

Report No. : EED32L00227301 Page 46 of 95

Appendix F) Duty Cycle

	Duty Cycle								
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)						
802.11b	1.0000	1.0000	100.00%						
802.11g	1.0000	1.0000	100.00%						
802.11n HT20	1.0000	1.0000	100.00%						
802.11n HT40	1.0000	1.0000	100.00%						

Appendix G): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

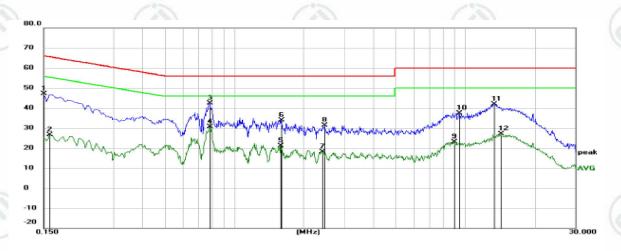
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4.69 dBi.

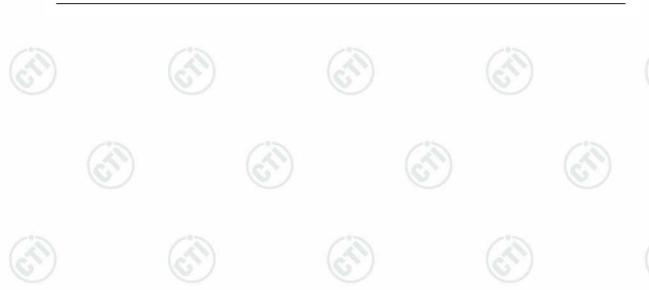
Appendix H): AC Power Line Conducted Emission

est Procedure:						
	Test frequ	iency range	:150KHz-	30MHz	(0,	
	1)The ma	ins terminal	disturband	e voltage test wa	s conducted in a shield	led room.
	Stabili power which the un	zation Netw cables of a was bonded it being mea	ork) whic all other u I to the gro asured. A	n provides a 500 nits of the EUT volund reference pla multiple socket ou	e through a LISN 1 (L Ω/50μΗ + 5Ω linear in were connected to a same in the same way as titlet strip was used to co ting of the LISN was no	npedance. second LIS s the LISN connect mu
	excee		Sirigle LIS	in provided the rai	ung of the LISIN was no	λ
	3)The tab referent horizo	oletop EUT nce plane. <i>I</i> ntal ground	And for flo reference	or-standing arran plane,	netallic table 0.8m abo gement, the EUT was reference plane. The	placed or
	shall refere	be 0.4 m f nce plane w	rom the ras bonded	vertical ground red to the horizontal	eference plane. The reference plane. The reference plane is a second reference plane is and bond in the reference plane.	vertical grone. The LIS
	reference distant	nce plane fo ce was betw EUT and as	or LISNs reen the c sociated e	mounted on top losest points of th quipment was at l	of the ground reference LISN 1 and the EUT least 0.8 m from the LIS	ice plane. All other SN 2.
					ative positions of equip rding to ANSI C63.10	
		rement.	C3 mast i	oc changed acco	rding to Artor 000.10	On Condu
imit:		(6)			(6)	
				Limi	it (dBµV)	
	Frequency range (MHz)			Quasi-peak	Average	
	/°Z	0.15-0.5	/07	66 to 56*	56 to 46*	
			1 4 4		1 4 1	1 6
		0.5-5	1000	56	46	102
		0.5-5 5-30	62	56 60	46 50	(0)
	to 0.50	5-30 t decreases) MHz.	•	60	50 If the frequency in the r	ange 0.15
easurement Data	to 0.50	5-30 t decreases) MHz.	•	60 th the logarithm o	50 If the frequency in the r	ange 0.15
	to 0.50 NOTE : T	5-30 t decreases) MHz. he lower lim	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the roon frequency	ange 0.15
initial pre-scan wa	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	
n initial pre-scan wa uasi-Peak and Aver	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the roon frequency	
n initial pre-scan wa uasi-Peak and Aver	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	
n initial pre-scan wa uasi-Peak and Aver	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	
n initial pre-scan wa uasi-Peak and Aver	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	
n initial pre-scan wa uasi-Peak and Aver	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	
n initial pre-scan wa uasi-Peak and Aver	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	
n initial pre-scan wa uasi-Peak and Aver	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	
leasurement Data n initial pre-scan wa uasi-Peak and Aver etected.	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	
n initial pre-scan wa uasi-Peak and Aver	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	
n initial pre-scan wa uasi-Peak and Aver	to 0.50 NOTE : T	5-30 t decreases MHz. he lower lim on the live a	it is applic	60 th the logarithm o able at the transiti	50 If the frequency in the representation frequency detector.	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



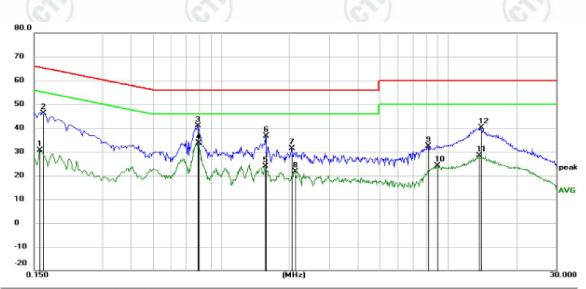
Page 49 of 95


Product : Digital Photo Frame Model/Type reference : DGF201

Temperature : 21° **Humidity** : 51%

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	37.23	9.97	47.20	66.00	-18.80	peak	
2		0.1590	16.71	9.98	26.69	55.52	-28.83	AVG	
3	*	0.7799	32.56	9.86	42.42	56.00	-13.58	peak	
4		0.7799	20.84	9.86	30.70	46.00	-15.30	AVG	
5		1.5855	11.23	9.86	21.09	46.00	-24.91	AVG	
6		1.5945	24.06	9.86	33.92	56.00	-22.08	peak	
7		2.4000	8.18	9.83	18.01	46.00	-27.99	AVG	
8		2.4630	21.45	9.83	31.28	56.00	-24.72	peak	
9		8.9205	13.31	9.92	23.23	50.00	-26.77	AVG	
10		9.4155	27.54	9.94	37.48	60.00	-22.52	peak	
11		13.2720	31.89	9.97	41.86	60.00	-18.14	peak	
12		14.3115	17.15	9.98	27.13	50.00	-22.87	AVG	



Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	20.62	9.98	30.60	55.52	-24.92	AVG	
2		0.1650	36.26	9.99	46.25	65.21	-18.96	peak	
3		0.7890	30.94	9.88	40.82	56.00	-15.18	peak	
4	*	0.7935	23.67	9.89	33.56	46.00	-12.44	AVG	
5		1.5675	14.11	9.86	23.97	46.00	-22.03	AVG	
6		1.5720	26.87	9.86	36.73	56.00	-19.27	peak	
7		2.0445	21.50	9.83	31.33	56.00	-24.67	peak	
8		2.1120	11.82	9.83	21.65	46.00	-24.35	AVG	
9		8.1555	22.56	9.89	32.45	60.00	-27.55	peak	
10		8.9340	14.20	9.92	24.12	50.00	-25.88	AVG	
11		13.6815	18.40	9.97	28.37	50.00	-21.63	AVG	
12		13.9470	30.17	9.98	40.15	60.00	-19.85	peak	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix I): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 2002 40115	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	(2)
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the antenna was turned from 0 deg e. The test-receiver systems and was turned from 0 deg e. The test-receiver systems and was turned from 0 deg e.	on the top of a rot choic camber. The of the highest rate eters away from the op of a variable-he varied from one remediate value of the field tenna are set to remission, the EUT If to heights from the rees to 360 degrees are was set to Pea turn Hold Mode.	e table wadiation. he interfere eight anter to foold strength make the nwas arran 1 meter to ees to find ak Detect I	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters the maxin Function a	rs above the gas of the growing antennal above the growing antennal and vent. Worst case are and the rotate and the rotate and Specified	o, which
	f. Place a marker at the of frequency to show con bands. Save the spect for lowest and highest	rum analyzer plo	easure any	emissions	s in the restric	
	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an	npliance. Also me rum analyzer plot channel ure as below: we is the test site, ber change form 1 meter and table west channel, the ments are perfor d found the X axi	easure any t. Repeat f , change fr n table 0.8 e is 1.5 me ie Highest med in X, is positioni	emissions for each po com Semi- meter to 1 eter). channel Y, Z axis p ng which i	s in the restriction of the control	ambe
imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the loi. The radiation measure	npliance. Also me rum analyzer plot channel ure as below: we is the test site, ber change form 1 meter and table west channel, the ments are perfor d found the X axi	easure any t. Repeat f change from table 0.8 e is 1.5 me die Highest med in X, is positioni	emissions for each posterior semi- meter to 1 eter). channel Y, Z axis programming which is easured was a series of the control of the contro	s in the restriction of the control	ambe
.imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an j. Repeat above procedure.	npliance. Also me rum analyzer plot channel ure as below: we is the test site, ber change form 1 meter and table west channel, the ments are perford found the X axiones until all frequents	casure any t. Repeat f , change fr table 0.8 e is 1.5 me ie Highest med in X, is positioni iencies me m @3m)	emissions for each position of semi- meter to 1 eter). channel Y, Z axis position of seasured was real	Anechoic Ch .5 meter(Abo	ambe
imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an j. Repeat above procedure. Frequency	npliance. Also me rum analyzer plot channel ure as below: we is the test site, ber change form 1 meter and table west channel, the ments are perford found the X axistres until all frequency.	casure any t. Repeat f change from table 0.8 de is 1.5 me de Highest med in X, is positioni dencies me m @3m)	or each portion of each portio	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	ambe
imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the fully An	npliance. Also me rum analyzer plot channel ure as below: we is the test site, ber change form 1 meter and table west channel , the ments are perford found the X axis ures until all frequence. Limit (dBµV/i 40.0	casure any t. Repeat f the table 0.8 e is 1.5 me is Highest med in X, is positioni iencies me m @3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa Rei Quasi-pe	Anechoic Ch. 5 meter (Aborositioning for t is worse cases complete.	ambe
_imit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the EUT in the logical Anechoic Chammat 18GHz the fully Anechoic Chammat 18GHz the distance is horder to fully Anechoic Chammat 18GHz the fully An	npliance. Also me rum analyzer plot channel ure as below: we is the test site, ber change form 1 meter and table west channel, the ments are perford found the X axis ures until all frequence Limit (dBµV/140.043.5	easure any t. Repeat f change from table 0.8 e is 1.5 me die Highest med in X, is positioni dencies me m @3m)	remissions for each portion Semi-meter to 1 eter). channel Y, Z axis programmed was red was Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value eak Value	ambe
Limit:	frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz the distance is how the fully Anechoic Chammat 18GHz	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, ber change form 1 meter and table west channel , the ments are perford found the X axistres until all frequence Limit (dBµV/1) 40.0 43.5 46.0	easure any t. Repeat f n table 0.8 e is 1.5 me ne Highest med in X, is positioni dencies me m @3m)	emissions or each por	Anechoic Ch. 5 meter (Aboversitioning for t is worse cases complete. mark eak Value eak Value	ambe

