

# FCC REPORT

## For FCC Part15F

|                                                       |                                                                                                 |                                                                                                          |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Report No.....                                        | CHTEW2203013401                                                                                 | Report Verification:  |
| Project No.....                                       | SHT2109053801EW                                                                                 |                                                                                                          |
| FCC ID.....                                           | 2AUFI-EAGLEEYE-S01                                                                              |                                                                                                          |
| Applicant.....                                        | Wipelot Teknoloji Sanayi A.S                                                                    |                                                                                                          |
| Address.....                                          | Tozkoparan Mah. Haldun Taner Sk. No:27B D:15 Merter,<br>Gungoren / ISTANBUL / TURKEY            |                                                                                                          |
| Product Name.....                                     | EagleEye Sense                                                                                  |                                                                                                          |
| Trade Mark.....                                       | EagleEye S01                                                                                    |                                                                                                          |
| Model No.....                                         | EagleEye S01                                                                                    |                                                                                                          |
| Listed Model(s).....                                  | -                                                                                               |                                                                                                          |
| Standard.....                                         | 47 CFR FCC Part 15 Subpart F Section 15.519                                                     |                                                                                                          |
| Date of receipt of test sample.....                   | Feb.22, 2022                                                                                    |                                                                                                          |
| Date of testing.....                                  | Feb.23, 2022-Mar.23, 2022                                                                       |                                                                                                          |
| Date of issue.....                                    | Mar.24, 2022                                                                                    |                                                                                                          |
| Result.....                                           | Pass                                                                                            |                                                                                                          |
| Compiled by<br>( position+printedname+signature)....  | File administrator Fanghui Zhu                                                                  |                     |
| Supervised by<br>(position+printedname+signature).... | Project Engineer David Chen                                                                     |                     |
| Approved by<br>(position+printedname+signature)....   | RF Manager Hans Hu                                                                              |                     |
| Testing Laboratory Name.....                          | Shenzhen Huatongwei International Inspection Co., Ltd.                                          |                                                                                                          |
| Address.....                                          | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,<br>Tianliao, Gongming, Shenzhen, China |                                                                                                          |

### Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

*The test report merely correspond to the test sample.*

## Contents

|                                                              |           |
|--------------------------------------------------------------|-----------|
| <b>1. TEST STANDARDS AND REPORT VERSION</b> .....            | <b>3</b>  |
| 1.1. Applicable Standards.....                               | 3         |
| 1.2. Report version information.....                         | 3         |
| <b>2. TEST DESCRIPTION</b> .....                             | <b>4</b>  |
| <b>3. SUMMARY</b> .....                                      | <b>5</b>  |
| 3.1. Client Information.....                                 | 5         |
| 3.2. Product Description.....                                | 5         |
| 3.3. Radio Specification Description.....                    | 5         |
| 3.4. Testing Laboratory Information.....                     | 6         |
| <b>4. TEST CONFIGURATION</b> .....                           | <b>7</b>  |
| 4.1. Test frequency list.....                                | 7         |
| 4.2. Descriptions of Test mode.....                          | 7         |
| 4.3. Test sample information.....                            | 7         |
| 4.4. Support unit used in test configuration and system..... | 7         |
| 4.5. Testing environmental condition.....                    | 7         |
| 4.6. Statement of the measurement uncertainty.....           | 8         |
| 4.7. Equipments Used during the Test.....                    | 9         |
| <b>5. TEST CONDITIONS AND RESULTS</b> .....                  | <b>10</b> |
| 5.1. Transmission time.....                                  | 10        |
| 5.2. 10 dB Bandwidth.....                                    | 11        |
| 5.3. Radiated emissions.....                                 | 12        |
| 5.4. Radiated emissions in the GPS bands.....                | 16        |
| 5.5. Maximum Peak Radiated Power(EIRP).....                  | 24        |
| <b>6. TEST SETUP PHOTOS OF THE EUT</b> .....                 | <b>26</b> |
| <b>7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT</b> .....      | <b>26</b> |
| <b>8. APPENDIX REPORT</b> .....                              | <b>26</b> |

## 1. **TEST STANDARDS AND REPORT VERSION**

### 1.1. **Applicable Standards**

The tests were performed according to following standards:

[47 CFR FCC Part 15 Subpart F](#) - Ultra-Wideband Operation

[ANSI C63.10: 2013](#) – American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

[KDB 393764 D01 UWB FAQ v02](#): Federal Communications Commission Office of Engineering and Technology Laboratory Division: ULTRA-WIDEBAND (UWB) DEVICES FREQUENTLY ASKED QUESTIONS

### 1.2. **Report version information**

| Revision No. | Date of issue | Description |
|--------------|---------------|-------------|
| N/A          | 2022-03-23    | Original    |
|              |               |             |
|              |               |             |
|              |               |             |
|              |               |             |

## 2. Test Description

| Section | Test Item                           | Section in CFR 47 | Result #1 | Test Engineer |
|---------|-------------------------------------|-------------------|-----------|---------------|
| 5.1     | Transmission time                   | 15.519(a)(1)      | Pass      | Xiaoqin Li    |
| 5.2     | 10 dB bandwidth                     | 15.519(b)         | Pass      | Xiaoqin Li    |
| 5.3     | Radiated emissions                  | 15.519(c)         | Pass      | Pan Xie       |
| 5.4     | Radiated emissions in the GPS bands | 15.519(d)         | Pass      | Pan Xie       |
| 5.5     | Maximum Peak Radiated Power(EIRP)   | 15.519(e)         | Pass      | Pan Xie       |

Note:

#1: The test result does not include measurement uncertainty value

### 3. SUMMARY

#### 3.1. Client Information

|               |                                                                                   |
|---------------|-----------------------------------------------------------------------------------|
| Applicant:    | Wipelot Teknoloji Sanayi A.S                                                      |
| Address:      | Tozkoparan Mah. Haldun Taner Sk. No:27B D:15 Merter, Gungoren / ISTANBUL / TURKEY |
| Manufacturer: | Wipelot Teknoloji Sanayi A.S                                                      |
| Address:      | Tozkoparan Mah. Haldun Taner Sk. No:27B D:15 Merter, Gungoren / ISTANBUL / TURKEY |
| Factory:      | Wipelot Teknoloji Sanayi A.S                                                      |
| Address:      | Tozkoparan Mah. Haldun Taner Sk. No:27B D:15 Merter, Gungoren / ISTANBUL / TURKEY |

#### 3.2. Product Description

| Main unit information: |                                  |
|------------------------|----------------------------------|
| Product Name:          | EagleEye Sense                   |
| Trade Mark:            | EagleEye S01                     |
| Model No.:             | EagleEye S01                     |
| Listed Model(s):       | -                                |
| Power supply:          | 5V DC from USB                   |
| Hardware version:      | EagleEye Sense V1.2              |
| Software version:      | HAKO_Reader_JN5168_5100v0019.bin |

#### 3.3. Radio Specification Description

|                            |                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------|
| Operation Frequency:       | UWB Channel 1 (3494.4 MHz)<br>UWB Channel 3 (4492.8 MHz)<br>UWB Channel 5 (6489.6 MHz) |
| Modulation type:           | O-QPSK                                                                                 |
| Antenna type               | SMD Chip Antenna                                                                       |
| Antenna Gain <sup>#1</sup> | UWB Channel 1 → 2.0 dBi<br>UWB Channel 3 → 2.1 dBi<br>UWB Channel 5 → 0.8 dBi          |

Note:

#1: The antenna gain is provided by the applicant, and the applicant should be responsible for its authenticity, HTW lab has not verified the authenticity of its information.

