

FCC Test Report

Equipment	: Wireless charger
Model No	: GSWD-SW01
Applicant	: HaAinc Korea Company 3F Paradise Tower, Teheran-ro 52gil, 21, Gangnam-gu, Seoul, South Korea
Date of test	: August 05, 2019 to November 05, 2019
FCC Rule Part(s)	: FCC Part 15 Subpart C §15.209
Report Type	: Original Report

The product was received on August 05, 2019 and testing was completed on November 05, 2019. We, BWS TECH Inc. would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of BWS TECH Inc. the test report shall not be reproduced except in full.

(Date) 11/05/2019

0 | 81 m

Tested by Hyeong-Bae, Lee

(Date) 11/05/2019

(Date) 11/05/2019

Reviewed by Seung-Min, Mun

BWS TECH INC.

#23, Gokhyeon-ro 480beon-gil, Mohyeon-eup, Cheoin-gu, Yongin-si,
Gyeonggi-do 17031, Republic of Korea
TEL: +82-31-333-5997, FAX: +82-31-333-0017
<http://www.bws.co.kr>

*This test report is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

*The authenticity of this test report can be confirmed in the Android app "DOCUQR" or www.docuqr.com

Report Revision

TEST REPORT NO.	DATE	DESCRIPTION
BWS-19-RF-0006	November 05, 2019	- First Approval Report

TABLE OF CONTENTS

1. General Information	4
1.1 Applicant	4
1.2 Manufacturer	4
1.3 EUT Description	4
1.4 Other Information	4
2. Description of Test Facility	5
3. Test Methodology	6
3.1 EUT Configuration	6
3.2 EUT Exercise	6
3.3 FCC Part 15.205 Restricted Bands of Operations	6
3.4 Description of Test Modes	6
4. Summary of Test Result	7
5. Test Equipment	8
6. Test Data	9
6.1 AC Power Line Conducted Emission	9
6.2 Radiated Spurious Emission.....	12
6.3 Antenna Application	19

1. General Information

Scope – Measurement and determination of electromagnetic emission(EME) of radio frequency devices including intentional radiators and/or unintentional radiators for compliance with the technical rules and regulations of the U.S Federal Communications Commission(FCC)

1.1 Applicant

● Company Name	: HaAinc Korea Company
● Company Address	: 3F Paradise Tower, Teheran-ro 52gil, 21, Gangnam-gu, Seoul, South Korea
● Phone/Fax	: Tel No. : +82-2-3446-7421 Fax No. : N/A

1.2 Manufacturer

● Company Name	: Shenzhen Anzhiyuan Technology Co. Ltd
● Company Address	: 2nd Floor, No.3-1 Chiwu Industry Area, Tongde Community, Baolong Street, Longgang District, Shenzhen, China
● Phone/Fax	: Tel No. : + 86-755-8465-7440 Fax No. : + 86-755-8465-1965

1.3 EUT Description

● Equipment	: Wireless charger
● Model(s)	: GSWD-SW01
● Operation Frequency	: 117.82 ~ 146.62 kHz (WPT)
● Modulation Method	: ASK
● Power Tolerance	: +/- 2dB
● Input Voltage	: DC 5 V
● Antenna Peak Gain	: 2.3 dBi

1.4 Other Information

● FCC Rule Part(s)	: Part 15 Subpart C §15.209
● FCC ID	: 2AULFGSWD-SW01
● Test Procedure	: ANSI C63.10-2013 KDB 558074 D01 DTS Meas Guidance v05r02
● Date of Test	: August 05, 2019 to October 10, 2019
● Place of Test	: BWS TECH Inc. (FCC Registration Number : 287786) #23, Gokhyeon-ro 480 Beon-gil, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17031, South Korea TEL: +82 31 333 5997 FAX: +82 31 333 0017

2. Description of Test Facility

Site Description

Test Lab. : NRRA Designation Number is KR0017.

 The Certificate Designation Number is KR0017.

 The Certificate Accreditation Number is KT174.

Name of Firm : BWS TECH Inc.

Site Location : #23, Gokhyeon-ro 480 Beon-gil, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17031, South Korea

3. Test Methodology

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and the requirements of FCC Rules Part 15.207, 15.209 and 15.247.

Radio testing was performed according to KDB 558074 D01 DTS Meas Guidance v05r02.

3.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and is operated in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 FCC Part 15.205 Restricted Bands of Operations

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2 Above 38.6

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

3.4 Description of Test Modes

This EUT use WPT(Wireless Power Transmission system) with Bluetooth.

The EUT has been tested under operating condition.

After verification, all tests were carried out with the worst case test modes as shown below, and these were chosen for full testing.

