

FCC Measurement/Technical Report on

Infotainment device

NIT

FCC ID: 2AUGZNIT
IC: 25426-NIT

Test Report Reference: MDE_FAKT_1901_FCC05_rev1

Test Laboratory:

7layers GmbH
Borsigstrasse 11
40880 Ratingen
Germany

Deutsche
Akkreditierungsstelle
D-PL-12140-01-01
D-PL-12140-01-02
D-PL-12140-01-03

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350

Geschäftsführer/

Managing Directors:
Frank Spiller
Bernhard Retka
Alexandre Norré-Oudard

Registergericht/registered:

Düsseldorf HRB 75554
USt-Id.-Nr./VAT-No. DE203159652
Steuer-Nr./TAX-No. 147/5869/0385

a Bureau Veritas

Group Company

www.7layers.com

Table of Contents

1 Applied Standards and Test Summary	3
1.1 Applied Standards	3
1.2 FCC-IC Correlation Table	4
1.3 Measurement Summary / Signatures	7
2 Revision History	8
3 Administrative Data	9
3.1 Testing Laboratory	9
3.2 Project Data	9
3.3 Applicant Data	9
3.4 Manufacturer Data	9
4 Test object Data	10
4.1 General EUT Description	10
4.2 EUT Main components	10
4.3 Ancillary Equipment	11
4.4 Auxiliary Equipment	11
4.5 EUT Setups	11
4.6 Test Channels	12
4.7 Product labelling	12
5 Test Results	13
5.1 Peak Power Output	13
5.2 Maximum Conducted Output Power	15
5.3 Field strength of spurious radiation	18
6 Test Equipment	26
7 Antenna Factors, Cable Loss and Sample Calculations	31
7.1 LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	31
7.2 Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	32
7.3 Antenna R&S HL562 (30 MHz – 1 GHz)	33
7.4 Antenna R&S HF907 (1 GHz – 18 GHz)	34
7.5 Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	35
7.6 Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	36
8 Setup Drawings	37
9 Photo Report	37
10 Measurement Uncertainties	38

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§2.947 (f) – Composite system

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Part 15, Subpart E – Unlicensed National Information Infrastructure Devices

§ 15.403 Definitions

§ 15.407 General technical requirements

Notes:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02"

The tests were selected and performed with reference to the FCC Public Notice "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02 General U-NII Test Procedures New Rules v02r01, 2017-12-14".

ANSI C63.10-2013 is applied.

FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules") is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

**Correlation of measurement requirements for
UNII / LE-LAN (e.g. WLAN 5 GHz) equipment
from FCC and IC**

UNII equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.403 (i) (26 dB) / § 15.407 (e) (6 dB)	RSS-247 Issue 2: 6.2.1.1, 6.2.2.1, 6.2.3.1 (99%) RSS-247 Issue 2: 6.2.4.1 (6 dB)
Maximum conducted output power	§ 15.407 (a) (1),(2),(3),(4)	RSS-247 Issue 2: 6.2.1.1, 6.2.2.1, 6.2.3.1, 6.2.4.1
Maximum power spectral density	§ 15.407 (a) (1),(2),(3),(5)	RSS-247 Issue 2: 6.2.1.1, 6.2.2.1, 6.2.3.1, 6.2.4.1
Transmitter undesirable emissions; General Field Strength Limits, Restricted Bands	§ 15.407 (b) § 15.209 (a)	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-247 Issue 2: 3.3/6.2 6.2.1.2, 6.2.2.2, 6.2.3.2, 6.2.4.2
Frequency stability	§ 15.407 (g)	RSS-Gen Issue 5: 6.11/8.11
Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	§ 15.407 (h)	RSS-247 Issue 2: 6.2.2.1, 6.2.3.1, 6.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

**Correlation of measurement requirements for
DTS (e.g. WLAN 2.4 GHz, BT LE) equipment
from FCC and IC**

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

**Correlation of measurement requirements for
FHSS (e.g. Bluetooth®) equipment
from FCC and IC**

FHSS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
Peak conducted output power	§ 15.247 (b) (1), (4)	RSS-247 Issue 2: 5.4 (b)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Channel separation	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-247 Issue 2: 5.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15

§ 15.247 (b) (1) (2)

Subpart C §15.247

Peak Power Output

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Date	Final Result	
			FCC	IC
Radio Technology, Operating Frequency, Measurement method				
Bluetooth BDR, high, conducted	S2_BB02	2019-12-18	Passed	Passed
Bluetooth BDR, low, conducted	S2_BB02	2019-12-18	Passed	Passed
Bluetooth BDR, mid, conducted	S2_BB02	2019-12-18	Passed	Passed

47 CFR CHAPTER I FCC PART 15

§ 15.247 (b) (1) (2)

Subpart C §15.247

Peak Power Output

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Date	Final Result	
			FCC	IC
Radio Technology, Operating Frequency, Measurement method				
WLAN b-mode, high, conducted	S2_BB02	2019-12-18	Passed	Passed
WLAN b-mode, low, conducted	S2_BB02	2019-12-18	Passed	Passed
WLAN b-mode, mid, conducted	S2_BB02	2019-12-18	Passed	Passed