### 3.4. Testing Laboratory Information

| Laboratory Name      | Shenzhen Huatongwei International Inspection Co., Ltd.                                                                                                         |                      |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Laboratory Location  | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China                                                                   |                      |
| Connect information: | <p>Tel: 86-755-26715499<br/>E-mail: <a href="mailto:cs@szhtw.com.cn">cs@szhtw.com.cn</a><br/><a href="http://www.szhtw.com.cn">http://www.szhtw.com.cn</a></p> |                      |
| Qualifications       | Type                                                                                                                                                           | Accreditation Number |
|                      | FCC                                                                                                                                                            | 762235               |

## 4. TEST CONFIGURATION

### 4.1. Test frequency list

| UWB     |                 |
|---------|-----------------|
| Channel | Frequency (MHz) |
| 1       | 3494.4          |
| 3       | 4492.8          |
| 5       | 6489.6          |

### 4.2. Descriptions of Test mode

For RF test items

The EUT has been tested under typical operating condition. Testing was performed by configuring EUT to maximum output power status.

### 4.3. Test sample information

| Test item            | HTW sample no.                                         |
|----------------------|--------------------------------------------------------|
| Conducted test items | Please refer to the description in the appendix report |
| Radiated test items  | YPHT21090538002                                        |

Note:

Conducted test items: Transmission time, 10 dB bandwidth

Radiated test items: Radiated Emission, Radiated emissions in the GPS bands, Maximum Peak Radiated Power(EIRP)

### 4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

| Whether support unit is used? |    |      |           |            |
|-------------------------------|----|------|-----------|------------|
| ✓                             | No | Item | Equipment | Trade Name |
|                               |    | 1    |           |            |
|                               |    | 2    |           |            |

### 4.5. Testing environmental condition

| Type               | Requirement  | Actual   |
|--------------------|--------------|----------|
| Temperature:       | 15~35°C      | 25°C     |
| Relative Humidity: | 25~75%       | 50%      |
| Air Pressure:      | 860~1060mbar | 1000mbar |

#### 4.6. Statement of the measurement uncertainty

| Test Items        | MeasurementUncertainty            |
|-------------------|-----------------------------------|
| EIRP              | 0.65 dB                           |
| Radiated emission | <1GHz: 2.85dB<br>>1GHz: 3.66dB    |
| 10 dB Bandwidth   | <1GHz: 0.022ppm<br>>1GHz: 0.64ppm |

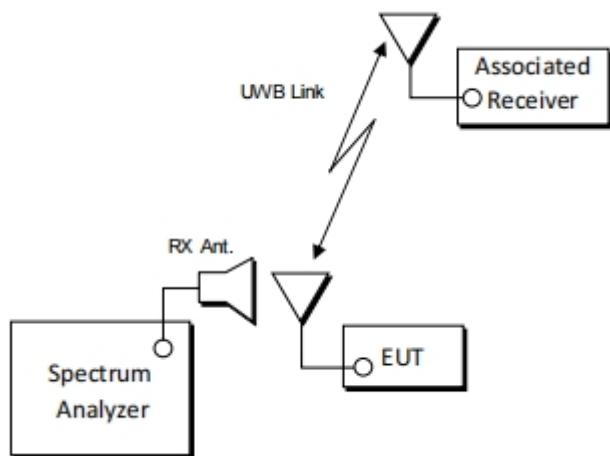
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

## 4.7. Equipments Used during the Test

| Used | Test Equipment               | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal. Date (YY-MM-DD) | Next Cal. Date (YY-MM-DD) |
|------|------------------------------|--------------|---------------|-----------|------------|---------------------------|---------------------------|
| ●    | Signal and spectrum Analyzer | R&S          | HTWE0242      | FSV40     | 100048     | 2021/09/13                | 2022/09/12                |
| ●    | Signal & Spectrum Analyzer   | R&S          | HTWE0262      | FSW26     | 103440     | 2021/09/13                | 2022/09/12                |
| ●    | Spectrum Analyzer            | Agilent      | HTWE0286      | N9020A    | MY50510187 | 2021/09/13                | 2022/09/12                |
| ●    | Radio communication tester   | R&S          | HTWE0287      | CMW500    | 137688-Lv  | 2021/09/13                | 2022/09/12                |
| ●    | Test software                | Tonscend     | N/A           | JS1120    | N/A        | N/A                       | N/A                       |

### ● Radiated Spurious Emission

| Used | Test Equipment          | Manufacturer       | Equipment No. | Model No.         | Serial No.  | Last Cal. Date (YY-MM-DD) | Next Cal. Date (YY-MM-DD) |
|------|-------------------------|--------------------|---------------|-------------------|-------------|---------------------------|---------------------------|
| ●    | Semi-Anechoic Chamber   | Albatross projects | HTWE0122      | SAC-3m-01         | N/A         | 2018/09/27                | 2022/09/26                |
| ●    | Spectrum Analyzer       | R&S                | HTWE0098      | FSP40             | 100597      | 2021/09/13                | 2022/09/12                |
| ●    | Loop Antenna            | R&S                | HTWE0170      | HFH2-Z2           | 100020      | 2021/04/06                | 2024/04/05                |
| ●    | Broadband Horn Antenna  | SCHWARZBECK        | HTWE0103      | BBHA9170          | BBHA9170472 | 2020/04/27                | 2023/04/26                |
| ●    | Ultra-Broadband Antenna | SCHWARZBECK        | HTWE0123      | VULB9163          | 538         | 2021/04/06                | 2024/04/05                |
| ●    | Horn Antenna            | SCHWARZBECK        | HTWE0126      | 9120D             | 1011        | 2020/04/01                | 2023/03/31                |
| ●    | Pre-amplifier           | CD                 | HTWE0071      | PAP-0102          | 12004       | 2021/11/05                | 2022/11/04                |
| ●    | Broadband Preamplifier  | SCHWARZBECK        | HTWE0201      | BBV 9718          | 9718-248    | 2022/02/28                | 2023/02/27                |
| ●    | RF Connection Cable     | HUBER+SUHNE R      | HTWE0120-01   | 6m 18GHz S Serisa | N/A         | 2022/02/25                | 2023/02/24                |
| ●    | RF Connection Cable     | HUBER+SUHNE R      | HTWE0120-02   | 6m 3GHz RG Serisa | N/A         | 2022/02/25                | 2023/02/24                |
| ●    | RF Connection Cable     | HUBER+SUHNE R      | HTWE0120-03   | 6m 3GHz RG Serisa | N/A         | 2022/02/25                | 2023/02/24                |
| ●    | RF Connection Cable     | HUBER+SUHNE R      | HTWE0120-04   | 6m 3GHz RG Serisa | N/A         | 2022/02/25                | 2023/02/24                |
| ●    | RF Connection Cable     | HUBER+SUHNE R      | HTWE0121-01   | 6m 18GHz S Serisa | N/A         | 2018/09/27                | 2022/09/26                |
| ●    | EMI Test Software       | Audix              | N/A           | E3                | N/A         | N/A                       | N/A                       |


## 5. TEST CONDITIONS AND RESULTS

### 5.1. Transmission time

#### LIMIT

A UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting.

#### TEST CONFIGURATION



#### TEST PROCEDURE

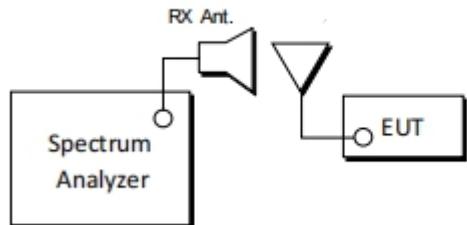
1. The EUT was connected to the spectrum analyzer and an associated receiver via the antenna.
2. Set EUT in maximum power output.
3. Spectrum analyzer setting as follow:  
Center Frequency= Carrier frequency, RBW=1MHz, VBW=3 MHz, Span=Zero Span Mode, Detector=Peak, Trace=Clrw, Sweep time shall be sufficient to compliance with the rule part.
4. Record the value of transmission time.