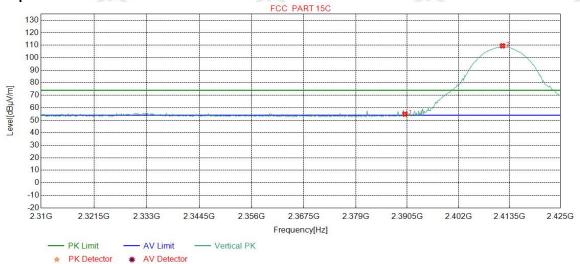
Page 52 of 95

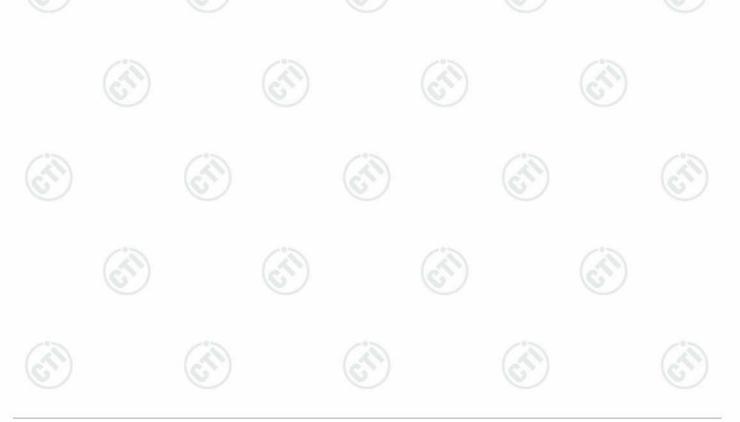
Test plot as follows:

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK	37	(0.)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.66	52.84	74.00	21.16	Pass	Horizontal
2	2412.0463	32.28	13.36	-42.44	98.05	101.25	74.00	-27.25	Pass	Horizontal

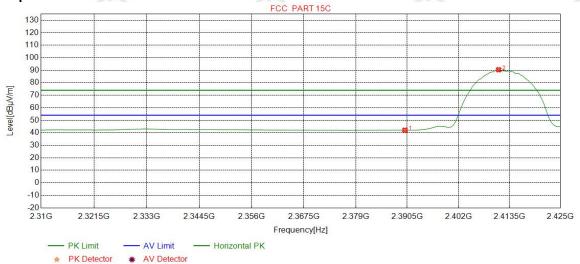


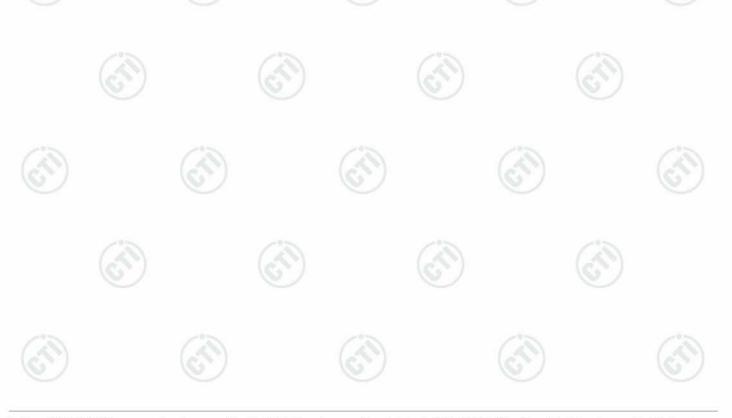


Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

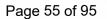
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.69	54.87	74.00	19.13	Pass	Vertical
2	2411.9024	32.28	13.35	-42.43	106.26	109.46	74.00	-35.46	Pass	Vertical



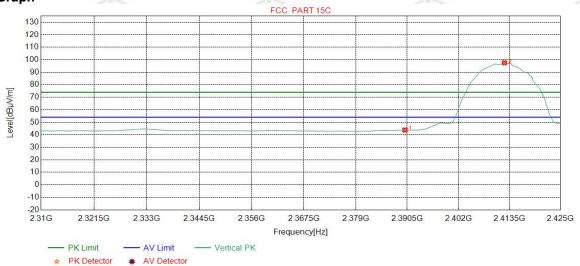

Page 54 of 95

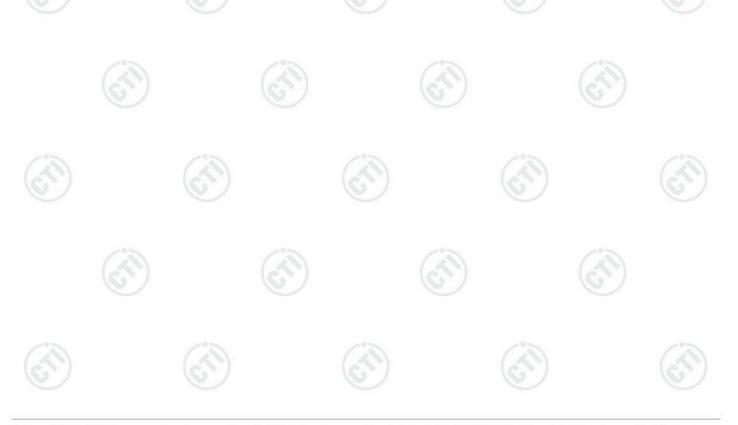
Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.86	42.04	54.00	11.96	Pass	Horizontal
2	2411.0388	32.28	13.35	-42.43	87.16	90.36	54.00	-36.36	Pass	Horizontal

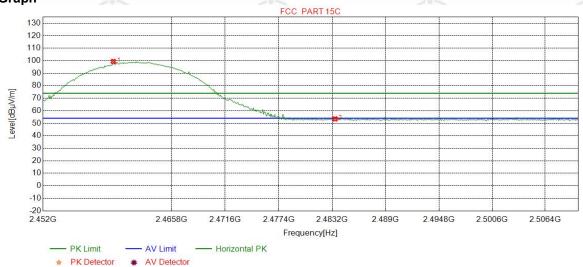


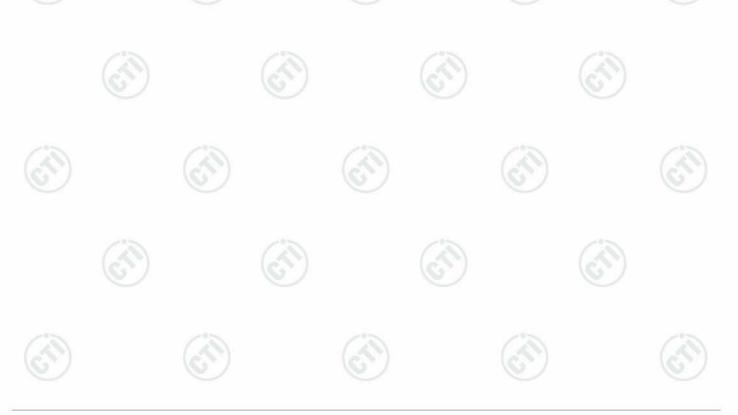


Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

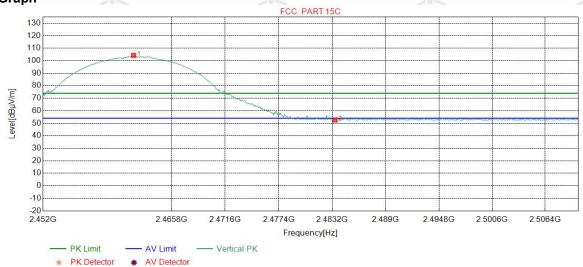
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	40.61	43.79	54.00	10.21	Pass	Vertical
2	2412.3342	32.28	13.36	-42.43	94.35	97.56	54.00	-43.56	Pass	Vertical