47 CFR CHAPTER I FCC PART 15

FCC §15.31, §15.407 (a)(1)

Subpart E §15.407

Maximum Conducted Output Power

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Date	Final Result	
			FCC	IC
Radio Technology, Operating Frequency, Subband				
WLAN a-mode, high, U-NII-1	S2_BB02	2019-12-17	Passed	Passed
WLAN a-mode, low, U-NII-2A	S2_BB02	2019-12-17	Passed	Passed
WLAN a-mode, mid, U-NII-2A	S2_BB02	2019-12-17	Passed	Passed
WLAN a-mode, high, U-NII-2A	S2_BB02	2019-12-17	Passed	Passed
WLAN a-mode, low, U-NII-2C	S2_BB02	2019-12-17	Passed	Passed
WLAN a-mode, mid, U-NII-2C	S2_BB02	2019-12-17	Passed	Passed
WLAN a-mode, high, U-NII-2C	S2_BB02	2019-12-17	Passed	Passed

47 CFR CHAPTER I FCC PART 15

FCC §§ 15.31, 15.247 (d), 15.209(a)

Subpart C §15.247

Field strength of spurious radiation

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Date	Final Result	
			FCC	IC
Radio Technology, Operating Frequency, Measurement method				
WLAN b-mode, 2412 MHz & BT GFSK, 2480 MHz, radiated Simultaneous Transmission	S2_BB02	2019-12-06	Passed	Passed

47 CFR CHAPTER I FCC PART 15
Subpart E §15.407
**FCC §§15.31, §15.407 (b)(1)-(4),
 15.247 (d), 15.209(a)**

Field strength of spurious radiation

The measurement was performed according to ANSI C63.10

OP-Mode

 Radio Technology, Operating Frequency,
 Measurement method, radiated

 WLAN a-mode, 5500 MHz &
 BT GFSK, 2440 MHz, radiated
 Simultaneous Transmission

Setup
Date
Final Result
FCC **IC**

S2_BB02

2019-12-06

Passed

Passed

2 REVISION HISTORY

Report version control			
Version	Release date	Change Description	Version validity
initial	2020-01-31	--	valid
rev1	2021-03-01	checked and updated reference: CFR 47 edition 10-1-19; checked and confirmed (unchanged): FCC-IC correlations are up-to-date; "regarding simultaneous transmission" added to comment below.	valid

COMMENT:

Not all applicable tests were performed, according to "KDB996369 D04 Module Integration Guide v01" only spot checks for conducted output power and field strength of spurious radiation regarding simultaneous transmission were performed.

 (responsible for accreditation scope)
 Dipl.-Ing. Marco Kullik

 (responsible for testing and report)
 Dipl.-Ing. Andreas Petz

 7 layers GmbH, Borsigstr. 11
 40880 Ratingen, Germany
 Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11
40880 Ratingen
Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS
D-PL-12140-01-01
D-PL-12140-01-02
D-PL-12140-01-03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2019-06-18

3.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Andreas Petz

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2021-03-01

Testing Period: 2019-12-06 to 2019-12-18

3.3 APPLICANT DATA

Company Name: FAKT S.r.l.

Address: Via Lithos, 53
25086 Rezzato (BS)

Contact Person: Italy
Mr. Nicola Scartapacchio

3.4 MANUFACTURER DATA

Company Name: ART S.p.A.

Address: Voc. Pischiello, 20
Passignano sul Trasimeno (PG)

Contact Person: Italy
Mr. Maurizio Marchetti

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Infotainment device
Product name	NIT
Type	NIT
Declared EUT data by the supplier	
Voltage Type	DC
Voltage Level	12 V
Tested Modulation Type	WLAN: a-mode BPSK, b-mode BPSK; Bluetooth: BDR GFSK
General product description	The EUT is vehicular infotainment device including Bluetooth and WLAN RF technologies.
Ports of the device	DC Cellular Antenna Bluetooth Antenna GPS Antenna AM/FM Antenna DAB Antenna
Tested data rates	WLAN: 1 Mbps, 6 Mbps; Bluetooth: 1 Mbps

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
bb02	DE1052014bb02	test sample
Sample Parameter	Value	
Serial No.	ASNIT007686	
HW Version	08	
SW Version	10000195	
Comment	-	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N , OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
Bluetooth/WiFi antenna	-, 4N0.035.500, -, -, -	external BT/WiFi antenna
GPS antenna	-, 8S7.035.503.B, -, -, -	external GPS antenna
AM/FM DAB antenna	-, 4S0.035.225.D 4S0.035.225.S, -, -, -	external combined broadcast receiver antenna
2/4Ω load	-, Audio load (self-made by manufacturer), -, -, -	artificial load

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S2_BB02	bb02 + all auxiliaries	conducted and radiated setup

4.6 TEST CHANNELS

BT Test Channels:
Channel:
Frequency [MHz]

2.4 GHz ISM		
2400 - 2483.5 MHz		
low	mid	high
0	39	78
2402	2441	2480

WLAN
20 MHz Test Channels:
Channel:
Frequency [MHz]

