

Testing Tomorrow's Technology

Report of

**Title 47 USC, Part 2, Subpart J, Paragraph 2.907 Equipment Authorization of
Certification for an Intentional Radiator per Part 15, Subpart C, paragraphs 15.207,
15.209 and Part 15, Subpart F, paragraph 15.519, Technical requirements for hand
held UWB systems**

For the

Okyanus Teknoloji Bilgisayar ve Yazilim San. Tic.

**Model Number: MT-02BDC-IP
(Wireless Mobile Tag)**

FCC ID: 2AUFI-MT-02BDC-IP

UST Project: 19-0289

Report Issue Date: November 1, 2019

Total Pages in This Report: 28

**3505 Francis Circle Alpharetta, GA 30004
PH: 770-740-0717 Fax: 770-740-1508
www.ustech-lab.com**

I certify that I am authorized to sign for the Test Agency and that all of the statements in this report and in the Exhibits attached hereto are true and correct to the best of my knowledge and belief:

US TECH (Agent Responsible For Test):

By: Alan Ghasiani

Name: Alan Ghasiani

Title: Compliance Engineer – President

Date: November 1, 2019

NVLAP LAB CODE 200162-0

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government.

**3505 Francis Circle Alpharetta, GA 30004
PH: 770-740-0717 Fax: 770-740-1508
www.ustech-lab.com**

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUF1-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

MEASUREMENT TECHNICAL REPORT

COMPANY NAME: OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MODEL: MT-02BDC-IP

FCC ID: 2AUF1-MT-02BDC-IP

DATE: November 1, 2019

This report concerns (check one): Original grant Class 2 change

Equipment type: UWB Transmitter Hand-held use

Transmitter details:

UWB Transmitter

Date Rate: 110 kbps, 850 kbps, 6.8 Mbps (Highest data rate used for testing)

$F_M = 4478$ MHz

$F_C = 4528$ MHz

$F_H = 4833$ MHz

$F_L = 4223$ MHz

Summary of Test Results

FCC Rule	Description of Test	Result
Part 15.517(a)	Handheld considerations	PASS
Part 15.517(b)	UWB must be contained b/w 3.1 GHz to 10.6 GHz	PASS
Part 15.517(c)	Radiated emissions	PASS
Part 15.517(d)	Radiated emissions	PASS
Part 15.517(e)	Peak level emissions	PASS

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
MT-02BDC-IP

Table of Contents

<u>Paragraph Title</u>	<u>Page</u>
1 General Information.....	6
1.1 Purpose of this Report	6
1.2 Characterization of Test Sample.....	6
1.3 Product Description	6
1.4 Configuration of Tested System.....	6
1.5 Test Facility.....	6
1.6 Related Submittals.....	7
2 Tests and Measurements.....	8
2.1 Test Equipment.....	8
2.2 Modifications to EUT Hardware	9
2.3 Frequency Range of Radiated Measurements (Part 15.33, 15.521(h))	9
2.3.1 Intentional Radiator.....	9
2.4 Measurement Detector Function and Bandwidth (CFR 15.35)	9
2.4.1 Detector Function and Associated Bandwidth	9
2.4.2 Corresponding Peak and Average Requirements.....	9
2.5 EUT Antenna Requirements (CFR 15.203)	10
2.6 Restricted Bands of Operation (Part 15.205)	11
2.7 Intentional Radiator, Power Line Conducted Emissions (CFR 15.207).....	11
2.8 Intentional Radiator, Radiated Emissions (CFR 15.519 (e), 15.521 (g)).....	11
2.8.1 Pulse Repetition Frequency and Duty Cycle.....	13
2.9 UWB Bandwidth (CFR 15.519(b), 15.521(e))	15
2.10 UWB Purpose, Part 90 License, and Coordination (CFR 15.519 (a)).....	17
2.11 Unintentional Radiator, Power line Emissions (CFR 15.207, 15.521 (j)) .	19
2.12 Radiated Emissions at or Below 960 MHz (CFR 15.519(c), 15.209)	20
2.13 Radiated Emissions above 960 MHz (CFR 15.519(c), 15.521(d,g,h)).....	22
2.14 Radiated Emissions in the GPS band (CFR 15.519(d), 15.521(g))	24
2.15 Measurement Uncertainty	28
2.15.1 Conducted Emissions Measurement Uncertainty	28
2.15.2 Radiated Emissions Measurement Uncertainty	28

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
MT-02BDC-IP

List of Figures

Figures	Title	Page
Figure 1.	Block Diagram of Test Configuration	7
Figure 2.	Duty Cycle plot (TX OFF).....	13
Figure 3.	Duty Cycle Plot (TX ON) Single Pulse Width	14
Figure 4.	UWB f_L , f_M , f_H Measurement Plot	16
Figure 5.	EUT Time-Out Plot (Transmission Ceases within 10 Seconds).....	17
Figure 6.	Band 1164 - 1240 MHz (Vertical- worst case)	26
Figure 7.	Band 1559 - 1610 MHz (Vertical- worst case)	27

List of Tables

Table	Title	Page
Table 1.	EUT and Peripherals.....	7
Table 2.	Test Instruments	8
Table 3.	Allowed Antenna(s)	10
Table 4.	Intentional Radiated Emissions (CFR 15.519 (e))	12
Table 5.	Power Line Conducted Emissions	19
Table 6.	Radiated Emissions Test Data Below 960 MHz	21
Table 7.	Radiated Emissions above 960 MHz, CFR 15.519(c), 15.521(g).....	22
Table 8.	Radiated Emissions from Transmitter Above 960 MHz.....	23
Table 9.	Radiated Emissions in the GPS band (CFR 15.519 (d), 15.221(g)).....	24
Table 10.	Radiated Emissions per 15.517(d)	25

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
MT-02BDC-IP

1 General Information

1.1 Purpose of this Report

This report is prepared to show that the OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC. Model MT-02DC complies with the FCC Rules and Regulations of Part 15.519, Technical requirements for handheld UWB systems.

1.2 Characterization of Test Sample

The sample used for testing was received by US Tech on July 25, 2019 in good operating condition.