4. Summary of Test Result

Clause	TEST Description	Standard Section	Requirements	Result
6.1	AC Power Line Conducted Emission	§15.207	§15.207(a)	Pass
6.2	Radiated Spurious Emission	§15.247(d), §15.209(a), §15.35(b)	§15.209(a), §15.247(d)	Pass
6.3	Antenna Application	§15.247(b), §15.203	§15.247(b), §15.203	Pass

5. Test Equipment

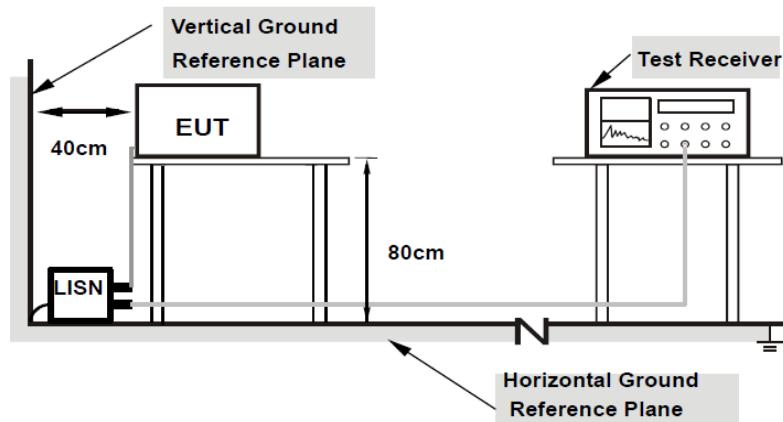
Equipment	Model	Manufacturer	Serial number	Calibration Due date (year/month/date)
PROGRAMMABLE TEMP. & HUMID. CHAMBER	SJ1013-TH	SeoJin Corp.	9204245	2020/06/07
USB RF POWER SENSOR	RPR3006W	D.A.R.E!! Instruments	14I000048SNO09	2020/04/10
PROGRAMMABLE DC POWER SUPPLY	UDP-6015R	UNICORN	1301006	2020/08/26
SYNTHESIZED SIGNAL GENERATOR	68367C	ANRITSU	#004908	2020/05/20
MXA SIGNAL ANALYZER	N9020A	Agilent	MY52091373	2020/07/02
EMI Test Receiver	E7405A	Agilent	MY45104194	2020/02/19
Open Switch and Control Unit	OSP120	Rohde & Schwarz	101364	N/A
Digital Controller	Controller CO 2000	Innco systems GmbH	N/A	N/A
TRILOG Broadband Antenna	VULB9163	Schwarzbeck	777	2020/04/13
Active Horn Antenna	AHA-118	COM-POWER CORP.	701064	2021/04/30
Antenna master	MA 2000	Innco systems GmbH	N/A	N/A
Loop Antenna	FMZB1519	SCHWARZBECK	00025	2020/07/24
Turn table	DS 1200 S	Innco systems GmbH	N/A	N/A
POWER DIVIDER	MP0218-2	FAIRVIEW MICROWAVE INC.	12-SPC7026-081	2020/08/26
MXG VECTOR SIGNAL GENERATOR	N5182A	AGILENT	MY46240037	2020/08/26
POWER SPLITTER	11667B	Anritsu	52634	2020/07/26
STEP ATTENUATOR	AC115A-09-34	WEINSCHEL	15892	2020/08/26
STEP ATTENUATOR	AC118A-90-34	WEINSCHEL	13000	2020/02/21
ATTENUATOR	F04-B1810-01	SRT	17060802	2020/06/07