2.4 GHz ISM		
2400 - 2483.5 MHz		
low	mid	high
1	6	11
2412	2437	2462

U-NII-Subband 1 5150 - 5250 MHz			U-NII-Subband 2A 5250 - 5350 MHz			U-NII-Subband 2C 5470 - 5725 MHz			U-NII-Subband 3 5725 - 5850 MHz			Nom. BW
low	mid	high	low	mid	high	low	mid	high	low	mid	high	20 MHz
—	—	48	52	60	64	100	104	108	—	—	—	Ch. No.
—	—	5240	5260	5300	5320	5500	5520	5540	—	—	—	MHz

4.7 PRODUCT LABELLING

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 PEAK POWER OUTPUT

Standard **FCC Part 15 Subpart C**

The test was performed according to:

ANSI C63.10

5.1.1 TEST DESCRIPTION

FHSS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 3 MHz
- Video Bandwidth (VBW): 3 MHz
- Trace: Maxhold
- Sweeps: 2000
- Sweptime: 5 ms
- Detector: Peak

DTS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Trace: Maxhold
- Sweeps: 2000
- Sweptime: 5 ms
- Detector: Peak

The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth)

5.1.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

5.1.3 TEST PROTOCOL

Ambient temperature: 25 °C
 Humidity: 34 %

BT GFSK (1-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]
2.4 GHz ISM	0	2402	2.2
	39	2441	3.0
	78	2480	-0.3

WLAN b-mode

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	10.3	30.0	19.7
	6	2437	10.3	30.0	19.7
	11	2462	10.2	30.0	19.8

5.1.4 TEST EQUIPMENT USED

- R&S TS8997

5.2 MAXIMUM CONDUCTED OUTPUT POWER

Standard **FCC Part 15 Subpart E**

The test was performed according to:

ANSI C63.10

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyser was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyser via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 1 MHz
- Video Bandwidth (VBW): 3 MHz
- Trace: Average, RMS power averaging mode
- Sweeps: 100
- Sweptime: 5 ms
- Detector: RMS
- Trigger: gated mode

The channel power function of the spectrum analyser was used (Used channel bandwidth = nominal bandwidth)

Note:

The analyser settings are according FCC Public Note "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02", method **SA-1**.

5.2.2 TEST REQUIREMENTS / LIMITS

A) FCC

For systems using digital modulation techniques in the 5.15 – 5.25 GHz bands:

§15.407 (a) (1)

Limit: 50 mW (17 dBm) or $4 \text{ dBm} + 10 \log (26 \text{ dB bandwidth/MHz})$ whatever is the lesser.

FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules"):

§15.407 (a) (1) (i): Outdoor access point:

Limit: 1 W (30 dBm) provided the maximum antenna gain does not exceed 6 dBi.

The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

§15.407 (a) (1) (ii): Indoor access point:

Limit: 1 W (30 dBm) provided the maximum antenna gain does not exceed 6 dBi.

§15.407 (a) (1) (iv): Mobile and portable client devices:

Limit: 250 mW (24 dBm) provided the maximum antenna gain does not exceed 6 dBi.

For systems using digital modulation techniques in the 5.25 – 5.35 GHz and 5.47 – 5.725 GHz bands:

§15.407 (a) (2)

Limit: 250 mW (24 dBm) or $11 \text{ dBm} + 10 \log (26 \text{ dB bandwidth/MHz})$ whatever is the lesser.

For systems using digital modulation techniques in the 5.725 – 5.850 GHz bands:

§15.407 (a) (3)

Limit: 1 W (30 dBm) or $17 \text{ dBm} + 10 \log (26 \text{ dB bandwidth/MHz})$ whatever is the lesser.

FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules"):

§15.407 (a) (3):

Limit: 1 W (30 dBm).

§15.407 (a) (4):

The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1 (1), Band 5150-5250 MHz, indoor operation only:

Limit (e.i.r.p.): 200 mW (23 dBm) or $10 + 10 \log_{10} B$ [dBm], whichever power is less.
B is the 99% emission bandwidth in MHz.

RSS-247, 6.2.2 (1), Band 5250-5350 MHz:

Limits:

Maximum conducted Power: 250 mW (24 dBm) or $11 + 10 \log_{10} B$ [dBm], whichever power is less.

e.i.r.p.: 1.0 W (30 dBm) or $17 + 10 \log_{10} B$ [dBm], whichever power is less.

Note: For EUTs operating at a higher e.i.r.p. than 200 mW (23 dBm), compliance with the e.i.r.p. elevation mask is required.

RSS-247, 6.2.3 (1), Bands 5470-5600 MHz and 5650-5725 MHz:

Limits:

Maximum conducted Power: 250 mW (24 dBm) or $11 + 10 \log_{10} B$ [dBm], whichever power is less.

e.i.r.p.: 1.0 W (30 dBm) or $17 + 10 \log_{10} B$ [dBm], whichever power is less.

RSS-247, 6.2.4 (1), Band 5725-5825 MHz:

Limits:

Maximum conducted Power: 1W (30 dBm) or $17 + 10 \log_{10} B$ [dBm], whichever power is less.

e.i.r.p.: 4.0 W (36 dBm) or $23 + 10 \log_{10} B$ [dBm], whichever power is less.

All frequency bands: B is the 99% emission bandwidth in MHz.

