US Tech Test Report:

FCC ID:

Model:

Test Report Number:

Issue Date: Customer: 2AUFI-FT-05DCH 19-0286 October 24, 2019

FCC Part 15 Certification

OKYANUS TEKNOLOJI BILGISAYAR VE YAZILIM SAN. TIC.LTD.STI. FT-05DCH

Maximum Public Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, **S** as per the respective limits in Table 1 below, at a distance, d, of 20 cm from the EUT.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

Therefore, for:

MPE for 2400 MHz - 2483.5 MHz

Limit: 1 mW/cm²

Peak Power (dBm) = 20.5 dBm Peak Power (Watts) = 0.113 W

Gain of Transmit Antenna = 2.0 dB_i = 1.58, numeric

d = Distance = 20 cm = 0.2 m

S = (PG/ $4\pi d^2$) = EIRP/4A = 0.113*(1.58)/4* π *0.2*0.2

 $=0.1784/0.5030 = 0.3550 \text{ W/m}^2$

 $= (0.3550 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2)$

 $= 0.0355 \text{ mW/cm}^2$

which is << less than S = 1 mW/cm²

US Tech Test Report:

FCC ID:

2AUFI-FT-05DCH Test Report Number: 19-0286 Issue Date: October 24, 2019

FCC Part 15 Certification

Customer: OKYANUS TEKNOLOJI BILGISAYAR VE YAZILIM SAN. TIC.LTD.STI. Model: FT-05DCH

Therefore, for:

MPE for 4414.0 MHz

Limit: 1 mW/cm²

Peak Power (dBuV/m) = 69.90 dBuV/m @ 3

Peak Power (dBm) = $69.90 \text{ dBuV/m} + 20 \log(3) - 104.8 = -25.4 \text{ dBm}$

Peak Power (Watts) = 0.000003 W

Gain of Transmit Antenna = $2.7 dB_i = 1.86$, numeric

d = Distance = 20 cm = 0.2 m

S = (PG/ $4\pi d^2$) = EIRP/4A = 0.000003*(1.86)/4* π *0.2*0.2

 $=0.000006/0.5030 = 0.0.000011 \text{ W/m}^2$

 $= (0.000011 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2)$

 $= 0.0000011 \text{ mW/cm}^2$

which is << less than $S = 1 \text{ mW/cm}^2$