6. Test Data

6.1 AC Power Line Conducted Emission

6.1.1 Test Limit

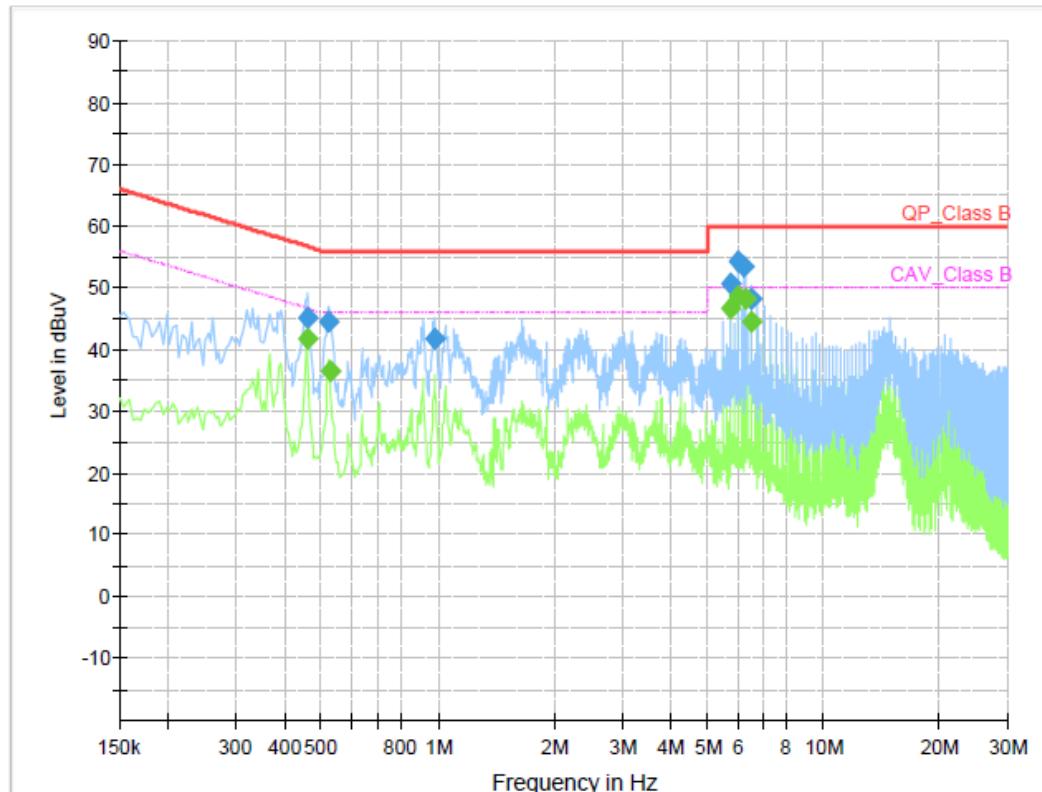
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.


Frequency of emission(MHz)	Conducted limit(dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

6.1.2 Test Procedures

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room and was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network(LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 uH LISN should be used.
6. Both sides of AC line were checked for maximum conducted interference.
7. The frequency range from 150 kHz to 30 MHz was searched.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.