1.3 Product Description

The Equipment under Test (EUT) is the Okyanus Teknoloji Bilgisayar ve Yazılım San. Tic. Model MT-02BDC-IP mobile tag. The EUT is a part of the Wipelot solution family. The EUT sends signals to the high precision readers within the system to find distance between mobile tags and readers. The EUT sends signals to all fix readers to transmit emergency situations. The EUT is powered by an internal 4.2V Lithium Poly battery. The EUT incorporates two types of radio technology. The EUT operates in the 2.4 GHz band using IEEE 802.15.4(Zigbee) and 4.4 GHz (Ultra Wide Band).

This test report covers the UWB compliance testing. The evaluation of the 2.4 GHz (Zigbee) radio feature has been reported separately.

1.4 Configuration of Tested System

The Test Sample was tested per *ANSI C63.10:2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices* (2013) and per FCC Part 15 Subpart F.

A list of EUT and Peripherals is found in Table 1 below. A block diagram of the tested system is shown in Figure 1. Test configuration photographs are provided in separate Appendices.

1.5 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA 30004. This site has been fully described and registered with the FCC, with designation number 186022.

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUFI-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
MT-02BDC-IP

1.6 Related Submittals

The EUT is subject to the following FCC authorizations:

- a) Certification under Part 15 Subpart F as a UWB transmitter
- b) Verification under Part 15 Subpart B as a digital device.

The verification requirement shares many common report elements with the certification report therefore though this report is mostly intended to provide data for the certification process this data can also be used to show compliance to the requirements of the verification limits under Part 15 Subpart B.

Table 1. EUT and Peripherals

MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC/IC ID	CABLES P/D
(EUT) Okyanus Teknoloji Bilgisayar Ve Yazılım San. Tic	MT-02BDC-IP	Engineering Sample	2AUFI-MT- 02BDC-IP	--
Antenna See antenna details	--	--	--	--

S= Shielded, U= Unshielded, P= Power, D= Data

Figure 1. Block Diagram of Test Configuration

US Tech Test Report: FCC Part 15 Certification
 FCC ID: 2AUF1-MT-02BDC-IP
 Test Report Number: 19-0289
 Issue Date: November 1, 2019
 Customer: OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
 Model: MT-02BDC-IP

2 Tests and Measurements

2.1 Test Equipment

The table below lists test equipment used to evaluate this product. Model numbers, serial numbers and their calibration status are indicated.

Table 2. Test Instruments

TEST INSTRUMENT	MODEL NUMBER	MANUFACTURER	SERIAL NUMBER	CALIBRATION DUE DATE
SPECTRUM ANALYZER	E4407B	AGILENT	US41442935	8/17/2020 2 yr.
SPECTRUM ANALYZER	8593E	HEWLETT-PACKARD	3205A00124	10/25/2019
RF PREAMP 100 kHz to 1.3 GHz	8447D	HEWLETT-PACKARD	1937A02980	5/7/2020
PREAMP 1.0 GHz to 26.0 GHz	8449B	HEWLETT-PACKARD	3008A00480	4/8/2020
LOOP ANTENNA	6502	EMCO	9810-3246	1/22/2020 2 yr.
BICONICAL ANTENNA	3110B	EMCO	9307-1431	10/23/2019 2 yr
LOG PERIODIC ANTENNA	3146	EMCO	9305-3600	2/1/2021 2 yr
HORN ANTENNA	3115	EMCO	9107-3723	11/28/2020 2 yr

Note: The calibration interval of the above test instruments are 12 months unless stated otherwise and all calibrations are traceable to NIST/USA.

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
MT-02BDC-IP

2.2 Modifications to EUT Hardware

No physical modifications were made by US Tech in order to bring the EUT into compliance with FCC Part 15, Subpart F Intentional Radiator Limits for the transmitter portion of the EUT.

2.3 Frequency Range of Radiated Measurements (Part 15.33, 15.521(h))

2.3.1 Intentional Radiator

The spectrum shall be investigated for the intentional radiator from the lowest RF signal generated in the EUT, without going below 9 kHz to the 5th harmonic of the peak level of fundamental frequency generated or 40 GHz, whichever is the lowest.

The highest frequency used to determine the frequency range over which measurements are made shall be based on the center frequency (fc). If the center frequency is less than 10 GHz there is no requirement to measure beyond 40 GHz.

2.4 Measurement Detector Function and Bandwidth (CFR 15.35)

The radiated emissions limits shown herein are based on the following:
FCC Part 15.209, 15.517

2.4.1 Detector Function and Associated Bandwidth

On frequencies below 1000 MHz, the limits herein are based upon measurement equipment employing a CISPR Quasi-peak detector function and related measurement bandwidths (i.e. 9 kHz from 150 kHz to 30 MHz and 120 kHz from 30 MHz to 1000 MHz). Alternatively, measurements may be made with equipment employing a peak detector function as long as the same bandwidths specified for the Quasi-peak device are used.

2.4.2 Corresponding Peak and Average Requirements

Above 1000 MHz, radiated limits are based on measuring instrumentation employing an average detector function. When average radiated emissions are specified there is also a corresponding Peak requirement, as measured using a peak detector, of 20 dB greater than the average limit. For all measurements above 1000 MHz the Resolution Bandwidth shall be at least 1 MHz.

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUF1-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

2.5 EUT Antenna Requirements (CFR 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. Only the antenna(s) listed in Table 4 will be used with this module.

Table 3. Allowed Antenna(s)

REPORT REFERENCE	MANUFACTURER	TYPE OF ANTENNA	MODEL	GAIN dB _i	TYPE OF CONNECTOR
PCB Antenna	Taiyo Yuden	Chip	AH086M555003	2.7	SMD

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TIC.
MT-02BDC-IP

2.6 Restricted Bands of Operation (Part 15.205)

Only spurious emissions can fall in the frequency bands of CFR 15.205. The field strength of these spurious cannot exceed the limits of 15.209. Radiated harmonics and other Spurious are examined for this requirement see paragraph 2.1

2.7 Intentional Radiator, Power Line Conducted Emissions (CFR 15.207)

The EUT is battery powered. The EUT is indirectly connected the AC mains for testing purposes only. During normal operation the EUT is battery powered and will not be operated while directly or indirectly connected to the AC mains. This test was not applicable.

