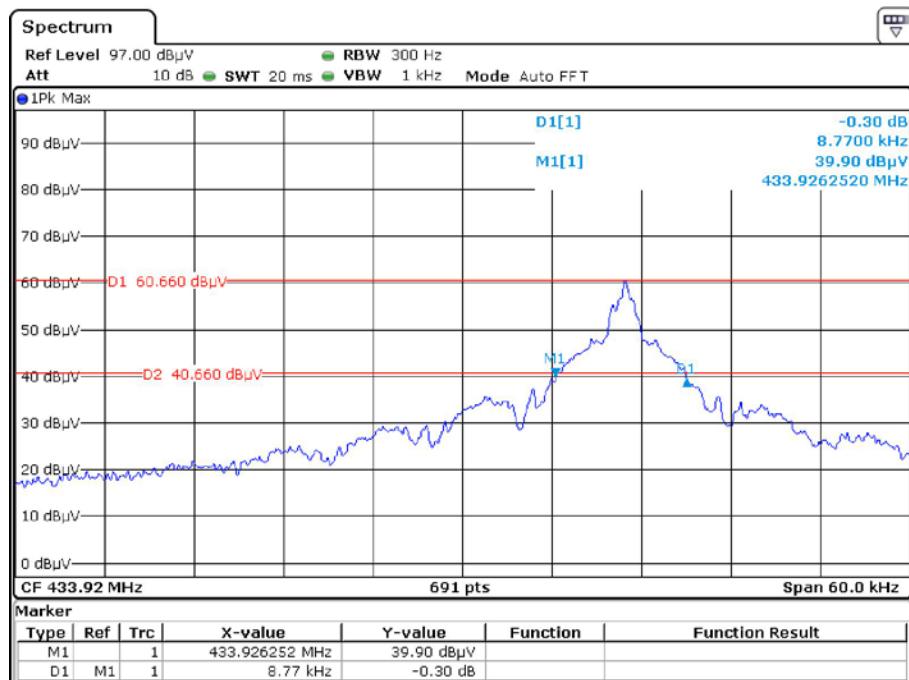
Test Procedure

The EUT is setting to the transmit mode, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.1 kPa


The testing was performed by Jeff Jiang on 2022-05-30.

Test Mode: Transmitting

Please refer to following table and plots.

Channel Frequency (MHz)	20 dB Emission Bandwidth (kHz)	Limit (kHz)	Result
433.92	8.77	<1084.8	Pass

20 dB Emission Bandwidth

Date: 30.MAY.2022 13:42:41

******* END OF REPORT *******