6.1.3 Test SET-UP (Block Diagram of Configuration)

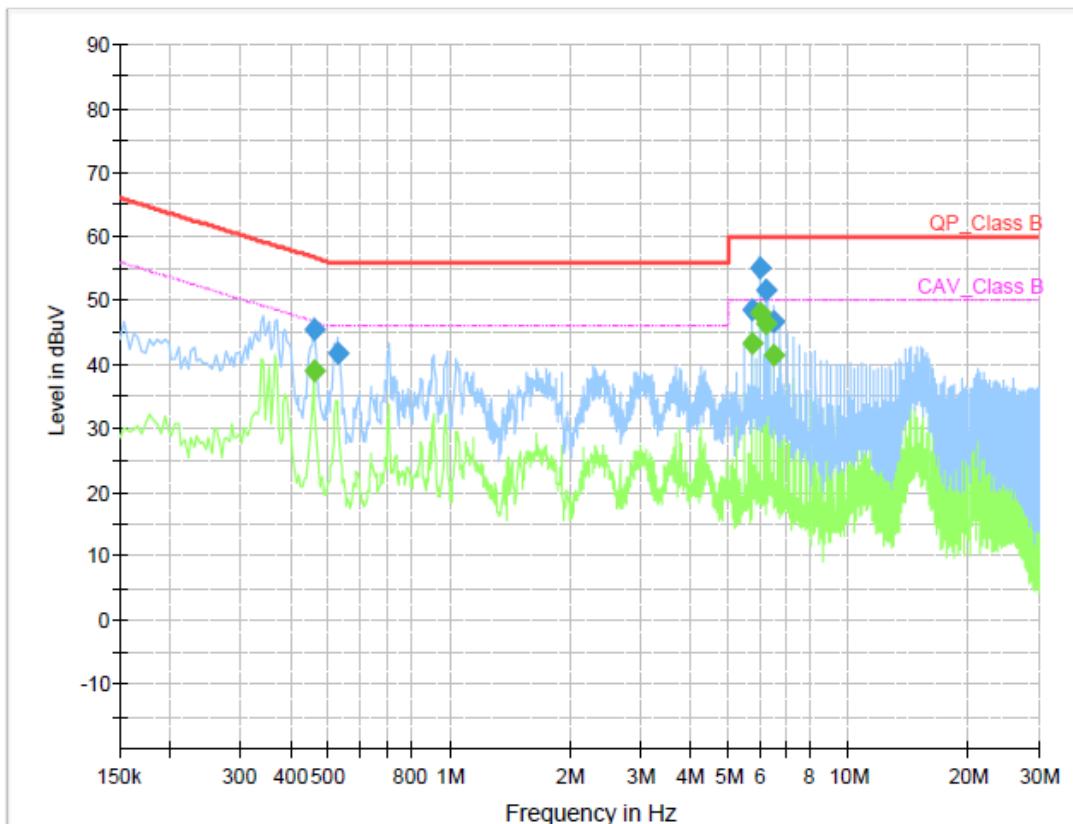
6.1.4 Test Results

Common Information

Test Line: L1
Comment: WPT

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	PE	Corr. (dB)
0.457500	---	41.87	46.74	4.87	3000.0	9.000	L1	GND	8.1
0.461500	45.05	---	56.67	11.61	3000.0	9.000	L1	GND	8.1
0.521500	44.64	---	56.00	11.36	3000.0	9.000	L1	GND	8.1
0.526500	---	36.64	46.00	9.36	3000.0	9.000	L1	GND	8.1
0.985090	41.74	---	56.00	14.26	3000.0	9.000	L1	GND	8.2
5.741290	---	46.75	50.00	3.25	3000.0	9.000	L1	GND	8.3
5.741290	50.56	---	60.00	9.45	3000.0	9.000	L1	GND	8.3
5.996030	54.91	---	60.00	5.09	3000.0	9.000	L1	GND	8.4
5.996030	---	48.28	50.00	1.72	3000.0	9.000	L1	GND	8.4
6.250750	53.29	---	60.00	6.71	3000.0	9.000	L1	GND	8.4
6.254750	---	48.27	50.00	1.73	3000.0	9.000	L1	GND	8.4
6.509470	---	44.63	50.00	5.37	3000.0	9.000	L1	GND	8.4
6.509470	48.34	---	60.00	11.66	3000.0	9.000	L1	GND	8.4


Common Information

Test Line:

N

Comment:

WPT

Final Result

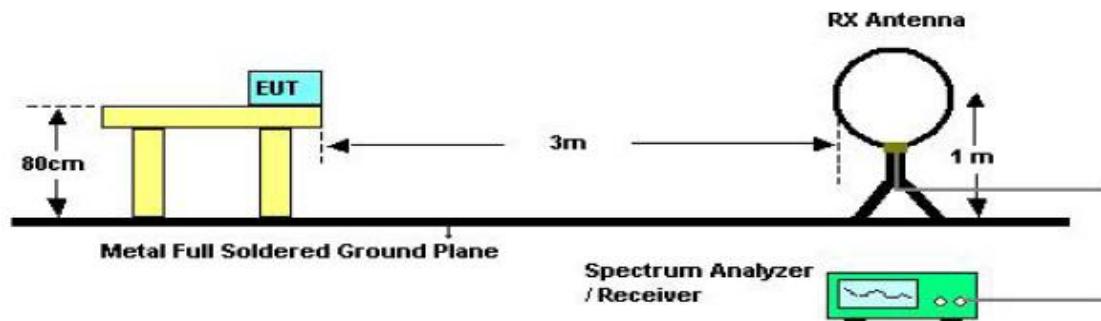
Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	PE	Corr. (dB)
0.457500	---	38.87	46.74	7.86	3000.0	9.000	N	GND	8.1
0.457500	45.49	---	56.74	11.25	3000.0	9.000	N	GND	8.1
0.525500	41.67	---	56.00	14.33	3000.0	9.000	N	GND	8.1
5.741290	---	43.39	50.00	6.61	3000.0	9.000	N	GND	8.3
5.741290	48.53	---	60.00	11.47	3000.0	9.000	N	GND	8.3
5.996030	---	47.96	50.00	2.04	3000.0	9.000	N	GND	8.4
5.996030	55.13	---	60.00	4.87	3000.0	9.000	N	GND	8.4
6.250730	---	46.29	50.00	3.71	3000.0	9.000	N	GND	8.4
6.250730	51.50	---	60.00	8.50	3000.0	9.000	N	GND	8.4
6.505470	---	41.54	50.00	8.46	3000.0	9.000	N	GND	8.4
6.509470	46.66	---	60.00	13.34	3000.0	9.000	N	GND	8.4