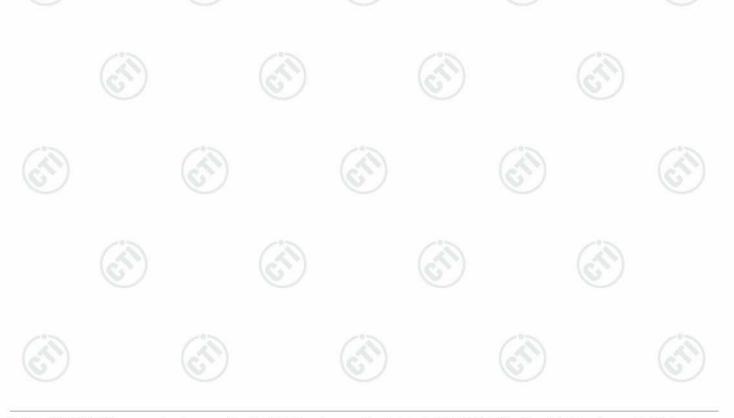



Page 56 of 95

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK		

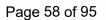
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2459.5494	32.34	13.49	-42.41	95.97	99.39	74.00	-25.39	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	50.10	53.46	74.00	20.54	Pass	Horizontal



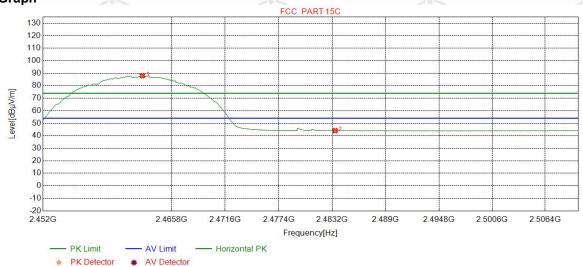

Report No. : EED32L00227301 Page 57 of 95

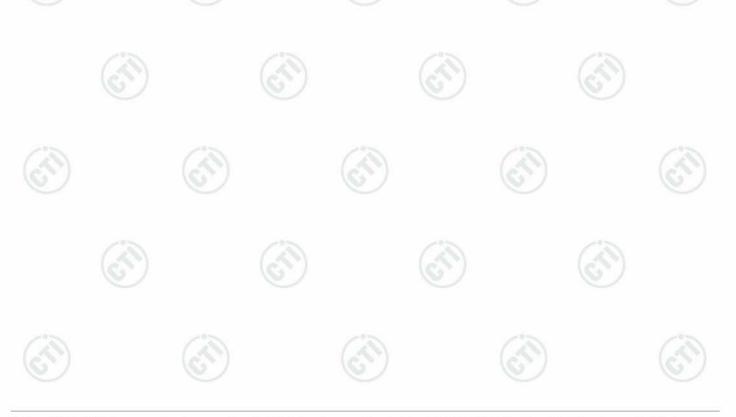
0.7	16.3.1	*1.7* I	1,65,75
Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.7272	32.35	13.48	-42.41	100.84	104.26	74.00	-30.26	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.26	52.62	74.00	21.38	Pass	Vertical

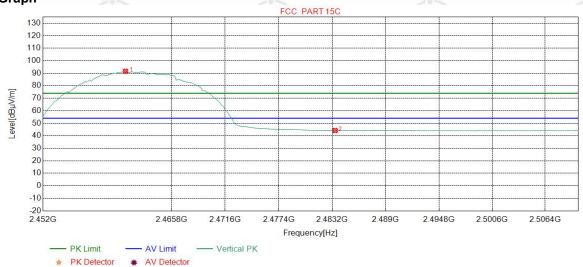


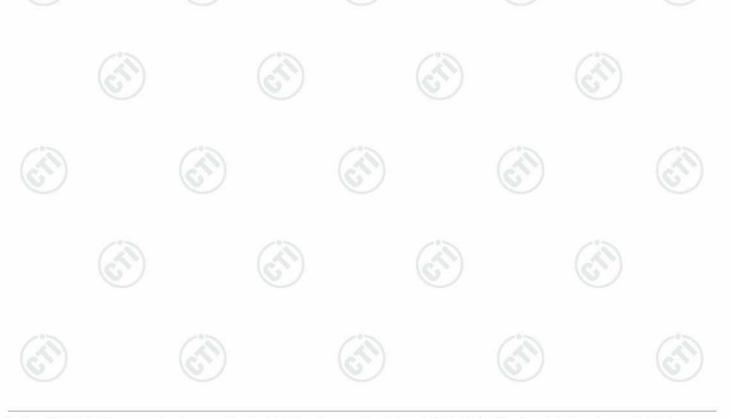


Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	AV		

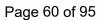
Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
Γ	1	2462.6708	32.35	13.47	-42.41	84.54	87.95	54.00	-33.95	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	40.70	44.06	54.00	9.94	Pass	Horizontal

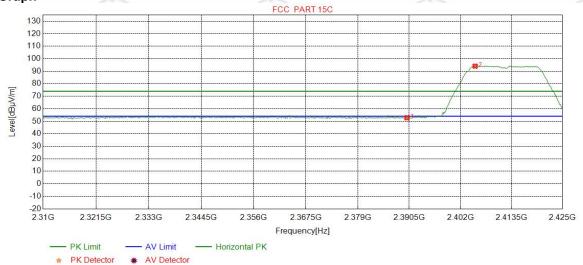


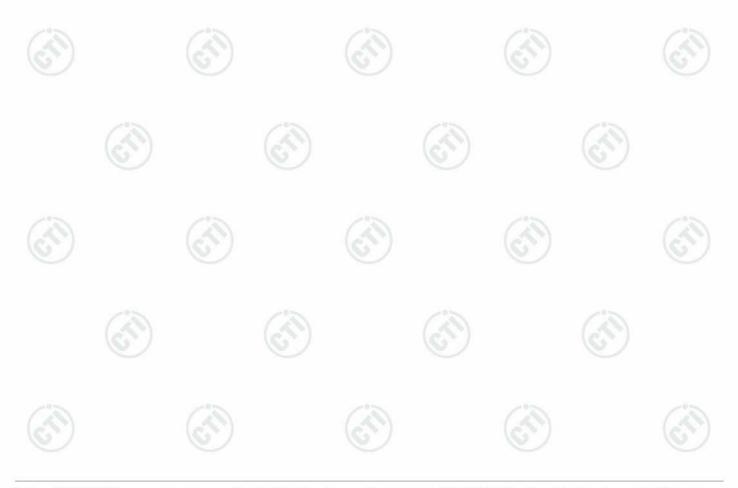

Page 59 of 95

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2462
Remark:	AV		



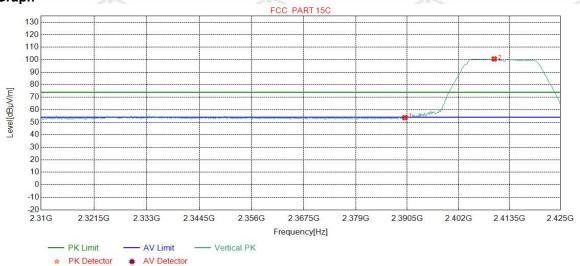
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.8561	32.35	13.48	-42.41	88.17	91.59	54.00	-37.59	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	40.83	44.19	54.00	9.81	Pass	Vertical

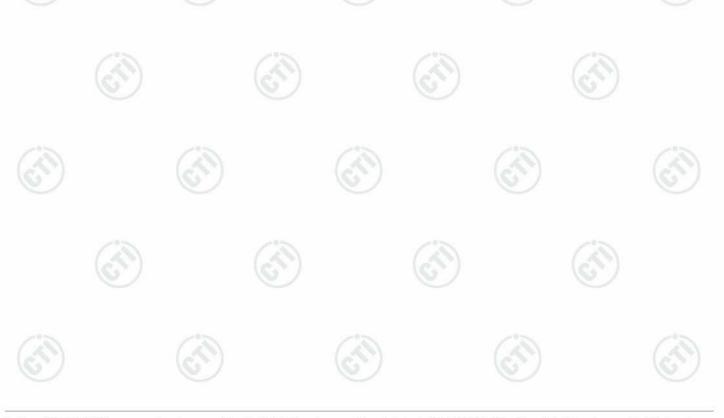




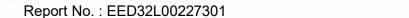
201911	18.79	(C.)	1.60
Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

	1	2390.0000	32.25	13.37	-42.44	49.64	52.82	74.00	21.18	Pass	Horizontal
Ī	2	2405.2816	32.27	13.32	-42.43	90.88	94.04	74.00	-20.04	Pass	Horizontal

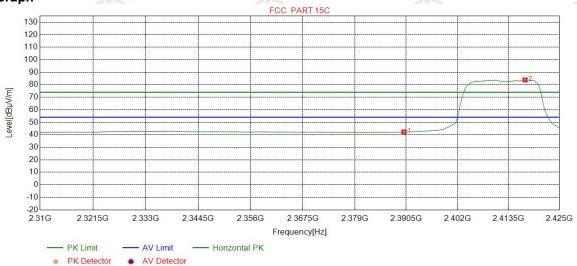


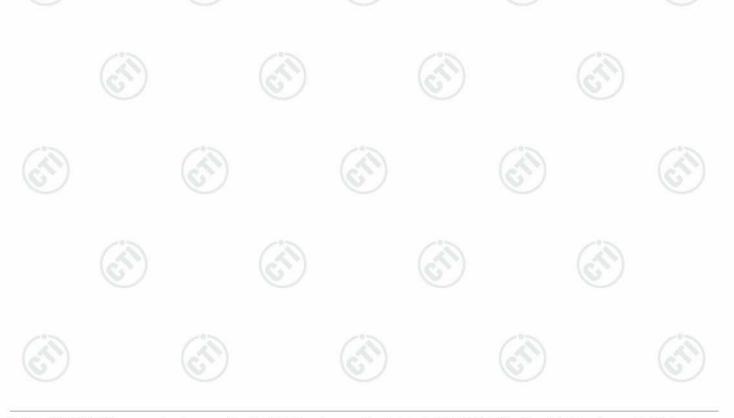


Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.47	53.65	74.00	20.35	Pass	Vertical
2	2410.0313	32.27	13.35	-42.43	97.39	100.58	74.00	-26.58	Pass	Vertical