2.8 Intentional Radiator, Radiated Emissions (CFR 15.519 (e), 15.521 (g))

UWB devices where the highest radiated emission, f_M (The frequency at which the highest radiated emission occurs), is above 960 MHz have a limit on the peak level of the emission within a 50 MHz bandwidth of 0 dBm EIRP. A different RBW was used, therefore the peak emissions limit was adjusted per CFR 15.521 (g). The limit was also converted to peak field strength at 3 meters.

The antenna was positioned as it would be in normal operation and the fundamental emission was maximized to ensure the maximum reading and measured with the receiving antenna in both horizontal and vertical position. Below is the measured peak radiated emission at 3 meters.

RBW used: 5 MHz

$$\begin{aligned}\text{Peak EIRP Limit} &= 20 \log (\text{RBW}/50) \text{dBm EIRP} \\ &= 20 \log(5/50) \text{ dBm EIRP} \\ &= -20 \text{ dBm EIRP}\end{aligned}$$

$$\begin{aligned}\text{Peak Field Strength Limit} &= -20 \text{ dBm EIRP} + 95.2 \\ &= 75.2 \text{ dBuV/m}\end{aligned}$$

The EUT was tested pointing downwards and radiating into RF absorbing cones. That data is presented in the following:

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUF1-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

Table 4. Intentional Radiated Emissions (CFR 15.519 (e))

Frequency (MHz)	Distance / Polarization	Raw Test Data (dBuV)	Correction Factors (dB/m)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detection
4478.0	3.0m./VERT	61.89	6.56	68.45	75.2	6.7	PK
4478.0	3.0m./HORZ	66.14	6.55	72.69	75.2	2.5	PK

Note: Conducted RF output power level set to 0 dBm.

Sample Calculation at 4478.0 MHz:

Raw Test Data	61.89	dBuV
+ Correction Factors	6.56	dBm
Results	68.45	dBuV/m

Test Date: September 24, 2019

Tested By

Signature:

Name: Afzal Fazal

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
MT-02BDC-IP

2.8.1 Pulse Repetition Frequency and Duty Cycle

The device employs pulse modulation and has a repetition rate of 8.7 Hz. The pulse signal has been verified and plots of the pulse train used to calculate the pulse rate are provided below. The same plots are used to calculate the duty cycle of the emissions.

Pulse Rate: 8.7 Hz

Period= 115 mSec

Frequency= 1/seconds= 1/0.115 secs = 8.7 Hz

Duty Cycle correction factor: -27.4 dB

$20 \log (TX_{on}/TX_{on}+TX_{off}) = 20 \log (5.000ms/117.5ms) = -27.4 \text{ dB}$

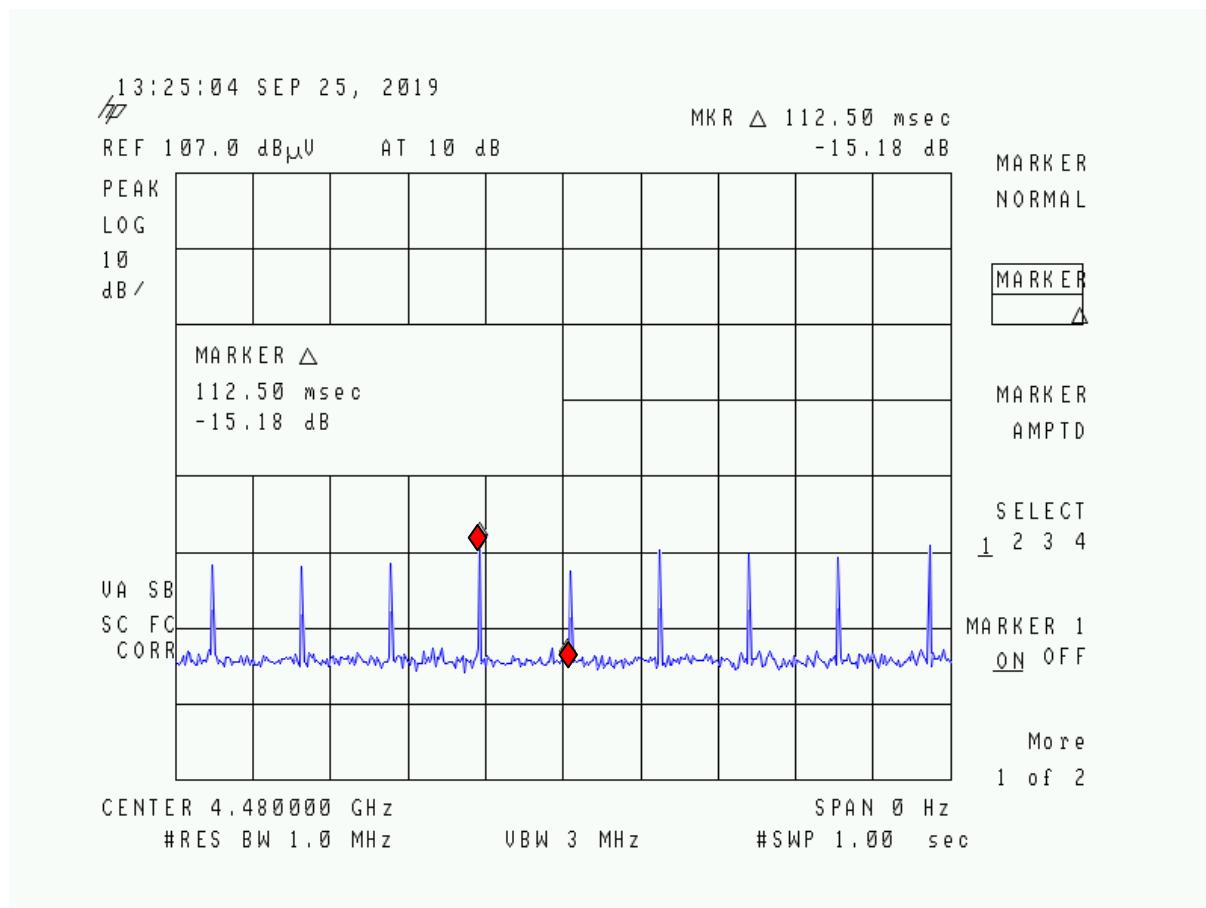


Figure 2. Duty Cycle Plot (TX OFF)

