

Advanced
Compliance Laboratory

210 Cougar Court
Hillsborough, NJ 08844
Tel: (908) 927 9288
Fax: (908) 927 0728

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT
of
MULTIMEDIA READER
MODEL: MMR2.0
FCC ID: 2AUGM-MMR2.0

January 11, 2021

This report concerns (check one): Original grant Class II change
Equipment type: Low Power Intentional Radiator

Deferred grant requested per 47 CF 0.457(d)(1)(ii)? yes no
If yes, defer until: _____ (date)

Company agrees to notify the Commission by _____ (date)
of the intended date of announcement of the product so that the grant can be
issued on that date.

Transition Rules Request per 15.37? yes no
If no, assumed Part 15, Subpart B for unintentional radiators - the new 47 CFR
[10-1-90 Edition] provision.

Report prepared for: PARABIT SYSTEM, INC.
Report prepared by: Advanced Compliance Lab
Report number: 0048-201211-01-FCC-LF-15B

NVLAP[®]

Lab Code: 200101 The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications.....	5
1.3 Product Information.....	6
1.4 Test Methodology	6
1.5 Test Facility	6
1.6 Test Equipment	6
1.7 Statement for the Document Use	7
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification	9
3.2 Special Accessories	9
3.3 Configuration of Tested System	9
4. SYSTEM SCHEMATICS	12
5. CONDUCTED EMISSION DATA	13
5.1 Test Methods and Conditions	13
5.2 Test Data	13
6. RADIATED EMISSION DATA	15
6.1 Field Strength Calculation	15
6.2 Test Methods and Conditions	15
6.3 Test Data	15
6.4 Occupied Bandwidth	18
7. FREQUENCY TOLERANCE	19
8. MAXIMUM PERMISSIBLE EXPOSURE	21
9. PHOTOS OF TESTED EUT	Error!

Bookmark not defined.

Figures

Figure 2.1 FCC ID Label.....	8
Figure 2.2 Location of Label on Back of the EUT	8
Figure 3.1 Radiated Test Setup.....	10
Figure 3.2 Conducted Test Setup	11
Figure 3.3 Frequency Tolerance Test Setup.....	11
Figure 4.1 EUT Schematics.....	12
Figure 5.1 Line Conducted.....	14
Figure 5.2 Neutral Conducted	14
Figure 6.1 Bandwidth Plot	18
Figure 9.x EUT Photos	23+

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: Multimedia READER

Model: MMR2.0

Applicant: PARABIT SYSTEM, INC.

Test Type: FCC Part 15C CERTIFICATION
FCC Part 15B, Class A (for digital circuitry)

Result: PASS

Tested by: ADVANCED COMPLIANCE LABORATORY

Test Date: December 11, 2020 - January 11, 2021

Report Number: 0048-201211-01-FCC-LF-15B

The above equipment was tested by Compliance Laboratory, Advanced Technologies, Inc. for compliance with the requirement set forth in the FCC rules and regulations Part 15 subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	± 2.36	± 2.99	± 1.83

Wei Li
Lab Manager
Advanced Compliance Lab

Date: January 11, 2021

1.2 Equipment Modifications

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	FCC ID	CABLE
Product	READER MMR2.0 ⁽¹⁾	2AUGM-MMR2	
Housing	Plastic		
Power Supply	8.5Vdc		
Operation Freq.	13.56MHz		
Device Type	Sec. 15.225 Operation		

(1) EUT submitted for grant.