5.2.3 TEST PROTOCOL

Ambient temperature: 25 °C
 Humidity: 34 %

WLAN a-mode

U-NII-Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]
1	48	5240	6.2
2A	52	5260	5.8
	60	5300	4.3
	64	5320	4.5
2C	100	5500	-0.1
	104	5520	0.2
	108	5540	0.0

5.2.4 TEST EQUIPMENT USED

R&S TS8997

5.3 FIELD STRENGTH OF SPURIOUS RADIATION

Standard **FCC Part 15 Subpart C**

The test was performed according to:

ANSI C63.10

5.3.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m² in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 - 0.15 MHz and 0.15 – 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak (9 kHz – 150 kHz, Peak / Average 150 kHz- 30 MHz)
- Frequency range: 0.009 – 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 - 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 – 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 – 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by $\pm 45^\circ$ around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by ± 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: $\pm 45^\circ$ around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90° .

The turn table step size (azimuth angle) for the preliminary measurement is 45° .

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna in step 2 is omitted. Instead of this, a maximum search with a step size $\pm 45^\circ$ for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^\circ$.

The elevation angle will slowly vary by $\pm 45^\circ$

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 1 MHz
- Measuring time: 1 s

5.3.2 TEST REQUIREMENTS / LIMITS

1) §15.247

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limits ($\text{dB}\mu$ V/m)
0.009 – 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 – 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limits ($\text{dB}\mu$ V/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 – 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit ($\text{dB}\mu$ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

2) §15.407

A) FCC

FCC Part 15 Subpart E, §15.407 (b)(1)

For transmitters operating in the 5150–5250 MHz band:

Limit: -27 dBm/MHz EIRP outside of the band 5150–5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(2)

For transmitters operating in the 5250–5350 MHz band:

Limit: -27 dBm/MHz EIRP outside of the band 5150–5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(3)

For transmitters operating in the 5470–5725 MHz band:

Limit: -27 dBm/MHz EIRP outside of the band 5470–5725 MHz.

FCC Part 15 Subpart E, §15.407 (b)(4)

For transmitters operating in the 5725–5850 MHz band:

Limit: -27 dBm/MHz EIRP outside of the band 5715–5860 MHz and additionally

Limit: -17 dBm/MHz EIRP within the frequency ranges 5715–5725 and 5850–5860 MHz.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1.2, Emissions outside the band 5150–5250 MHz, indoor operation only:

Limit: -27 dBm/MHz EIRP outside of the band 5150–5250 MHz.

RSS-247, 6.2.2.2, Emissions outside the band 5250–5350 MHz:

Limit: -27 dBm/MHz EIRP outside of the band 5250–5350 MHz.

RSS-247, 6.2.3.2, Emissions outside the bands 5470–5600 MHz and 5650–5725 MHz:

Limit: -27 dBm/MHz EIRP outside of the band 5470–5725 MHz.

However, devices with bandwidth overlapping the band edge of 5725 MHz can meet the emission limit of -27 dBm/MHz e.i.r.p. at 5850 MHz instead of 5725 MHz.

Note: No operation is permitted for the frequency range 5600–5650 MHz.

RSS-247, 6.2.4.2, Emissions outside the band 5725–5850 MHz:

- a. 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;
- b. 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;
- c. 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and
- d. -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

C) FCC & IC

FCC Part 15 Subpart E, §15.405

The provisions of §§ 15.203 and 15.205 are included.

§15.407 (b)(6)

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

§15.407 (b)(7)

The provisions of §15.205 apply to intentional radiators operating under this section

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limits ($\text{dB}\mu$ V/m)
0.009 – 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 – 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limits ($\text{dB}\mu$ V/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 – 26000	500@3m	3	54.0@3m
26000 – 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor:

- Limit ($\text{dB}\mu$ V/m) = $20 \log (\text{Limit} (\mu\text{V}/\text{m})/1\mu\text{V}/\text{m})$
- Limit ($\text{dB}\mu$ V/m) = EIRP [dBm] – $20 \log (d [\text{m}]) + 104.8$

Limit types (in result tables on next page):

RB – Emissions falls into a “Restricted Band” according FCC §§15.205 and 15.209 *)