US Tech Test Report:

FCC ID:

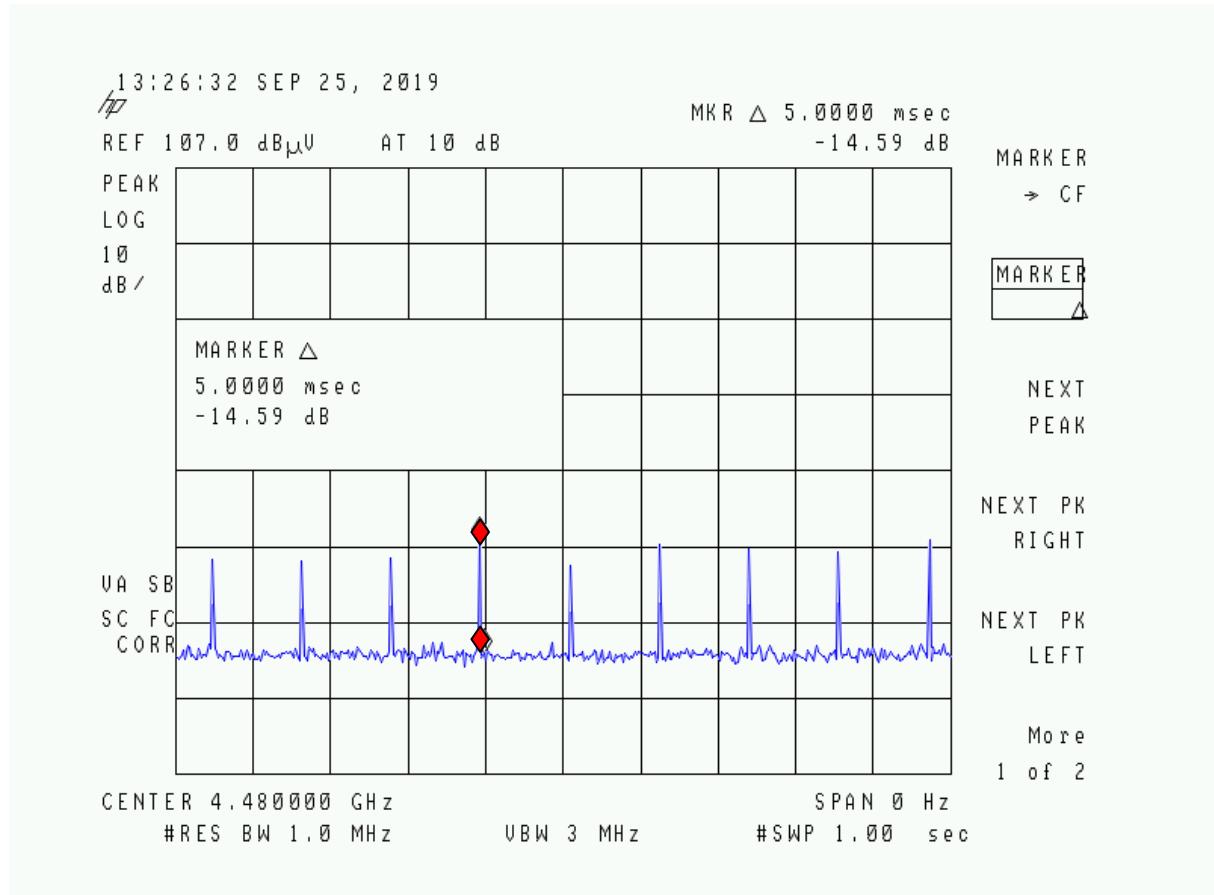
Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification


2AUFI-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

Figure 3. Duty Cycle Plot (TX ON) Single Pulse Width

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUF1-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

2.9 UWB Bandwidth (CFR 15.519(b), 15.521(e))

Bandwidth measurements were made in accordance with ANSI C63.10-2013 Clause 10.1. The bandwidth of an indoor UWB system under 15.517 must be below 10.6 GHz. The bandwidth is defined as the frequency band bounded by the points that are 10 db below the highest radiated emissions, as based on the complete transmission system including the antenna. The upper boundary is designated f_H and the lower boundary is designated f_L . The frequency at which the highest radiated emission occurs is designated f_M . If multiple bandwidths occur, then the maximum bandwidth is used.

The bandwidth was determined from a radiated measurement using the designated antenna with which EUT will operate in the final product. The receiving antenna's height was repeatedly varied from 1 m to 4 m and the polarity was adjusted several times. The turn table on which the EUT was placed was also rotated several times. This ensured that the true bandwidth of the EUT was measured. Below is the measured UWB bandwidth with the receiving antenna horizontal and vertical. Both polarities met the 10.6 GHz limit.

Bandwidth emissions are contained within 3.1 GHz to 10.6 GHz which meets the requirements of 15.517(b).