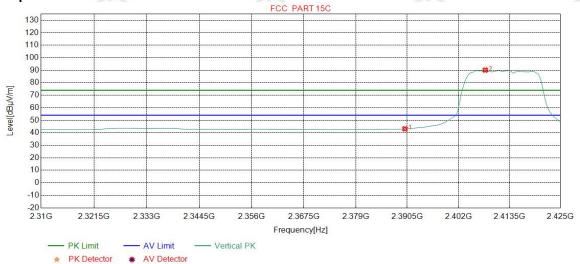


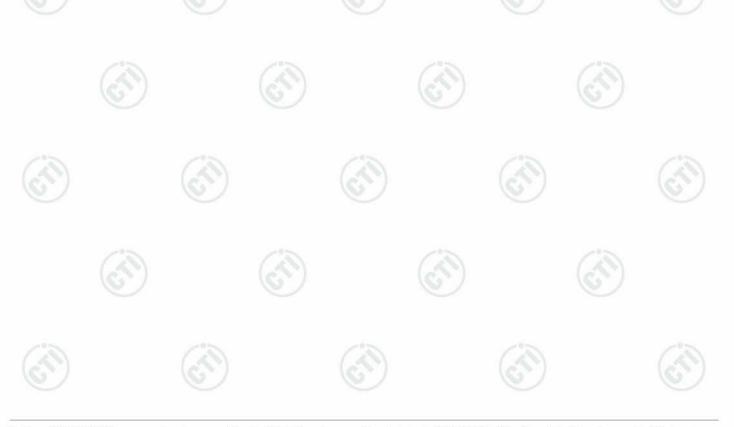


Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

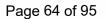
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.05	42.23	54.00	11.77	Pass	Horizontal
2	2417.2278	32.28	13.38	-42.42	80.58	83.82	54.00	-29.82	Pass	Horizontal



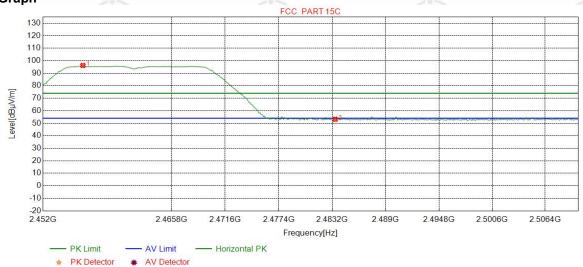

Page 63 of 95

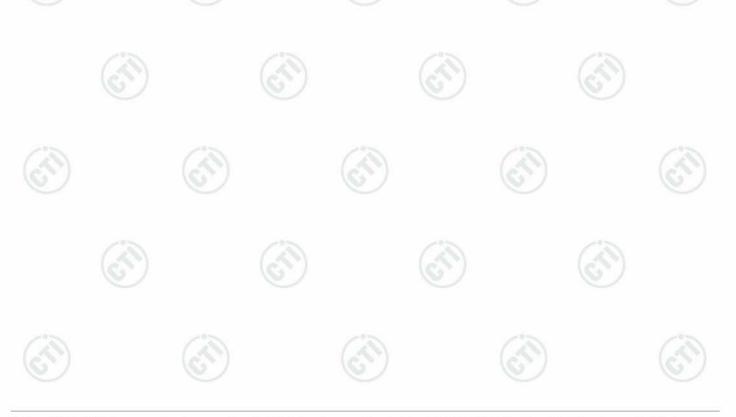
Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph



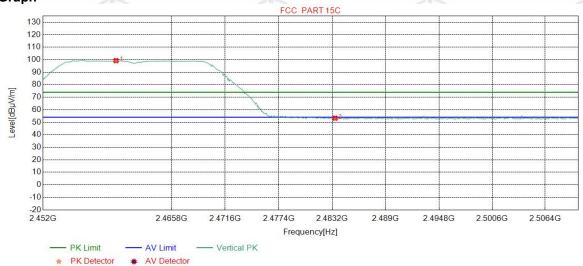
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.95	43.13	54.00	10.87	Pass	Vertical
2	2408.0163	32.27	13.34	-42.43	86.92	90.10	54.00	-36.10	Pass	Vertical

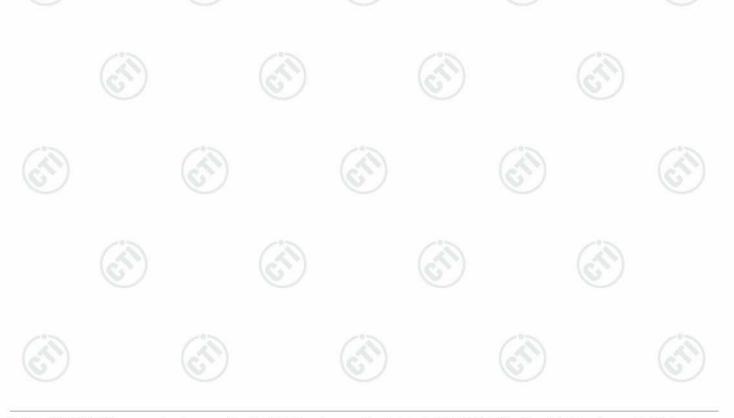




Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

N	O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
•	1	2456.2829	32.34	13.50	-42.41	92.74	96.17	74.00	-22.17	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	49.80	53.16	74.00	20.84	Pass	Horizontal

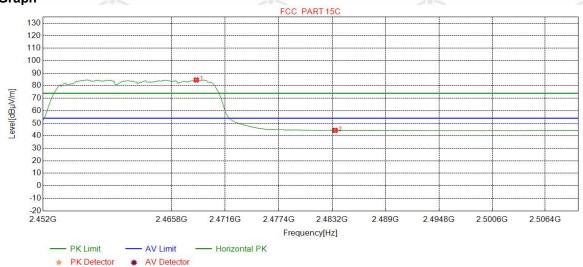


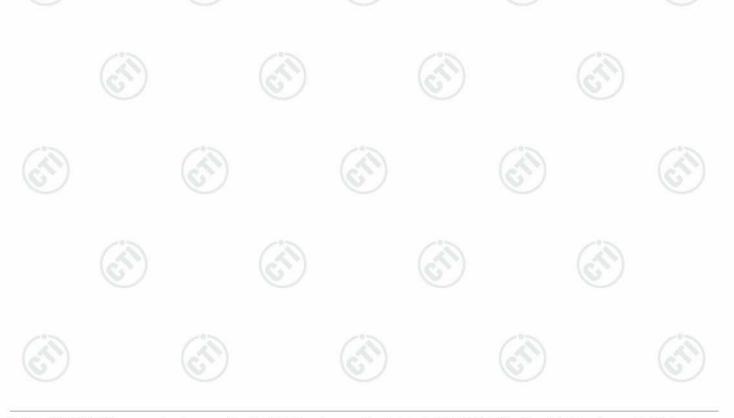


2000	16.5	P 79 1	16.7
Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

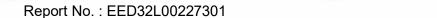


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2459.8398	32.34	13.48	-42.40	95.85	99.27	74.00	-25.27	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.89	53.25	74.00	20.75	Pass	Vertical

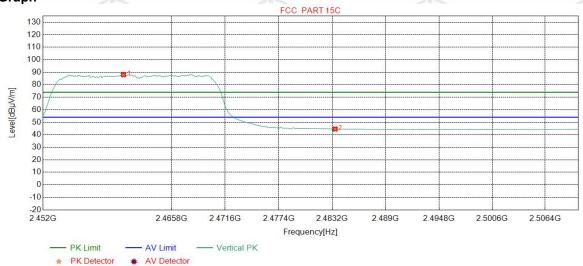


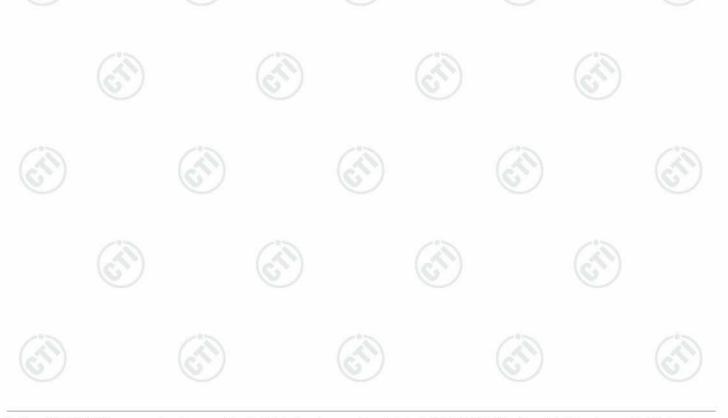


Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		



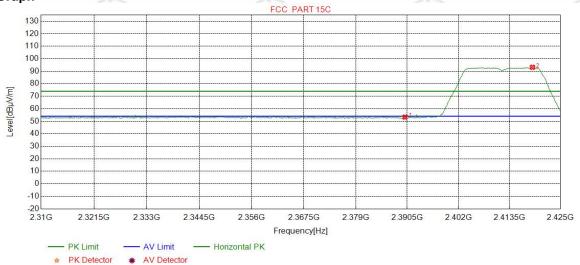
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2468.4781	32.36	13.45	-42.41	81.17	84.57	54.00	-30.57	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	40.94	44.30	54.00	9.70	Pass	Horizontal