1.4 Test Methodology

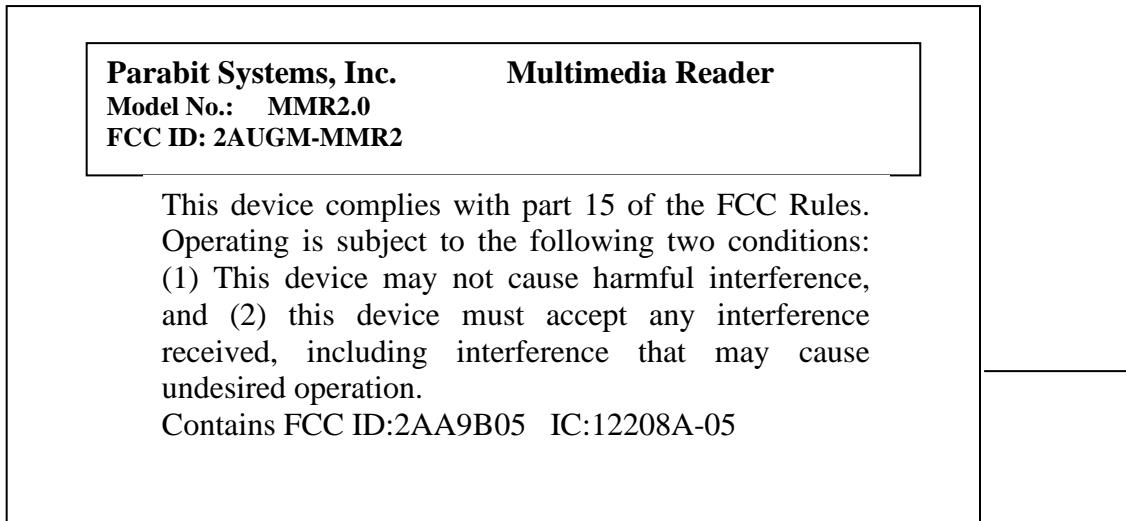
Radiated tests were performed according to the procedures in ANSI C63.4-2014 & ANSI C63.10-2013 at an antenna to EUT distance of 30 & 3 meters.

1.5 Test Facility

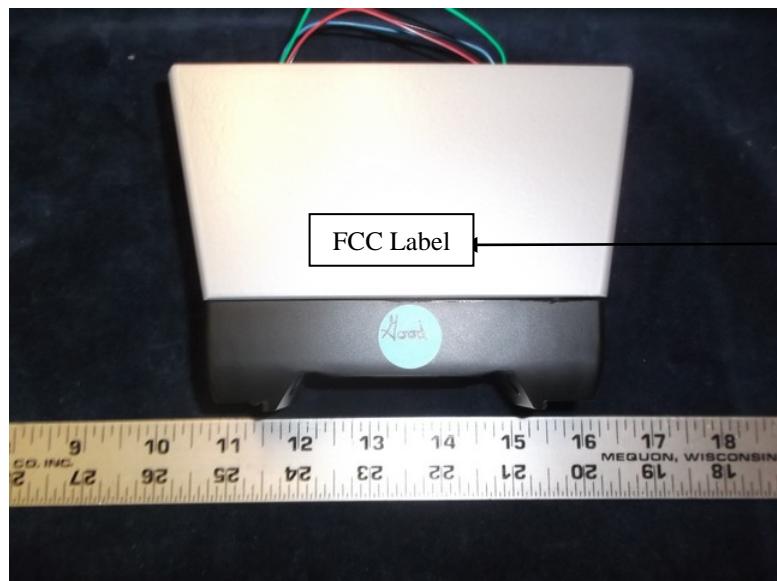
The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at Hillsborough, New Jersey. This site is accepted by FCC to perform measurements under Part 15 or 18 (US5347) and also designated by IC as “ site IC 3130A”. ACL is recognized by ISED as a wireless testing laboratory (CAB ID: US0100) . The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model		Serial No.	Description	Cal Due dd/mm/yy
Hewlett-Packard	HP8546A		3448A00290	EMI Receiver	25/09/21
Agilent	E4440A		US40420700	3Hz-26.5GHz Spectrum Analyzer	17/06/21
R & S	ESPI		100018	9KHz-7GHz EMI Receiver	25/08/21
EMCO	3104C		9307-4396	20-300MHz Biconical Antenna	12/11/21
EMCO	3146		9008-2860	200-1000MHz Log-Periodic Antenna	13/11/21
ARA	MWH-1826/B		1013	18-26GHz Horn Antenna	10/02/21
EMCO	3115		49225	Double Ridge Guide Horn Antenna	28/11/21