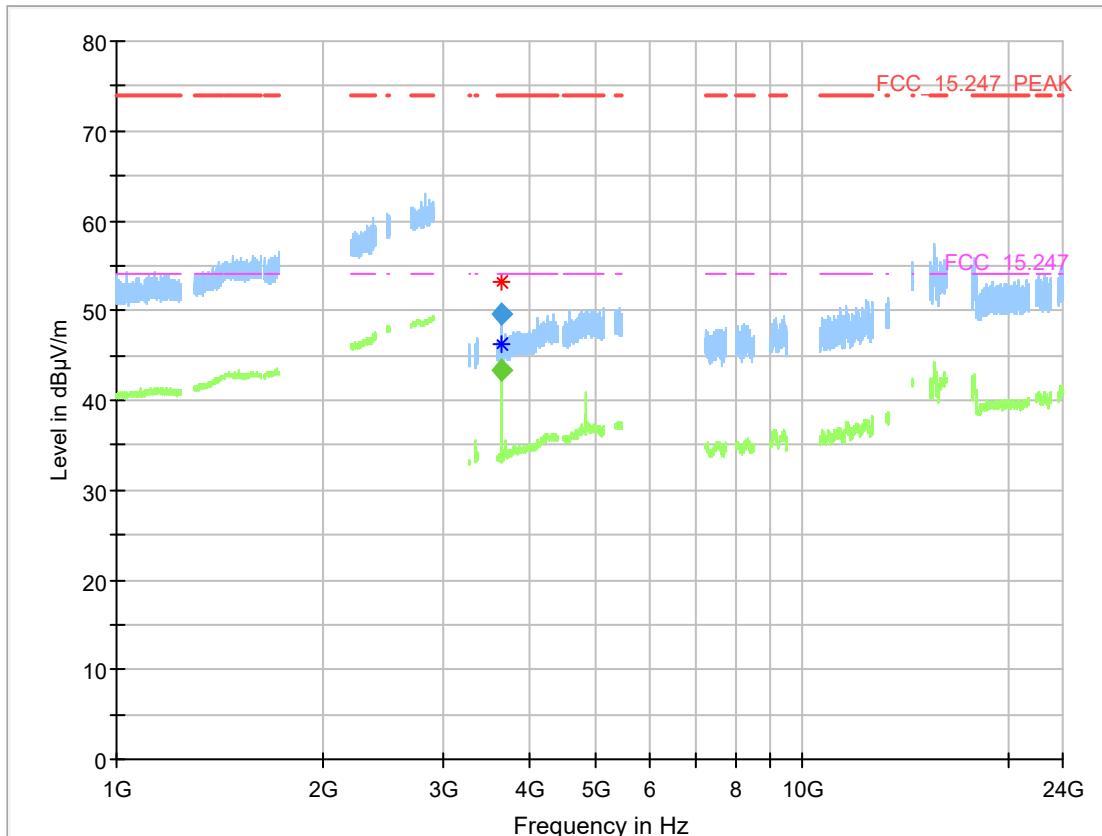
UE – “Undesirable Emission Limit” according FCC §15.407

BE-RB – Band Edge Limit basing on “Restricted Band Limits”

BE-UE – Band Edge Limit basing on “Undesirable Emission Limit”

*) Below 1 GHz the limits of §15.209 are applied for all frequencies.