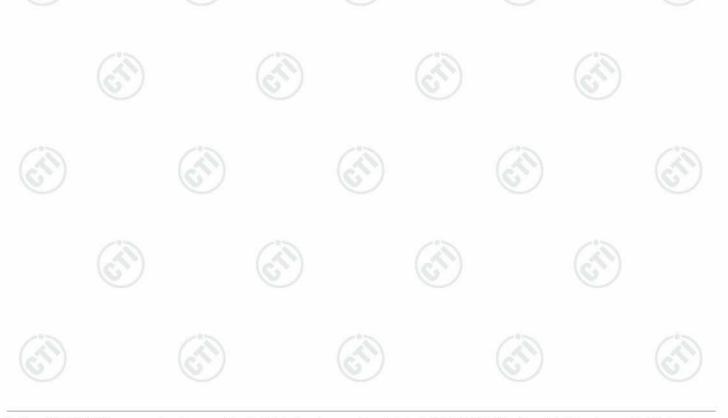




Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.6383	32.34	13.48	-42.40	84.55	87.97	54.00	-33.97	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	41.25	44.61	54.00	9.39	Pass	Vertical

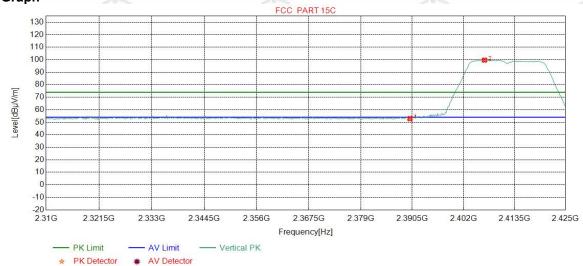


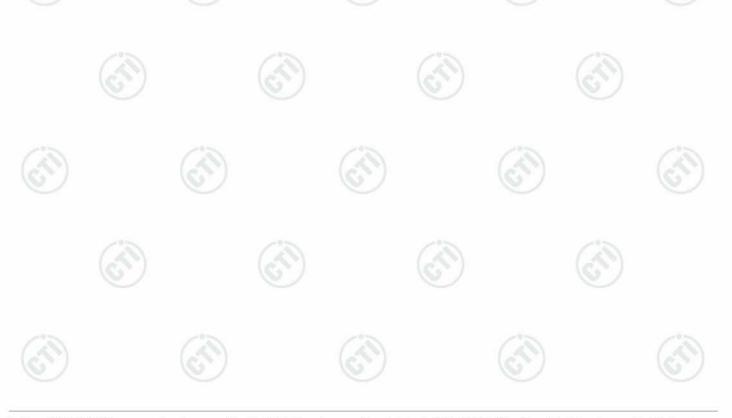

Mode:	802.11 n(HT20) (6.5Mbps)	Channel:	2412	
Remark:	PK	·		

Page 68 of 95

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.12	53.30	74.00	20.70	Pass	Horizontal
2	2418.6671	32.29	13.39	-42.43	89.87	93.12	74.00	-19.12	Pass	Horizontal

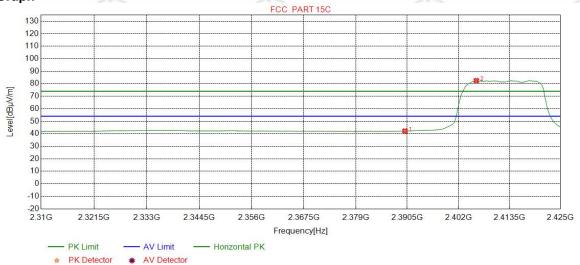


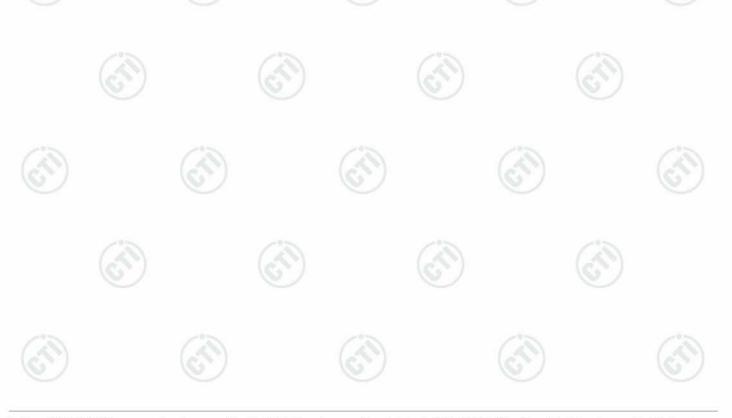

Page 69 of 95

Mode:	802.11 n(HT20) (6.5Mbps)	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.71	52.89	74.00	21.11	Pass	Vertical
2	2406.7209	32.27	13.33	-42.43	96.49	99.66	74.00	-25.66	Pass	Vertical

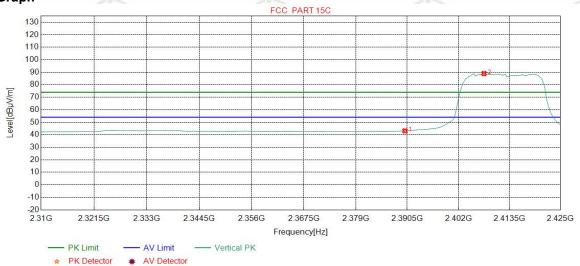


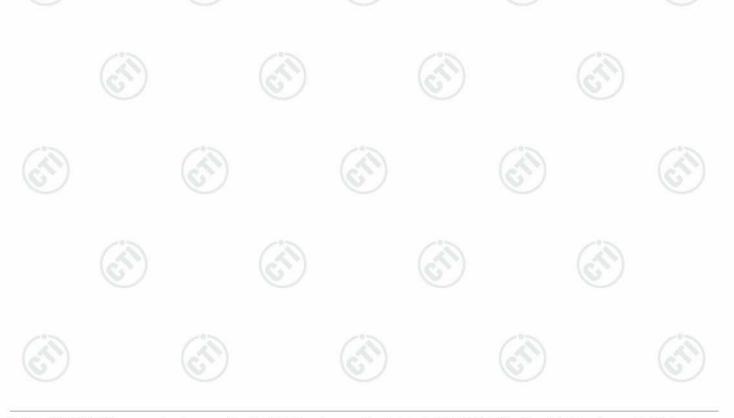

Page 70 of 95

Mode:	802.11 n(HT20) (6.5Mbps)	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.96	42.14	54.00	11.86	Pass	Horizontal
2	2406.0013	32.27	13.33	-42.44	79.34	82.50	54.00	-28.50	Pass	Horizontal

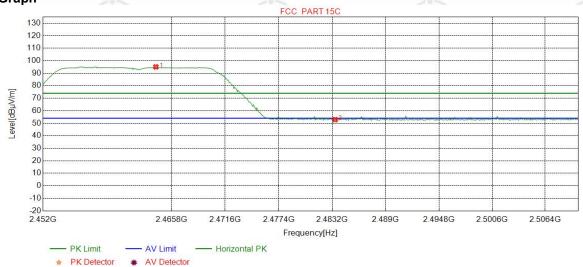


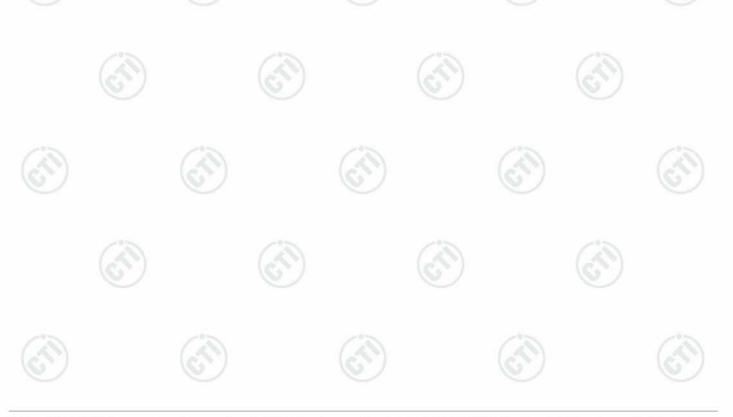

_	- 4		
Page	71	of 95	

Mode:	802.11 n(HT20) (6.5Mbps)	Channel:	2412
Remark:	AV		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.93	43.11	54.00	10.89	Pass	Vertical
2	2407.7284	32.27	13.34	-42.43	85.72	88.90	54.00	-34.90	Pass	Vertical

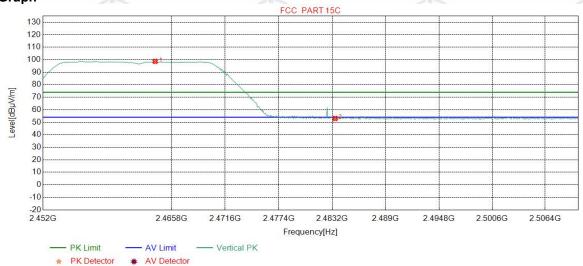


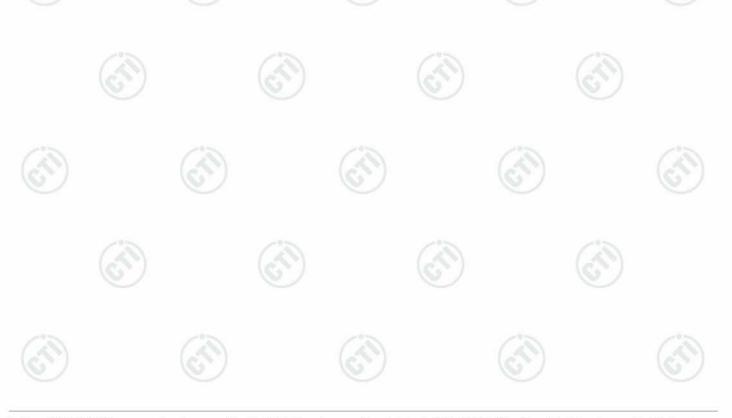


Mode:	802.11 n(HT20) (6.5Mbps)	Channel:	2462
Remark:	PK		

Test Graph

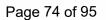
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2464.1227	32.35	13.47	-42.41	91.64	95.05	74.00	-21.05	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.53	52.89	74.00	21.11	Pass	Horizontal