Electro-Meterics	ALR-25M/30		289	10KHz-30MHz Active Loop Antenna	28/05/21
ARA	MWH-1826/B		1013	18-26GHZ Horn Antena	10/02/21
COM-POWER	L1215A		191994	Line Impedance Stabilization Networks	24/03/21
Fischer Custom	LISN-2		900-4-0009	Line Impedance Stabilization Networks	18/03/21

All Test Equipment Used are Calibrated Traceable to NIST Standards.


1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

Figure 2.1 FCC ID Label

Figure 2.2 FCC ID Label Location

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it) . Testing was performed as EUT was operated continuously.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.X illustrate the system setup for testing.

Figure 3.1 Radiated Test Setup

N/A

Figure 3.2 Conducted Emission Test Setup

Figure 3.3 Frequency Tolerance Test Setup

4. SYSTEM SCHEMATICS

See Attachment.

Figure 4.1 System Schematics

5. CONDUCTED EMISSION DATA

5.1 Test Methods and Conditions

The EUT was under normal operational mode during the conducted emission test. EMI Receiver was scanned from 150KHz to 30MHz with maximum hold mode for maximum emission. Recorded data was sent to the plotter to generate output in linear format. At the input of the spectrum analyzer, a HP transient limiter is inserted for protective purpose. This limiter has a 10 dB attenuation in the range of 150KHZ to 30MHZ. That factor was automatically compensated by the receiver, so the readings are the corrected readings. The reference of the plot is the CISPR 22 Class A limit in Figure 5.1 through Figure 5.2.

Conducted Emission Technical Requirements				
	Class A		Class A	
Frequency Range	Quasi-Peak dBuV	Average dBuV	Quasi-Peak dBuV	Average dBuV
150kHz -0.5MHz	79 (8912uV)	66 (1995uV)	66-56	56-46
0.5MHz-30MHz	73 (4467uV)	60 (1000uV)	---	---
0.5MHz- 5MHz	---	---	56	46 (250uV)
5MHz-30MHz	---	---	60	50

Emissions that have peak values close to the specification limit (if any) may be also measured in the quasi-peak mode to determine compliance.

5.2 Test Data

Figure 5.1-5.2 show the neutral and line conducted emissions for the standard operation with antenna output attenuated.

Highest Data for AC Line Conducted Emissions, 120Vac Battery Charging Mode						
Frequency (MHz)	(Line)	(Line)	(Line)	(Neutral)	(Neutral)	(Neutral)
Peak/QP Reading (dBuV)*						
Average Reading (dBuV)*	N/A	N/A	N/A	N/A	N/A	N/A
Under FCC Part 15 Limit						

Test Personnel:

Tester Signature: _____

Date: _____

Typed/Printed Name: _____

Line Conducted Emission 150kHz-30MHz

N/A

Fig. 5.1 Conducted Emission-Line

Neutral Conducted Emission 150kHz-30MHz

N/A

Fig. 5.2 Conducted Emission- Neutral

----- **Section 5 is not applicable to this EUT .**

6. RADIATED EMISSION DATA

6.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

where FS: Corrected Field Strength in dB μ V/m

RA: Amplitude of EMI Receiver before correction in dB μ V

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

6.2 Test Methods and Conditions

The initial step in collecting radiated data is a EMI Receiver scan of the measurement range below 30MHz using peak/quasi-peak detector and 9KHz IF bandwidth / 30KHz video bandwidth with loop antenna. For the range 30MHz - 1GHz, 120KHz IF bandwidth / 120KHz video bandwidth are used. Both bandwidths are 1MHz for above 1GHz measurement. Frequency range from EUT's lowest crystal frequency to 10th harmonics of fundamental was investigated.