5.3.3 TEST PROTOCOL

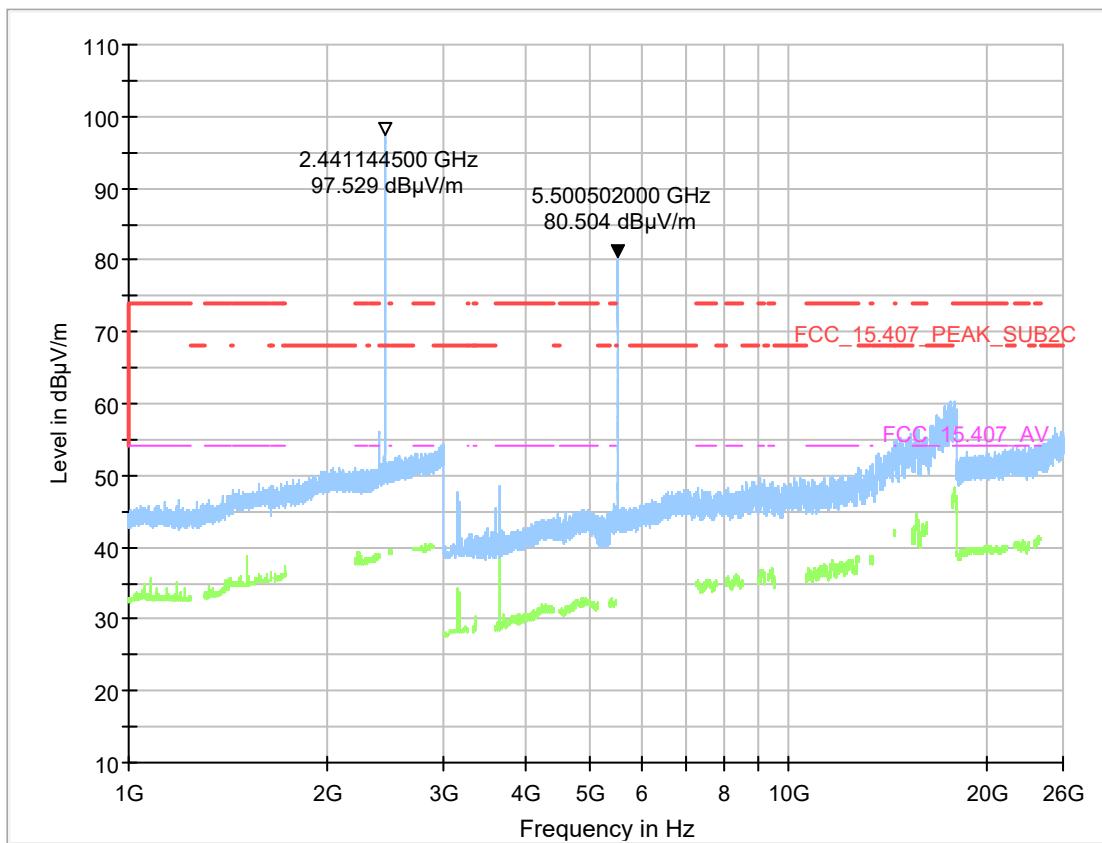

Temperature 24 °C

Humidity 33 %

Radio Technology	CH	Frequency /MHz	Detector	Resolution Bandwidth /kHz	Peak Value / dB μ V/m	Limit / dB μ V/m	Margin /dB	Limit refers to
WLAN 2.4 b & Bluetooth	WLAN CH 1 & BT CH 79	3650	Peak	1000	53.2	74.0	20.8	15.247
		3650	C-Average	1000	46.2	54.0	7.8	15.247
WLAN 5 a & Bluetooth	WLAN CH 100 & BT CH 39	–	–	–	–	–	> 20	15.407

5.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

WLAN 2.4 GHz & BT


Critical Freqs

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB μ V/m)	Margin	Meas. Time (ms)	Bandwidth	Height	Pol	Azimuth	Elevation
3650.000	---	46.2	54.00	8.42	---	---	150.0	H	-122.0	75.0
3650.000	53.2	---	74.00	23.85	---	---	150.0	V	-147.0	15.0

Final Result

Frequency (MHz)	MaxPeak (dB μ V/m)	CAverage (dB μ V/m)	Limit (dB μ V/m)	Margin	Meas. Time (ms)	Bandwidth	Height	Pol	Azimuth	Elevation
3650.000	---	43.4	54.00	10.64	1000.0	1000.000	150.0	H	-122.0	75.0
3650.000	49.5	---	74.00	24.48	1000.0	1000.000	150.0	V	-147.0	15.0

WLAN 5 GHz & BT

Remark: The two peaks (above the limits) are the wanted signals at the carrier frequencies.

5.3.5 TEST EQUIPMENT USED

Radiated Emissions

6 TEST EQUIPMENT

1 R&S TS8997
EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2018-04	2020-04
1.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.4	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2018-04	2020-04
1.5	A8455-4	4 Way Power Divider (SMA)		-		
1.6	Opus10 THI (8152.00)	ThermoHygro Datalogger 03	Lufft Mess- und Regeltechnik GmbH	ID 7482	2019-06	2021-06
1.7	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2019-11	2022-11
1.8	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2018-05	2021-05

2 Radiated Emissions
Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	NRV-Z1	Sensor Head A	Rohde & Schwarz GmbH & Co. KG	827753/005		
2.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2018-10	2020-10
2.3	Opus10 TPR (8253.00)	ThermoAirpressure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
2.4	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
2.5	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2018-06	2020-06
2.6	FS-Z60	Harmonic Mixer 40 - 60 GHz	Rohde & Schwarz Messgerätebau GmbH	100178	2016-12	2019-12
2.7	FS-Z220	Harmonic Mixer 140 - 220 GHz	Rohde & Schwarz Messgerätebau GmbH	101005	2017-03	2020-03

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.8	SGH-05	Standard Gain / Pyramidal Horn Antenna (140 - 220 GHz)	RPG-Radiometer Physics GmbH	075		
2.9	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2018-07	2021-07
2.10	AMF-7D00101800-30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
2.11	5HC2700/1275	High Pass Filter 0-1.5-KK	Trilithic	9942012		
2.12	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
2.13	Fully Anechoic Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001-PRB	2018-06	2020-06
2.14	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.15	WRD1920/198 0-5/22-5EESD	Tunable Band Reject Filter	Wainwright Instruments GmbH	11		
2.16	TDS 784C	Digital Oscilloscope [SA2] (Aux)	Tektronix	B021311		
2.17	foRS232 Unit 2	Fibre optic link RS232	PONTIS Messtechnik GmbH	4031516037		
2.18	PONTIS Con4101	PONTIS Camera Controller		6061510370		
2.19	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016		
2.20	OLS-1 R	Fibre optic link USB 1.1	Ingenieurbüro Scheiba	018		
2.21	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
2.22	JS4-18002600-32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.23	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2019-02	2021-02