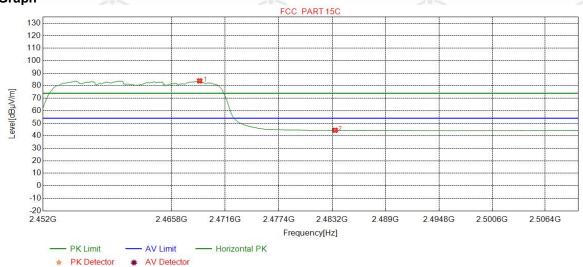


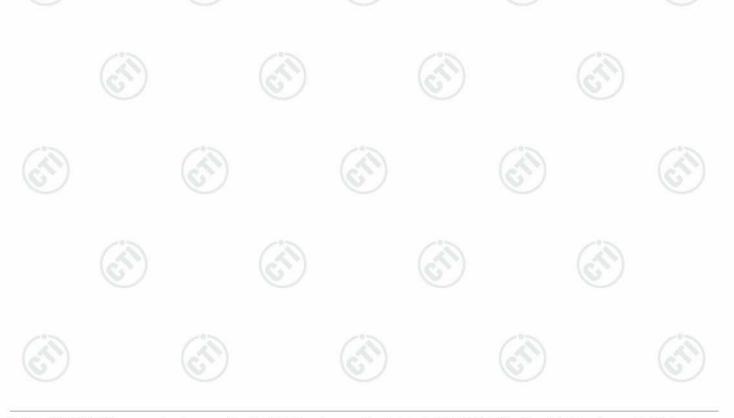
		26.76	1,600
Mode:	802.11 n(HT20) (6.5Mbps)	Channel:	2462
Remark:	PK		·

Test Graph



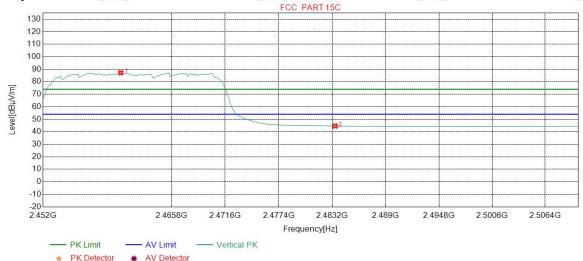
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2464.0501	32.35	13.47	-42.41	95.29	98.70	74.00	-24.70	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.66	53.02	74.00	20.98	Pass	Vertical





Mode:	802.11 n(HT20) (6.5Mbps)	Channel:	2462
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2468.8411	32.36	13.44	-42.40	80.46	83.86	54.00	-29.86	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	41.02	44.38	54.00	9.62	Pass	Horizontal



Report No. : EED32L00227301 Page 75 of 95

Mode:	802.11 n(HT20) (6.5Mbps)	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.3479	32.34	13.48	-42.40	83.72	87.14	54.00	-33.14	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	41.23	44.59	54.00	9.41	Pass	Vertical

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40),and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix J): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
ADOVE IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

1	ir	n	it

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	6	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(62)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

_											
	Mode):	802.11	b (11Mb _l	ps) Transı	mitting	Channel:		2412		
3	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	35.7236	10.93	0.66	-32.11	46.61	26.09	40.00	13.91	Pass	Н
	2	122.2562	8.86	1.31	-32.06	53.09	31.20	43.50	12.30	Pass	Н
	3	240.0260	11.94	1.84	-31.90	47.15	29.03	46.00	16.97	Pass	Н
	4	454.7085	16.28	2.53	-31.86	40.62	27.57	46.00	18.43	Pass	Н
	5	819.9500	21.14	3.44	-31.93	42.28	34.93	46.00	11.07	Pass	Н
	6	984.0904	22.60	3.76	-30.82	42.53	38.07	54.00	15.93	Pass	Н
2	7	33.9774	10.66	0.65	-32.12	48.85	28.04	40.00	11.96	Pass	V
Ì	8	121.6742	8.95	1.31	-32.07	49.71	27.90	43.50	15.60	Pass	V
	9	208.8859	11.13	1.71	-31.94	50.02	30.92	43.50	12.58	Pass	V
	10	328.0138	13.82	2.15	-31.78	42.50	26.69	46.00	19.31	Pass	V
	11	649.9890	19.40	3.10	-32.07	39.52	29.95	46.00	16.05	Pass	V
	12	892.9013	22.01	3.59	-31.61	43.61	37.60	46.00	8.40	Pass	V

Mode) :	802.11	b (11Mb _l	ps) Transı	mitting	Channel:		2437	2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	
1	35.5296	10.87	0.66	-32.12	47.34	26.75	40.00	13.25	Pass	Н	
2	122.3532	8.85	1.31	-32.06	54.10	32.20	43.50	11.30	Pass	Н	
3	240.0260	11.94	1.84	-31.90	45.76	27.64	46.00	18.36	Pass	Н	
4	491.6692	16.87	2.65	-31.89	41.39	29.02	46.00	16.98	Pass	Н	
5	819.9500	21.14	3.44	-31.93	40.72	33.37	46.00	12.63	Pass	Н	
6	988.0678	22.63	3.77	-30.80	39.14	34.74	54.00	19.26	Pass	Н	
7	35.0445	10.71	0.65	-32.11	49.24	28.49	40.00	11.51	Pass	V	
8	121.6742	8.95	1.31	-32.07	50.48	28.67	43.50	14.83	Pass	V	
9	145.9266	7.41	1.43	-32.01	48.51	25.34	43.50	18.16	Pass	V	
10	208.8859	11.13	1.71	-31.94	49.84	30.74	43.50	12.76	Pass	V	
11	240.0260	11.94	1.84	-31.90	47.29	29.17	46.00	16.83	Pass	V	
12	649.9890	19.40	3.10	-32.07	39.23	29.66	46.00	16.34	Pass	V	

Page	70	of OE	
Page	70	01.90	

			- 1							
Mode	e:	802.11	b (11Mb _l	ps) Transı	mitting	Channel:		2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	35.5296	10.87	0.66	-32.12	45.39	24.80	40.00	15.20	Pass	Η
2	192.0062	10.14	1.62	-31.96	43.68	23.48	43.50	20.02	Pass	Н
3	240.0260	11.94	1.84	-31.90	45.99	27.87	46.00	18.13	Pass	Н
4	649.9890	19.40	3.10	-32.07	39.01	29.44	46.00	16.56	Pass	Н
5	819.9500	21.14	3.44	-31.93	39.97	32.62	46.00	13.38	Pass	Н
6	983.9934	22.60	3.76	-30.83	40.05	35.58	54.00	18.42	Pass	Н
7	35.6266	10.90	0.66	-32.12	46.33	25.77	40.00	14.23	Pass	V
8	208.8859	11.13	1.71	-31.94	48.41	29.31	43.50	14.19	Pass	V
9	240.0260	11.94	1.84	-31.90	44.57	26.45	46.00	19.55	Pass	V
10	327.9168	13.81	2.15	-31.77	48.32	32.51	46.00	13.49	Pass	V
11	531.4431	17.63	2.76	-31.91	43.54	32.02	46.00	13.98	Pass	V
12	983.9934	22.60	3.76	-30.83	42.28	37.81	54.00	16.19	Pass	V

Mode	e:	802.11	g (6Mbps	s) Transm	itting	Channel:		2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	35.5296	10.87	0.66	-32.12	45.82	25.23	40.00	14.77	Pass	Н
2	208.8859	11.13	1.71	-31.94	41.85	22.75	43.50	20.75	Pass	Н
3	240.0260	11.94	1.84	-31.90	46.41	28.29	46.00	17.71	Pass	Н
4	649.9890	19.40	3.10	-32.07	39.36	29.79	46.00	16.21	Pass	Н
5	895.9086	22.05	3.59	-31.59	39.44	33.49	46.00	12.51	Pass	Н
6	983.9934	22.60	3.76	-30.83	39.91	35.44	54.00	18.56	Pass	Н
7	35.5296	10.87	0.66	-32.12	46.63	26.04	40.00	13.96	Pass	V
8	208.8859	11.13	1.71	-31.94	50.55	31.45	43.50	12.05	Pass	V
9	240.0260	11.94	1.84	-31.90	45.53	27.41	46.00	18.59	Pass	V
10	532.5103	17.65	2.77	-31.92	40.63	29.13	46.00	16.87	Pass	V
11	649.9890	19.40	3.10	-32.07	39.11	29.54	46.00	16.46	Pass	V
12	983.8964	22.60	3.76	-30.83	40.56	36.09	54.00	17.91	Pass	V

Page 79 of 95

Mode) :	802.11	g (6Mbps	s) Transm	itting	Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	35.5296	10.87	0.66	-32.12	45.59	25.00	40.00	15.00	Pass	Н
2	240.0260	11.94	1.84	-31.90	45.85	27.73	46.00	18.27	Pass	Н
3	450.8281	16.21	2.51	-31.88	39.26	26.10	46.00	19.90	Pass	Н
4	649.9890	19.40	3.10	-32.07	39.85	30.28	46.00	15.72	Pass	Н
5	819.9500	21.14	3.44	-31.93	42.53	35.18	46.00	10.82	Pass	Н
6	906.4826	22.14	3.60	-31.52	44.42	38.64	46.00	7.36	Pass	Н
7	54.9315	12.41	0.84	-32.08	41.67	22.84	40.00	17.16	Pass	V
8	208.8859	11.13	1.71	-31.94	50.02	30.92	43.50	12.58	Pass	V
9	240.0260	11.94	1.84	-31.90	45.05	26.93	46.00	19.07	Pass	V
10	328.0138	13.82	2.15	-31.78	42.97	27.16	46.00	18.84	Pass	V
11	649.9890	19.40	3.10	-32.07	40.18	30.61	46.00	15.39	Pass	V
12	983.9934	22.60	3.76	-30.83	41.05	36.58	54.00	17.42	Pass	V