EUT was rotated all around and cables and equipment were placed and moved within the range of positions likely to find their maximum emissions. Antenna must be rotated about its Horizontal and Vertical positions to maximize emissions.

6.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 6.1.

Test Personnel: David Tu

Typed/Printed Name: David Tu

Date: January 11, 2021

Radiated Test Data

Emissions from 13.56MHz Transmitter for Part 15C

Emissions from 13.56MHz Transmitter for Part 15C

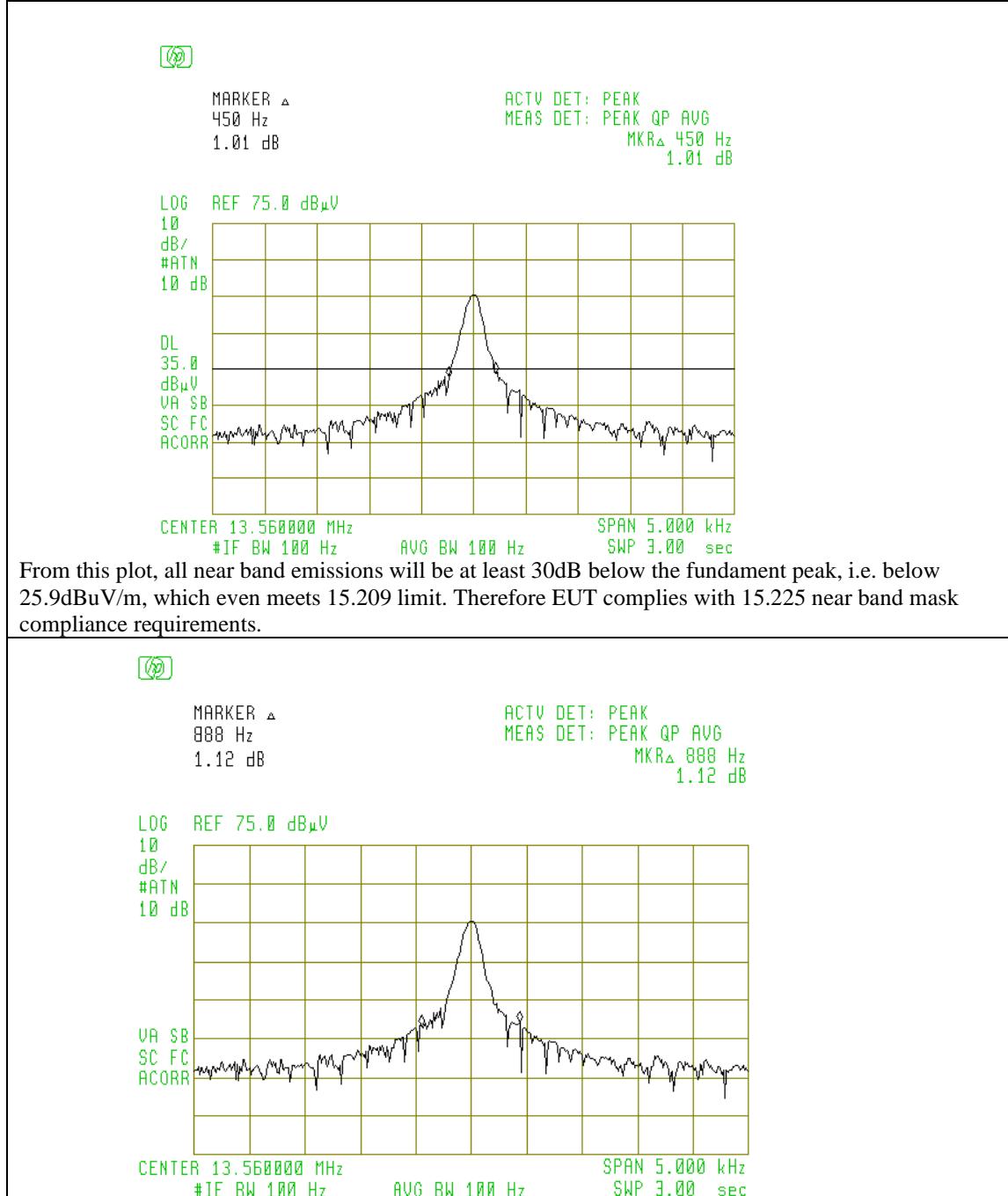
Frequency (MHz)	Polarity [H or V]	Height (m)	Azimuth (Degree)	Quasi-Peak Reading (dB μ V/m)	FCC 30m &3m Limit (dB μ V/m)	Difference from limit (dB)
13.56	H/V	1.0	000	55.1	84.0(1)	-28.9
27.20	H/V	1.0	000	26.4(3)	29.5(2)	-3.1
40.67	H	1.8	090	32.2*	40.0	-7.8
40.66	V	1.2	045	33.9*	40.0	-6.1