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.24	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
2.25	SGH-19	Standard Gain / Pyramidal Horn Antenna (40 - 60 GHz)	RPG-Radiometer Physics GmbH	093		
2.26	WHKX 7.0/18G-8SS	High Pass Filter	Wainwright Instruments GmbH	09		
2.27	4HC1600/1275 0-1.5-KK	High Pass Filter	Trilithic	9942011		
2.28	WRCD1879.8-0.2/40-10EE	Notch Filter Ultra Stable	Wainwright Instruments GmbH	16		
2.29	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
2.30	JS4-00102600-42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.31	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.32	HL 562 Ultralog	Log.-per. Antenna	Rohde & Schwarz	100609	2019-05	2022-05
2.33	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001	2018-03	2021-03
2.34	FS-Z325	Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2017-03	2020-03
2.35	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.36	SGH-08	Standard Gain / Pyramidal Horn Antenna (90 - 140 GHz)	RPG-Radiometer Physics GmbH	064		
2.37	SGH-12	Standard Gain / Pyramidal Horn Antenna (60 - 90 GHz)	RPG-Radiometer Physics GmbH	326		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.38	Air compressor	Anechoic Chamber; 8.8m x 4.6 m x 4.05 m	JUN-AIR Deutschland GmbH	612582		
2.39	5HC3500/1800 0-1.2-KK	High Pass Filter	Trilithic	200035008		
2.40	FS-Z140	Harmonic Mixer 90 - 140 GHz	Rohde & Schwarz Messgerätebau GmbH	101007	2017-02	2020-02
2.41	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
2.42	Voltcraft M-3860M	Digital Multimeter 01 (Multimeter)	Conrad	IJ096055		
2.43	Opus10 THI (8152.00)	ThermoHygro Datalogger 12 (Environ)	Lufft Mess- und Regeltechnik GmbH	12482	2019-06	2021-06
2.44	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2019-01	2020-01
2.45	JS4-00101800-35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.46	AS 620 P	Antenna mast	HD GmbH	620/37		
2.47	6005D (30 V / 5 A)	Laboratory Power Supply 120 V 60 Hz	Peaktech	81062045		
2.48	Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	Maturo GmbH	TD1.5-10kg/024/3790 709		
2.49	SGH-03	Standard Gain / Pyramidal Horn Antenna (220 - 325 GHz)	RPG-Radiometer Physics GmbH	060		
2.50	FS-Z90	Harmonic Mixer 60 - 90 GHz	Rohde & Schwarz Messgerätebau GmbH	101686	2017-03	2020-03
2.51	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2018-01	2020-01
2.52	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
2.53	AFS42-00101800-25-S-42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.54	WRCA800/960 -0.2/40-6EEK	Tunable Notch Filter	Wainwright Instruments GmbH	20		
2.55	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/119 20513		
2.56	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ)

Frequency	Corr.	LISN insertion loss ESH3-Z5	cable loss (incl. 10 dB attenuator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

Sample calculation

$$U_{\text{LISN}} (\text{dB } \mu\text{V}) = U (\text{dB } \mu\text{V}) + \text{Corr. (dB)}$$

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Frequency	AF HFH-Z2)	Corr.	cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-40 dB/ decade)	d_{Limit} (meas. distance (limit))	d_{used} (meas. distance (used))
			dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)
 distance correction = $-40 * \text{LOG} (d_{\text{Limit}}/ d_{\text{used}})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

($d_{\text{Limit}} = 3 \text{ m}$)

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d_{Limit} (meas. distance (limit))	d_{used} (meas. distance (used))
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

($d_{\text{Limit}} = 10 \text{ m}$)

30	18.6	-9.9
50	6.0	-9.6
100	9.7	-9.2
150	7.9	-8.8
200	7.6	-8.6
250	9.5	-8.3
300	11.0	-8.1
350	12.4	-7.9
400	13.6	-7.6
450	14.7	-7.4
500	15.6	-7.2
550	16.3	-7.0
600	17.2	-6.9
650	18.1	-6.9
700	18.5	-6.8
750	19.1	-6.3
800	19.6	-6.3
850	20.1	-6.0
900	20.8	-5.8
950	21.1	-5.6
1000	21.6	-5.6

0.29	0.04	0.23	0.02	-10.5	10	3
0.39	0.09	0.32	0.08	-10.5	10	3
0.56	0.14	0.47	0.08	-10.5	10	3
0.73	0.20	0.59	0.12	-10.5	10	3
0.84	0.21	0.70	0.11	-10.5	10	3
0.98	0.24	0.80	0.13	-10.5	10	3
1.04	0.26	0.89	0.15	-10.5	10	3
1.18	0.31	0.96	0.13	-10.5	10	3
1.28	0.35	1.03	0.19	-10.5	10	3
1.39	0.38	1.11	0.22	-10.5	10	3
1.44	0.39	1.20	0.19	-10.5	10	3
1.55	0.46	1.24	0.23	-10.5	10	3
1.59	0.43	1.29	0.23	-10.5	10	3
1.67	0.34	1.35	0.22	-10.5	10	3
1.67	0.42	1.41	0.15	-10.5	10	3
1.87	0.54	1.46	0.25	-10.5	10	3
1.90	0.46	1.51	0.25	-10.5	10	3
1.99	0.60	1.56	0.27	-10.5	10	3
2.14	0.60	1.63	0.29	-10.5	10	3
2.22	0.60	1.66	0.33	-10.5	10	3
2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

$$E \text{ (dB } \mu\text{V/m)} = U \text{ (dB } \mu\text{V)} + AF \text{ (dB 1/m)} + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

distance correction = $-20 * \text{LOG} \left(\frac{d_{\text{Limit}}}{d_{\text{used}}} \right)$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

cable loss 1 (relay + cable inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit, attenuator & pre-amp)	cable loss 4 (to receiver)		
dB	dB	dB	dB		
0.99	0.31	-21.51	0.79		
1.44	0.44	-20.63	1.38		
1.87	0.53	-19.85	1.33		
2.41	0.67	-19.13	1.31		
2.78	0.86	-18.71	1.40		
2.74	0.90	-17.83	1.47		
2.82	0.86	-16.19	1.46		