6.2 Radiated Spurious Emission

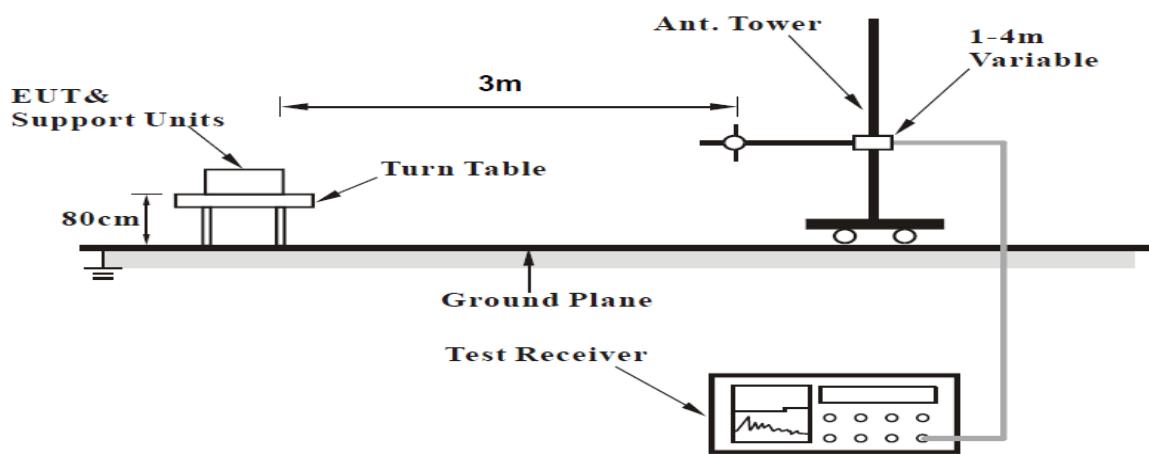
6.2.1 Test Limit

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

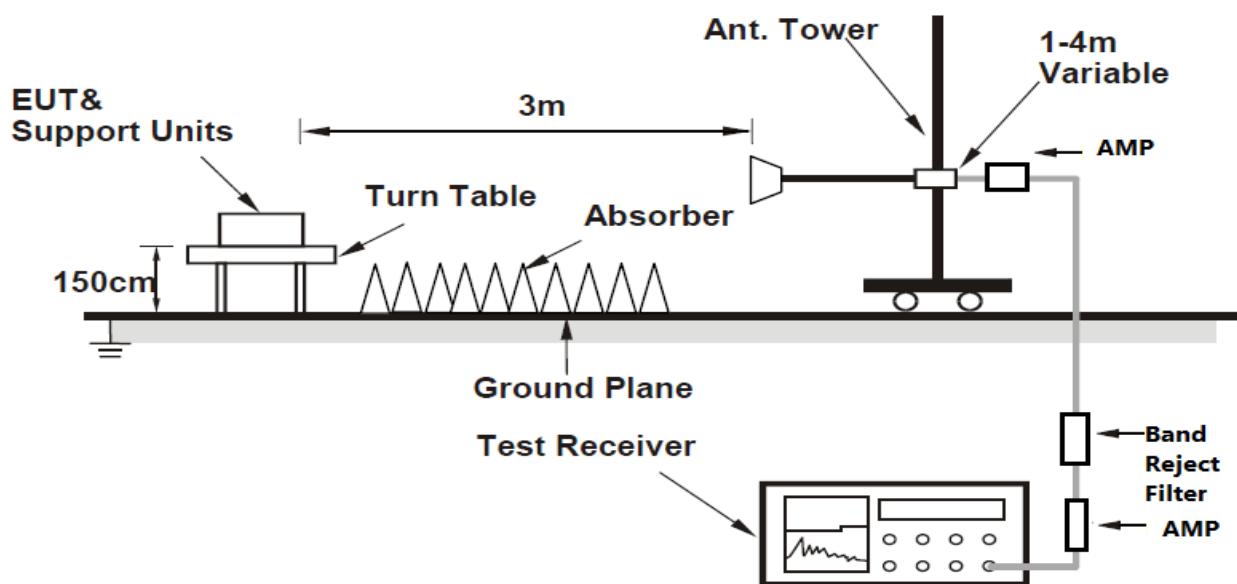
Note: Wireless charger configuration was evaluated.


Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

6.2.2 Test Procedure

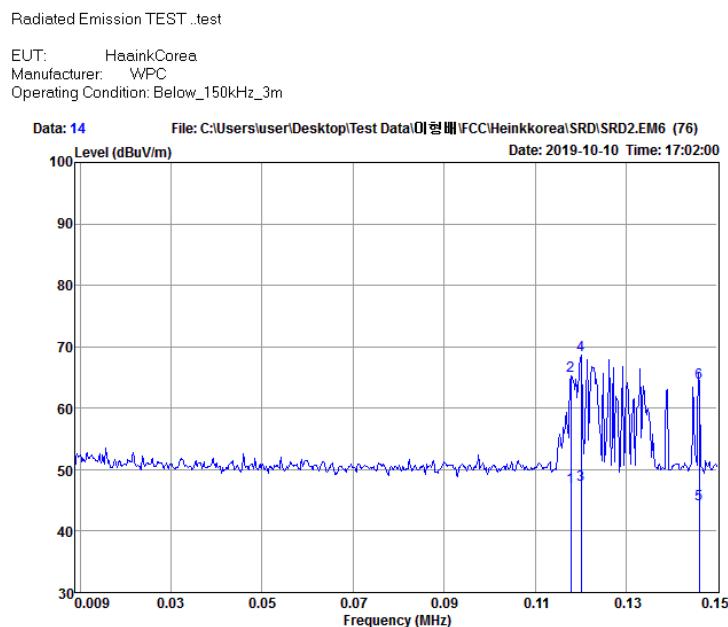

1. The testing follows FCC KDB Publication No. 558074 D01 15.247 Meas. Guidance v05.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
3. The EUT was placed on a turntable. For emissions testing at or below 1 GHz, the table height was 80cm above the reference ground plane. For emission measurements above 1 GHz, the table height was 1.5m.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
6. For measurement below 1 GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
7. Use the following spectrum analyzer settings and peak emission levels are measured :
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW (9-150 kHz: 200 Hz, 0.15-30MHz: 9kHz, 30-1000 MHz: 120 kHz, above 1GHz: 1 MHz).
 - (3) VBW \geq 3 x RBW ; Sweep = auto; Detector function = peak; Trace = max hold
 For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
8. Measure and record the results in the test report.

6.2.3 Test SET-UP (Block Diagram of Configuration)


1. Radiated Emission Test Set-Up, Frequency Below 30 MHz

2. Radiated Emission Test Set-Up, Frequency Below 1000 MHz

3. Radiated Emission Test Set-Up, Frequency Above 1000 MHz.


6.2.4 Test Results

[Below 9 kHz – 9 kHz ~ 150 kHz]

Test Mode : WPT

company
tel:12345678
fax:13572468
email.company.com
www.company.com
ext:123

Freq. MHz	AntFac (dB/m)	CabLoss (dB)	Preamp (dB)	Reading (dBuV)	Measured (dBuV/m)	Over (dBuV/m)	Limit (dBuV/m)	Pol/Phase	Remark
0.12	19.38	0.08	0.00	27.78	47.24	—	—		Average
0.12	19.38	0.08	0.00	45.84	65.30	—	—		Peak
0.12	19.38	0.08	0.00	28.08	47.54	—	—		Average
0.12	19.38	0.08	0.00	49.15	68.61	—	—		Peak
0.15	19.35	0.09	0.00	24.91	44.35	—	—		Average
0.15	19.35	0.09	0.00	44.79	64.23	—	—		Peak

Note: 1. Measured Level = Antenna Factor + Cable Loss - Preamp + Reading

Frequency [kHz]	Reading [dB μ V]	Detector Mode	Factor [dB]	Level [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark
117.82	27.78	Peak	19.46	47.24	66.18	18.94	Average
120.11	28.08	Peak	19.46	47.54	66.01	18.47	Average
146.62	24.91	Peak	19.44	44.35	64.28	19.93	Average

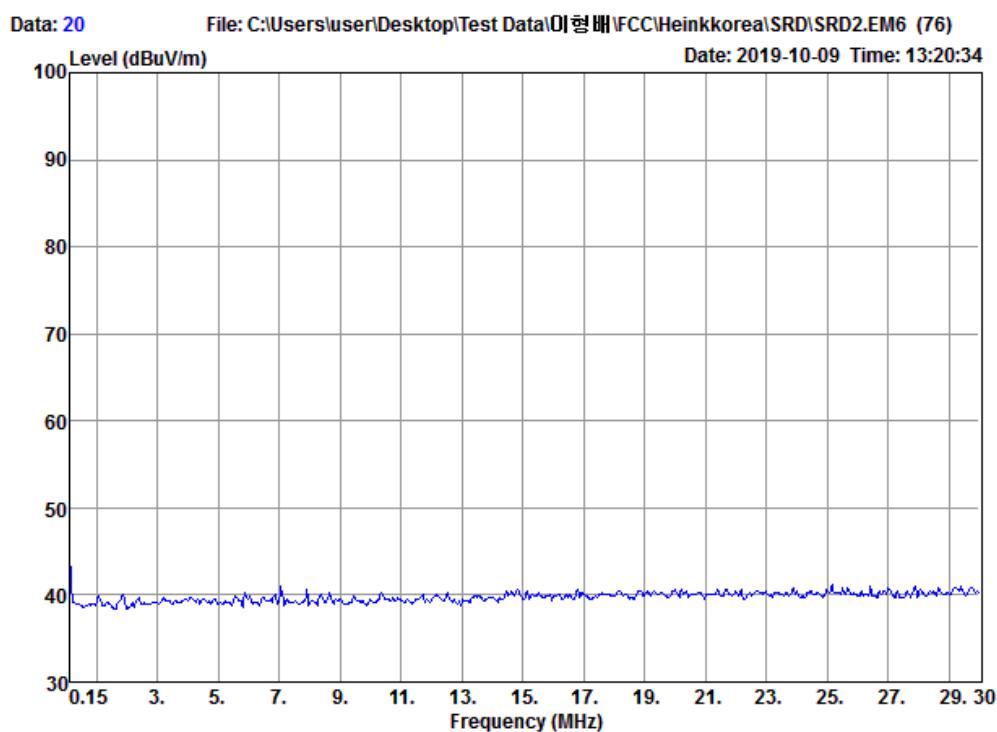
Note¹⁾ : Factor = Antenna Gain + Cable loss – Amplifier Gain.