#### TEST MODE:

Please refer to the clause 4.2

#### TEST RESULTS

Passed       Not Applicable


Refer to appendix A on the section 8 appendix report

## 5.2. 10 dB Bandwidth

### LIMIT

≥500MHz

### TEST CONFIGURATION



### TEST PROCEDURE

1. The EUT was connected to the spectrum analyzer via the antenna.
2. Set EUT in maximum power output.
3. Spectrum analyzer setting as follow:  
Center Frequency= Carrier frequency, RBW=1MHz, VBW=3 MHz, Span=1GHz, Detector=Peak, Trace=Max hold, Sweep=auto couple.
4. Record the value of 10dB bandwidth.

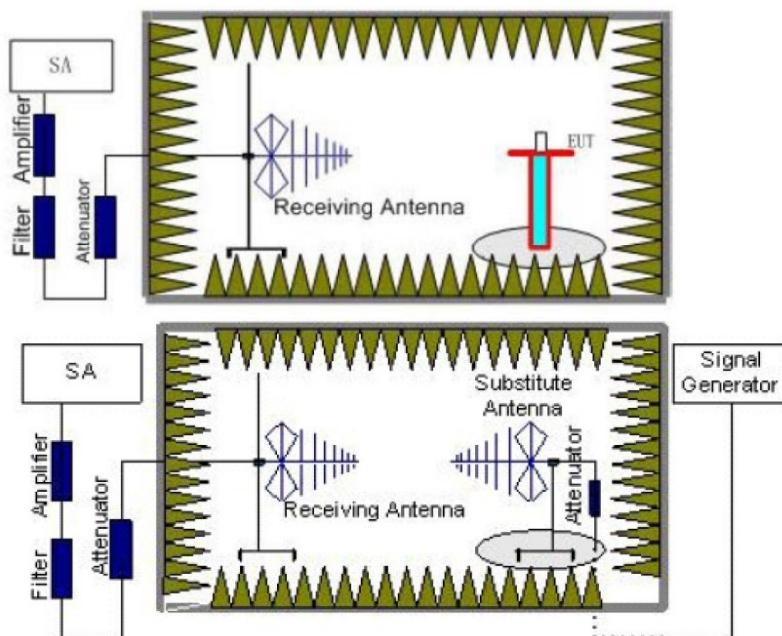
### TEST MODE:

Please refer to the clause 4.2

### TEST RESULTS

Passed       Not Applicable

Refer to appendix B on the section 8 appendix report


### 5.3. Radiated emissions

#### LIMIT

The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in § 15.209. The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

| Frequency [MHz] | EIRP [dBm] |
|-----------------|------------|
| 960-1610        | -75.3      |
| 1610-1990       | -63.3      |
| 1990-3100       | -61.3      |
| 3100-10600      | -41.3      |
| Above 10600     | -61.3      |

#### TEST CONFIGURATION



#### TEST PROCEDURE

1. Place the EUT in the center of the turntable.
  - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
  - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
4. Receiver or Spectrum set as follow:
 

Below 960MHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 960MHz, RBW=1MHz, VBW=3MHz, Detector=RMS, Sweep time=Auto
5. Each emission under consideration shall be evaluated:

- a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
- b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
- c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
- d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
- e) Record the measured emission amplitude level and frequency

6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.

7. Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.

8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.

9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.

10. For each emission that was detected and measured in the initial test

- a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
- b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
- c) Record the output power level of the signal generator when equivalence is achieved in step b).

11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.

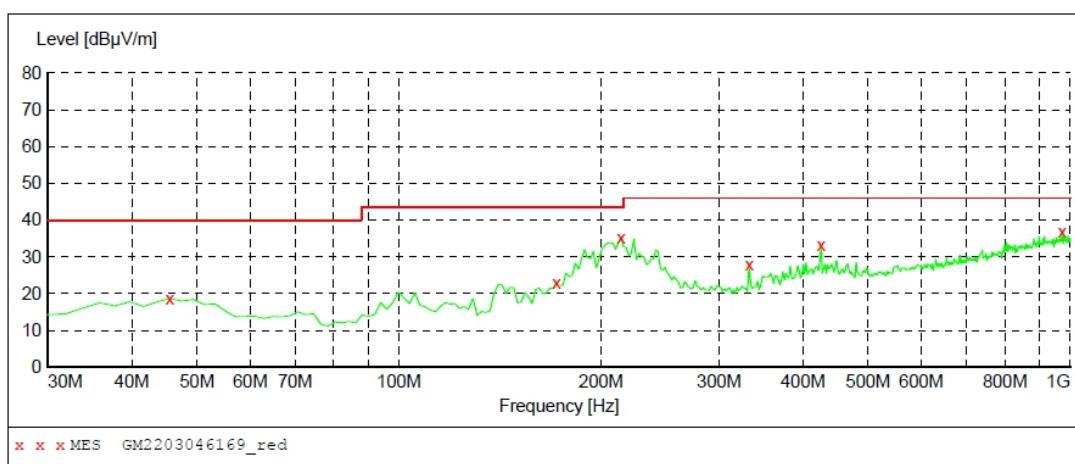
12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:  
$$Pe = Ps(\text{dBm}) - \text{cable loss (dB)} + \text{antenna gain (dBi)}$$
where  
 $Pe$  = equivalent emission power in dBm  
 $Ps$  = source (signal generator) power in dBm  
*NOTE—dBi refers to the measured antenna gain in decibels relative to a half-wave dipole.*

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:  
$$\text{gain (dBi)} = \text{gain (dBi)} - 2.15 \text{ dB.}$$
If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

**TEST MODE:**

Please refer to the clause 4.2

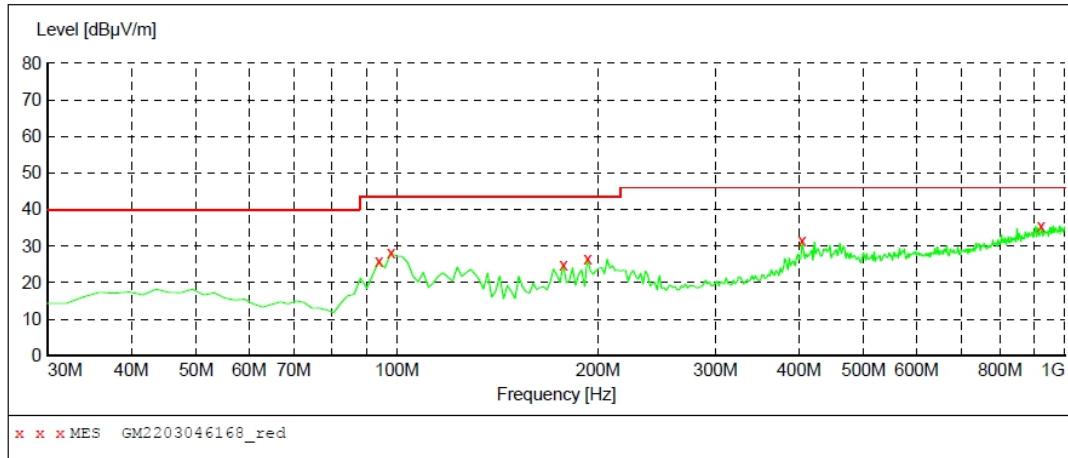

**TEST RESULTS**

Passed       Not Applicable

**TEST DATA FOR 30MHz-960MHz**

Polarization:

Horizontal


**MEASUREMENT RESULT: "GM2203046169\_red"**

3/4/2022 11:24PM

| Frequency<br>MHz | Level<br>dB $\mu$ V/m | Transd<br>dB | Limit<br>dB $\mu$ V/m | Margin<br>dB | Det.<br>QP | Height<br>cm | Azimuth<br>deg | Polarization |
|------------------|-----------------------|--------------|-----------------------|--------------|------------|--------------|----------------|--------------|
| 45.520000        | 18.70                 | -9.4         | 40.0                  | 21.3         | QP         | 100.0        | 153.00         | HORIZONTAL   |
| 171.620000       | 22.90                 | -13.0        | 43.5                  | 20.6         | QP         | 100.0        | 0.00           | HORIZONTAL   |
| 214.300000       | 35.30                 | -10.1        | 43.5                  | 8.2          | QP         | 100.0        | 193.00         | HORIZONTAL   |
| 332.640000       | 27.90                 | -6.2         | 46.0                  | 18.1         | QP         | 100.0        | 340.00         | HORIZONTAL   |
| 425.760000       | 33.10                 | -3.6         | 46.0                  | 12.9         | QP         | 100.0        | 91.00          | HORIZONTAL   |
| 972.840000       | 36.90                 | 8.0          | 46.0                  | 9.1          | QP         | 100.0        | 232.00         | HORIZONTAL   |

Polarization:

Vertical

**MEASUREMENT RESULT: "GM2203046168\_red"**

3/4/2022 11:21PM

| Frequency<br>MHz | Level<br>dB $\mu$ V/m | Transd<br>dB | Limit<br>dB $\mu$ V/m | Margin<br>dB | Det.<br>QP | Height<br>cm | Azimuth<br>deg | Polarization |
|------------------|-----------------------|--------------|-----------------------|--------------|------------|--------------|----------------|--------------|
| 94.020000        | 25.90                 | -12.1        | 43.5                  | 17.6         | QP         | 100.0        | 173.00         | VERTICAL     |
| 97.900000        | 28.10                 | -11.2        | 43.5                  | 15.4         | QP         | 100.0        | 35.00          | VERTICAL     |
| 177.440000       | 25.00                 | -12.5        | 43.5                  | 18.5         | QP         | 100.0        | 236.00         | VERTICAL     |
| 192.960000       | 26.70                 | -11.0        | 43.5                  | 16.8         | QP         | 100.0        | 236.00         | VERTICAL     |
| 404.420000       | 31.60                 | -4.1         | 46.0                  | 14.4         | QP         | 100.0        | 160.00         | VERTICAL     |
| 922.400000       | 35.50                 | 7.2          | 46.0                  | 10.5         | QP         | 100.0        | 150.00         | VERTICAL     |

Remark:

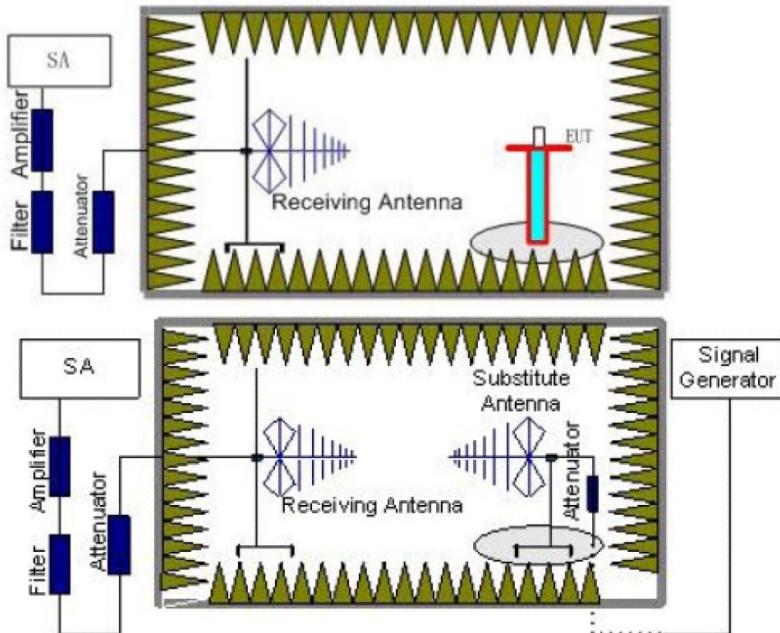
Transd=Cable loss+ Antenna factor- Pre-amplifier; Margin=Limit -Level

**TEST DATA FOR Above 960MHz**

| UWB             |                  |                     |                 |                    |                   |                        |                   |            |          | Test channel: Channel 1 |  |
|-----------------|------------------|---------------------|-----------------|--------------------|-------------------|------------------------|-------------------|------------|----------|-------------------------|--|
| Frequency (MHz) | Read Level (dBm) | Antenna Factor (dB) | Cable Loss (dB) | Preamp Factor (dB) | Level (dBm/MHz z) | Limit Line (dBm/MHz z) | Margin Limit (dB) | Test value | Detector |                         |  |
| 1138.626        | -81.4            | 35.18               | 3.77            | 36.85              | -79.3             | -75.3                  | -4                | Vertical   | Avg      |                         |  |
| 1737.384        | -78.89           | 36.33               | 4.67            | 37.34              | -75.23            | -63.3                  | -11.93            | Vertical   | Avg      |                         |  |
| 2207.058        | -79.26           | 41.64               | 5.32            | 37.55              | -69.85            | -61.3                  | -8.55             | Vertical   | Avg      |                         |  |
| 4996.69         | -86.18           | 44.5                | 8.81            | 34.81              | -67.68            | -41.3                  | -26.38            | Vertical   | Avg      |                         |  |
| 11994.38        | -97.98           | 52.96               | 12.93           | 32.35              | -64.44            | -61.3                  | -3.14             | Vertical   | Avg      |                         |  |
| 1254.268        | -84.1            | 36.85               | 3.96            | 36.62              | -79.91            | -75.3                  | -4.61             | Horizontal | Avg      |                         |  |
| 1777.646        | -79.19           | 36.64               | 4.72            | 37.2               | -75.03            | -63.3                  | -11.73            | Horizontal | Avg      |                         |  |
| 2223.977        | -79.29           | 40.83               | 5.34            | 37.49              | -70.61            | -61.3                  | -9.31             | Horizontal | Avg      |                         |  |
| 4501.492        | -80.73           | 43.2                | 8.01            | 35.8               | -65.32            | -41.3                  | -24.02            | Horizontal | Avg      |                         |  |
| 10916.26        | -98.53           | 52.71               | 12.52           | 32.28              | -65.58            | -61.3                  | -4.28             | Horizontal | Avg      |                         |  |
| UWB             |                  |                     |                 |                    |                   |                        |                   |            |          | Test channel: Channel 3 |  |
| Frequency (MHz) | Read Level (dBm) | Antenna Factor (dB) | Cable Loss (dB) | Preamp Factor (dB) | Level (dBm/MHz z) | Limit Line (dBm/m)     | Margin Limit (dB) | Test value | Detector |                         |  |
| 1173.943        | -82.54           | 36.15               | 3.83            | 36.71              | -79.27            | -75.3                  | -3.97             | Vertical   | Avg      |                         |  |
| 1737.384        | -78.85           | 36.33               | 4.67            | 37.34              | -75.19            | -63.3                  | -11.89            | Vertical   | Avg      |                         |  |
| 2207.058        | -79.33           | 41.64               | 5.32            | 37.55              | -69.92            | -61.3                  | -8.62             | Vertical   | Avg      |                         |  |
| 5462.297        | -79.75           | 44.04               | 9.35            | 32.55              | -58.91            | -41.3                  | -17.61            | Vertical   | Avg      |                         |  |
| 10888.51        | -97.54           | 52.69               | 12.52           | 32.37              | -64.7             | -61.3                  | -3.4              | Vertical   | Avg      |                         |  |
| 1273.572        | -83.19           | 36.9                | 3.99            | 36.63              | -78.93            | -75.3                  | -3.63             | Horizontal | Avg      |                         |  |
| 1814.218        | -79.7            | 36.9                | 4.78            | 37.09              | -75.11            | -63.3                  | -11.81            | Horizontal | Avg      |                         |  |
| 2223.977        | -79.44           | 40.83               | 5.34            | 37.49              | -70.76            | -61.3                  | -9.46             | Horizontal | Avg      |                         |  |
| 6251.257        | -79.96           | 45.55               | 9.72            | 34.01              | -58.7             | -41.3                  | -17.4             | Horizontal | Avg      |                         |  |
| 10916.26        | -97.53           | 52.71               | 12.52           | 32.28              | -64.58            | -61.3                  | -3.28             | Horizontal | Avg      |                         |  |
| UWB             |                  |                     |                 |                    |                   |                        |                   |            |          | Test channel: Channel 5 |  |
| Frequency (MHz) | Read Level (dBm) | Antenna Factor (dB) | Cable Loss (dB) | Preamp Factor (dB) | Level (dBm/MHz z) | Limit Line (dBm/m)     | Margin Limit (dB) | Test value | Detector |                         |  |
| 1755.164        | -79.01           | 36.37               | 4.69            | 37.34              | -75.29            | -63.3                  | -11.99            | Vertical   | Avg      |                         |  |
| 2207.058        | -79.52           | 41.64               | 5.32            | 37.55              | -70.11            | -61.3                  | -8.81             | Vertical   | Avg      |                         |  |
| 3625.669        | -79.59           | 42.54               | 6.94            | 37.02              | -67.13            | -41.3                  | -25.83            | Vertical   | Avg      |                         |  |
| 5574.673        | -77.34           | 43.93               | 9.41            | 33.11              | -57.11            | -41.3                  | -15.81            | Vertical   | Avg      |                         |  |
| 1755.164        | -79.01           | 36.37               | 4.69            | 37.34              | -75.29            | -63.3                  | -11.99            | Vertical   | Avg      |                         |  |
| 1216.534        | -83.84           | 36.77               | 3.9             | 36.76              | -79.93            | -75.3                  | -4.63             | Horizontal | Avg      |                         |  |
| 1851.542        | -80.01           | 37.36               | 4.83            | 37.2               | -75.02            | -63.3                  | -11.72            | Horizontal | Avg      |                         |  |
| 2201.447        | -79.41           | 40.96               | 5.31            | 37.57              | -70.71            | -61.3                  | -9.41             | Horizontal | Avg      |                         |  |
| 4809.499        | -79.53           | 43.68               | 8.47            | 34.12              | -61.5             | -41.3                  | -20.2             | Horizontal | Avg      |                         |  |
| 10916.26        | -98.55           | 52.71               | 12.52           | 32.28              | -65.6             | -61.3                  | -4.3              | Horizontal | Avg      |                         |  |