(1) Per 15.225(a): The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter (84dB μ V/m) at 30 meters.

(2) Per 15.225(d): The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in 15.209.

(3) The distance factor 19.1dB was applied to the this testing value as the measurement was adjusted from 30m to 10m distance in order to obtain the significant reading per 15.31(f).

Emissions from Digital Circuitry for Part 15B, Class A


Frequency (MHz)	Polarity [H or V]	Height (m)	Peak/QP Reading @10m (dB μ V/m)	FCC 10m Limit (dB μ V/m)	Difference from limit (dB)
163.7	H	1.8	34.0	43.5	-9.5
172.7	H	1.8	26.4	43.5	-17.1
177.4	H	1.8	28.1	43.5	-15.4
190	H	1.8	23.5	43.5	-20
408	H	1.0	39.0	46.4	-7.4
420	H	1.0	42.0*	46.4	-4.4
434	H	1.0	39.2	46.4	-7.2
705	H	1.0	39.6	46.4	-6.8
748	H	1.0	42.1*	46.4	-4.3
774	H	1.0	40.6	46.4	-5.8
1058	H	1.1	30.1	49.5	-19.4
39.6	V	1.1	24.8	39.1	-14.3
135.8	V	1.1	28.0	43.5	-15.5
163.9	V	1.1	28.8	43.5	-14.7
177.5	V	1.1	27.4	43.5	-16.1
189.8	V	1.1	29.7	43.5	-13.8
420	V	1.1	39.0	46.4	-7.4
434	V	1.1	37.4	46.4	-9.0
448	V	1.1	31.7	46.4	-14.7
460	V	1.1	31.9	46.4	-14.5
612	V	1.1	33.9	46.4	-12.5
638	V	1.1	32.0	46.4	-14.4
746	V	1.1	32.2	46.4	-14.2
1030	V	1.1	35.0	49.5	-14.5
1058	V	1.1	34.6	49.5	-14.9

*Peak /Quasi-peak /Average reading. For emissions that have peak values close to (or over) the specification limit (if any) will be also measured in the quasi-peak or average mode to determine the compliance. No other significant emissions were found in the rest frequency band.

** Radiated field Strength at 10m distance = Radiated field Strength at 3m distance - 10.5 dB μ V/m
 used for low level signals with high level ambient.

6.4 Occupied Bandwidth

Bandwidth is determined at the points 20dB down from the modulated carrier. Figure 6.1 shows the occupied bandwidth plot.