Note²⁾ : Only the worst case plots for Radiated Spurious Emissions.

Note³⁾ : The test was at a distance of 3 meters. And this limit is the distance compensated limit.

(distance compensated value = $20 \log_{10}(300/3) = 20$ dB)

[Below 150 kHz – 150 kHz ~ 30 MHz]


Test Mode : WPT

company
tel:12345678
fax:13572468
email.company.com
www.company.com
ext:123

Radiated Emission TEST ..test

EUT: HaainkCorea
Manufacturer: WPC
Operating Condition: Below_30MHz_3m

Note ⁽¹⁾ : Only the worst case plots for Radiated Spurious Emissions.

Note ⁽²⁾ : No other emissions were detected.

[Below 1 GHz – 30 MHz ~ 1 GHz]

Test Mode : WPT (Worst case : Vertical)

company
tel:12345678
fax:13572468
email.company.com
www.company.com
ext:123

Radiated Emission TEST ..test

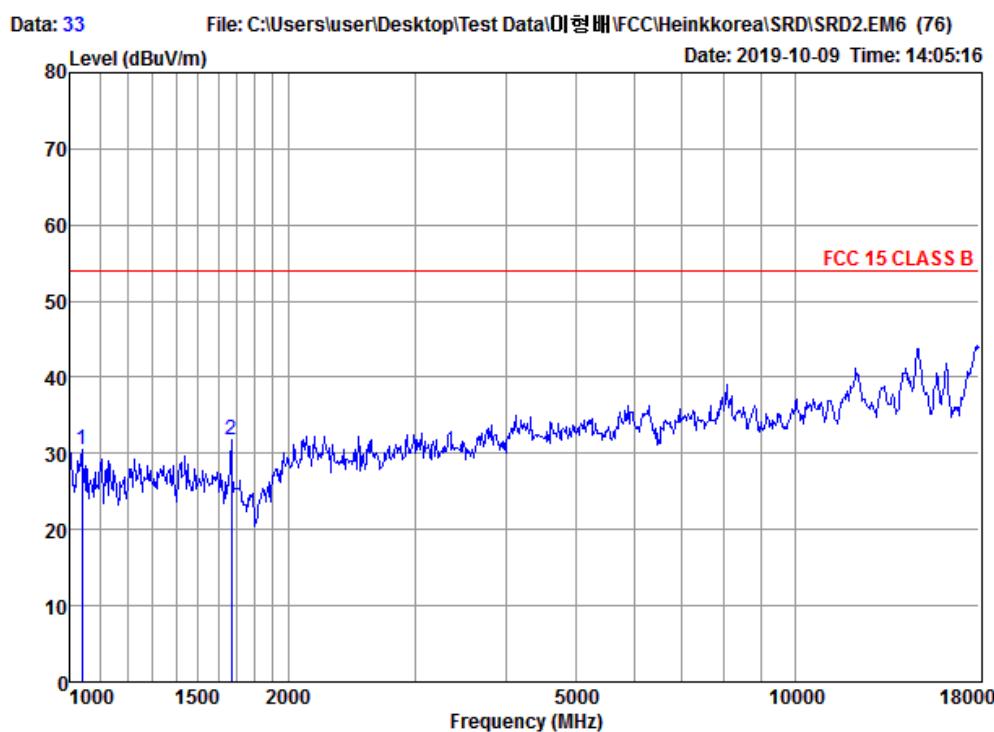
EUT: HaainkCorea
Manufacturer: WPC
Operating Condition: Below_1GHz_V

Freq. MHz	AntFac (dB/m)	CabLoss (dB)	Preamp (dB)	Reading (dBuV)	Measured (dBuV/m)	Over (dBuV/m)	Limit (dBuV/m)	Pol/Phase	Remark
39.85	17.99	0.64	0.00	18.36	36.99	-3.01	40.00		Peak
56.99	19.00	0.67	0.00	17.10	36.77	-3.23	40.00		Peak
69.11	15.55	0.75	0.00	17.38	33.68	-6.32	40.00		Peak
119.86	15.71	0.91	0.00	18.28	34.90	-8.60	43.50		Peak
138.87	14.00	0.86	0.00	14.95	29.81	-13.69	43.50		Peak

Note: 1. Measured Level = Antenna Factor + Cable Loss - Preamp + Reading

Note : Only the worst case plots for Radiated Spurious Emissions.