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measuring frequencies from 960 MHz to 40GHz.


## 5.4. Radiated emissions in the GPS bands

### LIMIT

In addition to the radiated emission limits specified in the table in paragraph (c) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

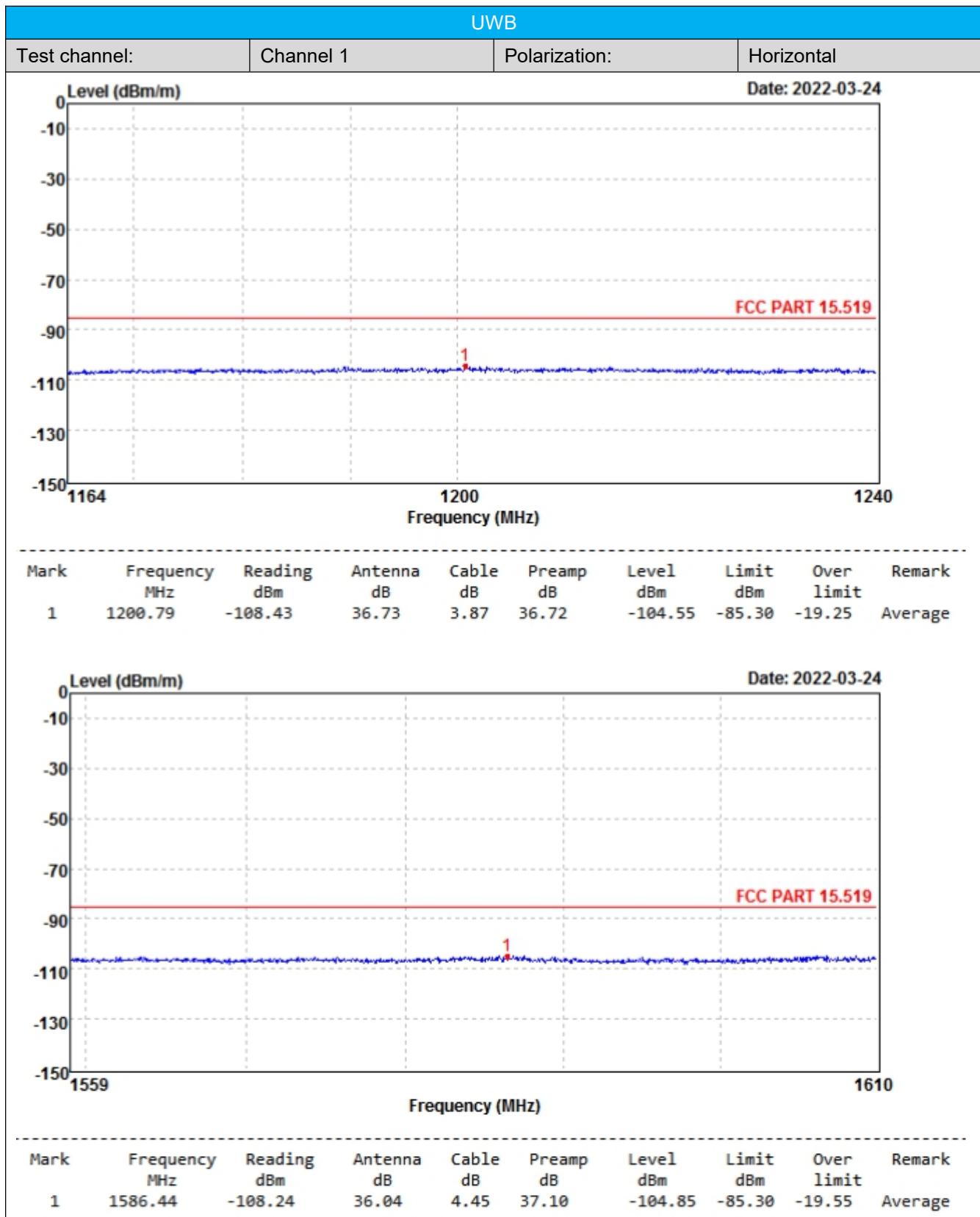
| Frequency [MHz] | EIRP [dBm] |
|-----------------|------------|
| 1164-1240       | -85.3      |
| 1559-1610       | -85.3      |