ı	Mode	:	802.11	g (6Mbps	s) Transm	itting	Channel:		2462		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
3	1	35.5296	10.87	0.66	-32.12	45.12	24.53	40.00	15.47	Pass	Н
	2	240.0260	11.94	1.84	-31.90	47.72	29.60	46.00	16.40	Pass	Н
	3	455.0965	16.28	2.54	-31.86	39.47	26.43	46.00	19.57	Pass	Н
	4	649.9890	19.40	3.10	-32.07	39.03	29.46	46.00	16.54	Pass	Н
	5	819.9500	21.14	3.44	-31.93	40.88	33.53	46.00	12.47	Pass	Н
	6	983.9934	22.60	3.76	-30.83	40.59	36.12	54.00	17.88	Pass	Н
	7	35.6266	10.90	0.66	-32.12	47.22	26.66	40.00	13.34	Pass	V
	8	208.8859	11.13	1.71	-31.94	49.95	30.85	43.50	12.65	Pass	V
	9	240.0260	11.94	1.84	-31.90	44.75	26.63	46.00	19.37	Pass	V
	10	649.9890	19.40	3.10	-32.07	40.39	30.82	46.00	15.18	Pass	V
	11	907.9378	22.15	3.60	-31.50	48.58	42.83	46.00	3.17	Pass	V
	12	983.9934	22.60	3.76	-30.83	40.42	35.95	54.00	18.05	Pass	V

Page 80 of 95

Mode) :	802.11	n (HT20)	(6.5Mbps	s)	Channel:		2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	35.5296	10.87	0.66	-32.12	47.29	26.70	40.00	13.30	Pass	Н
2	192.0062	10.14	1.62	-31.96	42.60	22.40	43.50	21.10	Pass	Н
3	239.9290	11.94	1.84	-31.90	45.29	27.17	46.00	18.83	Pass	Н
4	327.9168	13.81	2.15	-31.77	41.70	25.89	46.00	20.11	Pass	Н
5	819.9500	21.14	3.44	-31.93	42.05	34.70	46.00	11.30	Pass	Н
6	983.8964	22.60	3.76	-30.83	41.50	37.03	54.00	16.97	Pass	Н
7	35.5296	10.87	0.66	-32.12	46.63	26.04	40.00	13.96	Pass	V
8	208.8859	11.13	1.71	-31.94	50.06	30.96	43.50	12.54	Pass	V
9	328.0138	13.82	2.15	-31.78	42.74	26.93	46.00	19.07	Pass	V
10	531.7342	17.63	2.77	-31.92	42.57	31.05	46.00	14.95	Pass	V
11	649.9890	19.40	3.10	-32.07	39.28	29.71	46.00	16.29	Pass	V
12	819.9500	21.14	3.44	-31.93	39.87	32.52	46.00	13.48	Pass	V

Mode	e:	802.11	n (HT20)	(6.5Mbps	s)	Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	35.6266	10.90	0.66	-32.12	46.29	25.73	40.00	14.27	Pass	Н
2	240.0260	11.94	1.84	-31.90	43.71	25.59	46.00	20.41	Pass	Н
3	531.4431	17.63	2.76	-31.91	39.76	28.24	46.00	17.76	Pass	Н
4	649.9890	19.40	3.10	-32.07	39.62	30.05	46.00	15.95	Pass	Н
5	819.9500	21.14	3.44	-31.93	39.69	32.34	46.00	13.66	Pass	Н
6	983.9934	22.60	3.76	-30.83	40.31	35.84	54.00	18.16	Pass	Н
7	54.8345	12.43	0.84	-32.09	40.70	21.88	40.00	18.12	Pass	V
8	208.8859	11.13	1.71	-31.94	50.04	30.94	43.50	12.56	Pass	V
9	240.0260	11.94	1.84	-31.90	45.45	27.33	46.00	18.67	Pass	V
10	328.0138	13.82	2.15	-31.78	42.84	27.03	46.00	18.97	Pass	V
11	531.9282	17.64	2.77	-31.92	43.54	32.03	46.00	13.97	Pass	V
12	819.9500	21.14	3.44	-31.93	39.53	32.18	46.00	13.82	Pass	V

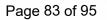
Page 81 of 95

	Mode) :	802.11	n (HT20)	(6.5Mbps	s)	Channel:		2462		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	35.5296	10.87	0.66	-32.12	46.43	25.84	40.00	14.16	Pass	Н
3	2	192.0062	10.14	1.62	-31.96	42.21	22.01	43.50	21.49	Pass	Н
	3	240.0260	11.94	1.84	-31.90	44.33	26.21	46.00	19.79	Pass	Н
	4	649.9890	19.40	3.10	-32.07	38.27	28.70	46.00	17.30	Pass	Н
	5	896.0056	22.05	3.59	-31.59	46.64	40.69	46.00	5.31	Pass	Н
	6	983.8964	22.60	3.76	-30.83	40.11	35.64	54.00	18.36	Pass	Н
	7	54.6405	12.46	0.84	-32.09	40.43	21.64	40.00	18.36	Pass	V
	8	208.8859	11.13	1.71	-31.94	50.34	31.24	43.50	12.26	Pass	V
	9	328.0138	13.82	2.15	-31.78	43.64	27.83	46.00	18.17	Pass	V
	10	532.2192	17.64	2.77	-31.92	39.81	28.30	46.00	17.70	Pass	V
	11	819.9500	21.14	3.44	-31.93	39.83	32.48	46.00	13.52	Pass	V
	12	984.0904	22.60	3.76	-30.82	39.42	34.96	54.00	19.04	Pass	V

Transmitter Emission above 1GHz

Mode	ə:	802.11	b (11Mb	ps) Trans	mitting	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	4822.1215	34.50	4.60	-40.64	54.23	52.69	74.00	21.31	Pass	Н	Peak
2	7236.0000	36.34	5.79	-40.99	52.33	53.47	74.00	20.53	Pass	Н	Peak
3	9648.0000	37.66	6.72	-40.73	42.91	46.56	74.00	27.44	Pass	Н	Peak
4	11891.5928	39.21	7.43	-41.24	44.65	50.05	74.00	23.95	Pass	Н	Peak
5	14306.7538	40.01	8.62	-41.88	45.52	52.27	74.00	21.73	Pass	Н	Peak
6	15918.8613	41.74	10.14	-43.31	44.62	53.19	74.00	20.81	Pass	Н	Peak
7	3457.0305	33.38	4.44	-41.84	51.56	47.54	74.00	26.46	Pass	٧	Peak
8	4823.1215	34.50	4.60	-40.64	54.13	52.59	74.00	21.41	Pass	V	Peak
9	7236.0000	36.34	5.79	-40.99	46.93	48.07	74.00	25.93	Pass	V	Peak
10	9648.0000	37.66	6.72	-40.73	41.95	45.60	74.00	28.40	Pass	V	Peak
11	11984.5990	39.29	7.57	-41.22	45.15	50.79	74.00	23.21	Pass	V	Peak
12	14185.7457	39.89	8.61	-41.65	46.52	53.37	74.00	20.63	Pass	V	Peak

Mode	ə:	802.11	b (11Mb	ps) Trans	mitting	Channel:		2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	4874.0000	34.50	4.78	-40.61	53.94	52.61	74.00	21.39	Pass	Н	Peak
2	6083.2055	35.82	5.24	-41.11	45.26	45.21	74.00	28.79	Pass	Н	Peak
3	7311.0000	36.41	5.85	-40.93	48.48	49.81	74.00	24.19	Pass	Н	Peak
4	9748.0000	37.70	6.77	-40.63	42.52	46.36	74.00	27.64	Pass	I	Peak
5	12442.6295	39.57	7.68	-41.12	45.21	51.34	74.00	22.66	Pass	Н	Peak
6	13733.7156	39.54	8.32	-41.21	45.88	52.53	74.00	21.47	Pass	Н	Peak
7	4874.0000	34.50	4.78	-40.61	52.29	50.96	74.00	23.04	Pass	٧	Peak
8	7311.0000	36.41	5.85	-40.93	45.12	46.45	74.00	27.55	Pass	V	Peak
9	9748.0000	37.70	6.77	-40.63	42.40	46.24	74.00	27.76	Pass	V	Peak
10	11664.5776	39.03	7.45	-41.32	46.25	51.41	74.00	22.59	Pass	V	Peak
11	14196.7465	39.90	8.65	-41.67	45.49	52.37	74.00	21.63	Pass	V	Peak
12	16279.8853	42.12	10.11	-43.52	45.28	53.99	74.00	20.01	Pass	V	Peak



Mode) :	802.11	b (11Mb _l	os) Transn	nitting	Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2662.5663	32.66	4.10	-42.30	54.58	49.04	74.00	24.96	Pass	Н	Peak
2	4924.0000	34.50	4.85	-40.56	52.43	51.22	74.00	22.78	Pass	Н	Peak
3	7354.2903	36.45	5.85	-40.89	45.05	46.46	74.00	27.54	Pass	Н	Peak
4	9848.0000	37.74	6.83	-40.54	42.52	46.55	74.00	27.45	Pass	Н	Peak
5	12426.6284	39.56	7.75	-41.12	45.50	51.69	74.00	22.31	Pass	Н	Peak
6	14898.7933	40.36	9.19	-42.31	45.50	52.74	74.00	21.26	Pass	Н	Peak
7	4924.0000	34.50	4.85	-40.56	51.82	50.61	74.00	23.39	Pass	V	Peak
8	7386.0000	36.49	5.85	-40.87	42.76	44.23	74.00	29.77	Pass	V	Peak
9	9848.0000	37.74	6.83	-40.54	41.41	45.44	74.00	28.56	Pass	V	Peak
10	11743.5829	39.09	7.47	-41.29	46.86	52.13	74.00	21.87	Pass	V	Peak
11	13075.6717	39.57	8.05	-41.65	45.63	51.60	74.00	22.40	Pass	V	Peak
12	15478.8319	40.88	9.16	-42.96	45.88	52.96	74.00	21.04	Pass	V	Peak