US Tech Test Report:

FCC ID:

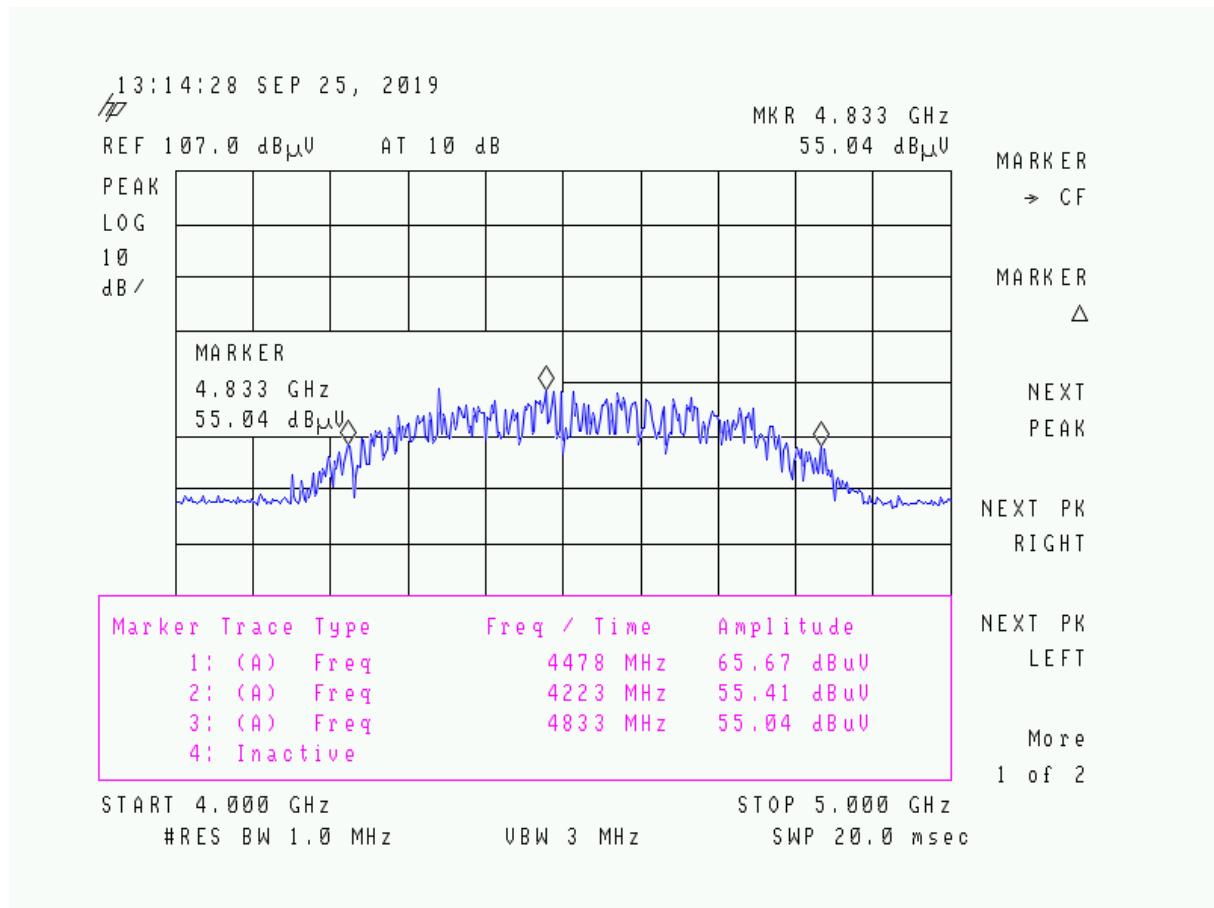
Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification


2AUFI-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

Figure 4. UWB f_L , f_M , f_H Measurement Plot

The EUT has a fractional bandwidth of > 0.20 when calculated using the formula referenced in 15.503(c): $2(F_H - F_L)/(F_H + F_L) = 2(4.833 - 4.223 \text{ GHz})/(4.833 + 4.223 \text{ GHz}) = 0.23, > 0.20$.

$$F_c = (F_H + F_L)/2 = (4.833 + 4.223)/2 = 4.528 \text{ GHz}$$

$$F_m = 4.478 \text{ GHz}$$

$$F_l = 4.223 \text{ GHz}$$

$$F_h = 4.833 \text{ GHz}$$

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUF1-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

2.10 UWB Purpose, Part 90 License, and Coordination (CFR 15.519 (a))

This device is designed to be used only in an handheld infrastructure as detailed in the User Guide provided in the submittal documentation. Without first setting up the network the device will not function as intended. The device is design such that it will not be intentionally directed outside of the building. There are no provisions for the use of outdoor mounting antennas. There are no provisions for the use of field disturbance sensors. The device is design such that it shall transmit only when the intentional radiator is sending information to an associated receiver.

In regards to the following requirements:

A UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting.

The device only broadcasts for 5 mili-seconds and if there is no acknowledgment it goes back to sleep mode. Details are found in the Theory of Operation exhibit for the device.

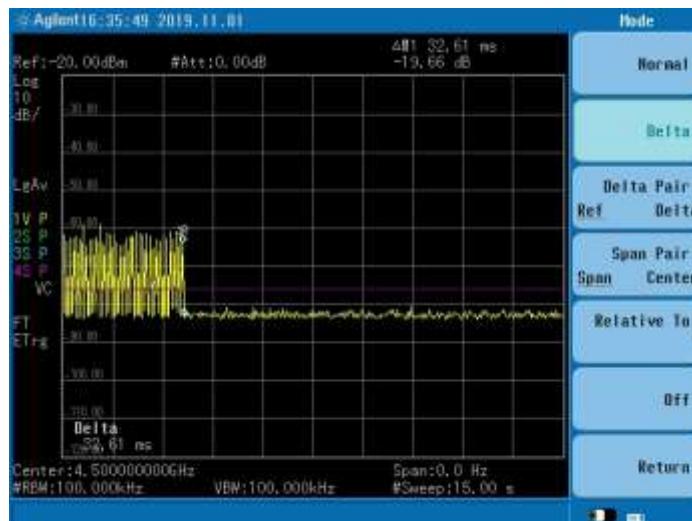


Figure 5. EUT Time-Out Plot (Transmission Ceases within 10 Seconds)

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUF1-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

The use of antennas mounted on outdoor structures, e.g., antennas mounted on the outside of a building or on a telephone pole, or any fixed outdoors infrastructure is prohibited. Antennas may be mounted only on the hand held UWB device.

There are no provisions for the use of outdoor mounting antennas. They system is designed around the use of transceiver devices that have their own integral antennas. No externally mounted antennas will be necessary for operation.