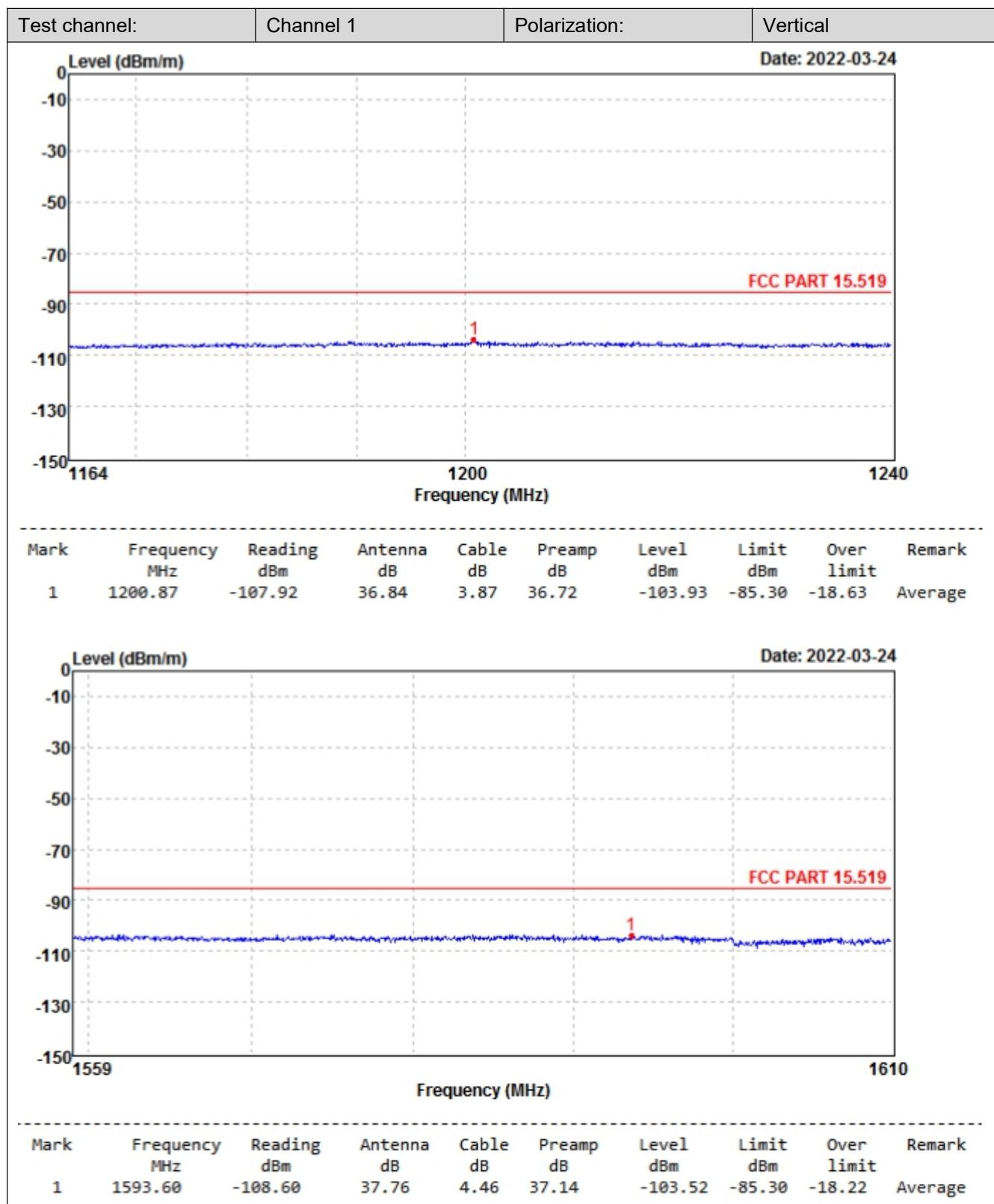
### TEST CONFIGURATION



### TEST PROCEDURE

1. Place the EUT in the center of the turntable.
  - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
  - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
4. Receiver or Spectrum set as follow:  
RBW=1kHz, VBW=3kHz, Detector=RMS, Sweep time=Auto
5. Each emission under consideration shall be evaluated:
  - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
  - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
  - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.


- d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
- e) Record the measured emission amplitude level and frequency
6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
7. Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
10. For each emission that was detected and measured in the initial test
  - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
  - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
  - c) Record the output power level of the signal generator when equivalence is achieved in step b).
11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:
$$Pe = Ps(dBm) - \text{cable loss (dB)} + \text{antenna gain (dBd)}$$
where  
 $Pe$  = equivalent emission power in dBm  
 $Ps$  = source (signal generator) power in dBm
- NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.*
13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:
$$\text{gain (dBd)} = \text{gain (dBi)} - 2.15 \text{ dB.}$$
If necessary, the antenna gain can be calculated from calibrated antenna factor information
14. Provide the complete measurement results as a part of the test report.


**TEST MODE:**

Please refer to the clause 4.2

**TEST RESULTS**

Passed       Not Applicable





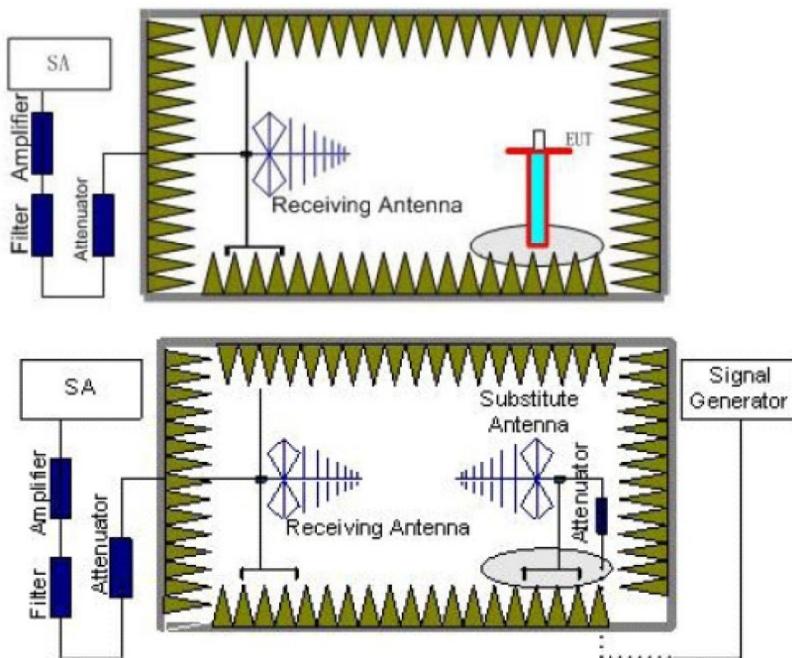
| Test channel:   |                  | Channel 3        |               | Polarization: |              | Horizontal   |              |               |
|-----------------|------------------|------------------|---------------|---------------|--------------|--------------|--------------|---------------|
| Level (dBm/m)   |                  | Date: 2022-03-24 |               |               |              |              |              |               |
| 1               | 1164             | 1200             | 1240          |               |              |              |              |               |
| Mark            | Frequency<br>MHz | Reading<br>dBm   | Antenna<br>dB | Cable<br>dB   | Preamp<br>dB | Level<br>dBm | Limit<br>dBm | Over<br>limit |
| 1               | 1199.65          | -108.85          | 36.72         | 3.87          | 36.71        | -104.97      | -85.30       | -19.67        |
| Remark: Average |                  |                  |               |               |              |              |              |               |
| Level (dBm/m)   |                  | Date: 2022-03-24 |               |               |              |              |              |               |
| 1               | 1559             | 1610             |               |               |              |              |              |               |
| Mark            | Frequency<br>MHz | Reading<br>dBm   | Antenna<br>dB | Cable<br>dB   | Preamp<br>dB | Level<br>dBm | Limit<br>dBm | Over<br>limit |
| 1               | 1598.07          | -107.94          | 35.97         | 4.47          | 37.17        | -104.67      | -85.30       | -19.37        |
| Remark: Average |                  |                  |               |               |              |              |              |               |