[Above 1 GHz – 1GHz ~ 18 GHz]


Test Mode : WPT (Worst case : Vertical)

company
tel:12345678
fax:13572468
email.company.com
www.company.com
ext:123

Radiated Emission TEST ..test

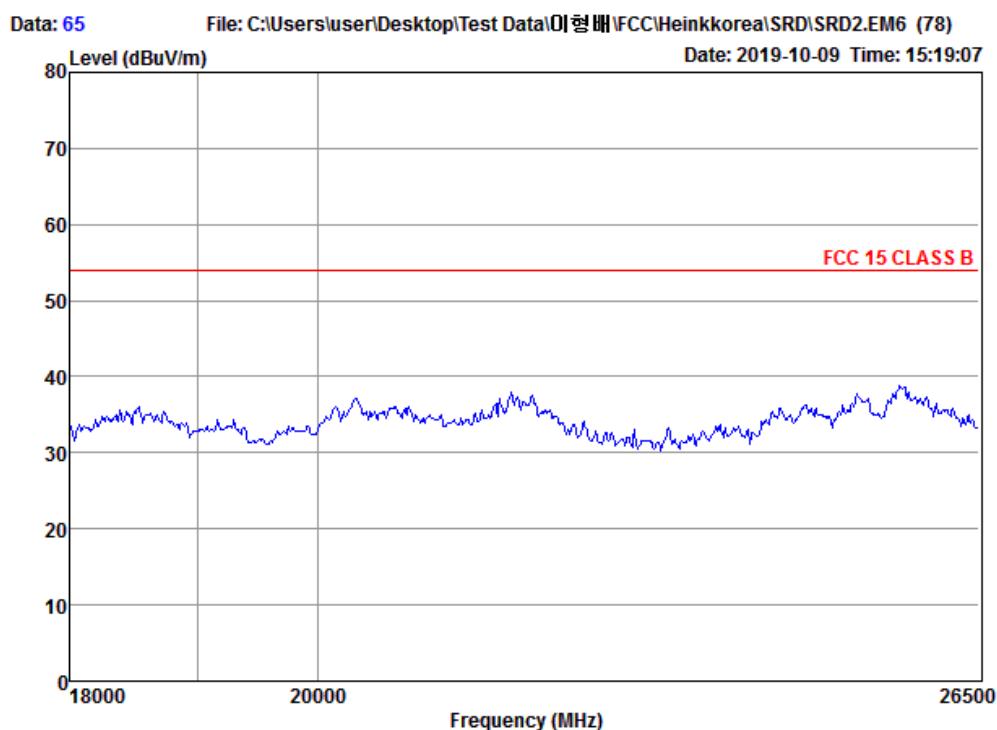
EUT: HaainkCorea
Manufacturer: WPT
Operating Condition: Above_1GHz_V

Freq. MHz	AntFac (dB/m)	CabLoss (dB)	Preamp (dB)	Reading (dBuV)	Measured (dBuV/m)	Over (dBuV/m)	Limit (dBuV/m)	Pol/Phase	Remark
1038.29	-15.22	2.39	0.00	43.30	30.47	-23.53	54.00		Peak
1667.95	-13.73	2.25	0.00	43.37	31.89	-22.11	54.00		Peak

Note: 1. Measured Level = Antenna Factor + Cable Loss - Preamp + Reading

Note : Only the worst case plots for Radiated Spurious Emissions.

[Above 18 GHz – 18 GHz ~ 26.5 GHz]


Test Mode : WPT (Worst case : Horizontal)

company
tel:12345678
fax:13572468
email.company.com
www.company.com
ext:123

Radiated Emission TEST ..test

EUT: HaalinkCorea
Manufacturer: WPC
Operating Condition: Above 18GHz H

Note ⁽¹⁾ : Only the worst case plots for Radiated Spurious Emissions.

Note ⁽²⁾ : No other emissions were detected.

6.3 Antenna Application

6.3.1 Antenna Requirement

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to §15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.8.2 Test Results

Antenna Type	Frequency	Antenna Gain	Limit	Result
Loop Antenna	117.82 ~ 146.62 kHz	0.1 dBi	≤ 6 dBi	Pass