US Tech Test Report: FCC Part 15 Certification
 FCC ID: 2AUF1-MT-02BDC-IP
 Test Report Number: 19-0289
 Issue Date: November 1, 2019
 Customer: OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TIC.
 Model: MT-02BDC-IP

2.11 Unintentional Radiator, Power line Emissions (CFR 15.207, 15.521 (j))

The power line conducted voltage emission measurements have been carried out in accordance with CFR 15.207, per ANSI C63.10:2013, Clause 6.2, with a spectrum analyzer connected to an LISN and the EUT placed into a continuous Mode of transmission.

The EUT is battery operated and does not connect to the AC mains. The test was deemed not applicable.

Table 5. Power Line Conducted Emissions

CONDUCTED EMISSIONS 150 kHz to 30 MHz						
Tested By: AF	Specification Requirement: FCC Part 15.207	Project No.: 19-0289	Model: MT-02BDC-IP			
Frequency (MHz)	Test Data (dBuV)	LISN+CL (dB)	Corrected Results (dBuV)	Limits (dBuV)	Margin (dB)	Detector
This test was not applicable.						

Test Date: September 24, 2019

Tested By

Signature: Afzal Fazal

Name: Afzal Fazal

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
MT-02BDC-IP

2.12 Radiated Emissions at or Below 960 MHz (CFR 15.519(c), 15.209)

The radiated emissions at or below 960 MHz from the transmitter shall not exceed the emissions levels in CFR 15.209. Furthermore the emissions due to the digital circuitry of the EUT must also comply with the limits for 15.109.

The worst-case radiated emission for the EUT in the range of below 960 MHz was 6.9 dB below the limit at 702.70 MHz. All other radiated emissions were at least 8.1 dB below the limits. This data can be found in the tables below.

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUF1-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

Table 6. Radiated Emissions Test Data Below 960 MHz

Test By: AF	Test: FCC Part 15.209/519(c)							
	Project: 19-0289				Model: MT-02BDC-IP			
Frequency (MHz)	Test Data (dBuV)	Additional Factors	AF+CL-PA (dB)	Results (dBuV/m)	Limits (dBuV/m)	Distance / Polarization	Margin (dB)	DETECTOR PK / QP/AVG
Tested from 30 MHz to 960 MHz								
44.18	47.77	-	-15.92	31.85	40.0	3m./VERT	8.1	PK
85.91	44.58	-	-17.77	26.81	40.0	3m./HORZ	13.2	PK
85.91	47.73	-	-17.87	29.86	40.0	3m./VERT	10.1	PK
101.56	48.21	-	-16.26	31.95	43.5	3m./VERT	11.5	PK
702.70	42.28	-	-3.14	39.14	46.0	3m./VERT	6.9	PK
856.09	18.65	-	-0.65	18.00	46.0	3m./HORZ	28.0	QP

AF is antenna factor. CL is cable loss. PA is preamplifier gain.

SAMPLE CALCULATION AT: 44.18 MHz

Magnitude of Measured Frequency	47.77	dBuV
Additional Factor	0.00	dB
<u>+Antenna Factor + Cable Loss+ Amplifier Gain</u>	<u>-15.92</u>	<u>dB</u>
Corrected Result	31.85	dBuV/m

Test Date: September 24, 2019

Tested By

Signature:

Name: Afzal Fazal

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
MT-02BDC-IP

2.13 Radiated Emissions above 960 MHz (CFR 15.519(c), 15.521(d,g,h))

The radiated emissions above 960 MHz from the transmitter shall comply with the AVG limits in Table 7 when measured using a resolution bandwidth of 1 MHz. The following are the worst case emissions with the receiving antenna in both horizontal and vertical polarities. The emissions were maximized using a Peak detector, and the final measurement was taken using an Average detector.

Table 7. Radiated Emissions above 960 MHz, CFR 15.519(c), 15.521(g)

Frequency Range (MHz)	EIRP Limit (dBm)	Field Strength Limit at 3 meters (dBuV/m)
960 -1610	-75.3	19.9
1610 – 1990	-63.3	31.9
1990 – 3100	-61.3	33.9
3100 - 10600	-41.3	53.9
Above 10600	-61.3	33.9

The worst-case radiated emission for the EUT in the range above 960 MHz was 4.8 dB below the limit at 2980.00 MHz. All other radiated emissions were at least 5.3 dB below the CFR 15.519 limits. This data can be found in the table below.

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUFI-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

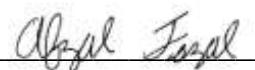
MT-02BDC-IP

Table 8. Radiated Emissions from Transmitter Above 960 MHz

Test By: AF	Test: FCC Part 15.519							
	Project: 19-0289				Model: MT-02BDC-IP			
Frequency (MHz)	Test Data (dBuV)	Additional Factors	AF+CL-PA (dB)	Results (dBuV/m)	Limits (dBuV/m)	Distance / Polarization	Margin (dB)	DETECTOR PK / QP/AVG
Tested above 960 MHz								
2979.00	31.30	-	-2.68	28.62	33.90	3.0m./HORZ	5.3	AVG
2980.00	31.70	-	-2.56	29.14	33.90	3.0m./VERT	4.8	AVG
4418.47	27.83	-	2.32	30.15	53.90	3.0m./VERT	23.8	AVG
4448.48	27.59	-	3.01	30.60	53.90	3.0m./HORZ	23.3	AVG
4507.50	27.43	-	3.13	30.56	53.90	3.0m./VERT	23.3	AVG
5100.00	40.65	-	6.08	46.73	53.90	3.0m./VERT	7.2	PK

Note: measurements taken at 1 meter were corrected using an inverse extrapolation factor of -9.5 dB to correct the value for 3 meters.

AF is antenna factor. CL is cable loss. PA is preamplifier gain.


SAMPLE CALCULATION AT: 2979.00 MHz

Magnitude of Measured Frequency	31.30	dBuV
Additional Factor	0.00	dB
+Antenna Factor + Cable Loss+ Amplifier Gain	-2.68	dB
Corrected Result	28.62	dBuV/m

Test Date: September 25, 2019

Tested By

Signature:

Name: Afzal Fazal

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TIC.
MT-02BDC-IP

2.14 Radiated Emissions in the GPS band (CFR 15.519(d), 15.521(g))

In addition to the radiated emissions limits from CFR 15.519(c), the transmitter shall not exceed the following average limits, in Table 9 when measured using a resolution bandwidth of no less than 1 kHz.