| Test channel:          |                  | Channel 3      |               | Polarization: |              | Vertical     |              |                         |         |
|------------------------|------------------|----------------|---------------|---------------|--------------|--------------|--------------|-------------------------|---------|
| <b>Level (dBm/m)</b>   |                  |                |               |               |              |              |              | <b>Date: 2022-03-24</b> |         |
| 1                      |                  |                |               |               |              |              |              |                         |         |
|                        |                  |                |               |               |              |              |              |                         |         |
| <b>FCC PART 15.519</b> |                  |                |               |               |              |              |              |                         |         |
| 1164                   | 1200             | 1240           |               |               |              |              |              |                         |         |
|                        | Frequency (MHz)  |                |               |               |              |              |              |                         |         |
| Mark                   | Frequency<br>MHz | Reading<br>dBm | Antenna<br>dB | Cable<br>dB   | Preamp<br>dB | Level<br>dBm | Limit<br>dBm | Over<br>limit           | Remark  |
| 1                      | 1200.87          | -108.71        | 36.84         | 3.87          | 36.72        | -104.72      | -85.30       | -19.42                  | Average |
| <b>Level (dBm/m)</b>   |                  |                |               |               |              |              |              |                         |         |
| 1                      |                  |                |               |               |              |              |              |                         |         |
|                        |                  |                |               |               |              |              |              |                         |         |
| <b>FCC PART 15.519</b> |                  |                |               |               |              |              |              |                         |         |
| 1559                   | 1610             |                |               |               |              |              |              |                         |         |
|                        | Frequency (MHz)  |                |               |               |              |              |              |                         |         |
| Mark                   | Frequency<br>MHz | Reading<br>dBm | Antenna<br>dB | Cable<br>dB   | Preamp<br>dB | Level<br>dBm | Limit<br>dBm | Over<br>limit           | Remark  |
| 1                      | 1565.08          | -108.48        | 37.76         | 4.42          | 36.96        | -103.26      | -85.30       | -17.96                  | Average |

| Test channel:          |         | Channel 5        |         | Polarization: |       | Horizontal |        |                  |
|------------------------|---------|------------------|---------|---------------|-------|------------|--------|------------------|
| Level (dBm/m)          |         |                  |         |               |       |            |        | Date: 2022-03-24 |
| 1164                   |         | 1200             |         | 1240          |       |            |        |                  |
| Frequency (MHz)        |         |                  |         |               |       |            |        |                  |
| <b>FCC PART 15.519</b> |         |                  |         |               |       |            |        |                  |
| 1                      | 1199.20 | -109.14          | 36.71   | 3.87          | 36.71 | -105.27    | -85.30 | -19.97           |
| Average                |         |                  |         |               |       |            |        |                  |
| Remark                 |         |                  |         |               |       |            |        |                  |
| Mark                   |         | Frequency        | Reading | Antenna       | Cable | Preamp     | Level  | Limit            |
| MHz                    |         | dBm              | dB      | dB            | dB    | dB         | dBm    | dBm              |
| 1                      |         |                  |         |               |       |            |        |                  |
| Over limit             |         |                  |         |               |       |            |        |                  |
| FCC PART 15.519        |         |                  |         |               |       |            |        |                  |
| Level (dBm/m)          |         | Date: 2022-03-24 |         |               |       |            |        |                  |
| 1559                   |         | 1610             |         |               |       |            |        |                  |
| Frequency (MHz)        |         |                  |         |               |       |            |        |                  |
| <b>FCC PART 15.519</b> |         |                  |         |               |       |            |        |                  |
| 1                      | 1604.52 | -107.86          | 35.98   | 4.48          | 37.19 | -104.59    | -85.30 | -19.29           |
| Average                |         |                  |         |               |       |            |        |                  |
| Remark                 |         |                  |         |               |       |            |        |                  |

| Test channel:    |               | Channel 5 |                 | Polarization:   |       | Vertical |               |  |
|------------------|---------------|-----------|-----------------|-----------------|-------|----------|---------------|--|
| Date: 2022-03-24 |               |           |                 |                 |       |          |               |  |
| 1                | Level (dBm/m) |           |                 |                 |       |          |               |  |
| 1                | 1164          | 1200      | 1240            | Frequency (MHz) |       |          |               |  |
| FCC PART 15.519  |               |           |                 |                 |       |          |               |  |
| 1                | 1190.81       | -108.60   | 36.60           | 3.85            | 36.69 | -104.84  | -85.30 -19.54 |  |
| Average          |               |           |                 |                 |       |          |               |  |
| Date: 2022-03-24 |               |           |                 |                 |       |          |               |  |
| 1                | Level (dBm/m) |           |                 |                 |       |          |               |  |
| 1                | 1559          | 1610      | Frequency (MHz) |                 |       |          |               |  |
| FCC PART 15.519  |               |           |                 |                 |       |          |               |  |
| 1                | 1581.14       | -108.53   | 37.76           | 4.44            | 37.06 | -103.39  | -85.30 -18.09 |  |
| Average          |               |           |                 |                 |       |          |               |  |

## Remark:


1. Remark---" means that the emission level is too low to be measured
2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

## 5.5. Maximum Peak Radiated Power(EIRP)

### LIMIT

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs,  $f_M$ . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in § 15.521.

### TEST CONFIGURATION



### TEST PROCEDURE

1. Place the EUT in the center of the turntable.
  - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
  - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
4. Receiver or Spectrum set as follow:  
RBW=3MHz, VBW=10MHz, Detector=Peck, Sweep time=Auto
5. Each emission under consideration shall be evaluated:
  - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
  - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
  - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
  - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
  - e) Record the measured emission amplitude level and frequency

6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
7. Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
10. For each emission that was detected and measured in the initial test
  - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
  - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
  - c) Record the output power level of the signal generator when equivalence is achieved in step b).
11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:
$$Pe = Ps(\text{dBm}) - \text{cable loss (dB)} + \text{antenna gain (dBD)}$$
where  
Pe = equivalent emission power in dBm  
Ps = source (signal generator) power in dBm
- NOTE—dBD refers to the measured antenna gain in decibels relative to a half-wave dipole.*
13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:
$$\text{gain (dBD)} = \text{gain (dBi)} - 2.15 \text{ dB.}$$
If necessary, the antenna gain can be calculated from calibrated antenna factor information
14. Provide the complete measurement results as a part of the test report.

**TEST MODE:**

Please refer to the clause 4.2

**TEST RESULTS**

**Passed**       **Not Applicable**

| Frequency(MHz) | Channel | Peak EIRP (dBm/50MHz) | Peak EIRP Limit (dBm/50MHz) | Verdict |
|----------------|---------|-----------------------|-----------------------------|---------|
| 3494.4         | 1       | -5.32                 | 0                           | PASS    |
| 4492.8         | 3       | -5.83                 | 0                           | PASS    |
| 6489.6         | 5       | -3.97                 | 0                           | PASS    |