Figure 6.1 Occupied Bandwidth

7. FREQUENCY TOLERANCE

Name of Test:	<i>Frequency Tolerance</i>	Test Standard:	<i>15.225</i>
Tested By:		Test Date:	

Minimum Standard: Para 15.225(e) The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Method of Measurement: Frequency Stability With Voltage Variation:
The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. Set SA resolution bandwidth low enough (30Hz) to obtain the desired frequency resolution. (Using frequency counter method: The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10MHz ref. in of the signal generator). With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation:

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied from -20 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

Test Result: **Complies**

Test Data: See Attached Table(s)

- temperature variation: -20°C to +50°C
- voltage variation: 7.26 Vdc to 9.78 Vdc
- frequency tolerance: +/- 1.356 kHz (+/- 0.01%)

Frequency Stability versus Environmental Temperature

Reference Frequency @ 8.5V & +20°C		
Temperature & Direction (°C)	Frequency (MHz)	Deviation (Hz)
-20	13.560136	
+20	13.560053	
+50	13.560102	

Frequency Stability versus DC Voltage

Reference Frequency @ 115VAC & +20°C		
Voltage & Direction (VDC)	Frequency (MHz)	Deviation (Hz)
7.26	13.560036	
8.5	13.560354	
9.78	13.560035	

8. MAXIMUM PERMISSIBLE EXPOSURE

Name of Test:	<i>Radio Frequency Exposure</i>	Test Standard:	<i>FCC OET Bulletin 65 &RSS-GEN& RSS-102</i>
Tested By:		Test Date:	

Minimum Standard: For FCC, per Public Exposure to Radio Frequency Energy Levels (1.1307 (b)(1))
Limits:

From §1.1310 Table 1 (B), for Public $S = 1.0 \text{ mW/cm}^2$;
for Professional, $S = 5.0 \text{ mW/cm}^2$.

For IC: per RSS-102, Sec. 2.5.2, Exemption Limits for Routine Evaluation, with formula of $1.31 \times 10^{-2} f^{0.6834} \text{ W}$, more restricted EIRP limit value are 1.37W at 902MHz, 2.67W at 2400MHz, 4.52W at 5180MHz.

Method of Measurement:

$$d = 0.282 * 10^{((P + G) / 20) / \sqrt{S}} \quad \text{Equation (1)}$$
$$S = 0.0795 * 10^{((P + G) / 10) / d^2} \quad \text{Equation (2)}$$

where

d = MPE distance in cm
 P = Power in dBm
 G = Antenna Gain in dBi
 S = Power Density Limit in mW/cm^2

Equation (1) and the measured peak power is used to calculate the MPE distance.

Equation (2) and the measured peak power is used to calculate the Power density.

Test Result:

Complied with MPE limit

Calculation:

For FCC MPE compliance:

With co-location of EUT Tx and pre-certified RF module, the following calculation shows total RF exposure is still under the MPE limit:

For EUT Tx, max. level measured at 30m distance: 55.1 dB μ V/m, i.e. P+G= -0.1dBm

Plug all three items into equation (2), yielding,

Power Density Limit (mW/cm ²)	Output Power (dBm)	Antenna Gain (dBi)	Power Density at 20cm (mW/cm ²)	Max. EIRP (W)
0.2			2.1E-4	0.001

For RF module, made by Rigado LLC, BT Module, Model # BMD-350. (FCC ID:2AA9B05, IC:12208A-05).
Worst case MPE per report #CGZ3161014-01896-IFI:

Power Density Limit (mW/cm ²)	Output Power (dBm)	Antenna Gain (dBi)	Power Density at 20cm (mW/cm ²)	Max. EIRP (W)
1.0	-3.87	1.0	1.0E-4	0.0005

Thus, co-location calculations:

$$\Sigma MPE = 2.1E-4 \text{ mW/cm}^2 + 1.0E-4 \text{ mW/cm}^2 = 3.1E-4 \text{ mW/cm}^2 \text{ which is less than the limit}$$
$$1.0 \text{ mW/cm}^2$$

Additionally,

$$\Sigma SeqnSlimn = Seq1Slim1 + Seq2Slim2 \leq 1$$

$$\text{Herein } \Sigma SeqnSlimn = 2.1E-4/0.2 + 1.0E-4/1.0 = 2.05E-4 \leq 1$$