Note: measurements taken with a resolution bandwidth of greater than 1 kHz were corrected using the following equation: recorded measurement (dBuV) + 10 log (RBW_{ref}/RBW_{meas})

Table 9. Radiated Emissions in the GPS band (CFR 15.519 (d), 15.221(g))

Frequency Range (MHz)	EIRP Limit (dBm)	Field Strength Limit at 3 meters (dBuV/m)
1164-1240	-85.3	9.9
1559-1610	-85.3	9.9

The EUT was configured according to ANSI C63.10, Clause 10. During the testing the EUT was rotated 360 degrees and the receive antenna was elevated between 1m and 4m to measure and record the maximum emissions being generated by the EUT. The receive antenna was oriented in both the horizontal and vertical polarities. The worst case data is recorded and presented in the tables following.

In each of these bands, the emissions from the transmitter were maximized using a larger bandwidth and the peak detector, then the resolution bandwidth was decreased and the final measurement was taken using the average detector. The spectrum analyzer settings were set to the following parameters:

Frequency start and stop: 1164 MHz to 1240 MHz and 1559 MHz to 1610 MHz. The resolution bandwidth was set to 1 kHz or 3 kHz. When the measurements were performed at 3 kHz a correction factor was used to correct the data collected at 3 kHz back to 1 kHz using the equation noted above. The video bandwidth was set to greater than or equal to the resolution bandwidth. The detector used was Peak or Average. The worse case emissions are seen below.

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TIC.
MT-02BDC-IP

Table 10. Radiated Emissions per 15.519(d)

1164 – 1240 MHz and 1559- 1610 MHz								
Frequency (MHz)	Test Data (dBuV)	Additional Factor	AF+CA-AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/Polarization	Margin (dB)	Detector
1195.16	19.48	--	-6.66	12.82	29.9	3.0m./HORZ	17.1	PK
1195.16	5.00	--	-6.66	-1.66	9.9	3.0m./HORZ	11.6	AVG
1583.10	18.32	--	-5.14	13.18	29.9	3.0m./HORZ	16.7	PK
1583.10	4.12	--	-5.14	-1.02	9.9	3.0m./HORZ	10.9	AVG
1213.97	20.28	--	-6.41	13.87	29.9	3.0m./VERT	16.0	PK
1213.97	4.69	--	-6.41	-1.72	9.9	3.0m./VERT	11.6	AVG
1585.52	18.57	--	-5.10	13.47	29.9	3.0m./VERT	16.4	PK
1585.52	3.61	--	-5.10	-1.49	9.9	3.0m./VERT	11.4	AVG

All other detected emissions were more than 20 dB below the applicable limit.

AF is antenna factor. CL is cable loss. PA is preamplifier gain.

SAMPLE CALCULATION AT: 1195.16 MHz

Magnitude of Measured Frequency	19.48	dBuV
Additional Factor	0.00	dB
+Antenna Factor + Cable Loss+ Amplifier Gain	-6.66	dB
Corrected Result	12.82	dBuV/m

Test Date: September 24, 2019

Tested By

Signature: Afzal Fazal

Name: Afzal Fazal

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUF1-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

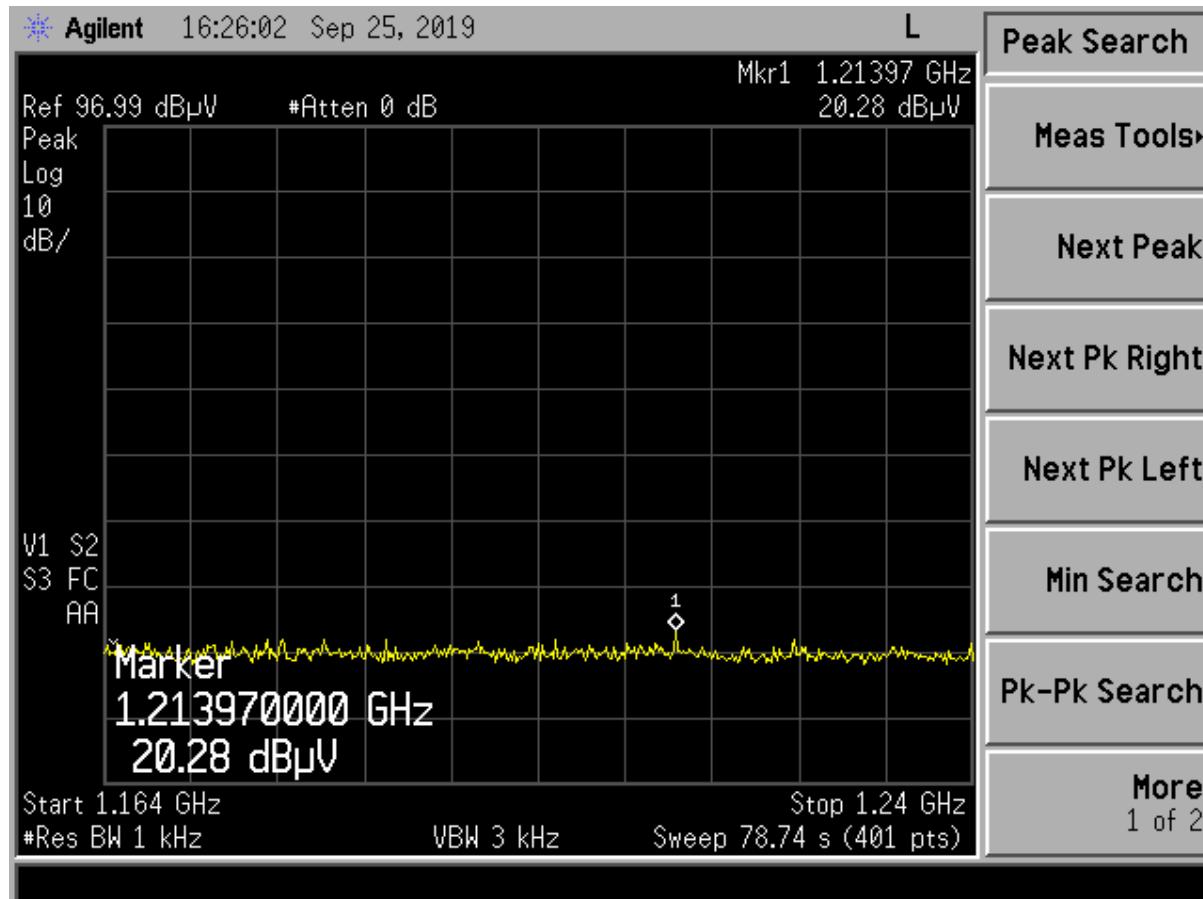


Figure 6. Band 1164 - 1240 MHz (Vertical- Worst Case)