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, attenuator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable loss 1 (relay inside chamber)	cable loss 2 (High Pass)	cable loss 3 (pre-amp)	cable loss 4 (inside chamber)	cable loss 5 (outside chamber)	cable loss 6 (to receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + \text{AF (dB 1/m)} + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)
 Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ – 26.5 GHZ)

Frequency	AF EMCO 3160-09	Corr.	cable	cable	cable	cable	cable
			loss 1 (inside chamber)	loss 2 (pre- amp)	loss 3 (inside chamber)	loss 4 (switch unit)	loss 5 (to receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ – 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.	cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d_{Limit} (meas. distance (limit))	d_{used} (meas. distance (used))
			dB	dB	dB	dB	m	m	
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

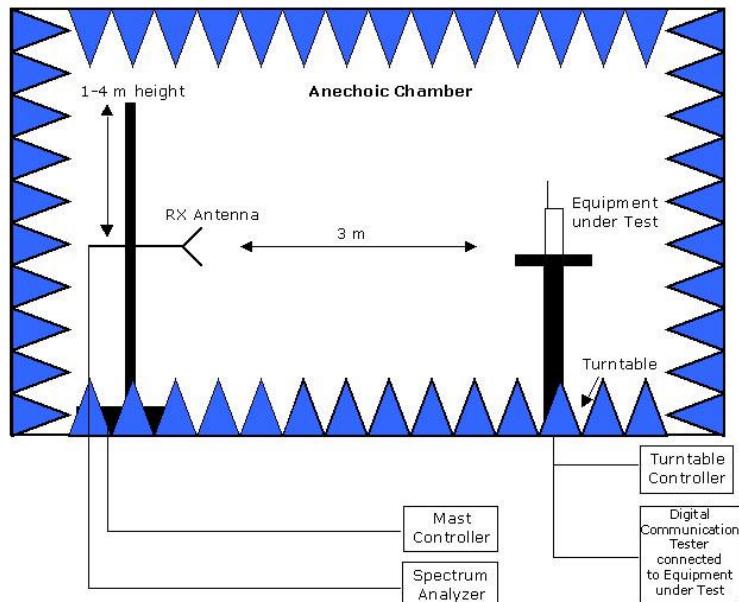
Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)


Linear interpolation will be used for frequencies in between the values in the table.

distance correction = $-20 * \text{LOG} (d_{\text{Limit}} / d_{\text{used}})$

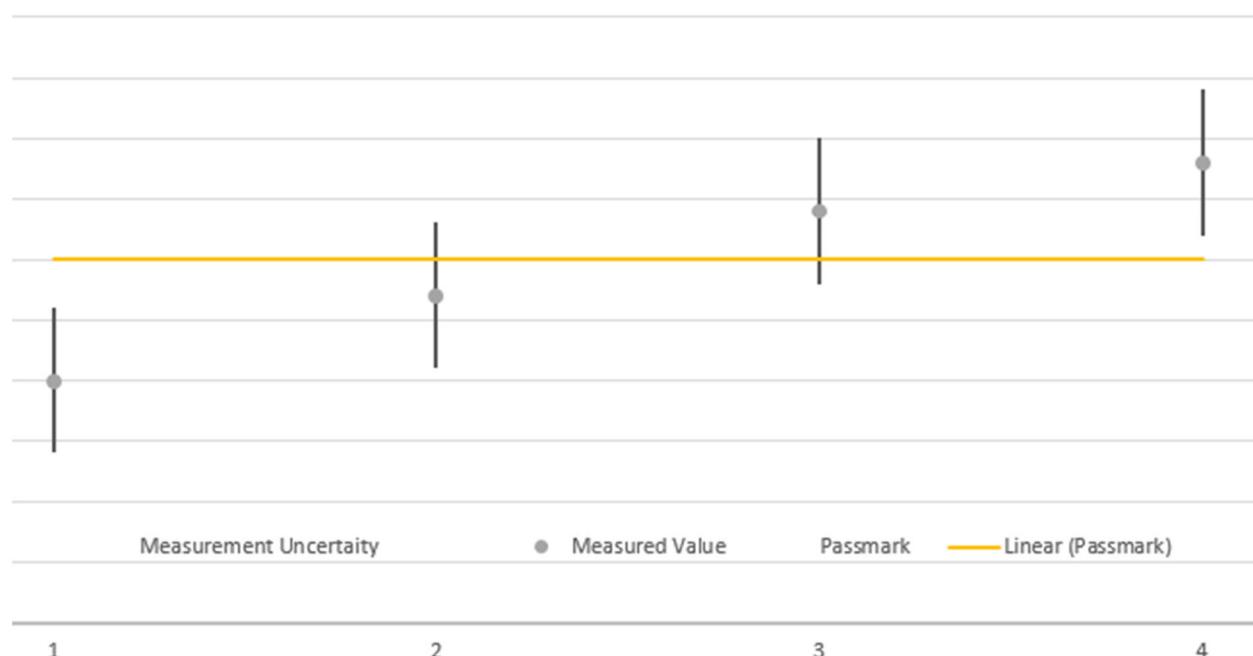
Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

8 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.


9 PHOTO REPORT

Please see separate photo report.

10 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) $k = 1.96$. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.