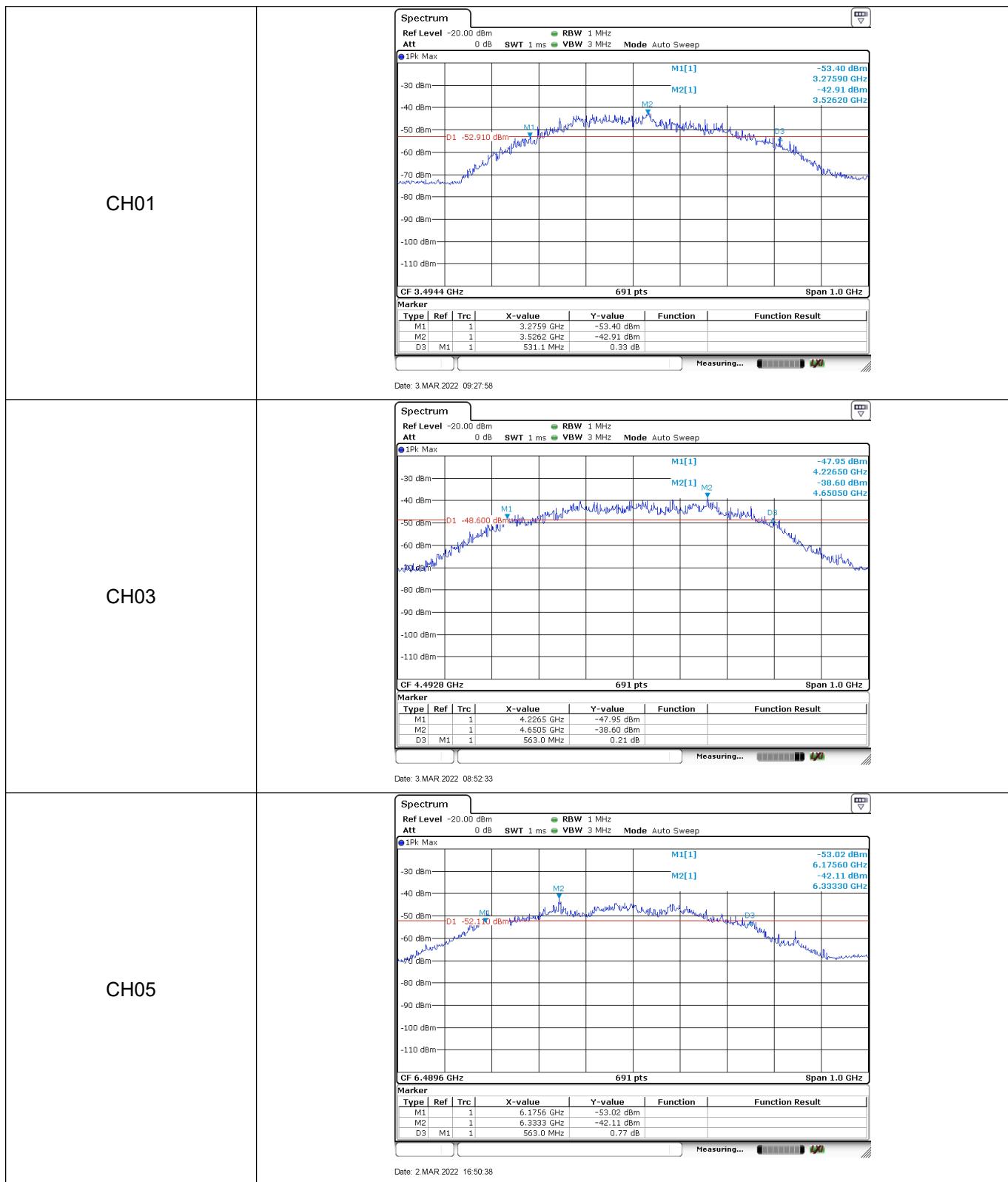
## **6. TEST SETUP PHOTOS OF THE EUT**

Refer to the test report No.: CHTEW22030134

## **7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT**

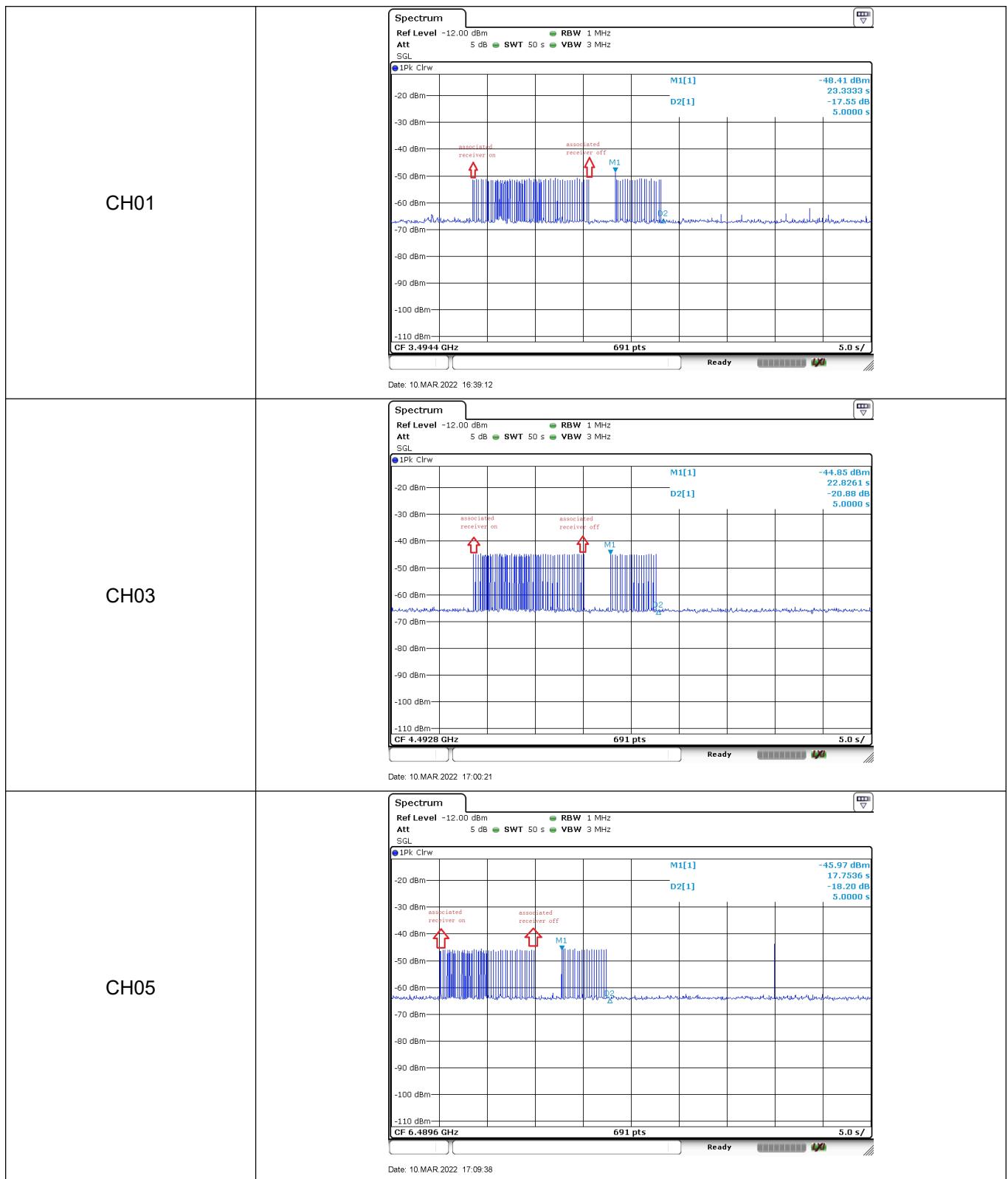
Refer to the test report No.: CHTEW22030134

## **8. APPENDIX REPORT**


# APPENDIX REPORT

|                 |                 |             |                |
|-----------------|-----------------|-------------|----------------|
| Project No.     | SHT2109053802EW |             |                |
| Test sample No. | YPHT21090538003 | Model No.   | EagleEye Sense |
| Start test date | 2022-03-03      | Finish date | 2022-03-10     |
| Temperature     | 24.3°C          | Humidity    | 36%            |
| Test Engineer   | Hailey Chen     | Auditor     | Xiaodong Zhao  |

| Appendix clause | Test item         | Result |
|-----------------|-------------------|--------|
| A               | 10dB bandwidth    | PASS   |
| B               | Transmission time | PASS   |


**Appendix A: 10dB bandwidth**

| Channel | 10dB Bandwidth (MHz) | Limit (MHz) | $f_L$ (MHz) | Limit (MHz) | $f_H$ (MHz) | Limit (MHz)  | Result |
|---------|----------------------|-------------|-------------|-------------|-------------|--------------|--------|
| 01      | 531.1                | $\geq 500$  | 3275.9      | $\geq 3100$ | 3807.0      | $\leq 10600$ | Pass   |
| 03      | 563.0                |             | 4226.5      | $\geq 3100$ | 4789.5      | $\leq 10600$ |        |
| 05      | 563.0                |             | 6175.6      | $\geq 3100$ | 6738.6      | $\leq 10600$ |        |



## Appendix B: Transmission time

| Channel | Transmission time(s) | Limit (s) | Result |
|---------|----------------------|-----------|--------|
| 01      | 5                    | $\leq 10$ | Pass   |
| 03      | 5                    |           |        |
| 05      | 5                    |           |        |



-----End of Report-----