US Tech Test Report:

FCC ID:

Test Report Number:

Issue Date:

Customer:

Model:

FCC Part 15 Certification

2AUF1-MT-02BDC-IP

19-0289

November 1, 2019

OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.

MT-02BDC-IP

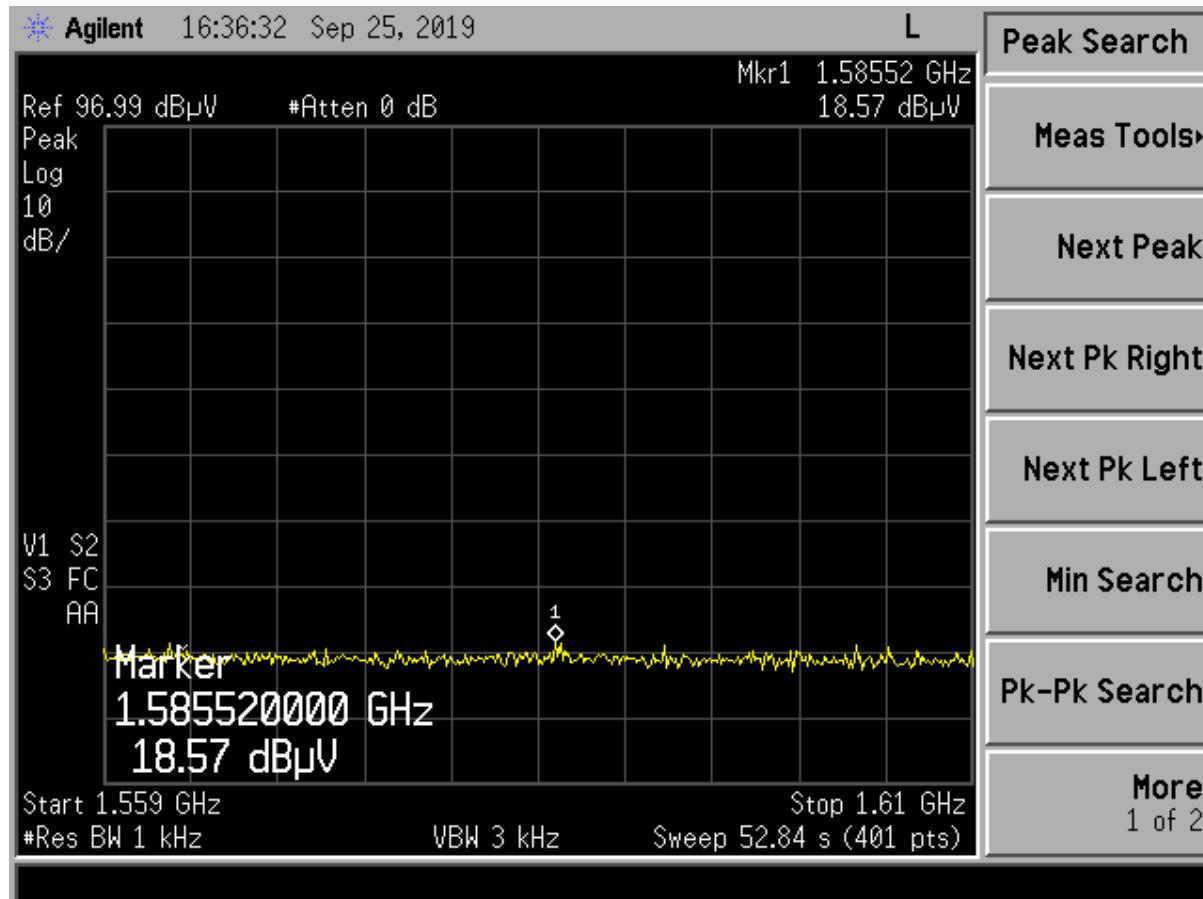


Figure 7. Band 1559 - 1610 MHz (Vertical- worst case)

US Tech Test Report:
FCC ID:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification
2AUF1-MT-02BDC-IP
19-0289
November 1, 2019
OKYANUS TEKNOLOJİ BİLGİSAYAR VE YAZILIM SAN. TİC.
MT-02BDC-IP

2.15 Measurement Uncertainty

The measurement uncertainties given were calculated using the method detailed in CISPR 16-4. A coverage factor of $k=2$ was used to give a level of confidence of approximately 95%.

2.15.1 Conducted Emissions Measurement Uncertainty

Measurement Uncertainty (within a 95% confidence level) for this test is ± 2.85 dB.

This test is not applicable.

2.15.2 Radiated Emissions Measurement Uncertainty

For a measurement distance of 3 m the measurement uncertainty (with a 95% confidence level) for this test using a Biconical Antenna (30 MHz to 200 MHz) is ± 5.40 dB. This value includes all elements of measurement.

The measurement uncertainty (with a 95% confidence level) for this test using a Log Periodic Antenna (200 MHz to 1000 MHz) is ± 5.19 dB.

The measurement uncertainty (with a 95% confidence level) for this test using a Horn Antenna is ± 5.20 dB.

The data listed in this test report does not have sufficient margin to negate the effects of uncertainty. Therefore, the EUT conditionally meets this requirement.

END TEST REPORT