Mode	e :	802.11	g (6Mbps	s) Transmi	tting	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2903.3903	33.05	4.38	-42.18	51.75	47.00	74.00	27.00	Pass	Н	Peak
2	4824.0000	34.50	4.61	-40.65	50.72	49.18	74.00	24.82	Pass	Н	Peak
3	7236.0000	36.34	5.79	-40.99	43.82	44.96	74.00	29.04	Pass	Н	Peak
4	9648.0000	37.66	6.72	-40.73	42.48	46.13	74.00	27.87	Pass	Н	Peak
5	11674.5783	39.04	7.46	-41.32	46.45	51.63	74.00	22.37	Pass	Н	Peak
6	14458.7639	40.16	9.01	-42.18	45.95	52.94	74.00	21.06	Pass	Н	Peak
7	4824.0000	34.50	4.61	-40.65	53.62	52.08	74.00	21.92	Pass	٧	Peak
8	7236.0000	36.34	5.79	-40.99	42.72	43.86	74.00	30.14	Pass	V	Peak
9	9648.0000	37.66	6.72	-40.73	42.21	45.86	74.00	28.14	Pass	V	Peak
10	11686.5791	39.05	7.48	-41.32	46.30	51.51	74.00	22.49	Pass	٧	Peak
11	14180.7454	39.88	8.59	-41.63	45.16	52.00	74.00	22.00	Pass	V	Peak
12	15614.8410	41.13	9.73	-43.08	45.93	53.71	74.00	20.29	Pass	V	Peak

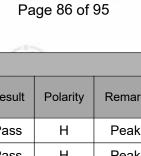
Page 84 of 95

Mode) :	802.11	g (6Mbps	s) Transmi	tting	Channel:		2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	4874.0000	34.50	4.78	-40.61	51.58	50.25	74.00	23.75	Pass	Н	Peak
2	7311.0000	36.41	5.85	-40.93	42.50	43.83	74.00	30.17	Pass	Н	Peak
3	9748.0000	37.70	6.77	-40.63	41.63	45.47	74.00	28.53	Pass	Н	Peak
4	11723.5816	39.08	7.48	-41.30	45.75	51.01	74.00	22.99	Pass	Н	Peak
5	13587.7058	39.45	8.14	-41.18	44.39	50.80	74.00	23.20	Pass	Н	Peak
6	15156.8105	40.56	9.36	-42.53	44.94	52.33	74.00	21.67	Pass	Н	Peak
7	4874.0000	34.50	4.78	-40.61	51.71	50.38	74.00	23.62	Pass	V	Peak
8	6781.2521	36.01	5.66	-41.18	45.04	45.53	74.00	28.47	Pass	V	Peak
9	7311.0000	36.41	5.85	-40.93	43.34	44.67	74.00	29.33	Pass	V	Peak
10	9748.0000	37.70	6.77	-40.63	43.44	47.28	74.00	26.72	Pass	V	Peak
11	12202.6135	39.42	7.67	-41.16	44.98	50.91	74.00	23.09	Pass	V	Peak
12	14216.7478	39.92	8.63	-41.70	46.88	53.73	74.00	20.27	Pass	V	Peak

Mode:		802.11 g (6Mbps) Transmitting				Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2960.9961	33.14	4.43	-42.14	54.01	49.44	74.00	24.56	Pass	Н	Peak
2	4924.0000	34.50	4.85	-40.56	51.79	50.58	74.00	23.42	Pass	Н	Peak
3	7113.2742	36.21	5.73	-41.09	45.43	46.28	74.00	27.72	Pass	Н	Peak
4	7386.0000	36.49	5.85	-40.87	42.71	44.18	74.00	29.82	Pass	Н	Peak
5	9848.0000	37.74	6.83	-40.54	41.65	45.68	74.00	28.32	Pass	Н	Peak
6	11407.5605	38.84	7.44	-41.33	44.48	49.43	74.00	24.57	Pass	Н	Peak
7	4924.0000	34.50	4.85	-40.56	49.88	48.67	74.00	25.33	Pass	V	Peak
8	7386.0000	36.49	5.85	-40.87	43.51	44.98	74.00	29.02	Pass	V	Peak
9	9848.0000	37.74	6.83	-40.54	41.25	45.28	74.00	28.72	Pass	V	Peak
10	11762.5842	39.11	7.47	-41.29	45.58	50.87	74.00	23.13	Pass	V	Peak
11	12985.6657	39.60	8.29	-41.72	44.71	50.88	74.00	23.12	Pass	V	Peak
12	14954.7970	40.38	9.06	-42.32	46.03	53.15	74.00	20.85	Pass	V	Peak

Mode	Mode:		n (HT20)	(6.5Mbps)	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2961.1961	33.14	4.43	-42.14	52.91	48.34	74.00	25.66	Pass	Н	Peak
2	4824.0000	34.50	4.61	-40.65	54.01	52.47	74.00	21.53	Pass	Н	Peak
3	7236.0000	36.34	5.79	-40.99	43.43	44.57	74.00	29.43	Pass	Н	Peak
4	9648.0000	37.66	6.72	-40.73	42.16	45.81	74.00	28.19	Pass	Н	Peak
5	11287.5525	38.77	7.32	-41.27	44.68	49.50	74.00	24.50	Pass	Н	Peak
6	13647.7098	39.49	8.13	-41.20	45.57	51.99	74.00	22.01	Pass	Н	Peak
7	4824.0000	34.50	4.61	-40.65	52.07	50.53	74.00	23.47	Pass	V	Peak
8	7236.0000	36.34	5.79	-40.99	42.88	44.02	74.00	29.98	Pass	V	Peak
9	9648.0000	37.66	6.72	-40.73	41.85	45.50	74.00	28.50	Pass	V	Peak
10	11683.5789	39.05	7.47	-41.32	45.58	50.78	74.00	23.22	Pass	V	Peak
11	14196.7465	39.90	8.65	-41.67	44.53	51.41	74.00	22.59	Pass	V	Peak
12	15869.8580	41.64	10.23	-43.27	44.40	53.00	74.00	21.00	Pass	V	Peak

Mode:		802.11 n (HT20) (6.5Mbps)				Channel:		2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2951.7952	33.12	4.41	-42.15	55.64	51.02	74.00	22.98	Pass	Н	Peak
2	3362.0241	33.34	4.53	-41.90	49.49	45.46	74.00	28.54	Pass	Н	Peak
3	4874.0000	34.50	4.78	-40.61	51.47	50.14	74.00	23.86	Pass	Н	Peak
4	7311.0000	36.41	5.85	-40.93	43.27	44.60	74.00	29.40	Pass	Н	Peak
5	9748.0000	37.70	6.77	-40.63	41.16	45.00	74.00	29.00	Pass	Н	Peak
6	11673.5782	39.04	7.46	-41.32	45.25	50.43	74.00	23.57	Pass	Н	Peak
7	2961.7962	33.14	4.44	-42.15	51.72	47.15	74.00	26.85	Pass	V	Peak
8	4874.0000	34.50	4.78	-40.61	50.59	49.26	74.00	24.74	Pass	V	Peak
9	7311.0000	36.41	5.85	-40.93	44.25	45.58	74.00	28.42	Pass	V	Peak
10	9748.0000	37.70	6.77	-40.63	43.25	47.09	74.00	26.91	Pass	V	Peak
11	12840.6560	39.60	7.89	-41.53	46.51	52.47	74.00	21.53	Pass	V	Peak
12	15664.8443	41.23	9.79	-43.11	45.72	53.63	74.00	20.37	Pass	V	Peak



Mode:		802.11 n (HT20) (6.5Mbps)				Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	4924.0000	34.50	4.85	-40.56	50.64	49.43	74.00	24.57	Pass	Н	Peak
2	7386.0000	36.49	5.85	-40.87	43.34	44.81	74.00	29.19	Pass	Н	Peak
3	9848.0000	37.74	6.83	-40.54	41.14	45.17	74.00	28.83	Pass	Н	Peak
4	11703.5802	39.06	7.49	-41.31	46.36	51.60	74.00	22.40	Pass	Н	Peak
5	13862.7242	39.62	8.35	-41.25	45.65	52.37	74.00	21.63	Pass	Н	Peak
6	16012.8675	41.91	10.09	-43.38	44.60	53.22	74.00	20.78	Pass	Н	Peak
7	4924.0000	34.50	4.85	-40.56	50.44	49.23	74.00	24.77	Pass	V	Peak
8	7386.0000	36.49	5.85	-40.87	42.17	43.64	74.00	30.36	Pass	V	Peak
9	9848.0000	37.74	6.83	-40.54	42.01	46.04	74.00	27.96	Pass	V	Peak
10	11596.5731	38.98	7.47	-41.35	44.88	49.98	74.00	24.02	Pass	V	Peak
11	13400.6934	39.44	8.19	-41.27	44.50	50.86	74.00	23.14	Pass	V	Peak
12	15523.8349	40.95	9.37	-43.01	45.74	53.05	74.00	20.95	Pass	V	Peak

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40),and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

